JP2010041863A - Ac/dc conversion circuit - Google Patents

Ac/dc conversion circuit Download PDF

Info

Publication number
JP2010041863A
JP2010041863A JP2008203666A JP2008203666A JP2010041863A JP 2010041863 A JP2010041863 A JP 2010041863A JP 2008203666 A JP2008203666 A JP 2008203666A JP 2008203666 A JP2008203666 A JP 2008203666A JP 2010041863 A JP2010041863 A JP 2010041863A
Authority
JP
Japan
Prior art keywords
rectifier circuit
reactor
voltage
diode
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008203666A
Other languages
Japanese (ja)
Other versions
JP5233492B2 (en
Inventor
Kazuaki Mino
和明 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008203666A priority Critical patent/JP5233492B2/en
Publication of JP2010041863A publication Critical patent/JP2010041863A/en
Application granted granted Critical
Publication of JP5233492B2 publication Critical patent/JP5233492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ac/dc conversion circuit which certainly prevents the breakage of a semiconductor switching element even if an instantaneous drop in ac input voltage occurs and an inrush current flows upon recovery from the instantaneous voltage drop, thereby improving the reliability of the circuit. <P>SOLUTION: The ac/dc conversion circuit includes a rectifying circuit which converts an ac voltage supplied from an ac power supply into a dc voltage, and a reactor interposed between the rectifying circuit and the ac power supply. The rectifying circuit rectifying the ac voltage of the ac power supply includes a bypass diode which bypasses the reactor to give a voltage to the dc output end of the rectifying circuit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体スイッチング素子を用いた交直変換回路に係り、特に交流電源から流入する突入電流から半導体スイッチング素子を保護する保護技術に関する。   The present invention relates to an AC / DC conversion circuit using a semiconductor switching element, and more particularly to a protection technique for protecting a semiconductor switching element from an inrush current flowing from an AC power supply.

図4は、従来技術に基づく交直変換回路の一実施例である。この図に示す交直変換回路は、交流電圧を直流電圧に変換するいわゆる整流器(コンバータ)であり、入力電流Iinを交流入力電圧Vinと位相の等しい正弦波波形としつつ、直流出力電圧Voutを交流入力電圧Vinのピーク値より高い所望の値に保つ機能を備えている。
この図において1は交流電源、L,Lは交流電源ラインに直列に介装されたリアクトル、D〜Dは交流電源から与えられる交流電圧を直流電圧に変換するブリッジ整流回路を構成する整流用ダイオード、Cはブリッジ整流回路から出力される直流電圧を平滑する平滑コンデンサ、Rは負荷である。
FIG. 4 shows an embodiment of an AC / DC converter circuit based on the prior art. The AC / DC converter circuit shown in this figure is a so-called rectifier (converter) that converts an AC voltage into a DC voltage. The input current I in is a sine wave having the same phase as the AC input voltage V in, and the DC output voltage V out and a function of maintaining the desired value higher than the peak value of the AC input voltage V in the.
In this figure, 1 is an AC power source, L 1 and L 2 are reactors interposed in series with an AC power source line, and D 1 to D 4 are bridge rectifier circuits that convert an AC voltage supplied from the AC power source into a DC voltage. A rectifying diode, C is a smoothing capacitor for smoothing a DC voltage output from the bridge rectifier circuit, and RL is a load.

尚、二本の交流電源ラインからそれぞれ引き出された端子a,b間には、互いに逆導通方向に直列接続された二つのMOSFET(Q,Q)が接続されている。このMOSFET(Q,Q)は、内部に寄生ダイオード(点線で図示)をもつため、ゲート電圧にかかわらず逆方向電流に対しては常に導通状態となる。つまりこの二つのMOSFET(Q,Q)は、端子aから端子bへ、或いは端子bから端子aのいずれの方向に流れる電流に対してもオン・オフの制御が可能な双方向スイッチを構成している。 Note that two MOSFETs (Q 1 , Q 2 ) connected in series in the reverse conduction direction are connected between the terminals a and b drawn from the two AC power supply lines, respectively. Since these MOSFETs (Q 1 , Q 2 ) have parasitic diodes (illustrated by dotted lines) inside, they are always in a conductive state against a reverse current regardless of the gate voltage. That is, these two MOSFETs (Q 1 , Q 2 ) are bidirectional switches that can be controlled to be turned on / off with respect to a current flowing from terminal a to terminal b or from terminal b to terminal a. It is composed.

さて交流入力電圧Vinが正極性(図4において交流電源1にリアクトルLが接続された側が正、リアクトルLが接続された側が負)の場合、MOSFET(Q)をオンすると電流は、交流電源1→リアクトルL→MOSFET(Q)→MOSFET(Q)→リアクトルL→交流電源1の経路で流れる。このときリアクトルL,Lに交流入力電圧Vinが印加されて入力電流Iinは増加する。 Now the AC input voltage V in is positive when (the side reactor L 1 to the AC power supply 1 in FIG. 4 is connected a positive, side reactor L 2 is connected to negative) of, when turning on the MOSFET (Q 1) current , AC power source 1 → reactor L 1 → MOSFET (Q 1 ) → MOSFET (Q 2 ) → reactor L 2AC power source 1 At this time, the AC input voltage V in is applied to the reactors L 1 and L 2 and the input current I in increases.

次いでMOSFET(Q)をオフすれば電流は、交流電源1→リアクトルL→ダイオードD→平滑コンデンサC及び負荷R→ダイオードD→リアクトルL→交流電源1の経路で流れる。このときダイオードD,Dにおける電圧降下を無視すれば、リアクトルL,Lには直流出力電圧Voutと交流入力電圧Vinの差電圧が印加されていることになる。直流出力電圧Voutは、交流入力電圧Vinより高いので、入力電流Iinが減少する。 Next, if the MOSFET (Q 1 ) is turned off, the current flows through the path of AC power source 1 → reactor L 1 → diode D 1 → smoothing capacitor C and load R L → diode D 4 → reactor L 2AC power source 1. Ignoring the voltage drop at this time diode D 1, D 4, the reactor L 1, L 2 so that the difference voltage between the AC input voltage V in and the DC output voltage V out is applied. Since the DC output voltage V out is higher than the AC input voltage V in , the input current I in decreases.

一方、交流入力電圧Vinが負極性(図4において交流電源1にリアクトルLが接続された側が負、リアクトルLが接続された側が正)の場合でも上述した方法に準じてMOSFET(Q)をオン・オフ制御することにより同様の動作を行うことができる。したがって、この交直変換回路は、MOSFET(Q,Q)の通流制御を適切なオン・オフ時間比で行うことによって入力電流Iinや直流出力電圧Voutを制御することができる。 On the other hand, the AC input voltage V in is negative MOSFET according to the method described above even in the case of (the side reactor L 1 to the AC power supply 1 in FIG. 4 is connected is negative, reactor L 2 is side connected positive) (Q The same operation can be performed by controlling ON / OFF of 2 ). Therefore, this AC / DC conversion circuit can control the input current I in and the DC output voltage V out by performing the flow control of the MOSFETs (Q 1 , Q 2 ) with an appropriate on / off time ratio.

しかし、交流入力電圧Vinが正極性でありMOSFET(Q)がオフの状態では交流電源1→リアクトルL→ダイオードD→平滑コンデンサC及び負荷R→ダイオードD→リアクトルL→交流電源1の経路で電流が流れることになる。このときMOSFET(Q)をオンすると平滑コンデンサC→ダイオードD→MOSFET(Q)→MOSFET(Q)→ダイオードD→平滑コンデンサCの経路で電流が流れ、ダイオードD,Dはそれぞれ逆回復する。するとこれらダイオードD,Dの逆回復損失及びMOSFET(Q)のターンオン損失、更にはMOSFET(Q)の導通損失が増加する。もちろん交流入力電圧Vinが負極性の場合においても同様にダイオードD,Dで逆回復が発生する。 However, an AC input voltage V in is positive MOSFET (Q 1) is an AC power supply in a state of OFF 1 → reactor L 1 → the diode D 1 → smoothing capacitor C and the load R L → diode D 4 → reactor L 2 → A current flows through the path of the AC power source 1. At this time, when the MOSFET (Q 1 ) is turned on, a current flows through the path of the smoothing capacitor C → the diode D 1 → the MOSFET (Q 1 ) → the MOSFET (Q 2 ) → the diode D 4 → the smoothing capacitor C, and the diodes D 1 and D 4. Each reverse recovery. Then, the reverse recovery loss of the diodes D 1 and D 4 , the turn-on loss of the MOSFET (Q 1 ), and the conduction loss of the MOSFET (Q 2 ) increase. Of course the AC input voltage V in is likewise diode D 2, the reverse recovery D 3 is generated in the case of negative polarity.

一般的には、これらのスイッチング損失や導通損失を低減するため、ダイオードD,D又はダイオードD,Dに逆回復時間の短い高速ダイオードを適用することが行われている。即ち、ブリッジ整流回路やMODFETにおけるスイッチング損失や導通損失を低減するためには、少なくとも上アームの二つのダイオードまたは下アームにおける二つのダイオードのいずれかに逆回復特性の優れた素子を用いる必要がある。 In general, in order to reduce these switching loss and conduction loss, a high-speed diode having a short reverse recovery time is applied to the diodes D 1 and D 3 or the diodes D 2 and D 4 . That is, in order to reduce switching loss and conduction loss in the bridge rectifier circuit and the MODFET, it is necessary to use an element having excellent reverse recovery characteristics in at least two diodes in the upper arm or two diodes in the lower arm. .

ところで交流電源1の交流入力電圧Vinが短時間低下した直後に電圧が復帰する、いわゆる瞬時電圧低下(瞬低)の際には、交流電源1から交直変換装置に突入電流が流入することがある。例えば交流入力電圧Vinが低下すると直流出力電圧Voutが低下するので、直流出力電圧Voutは、交流入力電圧Vinより低くなる。このとき交流電源1の電圧が瞬低から復帰すると、交流電源1→リアクトルL→ダイオードD→平滑コンデンサC及び負荷R→ダイオードD→リアクトルL→交流電源1の経路で突入電流が流れる。 Meanwhile the voltage immediately after the AC input voltage V in of the AC power supply 1 is lowered briefly to return, during the so-called instantaneous voltage drop (voltage sag), that the rush current flows from the AC power supply 1 to AC-DC converter is there. For example, since the DC output voltage V out and the AC input voltage V in is lowered to decrease the DC output voltage V out is lower than the AC input voltage V in. At this time, when the voltage of the AC power supply 1 recovers from the momentary drop, the inrush current flows through the path of the AC power supply 1 → reactor L 1 → diode D 1 → smoothing capacitor C and load R L → diode D 4 → reactor L 2AC power supply 1. Flows.

一般に、逆回復特性の優れた高速ダイオードは突入電流に対する耐量が低い。このため逆回復損失を低減するためにダイオードDやダイオードDに高速ダイオードを適用した場合、突入電流によりこれらのダイオードが破損する可能性がある。ちなみに逆回復時間が長い、いわゆる低速ダイオードは一般的に突入電流の耐量が高く、また例え突入電流が流れたとしても破損することが少ない。 In general, high-speed diodes with excellent reverse recovery characteristics have a low tolerance for inrush current. When applied to high-speed diode the diode D 1 and diode D 4 in order to reduce the reverse recovery loss for this, there is a possibility that these diodes damaged by inrush current. Incidentally, a so-called low speed diode having a long reverse recovery time generally has a high withstand capability of an inrush current, and even if an inrush current flows, it is less likely to break.

またMOSFETも高速ダイオードと同様に突入電流に対する耐量が低いものの、過電流が流れた場合にMOSFETをオフすればMOSFETには過大な電流は流れ続けない。或いは瞬低が発生して直流出力電圧Voutがある設定値を下回った場合、MOSFETを停止するように回路を構成すれば、瞬低から復帰してもMOSFETには突入電流が流れないので破損することがない。しかし例えMOSFETをオフしたとても従来の交直変換回路にあっては、ブリッジ整流回路のダイオードD〜Dに流れる突入電流を抑制することが困難であった。 In addition, MOSFETs have a low tolerance to inrush currents as in the case of high-speed diodes, but if the MOSFET is turned off when an overcurrent flows, an excessive current does not continue to flow through the MOSFET. Alternatively, if a voltage drop occurs and the DC output voltage Vout falls below a certain set value, the circuit is configured so that the MOSFET is stopped. There is nothing to do. However, in a very conventional AC / DC converter circuit with the MOSFET turned off, it is difficult to suppress the inrush current flowing through the diodes D 1 to D 4 of the bridge rectifier circuit.

そこでこの種の問題を解決するため整流回路に突入電流が流れたとしても、整流回路を構成する高速ダイオードとMOSFETの保護が可能な整流装置が知られている(例えば、特許文献1を参照)。
特許第4096656号公報
Therefore, in order to solve this type of problem, there is known a rectifier that can protect a high-speed diode and a MOSFET constituting the rectifier circuit even if an inrush current flows in the rectifier circuit (see, for example, Patent Document 1). .
Japanese Patent No. 4096656

しかしながら特許文献1に記載された整流装置は、整流装置を安全に作動させるためにはスイッチング素子と高速ダイオードの両方を保護する必要があり、それ故、少なくとも二つのサイリスタと二つのダイオードを交流電源端子に新たに接続しなければならなかった。更にサイリスタを駆動させるための駆動回路と、その駆動用電源(特許文献1に図示されていない)がそれぞれ必要となり、整流装置が大形化・高コスト化するという問題もある。   However, in the rectifier described in Patent Document 1, it is necessary to protect both the switching element and the high-speed diode in order to operate the rectifier safely. Therefore, at least two thyristors and two diodes are connected to an AC power source. I had to make a new connection to the terminal. Further, a driving circuit for driving the thyristor and a power source for driving the thyristor (not shown in Patent Document 1) are required, and there is a problem that the rectifier is increased in size and cost.

本発明は、このような従来の問題点を解決するべくなされたもので、その目的とするところは、交流入力電圧に瞬低が生じ、その瞬低から復帰したときに突入電流が流れたとしても半導体スイッチング素子の破壊を確実に防止することができ、信頼性を向上させることが可能な交直変換回路を提供することにある。   The present invention has been made to solve such a conventional problem. The purpose of the present invention is that an instantaneous drop occurs in the AC input voltage, and an inrush current flows when returning from the instantaneous drop. Another object of the present invention is to provide an AC / DC converter circuit that can reliably prevent the semiconductor switching element from being destroyed and improve the reliability.

上述した目的を達成するため本発明の交直変換装置は、交流電源から与えられた交流電圧を直流電圧に変換する整流回路と、この整流回路と前記交電源とを接続する電源ラインに介装されたリアクトルと、このリアクトルと前記整流回路との間に設けられて、前記電源ライン間の導通又は遮断を制御するスイッチと、前記交流電源と前記リアクトルとの各接続点から前記整流回路の正極直流出力側に電流を流すバイパスダイオードを備えることを特徴としている。   In order to achieve the above-described object, an AC / DC converter according to the present invention is interposed in a rectifier circuit that converts an AC voltage applied from an AC power source into a DC voltage, and a power supply line that connects the rectifier circuit and the AC power source. A reactor, a switch provided between the reactor and the rectifier circuit, for controlling conduction or blocking between the power lines, and a positive direct current of the rectifier circuit from each connection point of the AC power source and the reactor. It is characterized by including a bypass diode that allows current to flow to the output side.

或いは本発明の交直変換回路は、交流電源から与えられた交流電圧を直流電圧に変換する整流回路と、この整流回路と前記交流電源とを接続する電源ラインに介装されたリアクトルと、このリアクトルと前記整流回路との間に設けられて、前記電源ライン間の導通又は遮断を制御するスイッチと、前記整流回路の負極直流出力側から前記交流電源と前記リアクトルとの接続点に電流を流すバイパスダイオードを備えることを特徴としている。   Alternatively, the AC / DC converter circuit according to the present invention includes a rectifier circuit that converts an AC voltage supplied from an AC power source into a DC voltage, a reactor interposed in a power line connecting the rectifier circuit and the AC power source, and the reactor. Provided between the rectifier circuit and the rectifier circuit for controlling conduction or interruption between the power supply lines, and a bypass for passing a current from a negative DC output side of the rectifier circuit to a connection point between the AC power supply and the reactor. It is characterized by including a diode.

好ましくは前記整流回路は、逆回復時間が短い高速ダイオードを正極直流出力側に接続し、逆回復時間が長い低速ダイオードを負極直流出力側に接続した直列回路を二組並列に接続して構成されたブリッジ整流回路であることが望ましい。
或いは前記整流回路は、逆回復時間が短い高速ダイオードを負極直流出力側に接続し、逆回復時間が長い低速ダイオードを正極直流出力側に接続した直列回路を二組並列に接続して構成されたブリッジ整流回路として構成される。
Preferably, the rectifier circuit is configured by connecting in parallel two sets of series circuits in which a high speed diode with a short reverse recovery time is connected to the positive DC output side, and a low speed diode with a long reverse recovery time is connected to the negative DC output side. A bridge rectifier circuit is desirable.
Alternatively, the rectifier circuit is configured by connecting in parallel two sets of series circuits in which a high speed diode with a short reverse recovery time is connected to the negative DC output side and a low speed diode with a long reverse recovery time is connected to the positive DC output side. Configured as a bridge rectifier circuit.

本発明の請求項1〜4に記載の交直変換回路によれば、交流電源に瞬低が生じた後、電圧が復帰したときに突入電流が流れるような場合において、突入電流に対する耐量の低いダイオード(高速ダイオードなど)やスイッチング素子(MOSFETなど)にこの突入電流を流さず、安価な低速ダイオード(バイパスダイオード)に流すよう構成しているので、わずかな部品の追加だけで高速ダイオード等を保護することができ、更には交直変換装置の信頼性を向上させることが可能である等の実用上多大なる効果を奏する。   According to the AC / DC conversion circuit according to any one of claims 1 to 4, a diode having a low withstand capability against an inrush current in a case where an inrush current flows when a voltage is restored after a voltage sag occurs in an AC power supply. Since this inrush current is not sent to a high-speed diode (such as a high-speed diode) or a switching element (MOSFET or the like), it is configured to flow through an inexpensive low-speed diode (bypass diode), so that a high-speed diode or the like can be protected with only a few additional parts In addition, there is a great practical effect that the reliability of the AC / DC converter can be improved.

以下、本発明の一実施形態に係る交直変換回路について添付図面を参照しながら説明する。尚、図1〜図3は、本発明の一実施形態を示すものであって、これらの図面によって本発明が限定されるものではない。また図中、図4と同一の符号を付した部分は同一物を表わし、基本的な構成は図4に示す従来のものと同様であるのでその説明を略述する。
図1は、本発明の一実施形態に係る交直変換回路の要部概略構成を示す回路図である。この図に示す交直変換回路が従来の交直変換回路(図4)と異なるところは、交流電源1の交流電圧を整流し、リアクトルL,LをバイパスしてダイオードD〜Dで構成されたブリッジ整流回路の正極直流出力側に与えるバイパスダイオードD10,D11を備えた点にある。即ちこのバイパスダイオードD10,D11は、交流電源1に瞬低が生じた後、交流電源1の電圧が復帰したときにブリッジ整流回路に流入しようとする突入電流をバイパスさせ、直接、正極直流出力側に与える役割を担っている。このバイパスダイオードD10,D11には、逆回復時間が長く、突入電流の耐量が高い低速ダイオードを用いればよい。
Hereinafter, an AC / DC converter circuit according to an embodiment of the present invention will be described with reference to the accompanying drawings. 1 to 3 show an embodiment of the present invention, and the present invention is not limited by these drawings. In the figure, the same reference numerals as those in FIG. 4 denote the same parts, and the basic configuration is the same as the conventional one shown in FIG.
FIG. 1 is a circuit diagram showing a schematic configuration of a main part of an AC / DC converter circuit according to an embodiment of the present invention. The AC / DC converter circuit shown in this figure is different from the conventional AC / DC converter circuit (FIG. 4) in that the AC voltage of the AC power source 1 is rectified, and the reactors L 1 and L 2 are bypassed to form diodes D 1 to D 4 . The bypass diodes D 10 and D 11 are provided to the positive DC output side of the bridge rectifier circuit. That is, the bypass diodes D 10 and D 11 bypass the inrush current that tends to flow into the bridge rectifier circuit when the voltage of the AC power supply 1 is restored after the instantaneous drop in the AC power supply 1. It plays a role to give to the output side. As the bypass diodes D 10 and D 11 , a low-speed diode having a long reverse recovery time and a high withstand current against inrush current may be used.

ちなみに、ブリッジ整流回路を構成する上アームのダイオードD,Dに高速ダイオードを用いたとすれば、下アームのダイオードD,Dに低速ダイオードを用いたとしてもその逆回復によって損失が増加することはない。これは逆回復電流の経路に高速ダイオードD,Dが存在するため、逆回復電流が減少するためである。したがって、ブリッジ整流回路を構成する上下アームいずれか一方のアームのダイオードD,Dを高速ダイオードとし、他方のアームのダイオードD,Dを低速ダイオードとすることができる。 By the way, if high-speed diodes are used for the upper arm diodes D 1 and D 3 constituting the bridge rectifier circuit, even if low-speed diodes are used for the lower arm diodes D 2 and D 4 , the loss increases due to reverse recovery. Never do. This is because the reverse recovery current is reduced because the high speed diodes D 1 and D 3 exist in the path of the reverse recovery current. Therefore, the diodes D 1 and D 3 of either one of the upper and lower arms constituting the bridge rectifier circuit can be high speed diodes, and the diodes D 2 and D 4 of the other arm can be low speed diodes.

さて上述したように構成された本発明の一実施形態に係る交直変換回路は、交流電源1において瞬低が発生し、直流出力電圧Voutが低下した後、交流入力電圧Vinが正極性(図1において交流電源1にリアクトルLが接続された側が正、リアクトルLが接続された側が負)で復帰し、交流入力電圧Vinが直流出力電圧Voutより高くなると、突入電流は交流電源1→バイパスダイオードD10→平滑コンデンサC及び負荷R→ダイオードD→リアクトルL→交流電源1の経路で流れる。逆に、交流入力電圧Vinが負極性(図1において交流電源1にリアクトルLが接続された側が負、リアクトルLが接続された側が正)のときに交流電源1の交流入力電圧が復帰すると、交流電源1→バイパスダイオードD11→平滑コンデンサC及び負荷R→ダイオードD→リアクトルL→交流電源1の経路で突入電流が流れる。 Well AC-DC converter circuit according to an embodiment of the present invention constructed as described above, low occurs instantaneously at the AC power source 1, after the DC output voltage V out is lowered, the AC input voltage V in is positive ( side reactor L 1 to the AC power supply 1 is connected to a positive 1, the side reactor L 2 is connected, returns with the negative), the AC input voltage V in is higher than the DC output voltage V out, the inrush current is AC It flows in the path of power source 1 → bypass diode D 10 → smoothing capacitor C and load R L → diode D 4 → reactor L 2AC power source 1. Conversely, the AC input voltage V in is negative AC input voltage of the AC power supply 1 when the (side reactor L 1 to the AC power supply 1 is connected in FIG. 1 is negative, the side reactor L 2 is connected positive) Upon return, an inrush current flows through the path of the AC power source 1 → the bypass diode D 11 → the smoothing capacitor C and the load R L → the diode D 2 → the reactor L 2 → the AC power source 1.

このため本発明の一実施形態に係る交直変換回路は、上述したように突入電流が高速ダイオード(ダイオードD,D)を流れることなく、突入電流の耐量が高い低速ダイオード(バイパスダイオードD10,D11およびダイオードD,D)に流れるので高速ダイオードを確実に保護することができる。
図2は、本発明の別の実施形態に係る交直変換回路の構成を示す回路図である。この図に示す交直変換回路が上述した交直変換回路(図1)と異なるところは、二つのバイパスダイオードD10,D11をブリッジ整流回路の負極直流出力側から交流電源1に戻る経路に設けた点にある。尚、この図におけるブリッジ整流回路は、ダイオードD,Dが高速ダイオードであり、ダイオードD,Dが低速ダイオードの場合を示している。
For this reason, the AC / DC converter circuit according to the embodiment of the present invention does not cause the inrush current to flow through the high speed diodes (diodes D 1 and D 3 ) as described above, and the low speed diode (bypass diode D 10 ) having a high withstand capability of the inrush current. , D 11 and diodes D 2 , D 4 ), the high speed diode can be reliably protected.
FIG. 2 is a circuit diagram showing a configuration of an AC / DC converter circuit according to another embodiment of the present invention. The AC / DC converter circuit shown in this figure differs from the AC / DC converter circuit (FIG. 1) described above in that two bypass diodes D 10 and D 11 are provided in a path returning from the negative DC output side of the bridge rectifier circuit to the AC power source 1. In the point. In the bridge rectifier circuit in this figure, the diodes D 2 and D 4 are high-speed diodes, and the diodes D 1 and D 3 are low-speed diodes.

さて、概略的には上述したように構成された本発明の別の実施形態に係る交直変換回路は、上述した交直変換回路と同様に瞬低から復帰したときの動作は、交流入力電圧Vinが正極性(図2において交流電源1にリアクトルLが接続された側が正、リアクトルLが接続された側が負)の場合、突入電流が交流電源1→リアクトルL→ダイオードD→平滑コンデンサC及び負荷R→バイパスダイオードD11→交流電源1の経路で流れる。 Now, AC-DC converter circuit according to another embodiment of the present invention is schematically configured as described above, the operation when similarly instantaneous low to return the AC-DC conversion circuit described above, the AC input voltage V in Is positive (in FIG. 2, the side where the reactor L 1 is connected to the AC power source 1 is positive, and the side where the reactor L 2 is connected is negative), the inrush current is AC power source 1 → reactor L 1 → diode D 1 → smooth The capacitor C and the load R L → the bypass diode D 11 → the AC power source 1 flows through the path.

逆に、交流入力電圧Vinが負極性(図2において交流電源1にリアクトルLが接続された側が負、リアクトルLが接続された側が正)のときに交流電源1が瞬低から復帰すると、交流電源1→リアクトルL→ダイオードD→平滑コンデンサC及び負荷R→バイパスダイオードD10→交流電源1の経路で突入電流が流れる。したがって、突入電流は高速ダイオード(ダイオードD,D)に流れることなく、低速ダイオード(バイパスダイオードD10,D11及びダイオードD,D)を流れるので、高速ダイオードを確実に保護することができる。 Conversely, the AC input voltage V in is negative AC power supply 1 is instantaneous Low return when the (side reactor L 1 to the AC power supply 1 in FIG. 2 is connected is negative, the side reactor L 2 is connected positive) Then, an inrush current flows through the path of AC power source 1 → reactor L 2 → diode D 3 → smoothing capacitor C and load R L → bypass diode D 10AC power source 1. Therefore, the inrush current does not flow through the high-speed diodes (diodes D 2 and D 4 ), but flows through the low-speed diodes (bypass diodes D 10 and D 11 and diodes D 1 and D 3 ). Can do.

尚、通常動作時ではバイパスダイオードD10,D11には電流が流れないので、これらバイパスダイオードD10,D11を交直変換回路に新に追加しても本来の動作に影響を与えることはない。また、上述したようにブリッジ整流回路における各アームの一方のダイオードに高速ダイオードを適用した例を示したが、本発明の交直変換回路は、これに代えて逆回復特性の優れたショットキーダイオードを適用してもかまわない。 Since no current flows through the bypass diodes D 10 and D 11 during normal operation, even if these bypass diodes D 10 and D 11 are newly added to the AC / DC converter circuit, the original operation is not affected. . In addition, as described above, an example in which a high-speed diode is applied to one diode of each arm in the bridge rectifier circuit has been shown. However, the AC / DC converter circuit according to the present invention uses a Schottky diode having excellent reverse recovery characteristics instead. It does not matter if it is applied.

尚、上述した実施形態はブリッジ整流回路に入力される二本の交流電源ラインの端子a,b間に二つのMOSFET(Q,Q)を互いに逆方向に直列接続した双方向スイッチを例示しているが、本発明は、これらのMOSFET(Q,Q)に代えて、図3(a)に示すように二つのIGBT(Q20,Q21)を互いの導通方向が逆方向になるように直列に接続するとともに、各IGBTに逆並列にダイオード(D20,D21)を接続して構成した交直変換回路にも勿論適用が可能である。 The embodiment described above exemplifies a bidirectional switch in which two MOSFETs (Q 1 , Q 2 ) are connected in series in opposite directions between terminals a and b of two AC power supply lines input to the bridge rectifier circuit. However, in the present invention, instead of these MOSFETs (Q 1 , Q 2 ), two IGBTs (Q 20 , Q 21 ) are connected in opposite directions as shown in FIG. Of course, the present invention can also be applied to an AC / DC converter circuit in which diodes (D 20 , D 21 ) are connected in series to each IGBT in antiparallel.

また本発明は、図3(b)のように4つの整流用ダイオード(D30〜D33)でブリッジ整流回路を構成し、整流用ダイオードD30,D32の(カソード)接続点とIGBT(Q30)のコレクタと、整流用ダイオードD31,D33の(アノード)接続点とIGBT(Q30)のエミッタとをそれぞれ接続してスイッチを構成し、IGBT(Q30)のオン/オフを制御した交直変換回路にも適用可能である。 In the present invention, as shown in FIG. 3B, a bridge rectifier circuit is constituted by four rectifier diodes (D 30 to D 33 ), and the (cathode) connection point of the rectifier diodes D 30 and D 32 and the IGBT ( Q 30 ) collector, the (anode) connection point of rectifying diodes D 31 and D 33 and the emitter of IGBT (Q 30 ) are connected to form a switch, and IGBT (Q 30 ) is turned on / off. It can also be applied to a controlled AC / DC converter circuit.

このスイッチは、IGBT(Q30)をオンにすると端子aの電位が端子bの電位より高いとき、整流用ダイオードD30→IGBT(Q30)→整流用ダイオードD33→端子bの経路で電流が流れる。逆に端子bの電位が端子aの電位より高いとき、IGBT(Q30)をオンにすると電流は、端子b→整流用ダイオードD32→IGBT(Q30)→整流用ダイオードD31→端子aの経路で流れる。 When the IGBT (Q 30 ) is turned on, when the potential of the terminal a is higher than the potential of the terminal b, this switch has a current in the path of the rectifying diode D 30 → IGBT (Q 30 ) → rectifying diode D 33 → terminal b. Flows. Conversely, when the potential of the terminal b is higher than the potential of the terminal a, when the IGBT (Q 30 ) is turned on, the current is changed from the terminal b → the rectifying diode D 32 → the IGBT (Q 30 ) → the rectifying diode D 31 → the terminal a. It flows in the route.

あるいは本発明は、図3(c)のように逆阻止型のスイッチング素子(例えば、IGBT)を逆並列に接続してスイッチを構成した交直変換回路にも適用できる。この図3(c)に示すスイッチは、端子aの電位が端子bの電位より高いとき、IGBT(Q40)をオンにする。すると電流は、端子a→IGBT(Q40)→端子bと流れる。逆に端子bの電位が端子aの電位より高いとき、IGBT(Q41)をオンにすると電流は、端子b→IGBT(Q41)→端子aと流れる。 Alternatively, the present invention can also be applied to an AC / DC converter circuit in which a reverse blocking type switching element (for example, IGBT) is connected in antiparallel as shown in FIG. The switch shown in FIG. 3C turns on the IGBT (Q 40 ) when the potential of the terminal a is higher than the potential of the terminal b. Then, the current flows from terminal a → IGBT (Q 40 ) → terminal b. On the contrary, when the potential of the terminal b is higher than the potential of the terminal a, when the IGBT (Q 41 ) is turned on, the current flows from the terminal b → IGBT (Q 41 ) → the terminal a.

本発明は、上述したように構成した交直変換回路であっても突入電流が高速ダイオードに流れることなく、突入電流に対する高い耐量を備えた低速ダイオードに流れるので容易な構成でありながら確実に交直変換回路を保護することができる。
尚、本発明の交直変換回路は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもかまわない。
In the present invention, the AC / DC conversion circuit configured as described above does not flow into the high-speed diode, but flows into the low-speed diode having a high tolerance against the inrush current. The circuit can be protected.
The AC / DC converter circuit of the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.

本発明の一実施形態に係る交直変換回路の要部概略構成を示す回路図。1 is a circuit diagram showing a schematic configuration of a main part of an AC / DC converter circuit according to an embodiment of the present invention. 本発明の別の実施形態に係る交直変換回路の要部概略構成を示す回路図。The circuit diagram which shows the principal part schematic structure of the AC / DC converter circuit which concerns on another embodiment of this invention. 図1,2に示す交直変換回路に適用可能なスイッチの一例を示す図。The figure which shows an example of the switch applicable to the AC / DC converter circuit shown in FIG. 従来の交直変換回路(コンバータ)の一実施例を示す回路図。The circuit diagram which shows one Example of the conventional AC / DC conversion circuit (converter).

符号の説明Explanation of symbols

1 交流電源
C 平滑コンデンサ
〜D ダイオード
10,D11 バイパスダイオード
,L リアクトル
負荷
in 交流入力電圧
out 直流出力電圧
1 AC power supply C smoothing capacitor D 1 to D 4 diodes D 10, D 11 bypass diode L one, L 2 reactor R L load V in alternating input voltage V out DC output voltage

Claims (4)

交流電源から与えられた交流電圧を直流電圧に変換する整流回路と、
この整流回路と前記交流電源とを接続する電源ラインに介装されたリアクトルと、
このリアクトルと前記整流回路との間に設けられて、前記電源ライン間の導通又は遮断を制御するスイッチと、
前記交流電源と前記リアクトルとの各接続点から前記整流回路の正極直流出力側に電流を流すバイパスダイオードを備えることを特徴とする交直変換回路。
A rectifier circuit that converts an AC voltage supplied from an AC power source into a DC voltage;
A reactor interposed in a power line connecting the rectifier circuit and the AC power source;
A switch provided between the reactor and the rectifier circuit for controlling conduction or blocking between the power lines;
2. An AC / DC converter circuit comprising a bypass diode for passing a current from each connection point of the AC power source and the reactor to a positive DC output side of the rectifier circuit.
交流電源から与えられた交流電圧を直流電圧に変換する整流回路と、
この整流回路と前記交流電源とを接続する電源ラインに介装されたリアクトルと、
このリアクトルと前記整流回路との間に設けられて、前記電源ライン間の導通又は遮断を制御するスイッチと、
前記整流回路の負極直流出力側から前記交流電源と前記リアクトルとの接続点に電流を流すバイパスダイオードを備えることを特徴とする交直変換回路。
A rectifier circuit that converts an AC voltage supplied from an AC power source into a DC voltage;
A reactor interposed in a power line connecting the rectifier circuit and the AC power source;
A switch provided between the reactor and the rectifier circuit for controlling conduction or blocking between the power lines;
An AC / DC converter circuit comprising: a bypass diode for passing a current from a negative DC output side of the rectifier circuit to a connection point between the AC power supply and the reactor.
前記整流回路は、逆回復時間が短い高速ダイオードを正極直流出力側に接続し、逆回復時間が長い低速ダイオードを負極直流出力側に接続した直列回路を二組並列に接続して構成されたブリッジ整流回路であることを特徴とする請求項1に記載の交直変換回路。   The rectifier circuit is a bridge configured by connecting two sets of series circuits in which a high speed diode with a short reverse recovery time is connected to the positive DC output side and a low speed diode having a long reverse recovery time is connected to the negative DC output side. The AC / DC converter circuit according to claim 1, wherein the AC / DC converter circuit is a rectifier circuit. 前記整流回路は、逆回復時間が短い高速ダイオードを負極直流出力側に接続し、逆回復時間が長い低速ダイオードを正極直流出力側に接続した直列回路を二組並列に接続して構成されたブリッジ整流回路であることを特徴とする請求項2に記載の交直変換回路。
The rectifier circuit is configured by connecting in parallel two sets of series circuits in which a high speed diode with a short reverse recovery time is connected to the negative DC output side, and a low speed diode with a long reverse recovery time is connected to the positive DC output side. The AC / DC converter circuit according to claim 2, wherein the AC / DC converter circuit is a rectifier circuit.
JP2008203666A 2008-08-07 2008-08-07 AC / DC converter Active JP5233492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203666A JP5233492B2 (en) 2008-08-07 2008-08-07 AC / DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203666A JP5233492B2 (en) 2008-08-07 2008-08-07 AC / DC converter

Publications (2)

Publication Number Publication Date
JP2010041863A true JP2010041863A (en) 2010-02-18
JP5233492B2 JP5233492B2 (en) 2013-07-10

Family

ID=42013821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203666A Active JP5233492B2 (en) 2008-08-07 2008-08-07 AC / DC converter

Country Status (1)

Country Link
JP (1) JP5233492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253965A (en) * 2011-06-06 2012-12-20 Fuji Electric Co Ltd Dc power supply device
JP2020014045A (en) * 2018-07-13 2020-01-23 富士電機株式会社 Bidirectional switch circuit
WO2021125670A1 (en) * 2019-12-18 2021-06-24 Samsung Electronics Co., Ltd. Electronic apparatus and power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143266A (en) * 1989-10-30 1991-06-18 Hitachi Metals Ltd Power source
JP2004072846A (en) * 2002-08-02 2004-03-04 Fuji Electric Holdings Co Ltd Rectifying device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143266A (en) * 1989-10-30 1991-06-18 Hitachi Metals Ltd Power source
JP2004072846A (en) * 2002-08-02 2004-03-04 Fuji Electric Holdings Co Ltd Rectifying device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253965A (en) * 2011-06-06 2012-12-20 Fuji Electric Co Ltd Dc power supply device
JP2020014045A (en) * 2018-07-13 2020-01-23 富士電機株式会社 Bidirectional switch circuit
JP7180157B2 (en) 2018-07-13 2022-11-30 富士電機株式会社 bidirectional switch circuit
WO2021125670A1 (en) * 2019-12-18 2021-06-24 Samsung Electronics Co., Ltd. Electronic apparatus and power supply
US11444529B2 (en) 2019-12-18 2022-09-13 Samsung Electronics Co., Ltd. Electronic apparatus and power supply

Also Published As

Publication number Publication date
JP5233492B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5521796B2 (en) Rectifier circuit
JP4719746B2 (en) Cascode rectifier
JP6207631B2 (en) Power converter
JP6288534B2 (en) Power converter
EP2858195B1 (en) Converter circuit
US9385624B2 (en) Rectifier circuit
US10153711B2 (en) Electric power conversion device
US11139733B2 (en) Modular multilevel converter sub-module having DC fault current blocking function and method of controlling the same
JP2004072846A (en) Rectifying device
US20200343809A1 (en) Semiconductor topologies and devices for soft starting and active fault protection of power converters
JP2013059248A (en) Three-level power converter
JP5233492B2 (en) AC / DC converter
JP2020014045A (en) Bidirectional switch circuit
JP2014140272A (en) Power conversion device
JP6239024B2 (en) Power converter
JP2013116020A (en) Power conversion apparatus
JPH06276756A (en) Converter
JP5407744B2 (en) AC-DC converter
JP7024784B2 (en) AC / DC conversion circuit and power factor improvement circuit
JP2013128393A (en) Converter system and power electronic device comprising such converter system
JP2011041348A (en) Power converter
CN113904573A (en) Half-bridge improved MMC sub-module topological structure and control method thereof
JP6070258B2 (en) 3-level inverter snubber circuit
WO2021192359A1 (en) Bidirectional dc-dc converter
JP2011024326A (en) Power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250