JP2010047647A - Electroconductive ink, electroconductive circuit, and circuit element - Google Patents

Electroconductive ink, electroconductive circuit, and circuit element Download PDF

Info

Publication number
JP2010047647A
JP2010047647A JP2008211224A JP2008211224A JP2010047647A JP 2010047647 A JP2010047647 A JP 2010047647A JP 2008211224 A JP2008211224 A JP 2008211224A JP 2008211224 A JP2008211224 A JP 2008211224A JP 2010047647 A JP2010047647 A JP 2010047647A
Authority
JP
Japan
Prior art keywords
printing
conductive
conductive ink
circuit
electroconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211224A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
宏行 近藤
Hiroyuki Tateno
宏之 舘野
Takeaki Matsuura
岳昭 松浦
Chikashi Ishihara
爾 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2008211224A priority Critical patent/JP2010047647A/en
Publication of JP2010047647A publication Critical patent/JP2010047647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive ink whose resistivity is to be increased markedly by applying thereon a definite temperature, and to provide an electroconductive circuit which is printed with a usual printing method by using the same, and whose resistivity is to be increased markedly by applying a definite temperature on the printed matter. <P>SOLUTION: This electroconductive ink contains: a silver powder which has an average particle diameter of 3-8 μm, a specific surface area of 1.5-4.0 m<SP>2</SP>/g and an apparent density of 0.4-1.1 g/cm<SP>3</SP>; a binder component; and calcium carbonate with a primary particle diameter of 20-100 nm and of a globular or cubic shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ある一定の温度に加熱することで抵抗率が著しく増大する特性を有し、スクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷、凸版印刷、凹版印刷等の通常の印刷方式による導電回路および回路素子を形成することが可能な導電性インキ、それを用いた導電回路の製造方法に関する。   The present invention has a characteristic that the resistivity is remarkably increased by heating to a certain temperature, and a conductive circuit by a normal printing method such as screen printing, gravure printing, flexographic printing, offset printing, letterpress printing, intaglio printing, etc. The present invention also relates to a conductive ink capable of forming a circuit element and a method of manufacturing a conductive circuit using the same.

電子部品の分野で広く用いられるPTC(Positive Temperature Coefficient、正の温度係数)特性を有する回路素子は、例えばポリエチレンやポリプロピレン等のポリマー等にカーボン等の導電性粉末等を混練させたものであり、或る特定の温度まで昇温すると抵抗率が著しく増大する特性を有していることで知られている。   A circuit element having a PTC (Positive Temperature Coefficient) characteristic widely used in the field of electronic parts is obtained by kneading a conductive powder such as carbon in a polymer such as polyethylene or polypropylene, It is known that the resistivity increases remarkably when the temperature is raised to a specific temperature.

PTC特性を発現させる原理は導電性粒子を包含しているポリマーの熱膨張である。温度を掛けることでポリマーが膨張し、導電性粒子同士の接触を妨げることで抵抗率の増大が起こる。このとき用いられるポリマーは特開昭51‐76647に詳しく開示されている。他にもエチレン―酢酸ビニル共重合体(特開平10−183039)やエチレン―アクリル酸共重合体(特開2002−146251)などがある。   The principle of developing the PTC characteristic is the thermal expansion of the polymer containing the conductive particles. When the temperature is applied, the polymer expands, and the resistivity is increased by preventing contact between the conductive particles. The polymer used at this time is disclosed in detail in JP-A 51-76647. In addition, there are ethylene-vinyl acetate copolymer (Japanese Patent Laid-Open No. 10-183039) and ethylene-acrylic acid copolymer (Japanese Patent Laid-Open No. 2002-146251).

これらの樹脂を用いたPTC特性を有する回路素子は、印刷により形成されることが知られており、過電圧保護素子として実用化されている。これらのPTC特性を有する回路素子はいずれも可逆的な性質を有しており、温度が低下すると抵抗率も再び低下する。   Circuit elements having PTC characteristics using these resins are known to be formed by printing and have been put to practical use as overvoltage protection elements. All of the circuit elements having these PTC characteristics have reversible properties, and when the temperature decreases, the resistivity decreases again.

ここで、熱をかけることで不可逆に抵抗率が変化する導電性インキで印刷された回路および回路素子は未だ考案されていない。
特開昭51‐76647 特開平10−183039 特開2002−146251
Here, a circuit and a circuit element printed with conductive ink whose resistivity changes irreversibly by applying heat have not yet been devised.
JP 51-76647 JP 10-183039 A JP2002-146251

本発明は、ある一定の温度をかけることで抵抗率が著しく増大することを特徴とし、再び冷却しても抵抗率が戻らない不可逆的な性質を持った導電性インキ、それを用いて通常の印刷方式で印刷し、その印刷物にある一定の温度をかけることで抵抗率が著しく増大すること特徴とし、再び冷却しても抵抗率が戻らない不可逆的な性質を持った導電回路を提供するものである。これにより、例えば、RFIDタグのアンテナ部分を本発明の導電性インキを用いて製造すれば、使用後に加熱することでアンテナ部の抵抗率を上昇させることで電波を受信してもアンテナに十分な電流が流れずICが起動しない。よってRFIDタグとしての機能を失うこととなり、セキュリティータグとして用いることができる。   The present invention is characterized in that the resistivity is remarkably increased by applying a certain temperature, and a conductive ink having an irreversible property in which the resistivity does not return even if cooled again, Providing a conductive circuit that has an irreversible property in which the resistivity increases remarkably by printing with a printing method and applying a certain temperature to the printed matter, and the resistivity does not return even if cooled again. It is. Thus, for example, if the antenna portion of the RFID tag is manufactured using the conductive ink of the present invention, it is sufficient for the antenna even if radio waves are received by increasing the resistivity of the antenna portion by heating after use. Current does not flow and IC does not start. Therefore, the function as an RFID tag is lost, and it can be used as a security tag.

本発明は、平均粒径3〜8μm比表面積が1.5〜4.0m/gおよび見掛密度が0.4〜1.1g/cmの銀粉、バインダー成分、1次粒子径が20〜200nmであり球状または立方体状である炭酸カルシウムを有することを特徴とする。 In the present invention, silver powder having an average particle diameter of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m 2 / g and an apparent density of 0.4 to 1.1 g / cm 3 , a binder component, and a primary particle diameter of 20 It is characterized by having calcium carbonate which is ˜200 nm and is spherical or cubic.

PTC特性を発現させるためには、銀、バインダーの他に炭酸カルシウムを重量部で5〜40%添加することが重要になる。炭酸カルシウムを含むことにより高温で加熱した場合に体積膨張が起こり、銀同士の接触が阻害されることでPTC特性が発現される。   In order to develop PTC characteristics, it is important to add 5 to 40% by weight of calcium carbonate in addition to silver and binder. By containing calcium carbonate, volume expansion occurs when heated at a high temperature, and PTC characteristics are expressed by inhibiting contact between silver.

上記の特性を有するRFIDタグは、再利用を不能とすることで偽造防止に有効なセキュリティタグを容易に、しかも安価に製造することができる。   An RFID tag having the above-described characteristics can be manufactured easily and inexpensively because a security tag effective for preventing counterfeiting can be easily made by making reuse impossible.

以下、本発明について、実施の形態に基づいて更に詳しく説明するが、本発明の技術的思想を逸脱しない限り、本発明はこれらの実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on embodiments, but the present invention is not limited to these embodiments unless departing from the technical idea of the present invention.

まず、本発明における導電性インキについて説明する。   First, the conductive ink in the present invention will be described.

本発明に係わる導電性インキに用いる銀粉は、1次粒子径が3〜8μm、比表面積が1.5〜4.0m/gおよび見掛密度が0.4〜1.1g/cmが好ましい。この特性を有する銀粉は、見掛密度が小さく、且つ比表面積が大きいので、銀粉の形状としては箔に近い薄く扁平であり、銀粉同士の重なりやすく、接触しやすいことから、導電性インキに含まれる銀粉量を減らしても、導電性を維持することができる導電性インキを得ることができる(特開2003−55701)。本発明は、炭酸カルシウムを添加するため、導電性インキの流動性を確保するためには銀粉の添加量を可能な限り控えることが好ましく、当該銀粉を使用することが本発明を実施するうえで最良の形態となる。 The silver powder used in the conductive ink according to the present invention has a primary particle diameter of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m 2 / g and an apparent density of 0.4 to 1.1 g / cm 3. preferable. Silver powder having this characteristic has a small apparent density and a large specific surface area, so the shape of the silver powder is thin and flat near the foil, and the silver powder is easy to overlap and contact, so it is included in the conductive ink. Even if the amount of silver powder to be reduced is reduced, a conductive ink that can maintain conductivity can be obtained (Japanese Patent Laid-Open No. 2003-55701). In the present invention, since calcium carbonate is added, it is preferable to refrain from the addition amount of silver powder as much as possible in order to ensure the fluidity of the conductive ink. Best form.

本発明に係わる導電性インキに用いるバインダーは成分には特に制限はないが、以下に示すような樹脂を含有するバインダーを用いることが好ましい。   The binder used in the conductive ink according to the present invention is not particularly limited, but a binder containing a resin as shown below is preferably used.

例えばポリウレタン樹脂、ポリエステル樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、アクリル樹脂、スチレン−アクリル樹脂、スチレン樹脂、ニトロセルロース、ベンジルセルロース、スチレン−無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、ロジン、ロジンエステル、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、塩素化ポリウレタン樹脂等から選ばれる1種または2種以上を、印刷方法の種類及び使用基材の種類や、導電回路の用途に応じて使用することができる。   For example, polyurethane resin, polyester resin, alkyd resin, butyral resin, acetal resin, polyamide resin, acrylic resin, styrene-acrylic resin, styrene resin, nitrocellulose, benzylcellulose, styrene-maleic anhydride resin, polybutadiene resin, polyvinyl chloride resin , Polyvinyl acetate resin, fluorine resin, silicone resin, epoxy resin, phenol resin, maleic acid resin, urea resin, melamine resin, benzoguanamine resin, ketone resin, rosin, rosin ester, chlorinated polyolefin resin, modified chlorinated polyolefin resin, One type or two or more types selected from chlorinated polyurethane resins and the like can be used according to the type of printing method, the type of base material used, and the use of the conductive circuit.

本発明に係わる導電性インキに用いる炭酸カルシウムについて説明する。   The calcium carbonate used for the conductive ink according to the present invention will be described.

本発明に用いる炭酸カルシウムとは、粒子径が20〜200μmであることを特徴とするものである。   The calcium carbonate used in the present invention is characterized by having a particle size of 20 to 200 μm.

本発明における炭酸カルシウムの含有割合は、重量比で5〜40%、更に好ましくは10〜20%である。カルシウムの含有割合が5%以下ではPTC回路としての抵抗率の上昇効果が乏しく、40%以上では銀粉同士の接触が阻害され初期の導電性が得られない。   The content ratio of calcium carbonate in the present invention is 5 to 40% by weight, more preferably 10 to 20%. When the calcium content is 5% or less, the effect of increasing the resistivity as a PTC circuit is poor, and when it is 40% or more, contact between silver powders is inhibited and initial conductivity cannot be obtained.

本発明に係わる導電性インキは、印刷方法等の種類に応じて、芳香族系溶剤、脂肪続系溶剤、エステル系溶剤、ケトン系溶剤、グリコールエステル系溶剤、アルコール系溶剤等を使用することができ、2種類以上を混合して使用することもできる。   The conductive ink according to the present invention may use an aromatic solvent, an aliphatic solvent, an ester solvent, a ketone solvent, a glycol ester solvent, an alcohol solvent, etc., depending on the type of printing method and the like. It can also be used as a mixture of two or more.

最後に本発明に係わる導電性インキを用いて形成された導電回路について説明する。   Finally, a conductive circuit formed using the conductive ink according to the present invention will be described.

本発明の導電性インキを使用用途に応じて紙、プラスチック等の基材の片面または両面上に、フレキソ印刷、グラビア印刷、グラビアオフセット印刷、オフセット印刷、スクリーン印刷、ロータリースクリーン印刷等、従来公知の印刷方法を用いて印刷することで導電回路を形成することができる。   The conductive ink of the present invention is conventionally known, such as flexographic printing, gravure printing, gravure offset printing, offset printing, screen printing, rotary screen printing, on one or both sides of a substrate such as paper or plastic depending on the intended use. A conductive circuit can be formed by printing using a printing method.

紙基材としては、コート紙、非コート紙、その他、合成紙、ポリエチレンコート紙、含浸紙、耐水加工紙、絶縁加工紙、伸縮加工紙等の各種加工紙が使用できる。コート紙の場合は、平滑度の高いものほど好ましい。   As the paper base material, various processed papers such as coated paper, uncoated paper, synthetic paper, polyethylene coated paper, impregnated paper, water-resistant processed paper, insulating processed paper, and stretch processed paper can be used. In the case of coated paper, the higher the smoothness, the better.

プラスチック基材としては、ポリエステル、ポリエチレン、ポリプロピレン、セロハン、塩化ビニル、塩化ビニリデン、ポリスチレン、ビニルアルコール、エチレン−ビニルアルコール、ナイロン、ポリイミド、ポリカーボネート等の通常印刷基材として使用できるプラスチック基材が使用できる。   As the plastic substrate, a plastic substrate that can be used as a normal printing substrate such as polyester, polyethylene, polypropylene, cellophane, vinyl chloride, vinylidene chloride, polystyrene, vinyl alcohol, ethylene-vinyl alcohol, nylon, polyimide, polycarbonate, etc. can be used. .

以下に、実施例により、本発明をさらに詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、本発明において、「部」は「重量部」を表し、「%」は、「重量%」を表す。   EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the scope of rights of the present invention. In the present invention, “part” represents “part by weight”, and “%” represents “% by weight”.

[銀粉]
銀粉は、福田金属箔粉工業株式会社製の「ナノメルトAg-XF301」(1次粒子経=4.0〜8.0μm、比表面積=1.5〜2.0m/g、見掛密度=0.55〜0.75g/cm)を用いた。
[Silver powder]
Silver powder, Fukuda Metal Foil & Powder Co. Ltd. of "Nanomeruto Ag-XF301" (primary particle via = 4.0~8.0Myuemu, specific surface area = 1.5~2.0m 2 / g, apparent density = 0.55~0.75g / cm 3 ) was used.

[樹脂(バインダー)]
樹脂は、日信化学工業株式会社製「ソルバインTA3」、および積水化学工業株式会社製「エスレックBL-S」を用いた。
[Resin (binder)]
As the resin, “Solvine TA3” manufactured by Nissin Chemical Industry Co., Ltd. and “S Lec BL-S” manufactured by Sekisui Chemical Co., Ltd. were used.

[炭酸カルシウム]
炭酸カルシウムは、白石工業株式会社製「ハクエンカO」(1次粒子径=30nm)および「ハクエンカTDD」(1次粒子径=80nm)を用いた。
[Calcium carbonate]
As the calcium carbonate, “Hacuenka O” (primary particle diameter = 30 nm) and “Hacuenka TDD” (primary particle diameter = 80 nm) manufactured by Shiroishi Kogyo Co., Ltd. were used.

[実施例1〜4]
表1に示す配合組成で、混合物を均一になるように攪拌混合して導電性インキ1〜4を得た。
[Examples 1 to 4]
Conductive inks 1 to 4 were obtained by stirring and mixing the mixture so as to be uniform with the composition shown in Table 1.

[比較例1〜2]
表1に示す配合組成で、混合物を均一になるように攪拌混合して比較インキ1〜2を得た。
[Comparative Examples 1-2]
Comparative inks 1 and 2 were obtained by stirring and mixing the mixture so as to be uniform with the composition shown in Table 1.

Figure 2010047647
Figure 2010047647

実施例1〜4及び比較例1、2で得られた導電性インキについて、スクリーン印刷にてPET基材上に幅15mm、長さ30mmの角状の塗布物を得た。その後、100℃で10分間加熱乾燥させて、硬化塗膜を得た。   About the electroconductive ink obtained in Examples 1-4 and Comparative Examples 1 and 2, the square-shaped coating material of width 15mm and length 30mm was obtained on PET base material by screen printing. Then, it was heat-dried at 100 ° C. for 10 minutes to obtain a cured coating film.

これら硬化塗膜を用いて、以下の方法で硬化塗膜の抵抗率を測定した。   Using these cured coating films, the resistivity of the cured coating film was measured by the following method.

(抵抗率の評価)
上記方法にで得られた硬化塗膜の中央部分に4端子法電気抵抗測定器の測定端子(各端子は5mm間隔)を当てて、その間における室温での表面抵抗率を測定した。この表面抵抗率と硬化塗膜の膜厚から体積抵抗率を算出した。算出方法は以下の式の通りである。
(Evaluation of resistivity)
Measurement terminals of a four-terminal electrical resistance measuring device (each terminal was spaced 5 mm) were applied to the central portion of the cured coating film obtained by the above method, and the surface resistivity at room temperature was measured between them. The volume resistivity was calculated from the surface resistivity and the film thickness of the cured coating film. The calculation method is as follows.

RV = R × T
RV:体積抵抗率[Ω・cm]、R:表面抵抗率[Ω/□]、T:膜厚[cm]
R V = R S × T
R V : Volume resistivity [Ω · cm], R S : Surface resistivity [Ω / □], T: Film thickness [cm]

(加熱試験評価)
実施例1〜4及び、比較例1、2で得られた導電性インキを前述の印刷方法で得られた印刷物を、150℃および180℃に設定したボックスオーブン内に10分入れ、その後室温まで冷却し、表面抵抗率を測定した。測定方法は前述の4端子法を用いた。
(Evaluation of heating test)
The printed matter obtained by the above-described printing method using the conductive ink obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was placed in a box oven set at 150 ° C. and 180 ° C. for 10 minutes, and then to room temperature. After cooling, the surface resistivity was measured. The measurement method used was the four-terminal method described above.

塗膜の膜厚を接触型膜厚計(Nikon社製DIGIMICRO MH-15M)で測定した。   The film thickness of the coating film was measured with a contact-type film thickness meter (DIGIMICRO MH-15M manufactured by Nikon).

表1に示すように、炭酸カルシウムを有する導電性インキの硬化塗膜は、150℃および180℃加熱後抵抗率が著しく増加し、室温に冷却しても不可逆的に高い抵抗率を維持していることが分かる。
As shown in Table 1, the cured coating film of conductive ink having calcium carbonate has a remarkable increase in resistivity after heating at 150 ° C. and 180 ° C., and irreversibly maintains a high resistivity even when cooled to room temperature. I understand that.

Claims (4)

導電性物質、バインダー成分およびフィラーからなる導電性インキにおいて、導電性物質が1次粒子径3〜8μm、比表面積1.5〜4.0m/gおよび見掛密度0.4〜1.1g/cmの銀粉であり、フィラーが1次粒子径20〜200nmの球状または立方体状である炭酸カルシウムであることを特徴とする導電性インキ。 In a conductive ink comprising a conductive substance, a binder component and a filler, the conductive substance has a primary particle diameter of 3 to 8 μm, a specific surface area of 1.5 to 4.0 m 2 / g and an apparent density of 0.4 to 1.1 g. A conductive ink, wherein the conductive ink is silver powder of / cm 3 and the filler is a spherical or cubic calcium carbonate having a primary particle diameter of 20 to 200 nm. 炭酸カルシウムが全固形分全体の5〜40重量%含有していることを特徴とする請求項1記載の導電性インキ。   2. The conductive ink according to claim 1, wherein calcium carbonate is contained in an amount of 5 to 40% by weight based on the total solid content. 基材上に、請求項1または2記載の導電性インキを用いて導電回路を印刷してなることを特徴とするPTC導電回路。   A PTC conductive circuit obtained by printing a conductive circuit on the base material using the conductive ink according to claim 1 or 2. 印刷方法が、スクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷、凸版印刷および凹版印刷から選ばれる一種類以上である請求項3記載のPTC導電回路。

The PTC conductive circuit according to claim 3, wherein the printing method is at least one selected from screen printing, gravure printing, flexographic printing, offset printing, letterpress printing and intaglio printing.

JP2008211224A 2008-08-19 2008-08-19 Electroconductive ink, electroconductive circuit, and circuit element Pending JP2010047647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211224A JP2010047647A (en) 2008-08-19 2008-08-19 Electroconductive ink, electroconductive circuit, and circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211224A JP2010047647A (en) 2008-08-19 2008-08-19 Electroconductive ink, electroconductive circuit, and circuit element

Publications (1)

Publication Number Publication Date
JP2010047647A true JP2010047647A (en) 2010-03-04

Family

ID=42064997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211224A Pending JP2010047647A (en) 2008-08-19 2008-08-19 Electroconductive ink, electroconductive circuit, and circuit element

Country Status (1)

Country Link
JP (1) JP2010047647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251591A (en) * 2018-11-19 2019-01-22 宁波石墨烯创新中心有限公司 Electrically conductive ink, electronic tag, preparation method and radio-frequency recognition system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251591A (en) * 2018-11-19 2019-01-22 宁波石墨烯创新中心有限公司 Electrically conductive ink, electronic tag, preparation method and radio-frequency recognition system
CN109251591B (en) * 2018-11-19 2021-10-15 宁波石墨烯创新中心有限公司 Conductive ink, electronic tag, preparation method of electronic tag and radio frequency identification system

Similar Documents

Publication Publication Date Title
Guo et al. Magnetic liquid metal (Fe‐EGaIn) based multifunctional electronics for remote self‐healing materials, degradable electronics, and thermal transfer printing
JP2544892B2 (en) Polymer thick film resistor composition
TW539651B (en) Dielectric ceramic, resin-ceramic composite material, electrical part and antenna, and manufacturing method thereof
EP3221869B1 (en) Positive temperature coefficient composition
JP4972955B2 (en) Conductive paste and printed wiring board using the same
TWI611741B (en) Methods of transferring electrically conductive materials
JP2015111563A (en) Copper particle fluid dispersion and method for producing conductive film using the same
CN105190805A (en) Fractional order capacitor based on dielectric polymer doped with conductive nano-fillers
JP2010047649A (en) Conductive ink and conductive circuit formed by screen printing using the same
JP4635888B2 (en) Conductive paste and conductive circuit manufacturing method
KR20120088313A (en) Conductive Ink Composition Having Bimodal Particle Distribution
KR20130101007A (en) Liquid composition, and resistor film, resistor element and circuit board using same
JP6801193B2 (en) Organic NTC element
Anand et al. Development of polyaniline/zinc oxide nanocomposite impregnated fabric as an electrostatic charge dissipative material
JP2010047648A (en) Electroconductive ink, electroconductive circuit, and circuit element
Sui et al. A reactive inkjet printing process for fabricating biodegradable conductive zinc structures
JPH11310739A (en) Conductive ink composition and flat heating element
JP2010047647A (en) Electroconductive ink, electroconductive circuit, and circuit element
Ren et al. Electrohydrodynamic printed PEDOT: PSS/graphene/PVA circuits for sustainable and foldable electronics
ATE331237T1 (en) IMAGE RECORDING SHEET WITH CONTROLLED ELECTRICAL RESISTANCE
JP2004111057A (en) Conductive paste composition
Lee et al. Characterization of in situ sintering of silver nanoparticles on commercial photo papers in inkjet printing
JP2020119737A (en) Conductive paste, base material with conductive film, production method of base material with conductive film
JP4815719B2 (en) Conductive paste and printed wiring board
KR102175984B1 (en) Conductive ink composition for manufacturing planar heating film