JP2010049131A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2010049131A
JP2010049131A JP2008214889A JP2008214889A JP2010049131A JP 2010049131 A JP2010049131 A JP 2010049131A JP 2008214889 A JP2008214889 A JP 2008214889A JP 2008214889 A JP2008214889 A JP 2008214889A JP 2010049131 A JP2010049131 A JP 2010049131A
Authority
JP
Japan
Prior art keywords
detection
light
intermediate transfer
reflection component
transfer belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008214889A
Other languages
Japanese (ja)
Inventor
Hiroki Tanaka
宏樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2008214889A priority Critical patent/JP2010049131A/en
Publication of JP2010049131A publication Critical patent/JP2010049131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image forming apparatus capable of acquiring a specified peak position even when an image carrier is deteriorated or the glossiness is eliminated, and highly precisely correcting color shift. <P>SOLUTION: The image forming apparatus includes: a light emitting device 31 that emits detection light toward an intermediate transfer belt 22 on which a color misregistration correction detection pattern; a light-reception-side polarization separation element 34 that separates the detection light reflected by the intermediate transfer belt 22 into a regular-reflected component and a diffused-reflected component; a first photodetector 35 that receives the regular-reflected component of the detection light separated by the element 34; a second photodetector 36 that receives the diffused-reflected component of the detection light separated by the element 34; and a control circuit 45 that controls a reference voltage for determining the current for the light emitting device 31, then, corrects the light emission amount and controls the level of the diffused-reflected component of the detection light, from a detection lower limit value to the detection upper limit value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光素子から像担持体に向けて出射された検出用光の反射光を検出する検出センサを搭載した画像形成装置に関する。   The present invention relates to an image forming apparatus equipped with a detection sensor that detects reflected light of detection light emitted from a light emitting element toward an image carrier.

従来から、プリンタ・複写機・ファクシミリ、或いはこれらを機能的に備えた複合機等の画像形成装置では、環境によって現像特性が大きく変化し易い。   2. Description of the Related Art Conventionally, in an image forming apparatus such as a printer, a copier, a facsimile machine, or a multifunction machine equipped with these functions, the development characteristics are likely to change greatly depending on the environment.

従って、この環境によって変化する現像特性を補正して常に一定の画像を得るために、像担持体上のトナー像の反射濃度を検出センサで測定し、その検出値に基づいて現像器のトナー補給や現像器に印加するバイアス電圧等の現像条件、帯電器の帯電条件やレーザー走査光学系のレーザーパワー等の露光条件を制御している。   Therefore, in order to correct the development characteristics that change depending on the environment and always obtain a constant image, the reflection density of the toner image on the image carrier is measured by a detection sensor, and the toner replenishment of the developer is based on the detected value. And development conditions such as bias voltage applied to the developing device, charging conditions of the charger, and exposure conditions such as laser power of the laser scanning optical system are controlled.

一方、近年の画像形成装置は、カラー化に伴い、その色調整システムには、感光体や中間転写体等の像担持体の表面に転写したトナー量を検出して、帯電バイアス・現像バイアス・露光(光量)・転写バイアス・ガンマ補正等にフィードバックを掛けてトナー量(トナー濃度補正)を安定させて所望の色再現(色調整)を行う方式を採用している。   On the other hand, with recent color image forming apparatuses, the color adjustment system detects the amount of toner transferred to the surface of an image carrier such as a photosensitive member or an intermediate transfer member, thereby charging, developing bias, A method is adopted in which a desired color reproduction (color adjustment) is performed by applying feedback to exposure (light quantity), transfer bias, gamma correction, and the like to stabilize the toner amount (toner density correction).

ここで、上述した像担持体の表面トナー量を検出する検出センサは、正反射光(P波)用受光素子と拡散反射光(S波)用受光素子とを備え、例えば、図6に示したフルカラー(K・Y・C・M)の色ずれ補正用検出パターンを像担持体の表面に転写し、その色ずれ補正用検出パターンの検出を正反射光(ブラック(K))の受光タイミングと拡散反射光(ブラック(K)以外)の受光タイミングとを像担持体の移動速度を考慮した時間Tによって色ずれ補正を行っている。   Here, the detection sensor for detecting the surface toner amount of the image carrier described above includes a light receiving element for specular reflection light (P wave) and a light receiving element for diffuse reflection light (S wave), for example, as shown in FIG. The full color (K / Y / C / M) color misregistration correction detection pattern is transferred to the surface of the image carrier, and the detection of the color misregistration correction detection pattern is detected by the timing of regular reflected light (black (K)). The color misregistration correction is performed by the time T in consideration of the moving speed of the image carrier between the light receiving timing of the diffuse reflected light (other than black (K)).

これはP波のみ、S波のみを信号として処理した場合、像担持体の表面の反射率に影響を受け、十分光沢のある場合とない場合とで、表面の出力値を境として入れ替わる現象が存在するためである。   This is because when only the P wave or only the S wave is processed as a signal, it is affected by the reflectance of the surface of the image carrier. This is because it exists.

具体的には、色ずれ補正用検出パターンのパターン位置の検出は、例えば、図5(A)に示すような検出グラフ成分であった場合、そのグラフの検出下限値(像担持体の下地の反射光)から検出上限値(パターンの反射光)迄のグラフ高さの半分を閾値とし、その閾値上に位置する受光波出力値(V)を二値化してパターン位置(仮想ピーク値)を算出している。   Specifically, when the detection of the pattern position of the detection pattern for color misregistration is, for example, a detection graph component as shown in FIG. 5A, the detection lower limit value of the graph (the background of the image carrier) The half of the graph height from the reflected light) to the detection upper limit value (pattern reflected light) is set as a threshold value, and the received wave output value (V) positioned on the threshold value is binarized to obtain the pattern position (virtual peak value). Calculated.

そして、このパターン位置から各色のパターン間距離の理論値からのずれを計算し、像担持体への書き込みタイミングを制御することによってカラーレジストが行われている。   Then, the color registration is performed by calculating a deviation from the theoretical value of the inter-pattern distance of each color from this pattern position and controlling the writing timing to the image carrier.

しかしながら、実際には、検出センサの精度のばらつき等により、P波・S波のピーク位置とP−S波で算出したパターン位置とは個体差を有するばかりでなく、例えば、図5に示すように、像担持体の表面劣化や濃度変化等によりP−S波の波形が変化するため、閾値から算出されるパターン位置(仮想ピーク位置)は変動し易い。   However, in actuality, due to variations in the accuracy of the detection sensors, the P wave / S wave peak position and the pattern position calculated by the P-S wave have individual differences, for example, as shown in FIG. Furthermore, since the waveform of the PS wave changes due to surface deterioration or density change of the image carrier, the pattern position (virtual peak position) calculated from the threshold value is likely to fluctuate.

そのため、P波,S波のどちらか一方の受光ピークに閾値を取って二値化することが好ましく、この方法を用いれば検出センサのP波,S波のピーク位置ずれによるP−S波ピーク位置の変動という問題点が解消されるため、市販の汎用センサのようなラフな設計のものを検出センサとして用いても高い色ずれ検知精度を得ることができる。   For this reason, it is preferable to binarize by taking a threshold value for either one of the P wave and S wave light reception peaks. If this method is used, the peak of the PS wave due to the deviation of the peak position of the P wave and S wave of the detection sensor is used. Since the problem of position variation is solved, high color misregistration detection accuracy can be obtained even if a rough design such as a commercially available general-purpose sensor is used as a detection sensor.

これにより、ブラック(K)の色ずれ補正用検出パターンはP波で検知して二値化し、ブラック以外(例えば、シアン(C)・マゼンダ(M)・イエロー(Y))のカラーの色ずれ補正用検出パターンはS波で検知して二値化することが考えられている(例えば、特許文献1,2参照)。
特開2007−078874号公報 特開2007−240592号公報
Accordingly, the detection pattern for color misregistration correction of black (K) is detected by the P wave and binarized, and color misregistration of colors other than black (for example, cyan (C), magenta (M), yellow (Y)). It is considered that the detection pattern for correction is detected by S waves and binarized (for example, see Patent Documents 1 and 2).
JP 2007-078874 A JP 2007-240592 A

ところが、上記の如く構成された検出センサにあっては、P波,S波を受光する受光素子や、その周辺回路部品等の特性によって、多くの光学センサでは像担持体の下地から色ずれ補正用検出パターン到達直後部位における受光素子の立ち上がり感度と、色ずれ補正用検出パターン通過直後部位における受光素子の立ち下り感度とが異なるため、P波,S波の単独の各アナログ波形は、各受光素子の実際の検出ピーク頂点を基準とした対称な山型の波形とはならず、しかも、検出ピーク頂点の位置は像担持体の劣化等によるピーク高さの変動によって変化する。   However, in the case of the detection sensor configured as described above, in many optical sensors, color misregistration correction is performed from the base of the image carrier due to the characteristics of the light receiving element that receives P wave and S wave and its peripheral circuit components. Since the rising sensitivity of the light receiving element immediately after reaching the detection pattern for light and the falling sensitivity of the light receiving element immediately after passing through the detection pattern for color misalignment are different, The waveform does not have a symmetrical peak shape with the actual detection peak apex of the element as a reference, and the position of the detection peak apex changes due to fluctuations in peak height due to deterioration of the image carrier.

そのため、上述した方法では、像担持体の表面がトナーの添加剤(例えば、酸化チタン等)によって磨耗が発生したり、像担持体の長期使用や表面の汚れによって光沢性が失われた際には、像担持体の下地に対するP波,S波のピーク高さが変化した場合において、例えば、下地からピーク頂点までのピーク高さの中間値に常に閾値を設けるといった制御をおこなったとしても、二値化により算出されるピーク位置は像担持体の初期状態におけるピーク位置を保つことができないという問題が生じていた。   Therefore, in the above-described method, when the surface of the image carrier is worn away by a toner additive (for example, titanium oxide) or the glossiness is lost due to long-term use of the image carrier or contamination of the surface. When the peak height of the P wave and S wave with respect to the background of the image carrier changes, for example, even if control is performed such that a threshold value is always set at the intermediate value of the peak height from the background to the peak vertex, There has been a problem that the peak position calculated by binarization cannot maintain the peak position in the initial state of the image carrier.

そこで、本発明は、上記事情を考慮し、像担持体の劣化や光沢性が失われた場合であっても一定のピーク位置を取得することができ、精度良く色ずれ補正を行うことができる画像形成装置を提供することを目的とする。   Therefore, in consideration of the above circumstances, the present invention can acquire a constant peak position even when the image carrier is deteriorated or loses glossiness, and can accurately perform color misregistration correction. An object is to provide an image forming apparatus.

本発明の検出センサは、フルカラーの色ずれ補正用検出パターンが転写された像担持体に向けて検出用光を出射する発光素子と、像担持体で反射された検出用光を正反射成分と拡散反射成分とに分離する受光側偏光分離素子と、該受光側偏光分離素子で分離された正反射成分の検出用光を受光する第1の受光素子と、前記受光側偏光分離素子で分離された拡散反射成分の検出用光を受光する第2の受光素子と、ブラックの色ずれ補正用検出パターンを正反射成分の検出用光で検知したうえでブラック以外の色ずれ補正用検出パターンを拡散反射成分の検出用光で検知してブラックの色ずれ補正用検出パターン検知からブラック以外の色ずれ補正用検出パターン検知に至る所要時間と前記像担持体の移動速度とを利用して色ずれ検知制御を行う制御回路と、を備え、前記制御回路は、前記発光素子にかかる電流を決定する基準電圧を制御することによって発光光量を補正して拡散反射成分の検出用光の検出下限値から検出上限値までの高さを制御することを特徴とする。   The detection sensor of the present invention includes a light emitting element that emits detection light toward an image carrier to which a detection pattern for color misregistration correction is transferred, and a detection light reflected by the image carrier as a regular reflection component. The light receiving side polarization separating element that separates the diffuse reflection component, the first light receiving element that receives the detection light of the regular reflection component separated by the light receiving side polarization separating element, and the light receiving side polarization separating element. A second light-receiving element that receives the diffuse reflection component detection light and a black color shift correction detection pattern detected by the regular reflection component detection light and diffuses the color shift correction detection pattern other than black Color misregistration detection using the time required from detection pattern detection for black color misregistration detection to detection pattern for color misregistration correction other than black by detecting with reflection component detection light and the moving speed of the image carrier Do control A control circuit, wherein the control circuit corrects the amount of emitted light by controlling a reference voltage for determining a current applied to the light emitting element to detect a diffuse reflection component from a detection lower limit value to a detection upper limit value. It is characterized by controlling the height.

この際、前記制御回路は、前記像担持体の劣化度を変数として基準電圧を制御することを特徴とする。   At this time, the control circuit controls the reference voltage using the degree of deterioration of the image carrier as a variable.

また、前記制御回路は、前記像担持体の下地で反射した検出用光の正反射成分の検出用光の検出値と拡散反射成分の検出用光の検出値との比から前記像担持体の劣化度を算出することを特徴とする。   Further, the control circuit is configured to determine the ratio of the detection value of the regular reflection component of the detection light reflected from the ground of the image carrier and the detection value of the detection light of the diffuse reflection component from the ratio of the detection light of the image carrier. The deterioration degree is calculated.

さらに、前記制御回路は、前記発光素子にかかる電流を決定する基準電圧を増幅制御することを特徴とする。   Further, the control circuit performs amplification control of a reference voltage that determines a current applied to the light emitting element.

即ち、像担持体の劣化等に起因する検出グラフにおけるピーク値の高さ変動を、発光素子の光量補正する基準電圧を変化させることにより、像担持体の劣化に依存せず常に下地(下限値)からピーク値(上限値)までのグラフ高さの差を一定に制御するものである。   In other words, by changing the reference voltage for correcting the light amount of the light emitting element, the fluctuation of the peak value in the detection graph caused by the deterioration of the image carrier is always independent of the background (lower limit value). ) To the peak value (upper limit), the difference in graph height is controlled to be constant.

この際、制御回路による基準電圧の制御は、像担持体の下地の反射光のP波.S波の比から算出された像担持体の劣化度に対する関数で行うことにより、像担持体の劣化に対しても一定のピーク位置を得ることができるばかりでなく、像担持体の表面に発生した汚れやクリーニング不良等の突発的な不具合に対しても精度良く色ずれ補正を行うことができる。   At this time, control of the reference voltage by the control circuit is based on the P wave of the reflected light on the base of the image carrier. By using a function for the degree of deterioration of the image carrier calculated from the ratio of S waves, not only can a constant peak position be obtained even for the deterioration of the image carrier, but it also occurs on the surface of the image carrier. It is possible to perform color misregistration correction with high accuracy even for unexpected problems such as dirt and cleaning defects.

本発明の画像形成装置は、像担持体の劣化や光沢性が失われた場合であっても一定のピーク位置を取得することができ、精度良く色ずれ補正を行うことができる。   The image forming apparatus of the present invention can acquire a constant peak position even when the image carrier is deteriorated or loses glossiness, and can perform color misregistration correction with high accuracy.

次に、本発明の一実施形態に係る検出センサについて、図面を参照して説明する。   Next, a detection sensor according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る検出センサを搭載した画像形成装置としてのタンデム方式のカラープリンタの説明図、図2は本発明の一実施形態に係る検出センサの説明図、図3は本発明の一実施形態に係る検出センサを用いた制御回路における制御例のフロー図、図4は本発明の一実施形態に係る検出センサによる検知結果のグラフ図である。   FIG. 1 is an explanatory diagram of a tandem color printer as an image forming apparatus equipped with a detection sensor according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a detection sensor according to an embodiment of the present invention, and FIG. FIG. 4 is a flow chart of a control example in a control circuit using a detection sensor according to an embodiment of the present invention, and FIG. 4 is a graph of a detection result by the detection sensor according to an embodiment of the present invention.

図1に示すように、本発明の一実施形態に係るトナークリーニング装置を搭載した画像形成装置としてのタンデム方式のカラープリンタ11は、プリンタ本体12の内部に、転写紙(図示せず)を収納する給紙カセット13と、給紙カセット13から転写紙を取り出す給紙部14と、給紙カセット13又は図示を略する手差トレイから供給された転写紙に画像形成処理を行う画像形成処理部15と、給紙カセット13又は手差トレイから供給された転写紙を転写紙搬送経路16で案内しつつ画像形成処理部15で画像形成処理したトナー像を転写する転写部17と、転写後のトナー像を定着する定着部18と、を備えている。   As shown in FIG. 1, a tandem type color printer 11 as an image forming apparatus equipped with a toner cleaning device according to an embodiment of the present invention stores transfer paper (not shown) inside a printer main body 12. A sheet feeding cassette 13 to be transferred, a sheet feeding unit 14 for taking out transfer paper from the sheet feeding cassette 13, and an image forming processing unit for performing image forming processing on transfer sheet supplied from the sheet feeding cassette 13 or a manual feed tray (not shown). 15, a transfer unit 17 that transfers the toner image that has undergone image formation processing by the image formation processing unit 15 while guiding the transfer paper supplied from the paper feed cassette 13 or the manual feed tray through the transfer paper conveyance path 16, And a fixing unit 18 for fixing the toner image.

画像形成処理部15は、例えば、イエロー(Y)、マゼンダ(M)、シアン(C)、ブラック(K)の4色のトナー(現像剤)を用いて画像形成処理を行うタンデム方式が採用されている。尚、以下の説明では、特に色指定に関する場合にのみ、各算用数字の符号に括弧書きで(Y,M,C,K)の色を付し、共通の場合には算用数字のみの符号を付して説明する。   For example, the image forming processing unit 15 employs a tandem system that performs image forming processing using toner (developer) of four colors of yellow (Y), magenta (M), cyan (C), and black (K). ing. In the following description, only in the case of color designation, the symbol of each arithmetic numeral is attached with a color (Y, M, C, K) in parentheses, and in the common case, only the arithmetic numeral is included. A description will be given with reference numerals.

画像形成処理部15は、各色(Y,M,C,K)毎に対応して、補給用トナーを収納した複数のトナーコンテナ19と、各色トナーを図示を略するパーソナルコンピュータから送信された印刷データに含まれる画像データに基づいてトナー像を形成するアモルファスシリコン製の複数の感光体ドラム20と、各感光体ドラム20にトナーを供給する複数の現像器21と、感光体ドラム20に形成されたトナー像が転写される無端状の中間転写ベルト22と、中間転写ベルト22を像担持体としてその表面のトナー像濃度を検出する検出センサ23と、備えている。   The image forming processing unit 15 corresponds to each color (Y, M, C, K), a plurality of toner containers 19 storing replenishing toner, and a print transmitted from each color toner from a personal computer (not shown). A plurality of amorphous silicon-made photosensitive drums 20 that form toner images based on image data included in the data, a plurality of developing devices 21 that supply toner to the respective photosensitive drums 20, and the photosensitive drums 20 are formed. And an endless intermediate transfer belt 22 to which the toner image is transferred, and a detection sensor 23 for detecting the toner image density on the surface of the intermediate transfer belt 22 as an image carrier.

各感光体ドラム20は、その表面に露光器ユニット24から出射されたビーム光束に基づいて各色のトナー像を担持して中間転写ベルト22にトナー像を転写するためのものであり、現像器21と共に中間転写ベルト22の下方に配置されている。また、感光体ドラム20の周囲には、帯電器(帯電ローラ)25、露光器ユニット24、現像器21、転写ローラ26、クリーニング装置27、除電器28が転写プロセス順に配置されている。   Each photoconductor drum 20 is for carrying a toner image of each color on the surface thereof based on the beam flux emitted from the exposure unit 24 and transferring the toner image to the intermediate transfer belt 22. In addition, it is disposed below the intermediate transfer belt 22. Further, around the photosensitive drum 20, a charger (charging roller) 25, an exposure unit 24, a developing unit 21, a transfer roller 26, a cleaning device 27, and a static eliminator 28 are arranged in the order of the transfer process.

各現像器21は、基本的に同一構成のものが中間転写ベルト22の下方に回動移動方向に沿って隣接配置されている。尚、現像器21の詳細な構成の説明は省略する。   Each developing device 21 basically has the same configuration and is arranged adjacent to the lower side of the intermediate transfer belt 22 along the rotational movement direction. A detailed description of the configuration of the developing device 21 is omitted.

中間転写ベルト22は、プリンタ本体12内で水平方向に延びて配置された無端ベルトであり、画像形成動作に伴って循環駆動される。また、中間転写ベルト22上に転写されたトナー像は、給紙カセット13又は手差トレイから転写紙搬送経路16を通って搬送されてきた転写紙に対し転写部17で転写する。さらに、中間転写ベルト22には、必要に応じて(例えば、所定設定枚数毎やユーザ操作等に応じて)、上述した(図6に示した)フルカラー(K・Y・C・M)の色ずれ補正用検出パターンが転写され、そのパターンを検出センサ23で検出して色ずれ補正を行う。   The intermediate transfer belt 22 is an endless belt disposed in the printer main body 12 so as to extend in the horizontal direction, and is circulated and driven in accordance with an image forming operation. Further, the toner image transferred onto the intermediate transfer belt 22 is transferred by the transfer unit 17 to the transfer paper conveyed through the transfer paper conveyance path 16 from the paper feed cassette 13 or the manual feed tray. Further, the intermediate transfer belt 22 is provided with the full-color (K, Y, C, M) colors (shown in FIG. 6) described above (as shown in FIG. 6) as necessary (for example, every predetermined number of sheets or according to user operation). The detection pattern for misregistration correction is transferred, and the pattern is detected by the detection sensor 23 to correct the color misregistration.

尚、転写部17でトナー像を転写した転写紙は転写紙搬送経路16を通って定着部18で定着された後、転写紙搬送経路16の終端部へと案内されてプリンタ本体12の上面として兼用する排紙トレイ12aに向けて排出される。   The transfer sheet on which the toner image has been transferred by the transfer unit 17 is fixed by the fixing unit 18 through the transfer sheet conveyance path 16 and then guided to the end of the transfer sheet conveyance path 16 as the upper surface of the printer main body 12. The paper is discharged toward the shared paper discharge tray 12a.

検出センサ23は、中間転写ベルト22のトナー像の反射濃度を測定し、その検出値に基づいて各現像器21のトナー補給や現像器21に印加するバイアス電圧等の現像条件、帯電器25の帯電条件や露光器ユニット24のレーザーパワー等の露光条件を制御するために用いている。また、検出センサ23は、図2に示すように、筐体29と、筐体29の検出用光出入窓を閉成する保護カバー30と、筐体29の内部に配置されて中間転写ベルト22に向けて検出用光を出射する発光ダイオード等の発光素子31と、発光素子31の前面に配置された出射側偏光分離素子32と、フォトトランジスタ等の補正光受光素子33と、中間転写ベルト22で反射された検出用光を正反射成分(P波)と拡散反射成分(S波)とに分離する受光側偏光分離素子34と、フォトダイオード等の第1,第2の受光素子35,36と、を備えている。   The detection sensor 23 measures the reflection density of the toner image on the intermediate transfer belt 22, and develops conditions such as toner replenishment of each developing device 21 and bias voltage applied to the developing device 21 based on the detected value, and the charging device 25. It is used to control exposure conditions such as charging conditions and laser power of the exposure unit 24. Further, as shown in FIG. 2, the detection sensor 23 is disposed inside the housing 29, a protective cover 30 that closes the detection light entrance / exit window of the housing 29, and the intermediate transfer belt 22. A light emitting element 31 such as a light emitting diode that emits detection light toward the light emitting element, an output side polarization separation element 32 disposed in front of the light emitting element 31, a correction light receiving element 33 such as a phototransistor, and the intermediate transfer belt 22. A light-receiving side polarization separation element 34 that separates the detection light reflected by the light into a regular reflection component (P wave) and a diffuse reflection component (S wave), and first and second light receiving elements 35 and 36 such as photodiodes. And.

発光素子31には、LEDレーザービーム光源等が用いられ、所定の制御電圧が差動増幅回路(増幅回路)37から出力されると、その制御電圧の発光閾値電流が駆動回路38から発光素子31に供給される。   An LED laser beam light source or the like is used as the light emitting element 31, and when a predetermined control voltage is output from the differential amplifier circuit (amplifier circuit) 37, the light emission threshold current of the control voltage is output from the drive circuit 38 to the light emitting element 31. To be supplied.

出射側偏光分離素子32には、偏光ビームスプリッタ、偏光プリズム、ハーフミラー等が用いられており、発光素子31から検出用光を中間転写ベルト22に向けて出射し、また発光素子31から出射された検出用光の一部を補正光受光素子33によって検知する。尚、出射側偏光分離素子32に偏光ビームスプリッタを用いた場合、発光素子31から出射された検出用光の一部はP波に偏光が揃えられた状態で透過する。   A polarization beam splitter, a polarizing prism, a half mirror, or the like is used for the output side polarization separation element 32, and detection light is emitted from the light emitting element 31 toward the intermediate transfer belt 22 and is emitted from the light emitting element 31. A part of the detected light is detected by the correction light receiving element 33. When a polarization beam splitter is used as the output side polarization separation element 32, a part of the detection light emitted from the light emitting element 31 is transmitted in a state where the polarization is aligned with the P wave.

補正光受光素子33は、出射側偏光分離素子32で反射(屈折)された検出用光の一部を受光し、その光量をモニタ光検出回路(モニタ回路)39で検出した後、インピーダンス変換回路(変換回路)40でインピーダンス変換された光電流を光量検出電圧として差動増幅回路(増幅回路)37にフィードバックする。   The correction light receiving element 33 receives a part of the detection light reflected (refracted) by the output side polarization separation element 32, detects the amount of light by a monitor light detection circuit (monitor circuit) 39, and then an impedance conversion circuit. (Conversion circuit) The photocurrent impedance-converted by 40 is fed back to the differential amplifier circuit (amplifier circuit) 37 as a light amount detection voltage.

受光側偏光分離素子34は、中間転写ベルト22で反射された検出用光を正反射成分(P波)と拡散反射成分(S波)とに分離する。   The light receiving side polarization separation element 34 separates the detection light reflected by the intermediate transfer belt 22 into a regular reflection component (P wave) and a diffuse reflection component (S wave).

各受光素子35,36の検知結果は、I−V変換回路(変換回路)41,42で電圧変換した後、ゲイン調整回路(調整回路)43,44でゲイン調整されたうえで、受光素子36で受光したS波検出電圧値と受光素子35で受光したP波検出電圧値とが制御回路45へと出力される。   The detection results of the light receiving elements 35 and 36 are subjected to voltage conversion by IV conversion circuits (conversion circuits) 41 and 42 and then gain adjusted by gain adjustment circuits (adjustment circuits) 43 and 44, and then received by the light receiving elements 36. The S-wave detection voltage value received at 1 and the P-wave detection voltage value received by the light receiving element 35 are output to the control circuit 45.

制御回路45は、ROM46に格納された制御プログラムに基づいて、上述した各現像器21のトナー補給や現像器21に印加するバイアス電圧等の現像条件、帯電器25の帯電条件や露光器ユニット24のレーザーパワー等の露光条件を制御する。また、ROM46には、本発明の色ずれ補正に関する制御プログラムも格納されており、受光素子35,36で受光したS波,P波から、中間転写ベルト22の劣化度を判定し、その劣化度に応じた発光光量となるように、発光素子31を制御する。   The control circuit 45 is based on a control program stored in the ROM 46, and the above-described developing conditions such as toner replenishment of each developing device 21 and bias voltage applied to the developing device 21, charging conditions of the charging device 25, and the exposure unit 24. Controls exposure conditions such as laser power. The ROM 46 also stores a control program related to color misregistration correction according to the present invention. The ROM 46 determines the degree of deterioration of the intermediate transfer belt 22 from the S wave and P wave received by the light receiving elements 35 and 36, and the degree of deterioration. The light emitting element 31 is controlled so as to obtain a light emission amount according to the above.

具体的には、発光素子31から出射された検出用光は、出射側偏光分離素子32並びに保護カバー30を透過して中間転写ベルト22で反射される。   Specifically, the detection light emitted from the light emitting element 31 passes through the emission side polarization separation element 32 and the protective cover 30 and is reflected by the intermediate transfer belt 22.

その反射光は、保護カバー30を透過した後に、一部は受光側偏光分離素子34を透過して第1の受光素子35に受光され、他の一部は受光側偏光分離素子34に反射されて第2の受光素子36に受光される。   The reflected light passes through the protective cover 30, and then part of the reflected light passes through the light receiving side polarization separation element 34 and is received by the first light receiving element 35, and the other part is reflected by the light receiving side polarization separation element 34. The second light receiving element 36 receives the light.

この際、受光側偏光分離素子34は、中間転写ベルト22で反射された検出用光を正反射成分(P波)と拡散反射成分(S波)とに分離するが、本実施の形態では、受光側偏光分離素子34への入射光の一部は受光側偏光分離素子34を透過した正反射成分(P波)の検出用光として偏光が揃えられた状態で第1の受光素子35で受光し、他の一部は受光側偏光分離素子34で反射した拡散反射成分(S波)の検出用光として第2の受光素子36で受光する。   At this time, the light receiving side polarization separation element 34 separates the detection light reflected by the intermediate transfer belt 22 into a regular reflection component (P wave) and a diffuse reflection component (S wave). In the present embodiment, A part of the incident light on the light receiving side polarization separating element 34 is received by the first light receiving element 35 in a state where the polarization is aligned as detection light of the specular reflection component (P wave) transmitted through the light receiving side polarization separating element 34. However, the other part is received by the second light receiving element 36 as detection light of the diffuse reflection component (S wave) reflected by the light receiving side polarization separation element 34.

各受光素子35,36は、その受光した反射光に基づくS波検出電圧値とP波検出電圧値とを制御回路45へと出力する。   Each light receiving element 35, 36 outputs an S wave detection voltage value and a P wave detection voltage value based on the received reflected light to the control circuit 45.

制御回路45は、出力された各電圧値から、ROM46に格納されたトナー濃度補正制御プログラムに従ってトナー濃度補正制御(発光素子31の光量補正)を実行する。   The control circuit 45 executes toner density correction control (light quantity correction of the light emitting element 31) from each output voltage value according to a toner density correction control program stored in the ROM 46.

例えば、図6に示したブラック(K)⇔マゼンダ(M)間の検出グラフ上におけるピーク間距離を算出することによってブラック(K)とマゼンタ(M)との間の色ずれ補正用検出パターン間距離を得ることができる。従って、本発明におけるカラーレジストとは、この得られた値と理論値との差を埋める色ずれ補正のことである。   For example, by calculating the distance between peaks on the detection graph between black (K) and magenta (M) shown in FIG. 6, between the detection patterns for color misregistration correction between black (K) and magenta (M). The distance can be obtained. Therefore, the color resist in the present invention is color misregistration correction that fills the difference between the obtained value and the theoretical value.

ここで、図5に、中間転写ベルト22の初期時と劣化時とで、トナー量が等しい色ずれ補正用検出パターンとしてのマゼンダ(M)におけるS波出力(アナログ波形)を示す。   Here, FIG. 5 shows an S wave output (analog waveform) in magenta (M) as a color misregistration correction detection pattern in which the toner amount is equal between the initial stage and the deterioration stage of the intermediate transfer belt 22.

図5(A)は、中間転写ベルト22の初期時における受光素子36で受光したS波検出電圧値の検出グラフである。   FIG. 5A is a detection graph of the S-wave detection voltage value received by the light receiving element 36 at the initial stage of the intermediate transfer belt 22.

このグラフにおいて、検出下限値は中間転写ベルト22のベルト下地からの反射光に基づく検出値であり、その後のグラフの立ち上がりはベルト下地から一つの(1本の)色ずれ補正用検出パターンに至る過程及び当該パターンからベルト下地に至る過程の中間転写ベルト22のベルト回動移動方向に沿うパターン検出値である。   In this graph, the detection lower limit is a detection value based on the reflected light from the belt base of the intermediate transfer belt 22, and the subsequent rise of the graph reaches one (one) color misregistration correction detection pattern from the belt base. This is a pattern detection value along the belt rotational movement direction of the intermediate transfer belt 22 in the process and the process from the pattern to the belt base.

そもそも、中間転写ベルト22の下地の反射特性及び色ずれ補正用検出パターンのトナー量が均一であれば、グラフはピーク位置を中心として左右(時間軸)で対称形状となるが、実際には、中間転写ベルト22の下地の反射特性及び色ずれ補正用検出パターンのトナー量の不均一性並びにセンサ感度特性等の様々な要因により、グラフ形状は対称形状とはなり難い。   In the first place, if the reflection characteristics of the background of the intermediate transfer belt 22 and the toner amount of the detection pattern for color misregistration correction are uniform, the graph has a symmetrical shape on the left and right (time axis) around the peak position. The graph shape is unlikely to be symmetrical due to various factors such as the reflection characteristics of the background of the intermediate transfer belt 22, the toner amount non-uniformity of the detection pattern for color misregistration correction, and the sensor sensitivity characteristics.

従って、このグラフ上のピーク位置の特定には、得られたアナログ波形に対し、中間転写ベルト22の下地に相当する下限値から各ピーク頂点である検出上限値までの高さの中間値に閾値を設け、この閾値上に位置するグラフ交点間の中間位置を仮想ピーク位置として算出している。   Therefore, the peak position on this graph is specified by setting the threshold value to the intermediate value of the height from the lower limit value corresponding to the background of the intermediate transfer belt 22 to the detection upper limit value corresponding to each peak for the obtained analog waveform. And an intermediate position between graph intersections located on the threshold value is calculated as a virtual peak position.

同様に、図5(B)に、中間転写ベルト22が劣化している状態でのトナー量が等しい色ずれ補正用検出パターンとしてのマゼンダ(M)におけるS波出力(アナログ波形)を示す。   Similarly, FIG. 5B shows an S wave output (analog waveform) in magenta (M) as a color misregistration correction detection pattern with the same toner amount when the intermediate transfer belt 22 is deteriorated.

これらの結果、各アナログ波形の仮想ピーク位置を特定し、その時間軸を算出した結果、
初期時:0.13395[sec]
劣化時:0.13370[sec]
という値が得られた。
As a result of specifying the virtual peak position of each analog waveform and calculating its time axis,
Initial time: 0.13395 [sec]
At the time of deterioration: 0.13370 [sec]
The value was obtained.

この初期時と劣化時とで仮想ピーク位置の算出に差が発生した要因は、中間転写ベルト22の初期時における表面光沢度は高く、中間転写ベルト22の劣化時における表面光沢度は低いことに起因する。   The reason for the difference in the calculation of the virtual peak position between the initial time and the deterioration is that the surface glossiness at the initial stage of the intermediate transfer belt 22 is high and the surface glossiness at the time of deterioration of the intermediate transfer belt 22 is low. to cause.

初期においては、中間転写ベルト22の表面(下地)の平滑性は高いので表面光沢度は高く、中間転写ベルト22上のトナー層表面も平滑性が高いため表面光沢度が高く拡散反射光量が少ない。   In the initial stage, the surface (base) of the intermediate transfer belt 22 has high smoothness, so the surface glossiness is high, and the surface of the toner layer on the intermediate transfer belt 22 is also highly smooth, so the surface glossiness is high and the amount of diffusely reflected light is small. .

これに対し、耐刷後の中間転写ベルト22の表面(下地)は磨耗等により平滑性が初期に比較し劣化するため、ベルト表面のトナー層表面の平滑性も低下し表面光沢度が低くなるので拡散反射光量が増加する。このため、初期に対し耐刷後のトナー層のピーク高さは高くなる。   On the other hand, the smoothness of the surface of the intermediate transfer belt 22 after printing (underground) deteriorates due to wear or the like as compared with the initial stage, so that the smoothness of the toner layer surface on the belt surface also decreases and the surface glossiness becomes low. Therefore, the amount of diffuse reflection increases. For this reason, the peak height of the toner layer after printing is higher than the initial stage.

即ち、色ずれ補正用検出パターンに対するS波の反射光量(グラフ曲線)では、中間転写ベルト22の初期時における色ずれ補正用検出パターン検出時はベルト下地と色ずれ補正用検出パターンとの境界(反射光量)の差が少ないことから立上り及び立下りが緩やかなグラフ曲線となり、中間転写ベルト22の劣化時における色ずれ補正用検出パターン検出時はベルト下地と色ずれ補正用検出パターンとの境界(反射光量)の差が大きいことから立上り及び立下りが鋭いグラフ曲線となる。   That is, in the S wave reflected light amount (graph curve) with respect to the color misregistration correction detection pattern, when detecting the color misregistration correction at the initial stage of the intermediate transfer belt 22, the boundary between the belt base and the color misregistration correction detection pattern ( Since the difference in the amount of reflected light is small, the rising and falling graph curves are gentle, and when detecting the color misregistration correction pattern when the intermediate transfer belt 22 is deteriorated, the boundary between the belt base and the color misregistration correction detection pattern ( Since the difference in the amount of reflected light is large, the graph has a sharp rising and falling edge.

結果として、中間転写ベルト22の初期時における表面光沢度の高い状態でのピーク値よりも、中間転写ベルト22の劣化時における表面光沢度の低い状態でのピーク値の方が高くなり、中間転写ベルト22の劣化時における表面光沢度の低い状態でのグラフ上での立上り及び立下りが鋭い(急激)な分だけ、閾値上でのグラフ交点(受光波出力値)の特定が容易となり、より厳密なピーク位置を特定することができている。   As a result, the peak value in the state of low surface gloss when the intermediate transfer belt 22 is deteriorated is higher than the peak value in the state of high surface gloss in the initial stage of the intermediate transfer belt 22, and the intermediate transfer Since the rise and fall on the graph in the state where the surface glossiness is low at the time of deterioration of the belt 22 is sharp (abrupt), it becomes easier to specify the graph intersection (received wave output value) on the threshold value. The exact peak position can be specified.

従って、中間転写ベルト22の初期時では、表面光沢度の高い状態でのグラフ上での立上り及び立下りが緩やかな分だけ、閾値上でのグラフ交点(受光波出力値)の特定が曖昧となり、厳密なピーク位置を特定することが困難となっており、そのまま誤差としてピーク位置の特定となってしまう。   Therefore, at the initial stage of the intermediate transfer belt 22, the specification of the graph intersection point (received wave output value) on the threshold value becomes ambiguous as the rise and fall on the graph with a high surface glossiness are gentle. Therefore, it is difficult to specify the exact peak position, and the peak position is specified as an error as it is.

そのため、劣化時の中間転写ベルト22でのS波に閾値を設けて二値化したピーク位置は、本実施の形態においては、図中左側にシフトすることとなり、この初期時の中間転写ベルト22と劣化時の中間転写ベルト22における二値化したピーク位置の差0.00025[sec]は、例えば、中間転写ベルト22の回動移動速度が164mm/sとした場合では、41.0[um]となり、大きなずれ量となる。   Therefore, the peak position binarized by providing a threshold value for the S wave on the intermediate transfer belt 22 at the time of deterioration is shifted to the left side in the drawing in this embodiment, and this intermediate transfer belt 22 at the initial stage is shifted. The difference 0.00025 [sec] between the binarized peak positions in the intermediate transfer belt 22 at the time of deterioration is, for example, 41.0 [um when the rotational movement speed of the intermediate transfer belt 22 is 164 mm / s. ], And a large shift amount.

従って、制御回路45は、このずれ量(中間転写ベルト22の劣化度)を考慮して、例えば、図4に示した、中間転写ベルト22の初期時におけるS波と、中間転写ベルト22の劣化時におけるS波とで示すように、発光素子31の基準電圧を変化させる必要がある。この際、発光素子31の基準電圧は、増幅後の中間転写ベルト22のベルト下地部位(グラフ左右)での増幅範囲は狭く、ピーク値(グラフ中央)に達するほど増幅範囲が広くなるようにし、結果的に、中間転写ベルト22の劣化時のS波の下限値から上限値までの高さh1に対して、増幅後のS波の下限値から上限値までの高さh2が等しくなるように制御するのが好ましい。   Therefore, the control circuit 45 considers this deviation amount (deterioration degree of the intermediate transfer belt 22), for example, the S wave at the initial stage of the intermediate transfer belt 22 and the deterioration of the intermediate transfer belt 22 shown in FIG. As indicated by the S wave at the time, the reference voltage of the light emitting element 31 needs to be changed. At this time, the reference voltage of the light emitting element 31 is such that the amplification range at the belt base portion (left and right of the graph) of the intermediate transfer belt 22 after amplification is narrow, and the amplification range becomes wider as the peak value (center of the graph) is reached. As a result, the height h2 from the lower limit value of the amplified S wave to the upper limit value is equal to the height h1 from the lower limit value to the upper limit value of the S wave when the intermediate transfer belt 22 is deteriorated. It is preferable to control.

以下、図3のフロー図に基づいて、制御回路45の制御例を説明する。   Hereinafter, a control example of the control circuit 45 will be described based on the flowchart of FIG.

(ステップS1)
ステップS1では、制御回路45は、中間転写ベルト22の表面(下地)について、P波とS波の波形を取得するとともに、P波とS波の光量値の比率を求め、ステップS2に移行する。
(Step S1)
In step S1, the control circuit 45 obtains the P wave and S wave waveforms for the surface (base) of the intermediate transfer belt 22, calculates the ratio of the P wave and S wave light quantity values, and proceeds to step S2. .

(ステップS2)
ステップS2では、制御回路45は、ステップS1で求めたP波とS波の光量値の比率から、ベルト劣化度を算出して、ステップS3に移行する。尚、初期においてはP波が大きくS波は小さいが、劣化が進むにつれてP波が減少していき、P波:S波≒1:1に近づく。また、この中間転写ベルト22の劣化度の算出には、例えば、既存の画像形成処理枚数カウンタやトナーカウンタ等を利用し、所定のカウント値に達した場合等に中間転写ベルト22の劣化度を特定(予め、テーブル方式でROM46等に格納)して変数とする方式でも良い。
(Step S2)
In step S2, the control circuit 45 calculates the degree of belt deterioration from the ratio of the light quantity values of the P wave and S wave obtained in step S1, and proceeds to step S3. In the initial stage, the P wave is large and the S wave is small, but as the deterioration progresses, the P wave decreases and approaches P wave: S wave≈1: 1. For calculating the degree of deterioration of the intermediate transfer belt 22, for example, using an existing image forming processing number counter or a toner counter, the degree of deterioration of the intermediate transfer belt 22 is calculated when a predetermined count value is reached. A method may be used in which a variable is specified (previously stored in the ROM 46 or the like by a table method).

(ステップS3)
ステップS3では、制御回路45は、ROM46に格納されたトナー濃度補正制御プログラムに従って、受光素子33で受光した光量のフィードバックに変えて、ROM46に格納された基準電圧(例えば、3.5Vから3.8Vに変更)で発光素子31を発光させるように、差動増幅回路37を制御してトナー濃度補正制御(発光素子31の光量補正)を実行し、ステップS4へと移行する。
(Step S3)
In step S3, the control circuit 45 changes the reference light voltage (for example, from 3.5V to 3.V) stored in the ROM 46 in accordance with the toner density correction control program stored in the ROM 46, instead of feedback of the amount of light received by the light receiving element 33. The differential amplifier circuit 37 is controlled so as to cause the light emitting element 31 to emit light by changing to 8V, and toner density correction control (light amount correction of the light emitting element 31) is executed, and the process proceeds to step S4.

(ステップS4)
ステップS4では、制御回路45は、例えば、所定枚数の画像形成処理やユーザのモード指定等により、中間転写ベルト22に、図6に示したような、色ずれ補正用検出パターンを転写してステップS5へと移行する。
(Step S4)
In step S4, the control circuit 45 transfers the color misregistration correction detection pattern as shown in FIG. 6 to the intermediate transfer belt 22 by, for example, a predetermined number of image forming processes or user mode designation. The process proceeds to S5.

(ステップS5)
ステップS5では、制御回路45は、中間転写ベルト22(色ずれ補正用検出パターン)で反射した反射光から、受光素子35,36での受光に基づいてP波,S波の波形を取得すると共に、その光量値(ピーク値)から色を特定(ブラックを検知)してステップS6へと移行する。
(Step S5)
In step S5, the control circuit 45 acquires the P wave and S wave waveforms based on the light received by the light receiving elements 35 and 36 from the reflected light reflected by the intermediate transfer belt 22 (color misregistration correction detection pattern). Then, the color is specified (black is detected) from the light quantity value (peak value), and the process proceeds to step S6.

(ステップS6)
ステップS6では、制御回路45は、ブラックの特定と同時にカウントを開始すると共に、取得したP波からブラックのピーク位置を決定してステップS7へと移行する。
(Step S6)
In step S6, the control circuit 45 starts counting simultaneously with the black specification, determines the black peak position from the acquired P wave, and proceeds to step S7.

(ステップS7)
ステップS7では、制御回路45は、光量補正後の発光素子31から出射された検出用光による中間転写ベルト22(色ずれ補正用検出パターン)からの反射光から、受光素子35,36での受光に基づいてP波,S波の波形を取得すると共に、その光量値(ピーク値)から色を特定(マゼンダを検知)してステップS8へと移行する。
(Step S7)
In step S7, the control circuit 45 receives light at the light receiving elements 35 and 36 from the reflected light from the intermediate transfer belt 22 (color misregistration correction detection pattern) by the detection light emitted from the light emitting element 31 after light amount correction. The waveform of P wave and S wave is acquired based on the above, and the color is specified from the light amount value (peak value) (magenta is detected), and the process proceeds to step S8.

(ステップS8)
ステップS8では、制御回路45は、マゼンダの特定と同時にカウントを終了すると共に、取得したS波からマゼンダのピーク位置を決定してステップS9へと移行する。
(Step S8)
In step S8, the control circuit 45 ends counting simultaneously with the specification of magenta, determines the peak position of magenta from the acquired S wave, and proceeds to step S9.

(ステップS9)
ステップS9では、制御回路45は、ブラック検知で開始してマゼンダ検知で終了したカウント値と中間転写ベルト22の回動移動速度とから、ブラック(K)とマゼンダ(M)とのパターン間距離を算出してステップS9へと移行する。尚、これらのカウント値やパターン間距離等は、図示しないRAMやHDD等の記憶手段に一時的に記憶される。
(Step S9)
In step S <b> 9, the control circuit 45 determines the inter-pattern distance between black (K) and magenta (M) from the count value started by black detection and finished by magenta detection and the rotational movement speed of the intermediate transfer belt 22. The calculation proceeds to step S9. Note that these count values, distances between patterns, and the like are temporarily stored in a storage unit such as a RAM or an HDD (not shown).

(ステップS10)
ステップS10では、制御回路45は、算出したパターン間距離に基づく時間的なタイミングずれ量を色ずれ量として露光器ユニット24にフィードバックしてステップS11へと移行する。
(Step S10)
In step S10, the control circuit 45 feeds back the temporal timing shift amount based on the calculated inter-pattern distance to the exposure unit 24 as a color shift amount, and proceeds to step S11.

(ステップS11)
ステップS11では、制御回路45は、例えば、ROM46に格納された画像形成処理プログラムから、書き込みタイミングに関するプログラムを修正し、その修正したプログラムを図示しないHDD等の記憶手段に記憶してステップS12へと移行する。
(Step S11)
In step S11, the control circuit 45 corrects a program related to writing timing, for example, from an image forming processing program stored in the ROM 46, stores the corrected program in a storage means such as an HDD (not shown), and the process proceeds to step S12. Transition.

(ステップS12)
ステップS12では、制御回路45は、実際の画像形成処理時において、HDD等の記憶手段に記憶した書き込みタイミングに関する修正プログラムに基づいて画像形成処理を実行し、このルーチンを終了する。
(Step S12)
In step S12, the control circuit 45 executes the image forming process based on the correction program relating to the write timing stored in the storage unit such as the HDD during the actual image forming process, and ends this routine.

この基準電圧制御を行った本実施の形態においては、図4に示すように、劣化時の中間転写ベルト22のアナログ波形と、初期時の中間転写ベルト22のアナログ波形に基準電圧を増幅した波形と、でピーク位置を比較し、各波形に対し中間転写ベルト22の下地からピーク頂点までの中間値に閾値を設けてピーク位置を算出した結果、
初期時:0.13375[sec]
劣化時:0.13370[sec]
という値が得られた。
In the present embodiment in which this reference voltage control is performed, as shown in FIG. 4, an analog waveform of the intermediate transfer belt 22 at the time of deterioration and a waveform obtained by amplifying the reference voltage into an analog waveform of the intermediate transfer belt 22 at the initial time. As a result of comparing peak positions with each other and calculating a peak position by setting a threshold value for an intermediate value from the background of the intermediate transfer belt 22 to the peak apex for each waveform,
Initial time: 0.13375 [sec]
At the time of deterioration: 0.13370 [sec]
The value was obtained.

この差0.00005[sec]は、上述した結果と比較すると、初期時の中間転写ベルト22のS波ピーク位置が劣化時の中間転写ベルト22に近くなったことは明らかで、この際のピーク位置のずれ量は、上述した補正前の41.0[um]と比べると、8.2[um]と僅かであった。   This difference of 0.00005 [sec] is clear that the S-wave peak position of the intermediate transfer belt 22 at the initial stage is close to the intermediate transfer belt 22 at the time of deterioration, as compared with the above-described results. The displacement amount of the position was as small as 8.2 [um] compared to 41.0 [um] before correction described above.

このように、本発明の画像形成装置によれば、制御回路45は、発光素子31にかかる電流を決定する基準電圧を(増幅)制御することによって、発光光量を補正して拡散反射成分の検出用光の検出下限値から検出上限値までの高さを制御し、特に、中間転写ベルト22の下地で反射した検出用光の正反射成分の検出用光の検出値と拡散反射成分の検出用光の検出値との比(P波:S波)から中間転写ベルト22の劣化度を算出し、その中間転写ベルト22の劣化度を変数(≒1:1)として基準電圧を制御することによって、中間転写ベルト22の劣化や光沢性が失われた場合であっても一定のピーク位置を取得することができ、精度良く色ずれ補正を行うことができる。   As described above, according to the image forming apparatus of the present invention, the control circuit 45 corrects the amount of emitted light and detects the diffuse reflection component by controlling (amplifying) the reference voltage that determines the current applied to the light emitting element 31. For controlling the height from the detection lower limit value of detection light to the detection upper limit value, and particularly for detecting the detection value of the regular reflection component of the detection light reflected from the ground of the intermediate transfer belt 22 and the diffuse reflection component By calculating the deterioration level of the intermediate transfer belt 22 from the ratio (P wave: S wave) to the detected value of light, and controlling the reference voltage with the deterioration level of the intermediate transfer belt 22 as a variable (≈1: 1). Even when the deterioration or glossiness of the intermediate transfer belt 22 is lost, a constant peak position can be obtained, and color misregistration correction can be performed with high accuracy.

ところで、上記実施の形態では、中間転写ベルト22の劣化時に合わせて発光素子31の基準電圧を増幅した場合で説明したが、これとは逆に、中間転写ベルト22の初期時に合わせて発光素子31の基準電圧を減幅しても良い。   In the above embodiment, the case where the reference voltage of the light emitting element 31 is amplified in accordance with the deterioration of the intermediate transfer belt 22 has been described. On the contrary, the light emitting element 31 is adjusted in accordance with the initial time of the intermediate transfer belt 22. The reference voltage may be reduced.

本発明の一実施形態に係る検出センサを搭載した画像形成装置としてのタンデム方式のカラープリンタの説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a tandem color printer as an image forming apparatus equipped with a detection sensor according to an embodiment of the present invention. 本発明の一実施形態に係る検出センサの説明図である。It is explanatory drawing of the detection sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る検出センサを用いた制御回路における制御例のフロー図である。It is a flowchart of the example of control in the control circuit using the detection sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る検出センサによる検知結果のグラフ図である。It is a graph of the detection result by the detection sensor which concerns on one Embodiment of this invention. 従来の検出センサによる検知結果を示し(A)は像担持体の劣化前における検知グラフ図、(B)は像担持体の劣化後における検知グラフ図である。The detection result by the conventional detection sensor is shown, (A) is a detection graph before the image carrier is deteriorated, and (B) is a detection graph after the image carrier is deteriorated. 色ずれ補正用検出パターンの説明図である。It is explanatory drawing of the detection pattern for color misregistration correction.

符号の説明Explanation of symbols

22…中間転写ベルト(像担持体)
23…検出センサ
31…発光素子
34…受光側偏光分離素子
35…第1の受光素子
36…第2の受光素子
45…制御回路
22 ... Intermediate transfer belt (image carrier)
DESCRIPTION OF SYMBOLS 23 ... Detection sensor 31 ... Light emitting element 34 ... Light-receiving side polarization separation element 35 ... First light receiving element 36 ... Second light receiving element 45 ... Control circuit

Claims (4)

フルカラーの色ずれ補正用検出パターンが転写された像担持体に向けて検出用光を出射する発光素子と、像担持体で反射された検出用光を正反射成分と拡散反射成分とに分離する受光側偏光分離素子と、該受光側偏光分離素子で分離された正反射成分の検出用光を受光する第1の受光素子と、前記受光側偏光分離素子で分離された拡散反射成分の検出用光を受光する第2の受光素子と、ブラックの色ずれ補正用検出パターンを正反射成分の検出用光で検知したうえでブラック以外の色ずれ補正用検出パターンを拡散反射成分の検出用光で検知してブラックの色ずれ補正用検出パターン検知からブラック以外の色ずれ補正用検出パターン検知に至る所要時間と前記像担持体の移動速度とを利用して色ずれ検知制御を行う制御回路と、を備え、
前記制御回路は、前記発光素子にかかる電流を決定する基準電圧を制御することによって発光光量を補正して拡散反射成分の検出用光の検出下限値から検出上限値までの高さを制御することを特徴とする画像形成装置。
A light emitting element that emits detection light toward the image carrier to which the detection pattern for color misregistration correction is transferred, and the detection light reflected by the image carrier is separated into a regular reflection component and a diffuse reflection component. A light-receiving side polarization separation element, a first light-receiving element that receives light for detecting the regular reflection component separated by the light-receiving side polarization separation element, and a detection for the diffuse reflection component separated by the light-receiving side polarization separation element The second light receiving element that receives light and the detection pattern for correcting color misregistration of black are detected with the detection light for regular reflection component, and the detection pattern for correction of color misregistration other than black is detected with the detection light for diffuse reflection component A control circuit for performing color misregistration detection control using a required time from detection pattern detection for detecting color misregistration for black to detection pattern detection for color misregistration correction other than black and the moving speed of the image carrier; With
The control circuit controls the height from the detection lower limit value to the detection upper limit value of the detection light of the diffuse reflection component by correcting the amount of emitted light by controlling a reference voltage that determines the current applied to the light emitting element. An image forming apparatus.
前記制御回路は、前記像担持体の劣化度を変数として基準電圧を制御することを特徴とする請求項1記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the control circuit controls a reference voltage using a degree of deterioration of the image carrier as a variable. 前記制御回路は、前記像担持体の下地で反射した検出用光の正反射成分の検出用光の検出値と拡散反射成分の検出用光の検出値との比から前記像担持体の劣化度を算出することを特徴とする請求項2に記載の画像形成装置。   The control circuit determines the degree of deterioration of the image carrier based on the ratio between the detection value of the regular reflection component of the detection light reflected from the base of the image carrier and the detection value of the diffuse reflection component. The image forming apparatus according to claim 2, wherein: 前記制御回路は、前記発光素子にかかる電流を決定する基準電圧を増幅制御することを特徴とする請求項1乃至請求項3の何れかに画像形成装置。   4. The image forming apparatus according to claim 1, wherein the control circuit amplifies and controls a reference voltage that determines a current applied to the light emitting element.
JP2008214889A 2008-08-25 2008-08-25 Image forming apparatus Pending JP2010049131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214889A JP2010049131A (en) 2008-08-25 2008-08-25 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214889A JP2010049131A (en) 2008-08-25 2008-08-25 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2010049131A true JP2010049131A (en) 2010-03-04

Family

ID=42066246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214889A Pending JP2010049131A (en) 2008-08-25 2008-08-25 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2010049131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161550A (en) * 2014-02-26 2015-09-07 キヤノン株式会社 Image forming apparatus, detection apparatus, and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161550A (en) * 2014-02-26 2015-09-07 キヤノン株式会社 Image forming apparatus, detection apparatus, and control method thereof

Similar Documents

Publication Publication Date Title
JP6140247B2 (en) Optical sensor and image forming apparatus
JP4501082B2 (en) Image forming apparatus
JP4419101B2 (en) Image forming apparatus
US20120224191A1 (en) Image Forming Apparatus
US9116489B2 (en) Image forming apparatus for storing sampling values and method therefor
US9116453B2 (en) Image forming apparatus
JP6793449B2 (en) Image forming device
US8867937B2 (en) Diffuse reflection output conversion method, attached powder amount conversion method, and image forming apparatus
JP2007233186A (en) Image forming apparatus
US7181148B2 (en) Image forming apparatus and device for determining the density and position of a toner pattern
US7830403B2 (en) Image-forming device
JP2010256592A (en) Image forming apparatus
JP4265669B2 (en) Image forming apparatus
JP2016148521A (en) Optical sensor and image forming apparatus
US8310734B2 (en) Image forming apparatus
JP4944981B2 (en) Image forming apparatus and control method thereof
JP5370856B2 (en) Image forming apparatus
JP2010049131A (en) Image forming apparatus
JP2006139179A (en) Image forming apparatus
JP2017103497A (en) Optical sensor and image forming apparatus
US10241434B2 (en) Image forming apparatus and position detection method
JP5157875B2 (en) Image forming apparatus, color misregistration correction method, program, and recording medium
JP2006039389A (en) Color image forming apparatus
JP6112777B2 (en) Image forming apparatus
JP6849889B2 (en) Optical sensor and image forming device