JP2010037694A - Reinforcing fiber base material, laminate and composite material - Google Patents

Reinforcing fiber base material, laminate and composite material Download PDF

Info

Publication number
JP2010037694A
JP2010037694A JP2008204094A JP2008204094A JP2010037694A JP 2010037694 A JP2010037694 A JP 2010037694A JP 2008204094 A JP2008204094 A JP 2008204094A JP 2008204094 A JP2008204094 A JP 2008204094A JP 2010037694 A JP2010037694 A JP 2010037694A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing fiber
fiber yarn
yarn
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204094A
Other languages
Japanese (ja)
Other versions
JP5125867B2 (en
Inventor
Tomoyuki Shinoda
知行 篠田
Eisuke Wadahara
英輔 和田原
Masahiro Yamauchi
雅浩 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008204094A priority Critical patent/JP5125867B2/en
Publication of JP2010037694A publication Critical patent/JP2010037694A/en
Application granted granted Critical
Publication of JP5125867B2 publication Critical patent/JP5125867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing fiber base material giving a composite material having excellent thermal cycle durability, especially suppressing the generation of surface cracks after a thermal cycle test and further having excellent impregnation property in molding and to provide a preform and a composite material. <P>SOLUTION: The reinforcing fiber base material includes at least a reinforcing fiber yarn group containing continuous reinforcing fiber yarns parallelly aligned in one direction and a warp direction auxiliary fiber yarn group composed of warp direction auxiliary fiber yarns extending in the direction parallel to the reinforcing fiber yarns, wherein the roundness of the single fiber of the reinforcing fiber yarn is 80-100% and the roundness of the single fiber of the warp direction auxiliary fiber yarn is 40-80%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐環境性に優れる複合材料が生産性良く得られるとともに、優れた取り扱い性を有する強化繊維基材、積層体および複合材料に関するものである。より詳しくは、例えば航空機や自動車等の構造部材で強く要求される熱サイクル耐久性などの耐環境性に優れる複合材料が得られるだけでなく、成形時の含浸性に優れて、その複合材料が生産性よく得られる強化繊維基材、それを積層してなる積層体、およびそれらに樹脂を含浸してなる複合材料に関するものである   The present invention relates to a reinforced fiber base material, a laminate, and a composite material, which can obtain a composite material excellent in environmental resistance with good productivity and have excellent handleability. More specifically, for example, not only a composite material excellent in environmental resistance such as thermal cycle durability, which is strongly required for structural members such as aircraft and automobiles, is obtained, and the composite material is excellent in impregnation during molding. The present invention relates to a reinforcing fiber base material that can be obtained with high productivity, a laminate obtained by laminating the same, and a composite material obtained by impregnating them with resin

従来より、強化繊維にマトリックス樹脂を含浸させた複合材料は、優れた力学特性、軽量化の要求特性を満たすことから主に航空・宇宙、スポーツ用途等に用いられてきた。これら複合材料の代表的な製造方法として、オートクレーブ成形法やレジン・トランスファー・モールディング(RTM)成形法、真空注入成形法(VaRTM)等が知られている。オートクレーブ成形法では、例えば、一方向に配列した強化繊維束群にマトリックス樹脂を予め含浸させたプリプレグを、成形型に積層し、必要に応じてバッグ材で覆って、オートクレーブにて加熱・加圧し、複合材料を成形する。この成形法では、プリプレグを用いることにより、ボイドが少なくきわめて信頼性の高い高品質の複合材料が得られる利点があることから、航空機部材の成形等に好ましく使われているが、高価な設備であるオートクレーブが必要あるなど、製造に高いコストがかかる問題があった。   Conventionally, a composite material obtained by impregnating a matrix resin into a reinforcing fiber has been mainly used for aerospace, sports, and the like because it satisfies excellent mechanical characteristics and required characteristics for weight reduction. As typical methods for producing these composite materials, an autoclave molding method, a resin transfer molding (RTM) molding method, a vacuum injection molding method (VaRTM), and the like are known. In the autoclave molding method, for example, a prepreg impregnated with a matrix resin in a bundle of reinforcing fiber bundles arranged in one direction is laminated on a mold, covered with a bag material as necessary, and heated and pressurized in an autoclave. Molding composite materials. In this molding method, the use of a prepreg has the advantage that a highly reliable high quality composite material with few voids can be obtained. Therefore, this molding method is preferably used for molding aircraft parts. There was a problem that the production cost was high, such as the need for an autoclave.

一方、生産性に優れる複合材料の代表的な成形法としては、レジン・トランスファー・モールディング(RTM)成形法や真空注入成形法等が挙げられる。かかる成形法では、マトリックス樹脂が含浸されていない、ドライな基材を複数枚、成形型の中に配置し、低粘度の液状マトリックス樹脂を注入することにより強化繊維にマトリックス樹脂を含浸させて複合材料を成形する。この場合、ドライな状態でも取り扱いが可能な強化繊維基材、例えば織物を用いる必要がある。通常の織物は、強化繊維を二方向に織組織を有するため、経糸と緯糸の交錯点で強化繊維に屈曲(クリンプ)が発生するが、このクリンプによる強化繊維の真直性低下により、プリプレグに比べ力学特性に劣るのが一般的であった。   On the other hand, typical molding methods for composite materials having excellent productivity include a resin transfer molding (RTM) molding method and a vacuum injection molding method. In such a molding method, a plurality of dry base materials not impregnated with a matrix resin are placed in a mold, and a low-viscosity liquid matrix resin is injected to impregnate the reinforcing fibers with the matrix resin to form a composite. Mold the material. In this case, it is necessary to use a reinforcing fiber base material that can be handled even in a dry state, for example, a woven fabric. Since normal woven fabrics have a woven structure in two directions, the reinforcing fibers bend (crimp) at the intersection of the warp and weft yarns. Compared with the prepreg, the straightness of the reinforcing fibers is reduced by this crimp. Generally, the mechanical properties are inferior.

そこで特許文献1には、応力が集中するような屈曲を有しない扁平な強化繊維マルチフィラメント糸を一方向に互いに並行かつシート状に引き揃えてなる糸条群のシート面の両側に、強化繊維マルチフィラメント糸と交差するよこ方向補助糸群が位置し、それらよこ方向補助糸群と、強化繊維マルチフィラメント糸と並行するたて方向補助糸群とが織組織をなして糸条群を一体に保持している一方向性補強織物が示されている。このような織組織を有することにより、強化繊維糸条のクリンプを低減することができ、複合材料の力学特性を向上することができる。また、よこ方向補助糸をたて方向補助糸よりも高剛性とすることにより、よこ方向補助糸が沈まず、強化繊維糸条間に大きな隙間が生じるのを防止することにより、カバーファクターを向上し、樹脂リッチ部を抑制できる内容が示されている。   Therefore, Patent Document 1 discloses a reinforcing fiber on both sides of a sheet surface of a yarn group in which flat reinforcing fiber multifilament yarns that do not have a bend in which stress is concentrated are aligned in one direction and in a sheet shape. A transverse direction auxiliary yarn group intersecting with the multifilament yarn is located, and the transverse direction auxiliary yarn group and the warp direction auxiliary yarn group parallel to the reinforcing fiber multifilament yarn form a woven structure to hold the yarn group integrally. A unidirectional reinforcing fabric is shown. By having such a woven structure, crimping of the reinforcing fiber yarn can be reduced and the mechanical properties of the composite material can be improved. Also, by making the weft direction auxiliary yarn more rigid than the warp direction auxiliary yarn, the weft direction auxiliary yarn does not sink and prevents a large gap between reinforcing fiber yarns, thereby improving the cover factor And the content which can suppress a resin rich part is shown.

しかしながら、織組織によりクリンプを低減し、高剛性な緯糸を用いることにより、強化繊維糸条間の隙間を低減することにより、マトリックス樹脂の流路となる隙間も低減するため、多数の強化繊維基材を積層したプリフォーム(本発明の積層体に相当する)には、マトリックス樹脂が完全に含浸できない問題があった。特に特許文献1に記載の土木建築分野で用いるような積層枚数が少ない場合は問題ないが、航空機の構造部材などに用いる場合には、数十枚の強化繊維基材を積層して使用することがあるため、マトリックス樹脂が含浸できない問題が発生する懸念がある。   However, since the crimping is reduced by the woven structure, and the use of high-rigid wefts, the gaps between the reinforcing fiber yarns are reduced, thereby reducing the gaps serving as the matrix resin flow paths. The preform (corresponding to the laminate of the present invention) in which the materials are laminated has a problem that the matrix resin cannot be completely impregnated. In particular, there is no problem when the number of laminated layers is small as used in the civil engineering and construction field described in Patent Document 1, but when used for structural members of aircraft, dozens of reinforcing fiber base materials should be laminated and used. Therefore, there is a concern that a problem that the matrix resin cannot be impregnated occurs.

特許文献1では含浸性を向上する方法として、糸幅/糸厚み比を30以上の扁平度の大きい強化繊維糸条を用いることにより、薄い織物基材とすることにより、マトリックス樹脂の含浸性を良好に保つことができる内容が示されているだけであり、強化繊維基材の含浸性は、強化繊維糸条そのものの含浸性に依存しており、織組織に積極的に含浸性を向上させるなどの発明は示されていない。   In Patent Document 1, as a method for improving the impregnation property, by using a reinforcing fiber yarn having a large flatness with a yarn width / yarn thickness ratio of 30 or more, a thin woven fabric substrate is used. Only the contents that can be kept well are shown, and the impregnation property of the reinforcing fiber base depends on the impregnation property of the reinforcing fiber yarn itself, and the impregnation property is positively improved in the woven structure. Such inventions are not shown.

特許文献2には、一方向強化繊維基材の強化繊維糸条間にスペーサー糸を配置し、スペーサー糸をマトリックス樹脂の流路として利用することにより、力学特性と樹脂の含浸性を両立する内容が示されている。また強化繊維糸条間の隙間を0.1〜1.0mmに制御することにより、マトリックス樹脂の含浸性を確保すると共に、該隙間に形成される樹脂リッチの大きさを制限することができる。   Patent Document 2 includes a spacer yarn arranged between reinforcing fiber yarns of a unidirectional reinforcing fiber base material, and the spacer yarn is used as a matrix resin flow path to achieve both mechanical properties and resin impregnation properties. It is shown. Further, by controlling the gap between the reinforcing fiber yarns to 0.1 to 1.0 mm, it is possible to ensure the impregnating property of the matrix resin and to limit the size of the resin rich formed in the gap.

しかしながら、本発明の方法においては、マトリックス樹脂の含浸性は向上できるものの、特に熱サイクル耐久性が劣る問題があった。本発明においてスペーサー糸によって形成される樹脂リッチは非常に微小な樹脂リッチであるため、引張や圧縮試験のような静的な力学特性にはほとんど影響はなく、物性低下を引き起こす主原因とはならないが、熱サイクル耐久性試験においては、該樹脂リッチ部に微小なき裂が発生するなどの問題が懸念される。特に航空機や自動車等の構造部材は、高温と低温環境に繰り返し曝されるため、静的な力学特性と共に熱サイクル耐久性が強く求められる。   However, in the method of the present invention, although the impregnation property of the matrix resin can be improved, there is a problem that the thermal cycle durability is particularly inferior. In the present invention, the resin rich formed by the spacer yarn is very minute resin rich, so there is almost no effect on static mechanical properties such as tensile and compression tests, and it is not the main cause of physical property deterioration. However, in the heat cycle durability test, there is a concern about problems such as the occurrence of minute cracks in the resin-rich portion. In particular, structural members such as aircraft and automobiles are repeatedly exposed to high and low temperature environments, and therefore, thermal cycle durability as well as static mechanical properties are strongly required.

特に複合材料の表面は、熱サイクル耐久性試験において、冷熱雰囲気の直接暴露を受けるため、表面に形成された該樹脂リッチ部は、最もき裂が入りやすい。表面に微小なき裂が入ると、表面外観が劣化するだけでなく、該き裂から薬液、溶液などが浸透し、さらに複合材料の劣化を進展させる懸念があるため、表面のき裂発生を抑制することが強く求められている。   In particular, since the surface of the composite material is directly exposed to a cold atmosphere in a thermal cycle durability test, the resin-rich portion formed on the surface is most easily cracked. When a micro crack enters the surface, not only the surface appearance deteriorates, but there is also a concern that chemicals, solutions, etc. may permeate from the crack and further promote deterioration of the composite material. There is a strong demand to do.

特許文献3にも補強織布材内に流路を設けて、マトリックス樹脂の含浸を促進させる発明が示されているが、このような樹脂流路を形成する方法については、連続した流路を形成するもしくは繊維をよじることにより形成するなど、マトリックス樹脂の流路としての機能付与に関する内容に限られており、当該発明によって設けられた樹脂流路に形成される樹脂リッチによる重量増加や余剰樹脂の消費およびその樹脂リッチ部に発生する懸念のある微小なき裂を抑制する方法に関する記載は一切無い。上述のように、このような樹脂リッチ部は、特に熱サイクル耐久性試験などにおいて、き裂の発生が懸念され、特に航空機や自動車等の構造部材に使用する場合に問題となる場合があった。
特開平07−243149号公報 特開2005−022396号公報 特開昭63−203844号公報
Patent Document 3 also discloses an invention in which a flow path is provided in a reinforced woven material to promote the impregnation of the matrix resin. For a method of forming such a resin flow path, a continuous flow path is used. It is limited to the content relating to the functioning of the matrix resin flow path, such as forming or twisting the fibers, and the weight increase or surplus resin due to the resin rich formed in the resin flow path provided by the invention There is no description about the method of suppressing the micro crack which has a possibility of generating in the resin rich part and the resin rich part. As described above, such a resin-rich portion is concerned with the occurrence of cracks, particularly in a heat cycle durability test, and may be a problem particularly when used for a structural member such as an aircraft or an automobile. .
JP 07-243149 A JP 2005-022396 A JP-A-63-203844

本発明は、かかる従来技術の問題点の解決を目的とするものであり、具体的には、熱サイクル耐久性に優れた複合材料、とりわけ熱サイクル試験後に表面のき裂発生を抑制することができる複合材料、が得られるだけでなく、成形時の含浸性にも優れる強化繊維基材、プリフォームおよび複合材料を提供せんとするものである。   An object of the present invention is to solve such problems of the prior art. Specifically, it is a composite material excellent in thermal cycle durability, particularly to suppress the occurrence of cracks on the surface after a thermal cycle test. It is an object of the present invention to provide a reinforcing fiber base, a preform and a composite material that not only provide a composite material that can be obtained but also have excellent impregnation properties during molding.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。   The present invention employs the following means in order to solve such problems.

(1)少なくとも、連続した強化繊維糸条を一方向に並行するように引き揃えた強化繊維糸条群と、強化繊維糸条と並行する方向に延在する経方向補助繊維糸条から構成される経方向補助繊維糸条群とから構成される強化繊維基材であって、強化繊維糸条の単繊維の真円度が80〜100%であり、かつ、経方向補助繊維糸条の単繊維の真円度が40〜80%である、強化繊維基材。   (1) It is composed of at least a reinforcing fiber yarn group in which continuous reinforcing fiber yarns are aligned so as to be parallel to one direction, and a warp auxiliary fiber yarn extending in a direction parallel to the reinforcing fiber yarn. A reinforcing fiber base material composed of a group of warp direction auxiliary fiber yarns, wherein the single fiber of the reinforcing fiber yarn has a roundness of 80 to 100%, and the warp direction auxiliary fiber yarn unit A reinforced fiber base material having a roundness of 40 to 80%.

(2)強化繊維糸条の単繊維が95〜100%の真円状であり、かつ、経方向補助繊維糸条の単繊維の真円度が55〜75%の空豆状である、(1)に記載の強化繊維基材。   (2) The single fiber of the reinforcing fiber yarn has a round shape of 95 to 100%, and the single fiber of the warp direction auxiliary fiber yarn has a round bean shape of 55 to 75% (1 ) Reinforcing fiber base material.

(3)強化繊維糸条の単繊維における三次元粗さの二乗平均粗さRqが20nm未満であり、かつ、経方向補助繊維糸条の単繊維における二乗平均粗さRqが20〜200nmである、(1)または(2)に記載の強化繊維基材。   (3) The root mean square roughness Rq of the three-dimensional roughness in the single fiber of the reinforcing fiber yarn is less than 20 nm, and the root mean square roughness Rq in the single fiber of the warp direction auxiliary fiber yarn is 20 to 200 nm. The reinforcing fiber substrate according to (1) or (2).

(4)強化繊維糸条の単繊維直径が2〜7μmであり、かつ、経方向補助繊維糸条の単繊維直径が4〜15μmである、(1)〜(3)のいずれかに記載の強化繊維基材。   (4) The single fiber diameter of the reinforcing fiber yarn is 2 to 7 μm, and the single fiber diameter of the warp direction auxiliary fiber yarn is 4 to 15 μm, according to any one of (1) to (3). Reinforced fiber substrate.

(5)強化繊維糸条が繊度800〜3500tex、フィラメント数12,000〜50,000本の炭素繊維糸条であり、かつ、経方向補助繊維糸条が繊度20〜200tex、フィラメント数300〜3,000本の炭素繊維糸条である、(1)または(2)に記載の強化繊維基材。   (5) The reinforcing fiber yarn is a carbon fiber yarn having a fineness of 800 to 3500 tex and a filament number of 12,000 to 50,000, and the warp direction auxiliary fiber yarn is a fineness of 20 to 200 tex and the number of filaments of 300 to 3 The reinforcing fiber substrate according to (1) or (2), which is 1,000 carbon fiber yarns.

(6)強化繊維基材において、基材の両面側に緯方向補助繊維糸条群が配されており、該緯方向補助繊維糸条群を構成する緯方向補助繊維糸条と経方向補助繊維糸条群を構成する経方向補助繊維糸条とが織組織を構成している一方向性ノンクリンプ織物である、(1)に記載の強化繊維基材。   (6) In the reinforcing fiber base material, weft-direction auxiliary fiber yarn groups are arranged on both sides of the base material, and the weft-direction auxiliary fiber yarns and warp-direction auxiliary fibers constituting the weft-direction auxiliary fiber yarn group The reinforcing fiber substrate according to (1), which is a unidirectional non-crimp fabric in which a warp direction auxiliary fiber yarn constituting a yarn group constitutes a woven structure.

(7)緯方向補助繊維糸条が繊度1〜20tex、フィラメント数1〜200本の合成繊維またはガラス繊維である、(1)〜(6)のいずれかに記載の強化繊維基材。   (7) The reinforcing fiber substrate according to any one of (1) to (6), wherein the weft direction auxiliary fiber yarn is a synthetic fiber or glass fiber having a fineness of 1 to 20 tex and a filament number of 1 to 200.

(8)強化繊維基材の少なくとも片表面に熱可塑性樹脂を主成分とする樹脂材料が、強化繊維基材100重量%に対して2〜20重量%の範囲内で存在している、(1)〜(7)のいずれかに記載の強化繊維基材。   (8) A resin material mainly composed of a thermoplastic resin is present in a range of 2 to 20% by weight with respect to 100% by weight of the reinforcing fiber base (1) on at least one surface of the reinforcing fiber base. )-Reinforcing fiber base material in any one of (7).

(9)樹脂材料が、融点を有さない非晶性であり、且つガラス転移温度が50〜150℃である、(1)〜(8)のいずれかに記載の強化繊維基材。   (9) The reinforcing fiber substrate according to any one of (1) to (8), wherein the resin material is amorphous having no melting point and has a glass transition temperature of 50 to 150 ° C.

(10)(1)〜(9)のいずれかに記載の強化繊維基材が複数積層されて構成される積層体であって、強化繊維基材同士が、樹脂材料により少なくとも部分的に接着して一体化している、積層体。   (10) A laminate in which a plurality of reinforcing fiber bases according to any one of (1) to (9) are laminated, and the reinforcing fiber bases are at least partially bonded to each other by a resin material. The laminated body is integrated.

(11)(1)〜(9)のいずれかに記載の強化繊維基材または(10)に記載の積層体を、マトリックス樹脂で固化した複合材料において、次の熱サイクル処理の後に微小なき裂が発生しない、複合材料。   (11) In the composite material obtained by solidifying the reinforcing fiber substrate according to any one of (1) to (9) or the laminate according to (10) with a matrix resin, a minute crack after the next thermal cycle treatment Does not occur, composite material.

熱サイクル処理:複合材料を温度50℃、湿度95%環境下で12時間放置し、次いで温度−55℃で1時間放置し、さらに下限−55℃で5分間、上限70℃で5分間、の熱サイクルを2000回繰り返す処理   Thermal cycle treatment: The composite material is allowed to stand at a temperature of 50 ° C. and a humidity of 95% for 12 hours, then left at a temperature of −55 ° C. for 1 hour, and further at a lower limit of −55 ° C. for 5 minutes and an upper limit of 70 ° C. for 5 minutes. Treatment that repeats the heat cycle 2000 times

本発明の強化繊維基材によれば、強化繊維糸条間に経方向補助繊維糸条が配列されているので、その単繊維表面の微小な凹部により、液状マトリックス樹脂の通路が確保され、分厚くまたは広面積に強化繊維基材が積層されても優れた樹脂含浸性を発揮し、高品質の複合材料を得ることができる。   According to the reinforcing fiber substrate of the present invention, since the warp-direction auxiliary fiber yarns are arranged between the reinforcing fiber yarns, the passage of the liquid matrix resin is secured by the minute concave portions on the surface of the single fiber, and the thickness is increased. Or even if the reinforcing fiber base material is laminated in a wide area, it exhibits excellent resin impregnation properties, and a high-quality composite material can be obtained.

また、経方向補助繊維糸条の単繊維表面の微小な凹部により、マトリックス樹脂との接着性に優れるため、耐環境性、熱サイクルが付与された後に形成される樹脂リッチ部における微小なき裂の発生を抑制できる複合材料を得ることができる。   In addition, due to the minute recesses on the single fiber surface of the warp-direction auxiliary fiber yarns, it has excellent adhesion to the matrix resin, so that the micro-cracks in the resin-rich part formed after the environment resistance and thermal cycle are given A composite material capable of suppressing generation can be obtained.

好ましくは強化繊維基材の少なくとも片面に樹脂材料が接着されているので、その樹脂材料による接着硬化により基材形態が安定し、さらにはプリフォームとして一体化が容易に行えるだけでなく、成形後の複合材料における層間強化の効果も期待でき、特に衝撃付与後の常温圧縮強度(CAI:Compression After Impact)などの力学特性に優れた複合材料が得られる。   Preferably, since the resin material is bonded to at least one side of the reinforcing fiber base material, the base material form is stabilized by the adhesive curing by the resin material, and further, it can be easily integrated as a preform, and after molding In addition, an effect of interlaminar strengthening in the composite material can be expected, and in particular, a composite material having excellent mechanical properties such as normal temperature compressive strength (CAI: Compression After Impact) after application of impact can be obtained.

このようにして得られた複合材料は、航空機、自動車、船舶などの輸送機器における構造部材、内装部材に好適に使用することができる。   The composite material thus obtained can be suitably used for structural members and interior members in transportation equipment such as aircraft, automobiles and ships.

以下、本発明の強化繊維基材からなる積層体の製造装置の好ましい形態を、図面を参照しながら説明する。
なお、本発明が図面に記載された発明に限定されるものではない。
Hereinafter, the preferable form of the manufacturing apparatus of the laminated body which consists of a reinforced fiber base material of this invention is demonstrated, referring drawings.
Note that the present invention is not limited to the invention described in the drawings.

図1は本発明の強化繊維基材1を示す。   FIG. 1 shows a reinforcing fiber substrate 1 of the present invention.

本発明の強化繊維基材1は、連続する強化繊維糸条2を一方向に並行するように引き揃えた強化繊維糸条群3と、強化繊維糸条2と並行する方向に延在する経方向補助繊維糸条4から構成される経方向補助繊維糸条群5から構成されている。   The reinforcing fiber base 1 of the present invention includes a reinforcing fiber yarn group 3 in which continuous reinforcing fiber yarns 2 are aligned so as to be parallel to one direction, and a warp extending in a direction parallel to the reinforcing fiber yarn 2. It is comprised from the warp direction auxiliary fiber yarn group 5 comprised from the direction auxiliary fiber yarn 4. FIG.

強化繊維糸条2の単繊維の真円度は80〜100%であり、かつ、経方向補助繊維糸条4の単繊維の真円度は40〜80%である。図2に、単繊維の真円度の定義に用いられる図を示す。ここで単繊維の真円度6とは、単繊維の長手方向に直角方向の断面の外接円径aと内接円径bの比(b/a)×100[%]である。なお、図2は、単繊維表面の微小な凹部を有する空豆状の単繊維を用いた場合のものであるが、前記単繊維は、外接円径aと内接円径bを測定できる形状であれば良い。   The roundness of the single fiber of the reinforcing fiber yarn 2 is 80 to 100%, and the roundness of the single fiber of the warp direction auxiliary fiber yarn 4 is 40 to 80%. In FIG. 2, the figure used for the definition of the roundness of a single fiber is shown. Here, the roundness 6 of the single fiber is a ratio (b / a) × 100 [%] of the circumscribed circle diameter a and the inscribed circle diameter b in the cross section perpendicular to the longitudinal direction of the single fiber. In addition, FIG. 2 is a thing at the time of using the empty bean-shaped single fiber which has a micro recessed part on the surface of a single fiber, However, The said single fiber is a shape which can measure the circumscribed circle diameter a and the inscribed circle diameter b. I just need it.

強化繊維糸条2の単繊維、経方向補助繊維糸条4の単繊維の断面形状、真円度の測定、および後述の単繊維直径の測定方法は特に限定されるものではないが、JIS R 7607(2006)「炭素繊維−単繊維の直径及び断面積の試験方法」に記載の方法にて測定することができる。   The method for measuring the cross-sectional shape and roundness of the single fiber of the reinforcing fiber yarn 2 and the single fiber of the warp direction auxiliary fiber yarn 4 and the measurement method of the single fiber diameter described later are not particularly limited. 7607 (2006) “Measurement method of diameter and cross-sectional area of carbon fiber-single fiber”.

図3、4はそれぞれ複合材料中における強化繊維糸条2と経方向補助繊維糸条4の断面を示す。図3に示す強化繊維糸条2の真円度はほぼ100%であり、図4に示す経方向補助繊維糸条4の真円度は約55%である。図4に示すように、経方向補助繊維糸条群5は、経方向補助繊維糸条4の間に隙間7が設けられるため、樹脂流路として機能することができる。そのため、本発明の強化繊維基材1は、一方向強化繊維基材としての高い力学特性と経方向補助繊維糸条群5による樹脂含浸性を両立することができる基材である。   3 and 4 show cross sections of the reinforcing fiber yarn 2 and the warp direction auxiliary fiber yarn 4 in the composite material, respectively. The roundness of the reinforcing fiber yarn 2 shown in FIG. 3 is almost 100%, and the roundness of the warp direction auxiliary fiber yarn 4 shown in FIG. 4 is about 55%. As shown in FIG. 4, the warp direction auxiliary fiber yarn group 5 can function as a resin flow path because the gap 7 is provided between the warp direction auxiliary fiber yarns 4. Therefore, the reinforcing fiber base material 1 of the present invention is a base material that can achieve both high mechanical properties as a unidirectional reinforcing fiber base material and resin impregnation by the warp direction auxiliary fiber yarn group 5.

さらに本発明で用いる経方向補助繊維糸条4は、真円度を40〜80%にすることにより、真円度が80〜100%と高い強化繊維糸条2に比べて、マトリックス樹脂との接着性を向上することができる。通常、経方向補助繊維糸条4のような樹脂流路部分は、微小な樹脂リッチが形成されるため、熱サイクル耐久性試験において、該樹脂リッチ部より、微小なき裂が発生する問題があったが、本発明のように経方向補助繊維糸条4の真円度を40〜80%にすることにより、マトリックス樹脂との接着性を向上することができるため、熱サイクル試験時の微小なき裂の発生を抑制することができる。   Furthermore, the warp direction auxiliary fiber yarn 4 used in the present invention has a roundness of 40 to 80%, so that the roundness is 80 to 100% and the high reinforcing fiber yarn 2 is higher than the matrix resin. Adhesiveness can be improved. Usually, a resin flow path portion such as the warp-direction auxiliary fiber yarns 4 is formed with a minute resin rich, so that there is a problem that a minute crack is generated from the resin rich portion in the thermal cycle durability test. However, since the roundness of the warp direction auxiliary fiber yarn 4 is set to 40 to 80% as in the present invention, the adhesion with the matrix resin can be improved. Generation of cracks can be suppressed.

このように本発明の強化繊維基材1は、力学特性と樹脂の含浸性および熱サイクル耐久性を共に達成することができる基材である。   Thus, the reinforcing fiber substrate 1 of the present invention is a substrate that can achieve both mechanical properties, resin impregnation properties, and thermal cycle durability.

さらに強化繊維糸条2の単繊維の真円度は95〜100%であり、かつ、経方向補助繊維糸条4の単繊維の真円度は55〜75%の空豆状であることが好ましい。強化繊維糸条2の単繊維の真円度を95〜100%にすることにより、強化繊維糸条2における単繊維の充填率を向上し、力学特性を向上することができるため好ましい。また、経方向補助繊維糸条4の単繊維の真円度を55〜75%の空豆状とすることにより、強化繊維糸条2の間に、樹脂流路をより形成しやすくなるため好ましい。   Furthermore, it is preferable that the roundness of the single fiber of the reinforcing fiber yarn 2 is 95 to 100%, and the roundness of the single fiber of the warp direction auxiliary fiber yarn 4 is an empty bean shape of 55 to 75%. . By setting the roundness of the single fiber of the reinforcing fiber yarn 2 to 95 to 100%, it is preferable because the filling rate of the single fiber in the reinforcing fiber yarn 2 can be improved and the mechanical properties can be improved. Moreover, since the roundness of the single fiber of the warp direction auxiliary fiber yarn 4 is made into an empty bean shape of 55 to 75%, it is preferable because a resin flow path can be more easily formed between the reinforcing fiber yarns 2.

さらに強化繊維糸条2の単繊維における三次元粗さの二乗平均粗さRqが20nm未満であり、かつ、経方向補助繊維糸条4の単繊維における二乗平均粗さRqが20〜200nmであることが好ましい。   Further, the mean square roughness Rq of the three-dimensional roughness of the single fiber of the reinforcing fiber yarn 2 is less than 20 nm, and the mean square roughness Rq of the single fiber of the warp auxiliary fiber yarn 4 is 20 to 200 nm. It is preferable.

強化繊維糸条2の単繊維、経方向補助繊維糸条4の単繊維における二乗平均粗さRqの測定は、以下の手順に従って行う。まず、測定する炭素繊維を長さ数mm程度にカットし、銀ペーストを用いて基板(シリコンウエハ)上に固定し、Digital Instruments社製 NanoScope IIIa原子間力顕微鏡(AFM)においてDimension 3000ステージシステムを使用し、走査モード:タッピングモード・探針:オリンパス光学工業製Siカンチレバー一体型探針OMCL-AC120TS、走査範囲:2.5μm×2.5μm・走査速度:0.4Hz・ピクセル数:512×512、測定環境:室温、大気中の測定条件にて、各試料について単糸1本から1箇所ずつ単糸の中央部について3次元表面形状の像を得る。得られた原像について、前記装置に付属のソフトウエアによりデータ処理し、繊維断面の曲率を考慮した3次元近似曲面を求める。原像からこの3次元近似曲面をバックグラウンドとして差し引き、二乗平均粗さRqを求める。任意の5箇所について同様の測定を行い、最大値、最小値を除いた3カ所の相加平均値を最終的な三次元粗さの二乗平均粗さRqとする。   The measurement of the root mean square roughness Rq of the single fiber of the reinforcing fiber yarn 2 and the single fiber of the warp auxiliary fiber yarn 4 is performed according to the following procedure. First, the carbon fiber to be measured is cut to a length of several millimeters, fixed on a substrate (silicon wafer) using a silver paste, and the Dimension 3000 stage system is installed in a NanoScope IIIa atomic force microscope (AFM) manufactured by Digital Instruments. Used, scanning mode: tapping mode, probe: Olympus Optical Co., Ltd. Si cantilever integrated probe OMCL-AC120TS, scanning range: 2.5 μm × 2.5 μm, scanning speed: 0.4 Hz, number of pixels: 512 × 512 Measurement environment: Under a measurement condition at room temperature and in the atmosphere, an image of a three-dimensional surface shape is obtained from one single yarn to one central portion of each single yarn for each sample. About the obtained original image, data processing is performed by software attached to the apparatus, and a three-dimensional approximate curved surface considering the curvature of the fiber cross section is obtained. The three-dimensional approximate curved surface is subtracted from the original image as a background to obtain the root mean square roughness Rq. The same measurement is performed for any five locations, and the arithmetic average value at three locations excluding the maximum value and the minimum value is defined as the root mean square roughness Rq of the final three-dimensional roughness.

強化繊維糸条2の単繊維は、三次元粗さが小さい方が、強度が高くなるため、二乗平均粗さRqは20nm未満であることが好ましい。一方、経方向補助繊維糸条4の単繊維における二乗平均粗さを20〜200nmとし、強化繊維糸条2の単繊維の二乗平均粗さより粗くすることにより、経方向補助繊維糸条群5が経方向補助繊維糸条4の間により隙間を形成することができ、樹脂流路としての機能をより発現しやすくなるため、好ましい。   Since the single fiber of the reinforcing fiber yarn 2 has higher strength when the three-dimensional roughness is smaller, the root mean square roughness Rq is preferably less than 20 nm. On the other hand, by setting the root mean square roughness of the single fibers of the warp direction auxiliary fiber yarns 4 to 20 to 200 nm and making the mean square roughness of the single fibers of the reinforcing fiber yarns 2 coarser, the warp direction auxiliary fiber yarn group 5 is obtained. It is preferable because a gap can be formed between the warp-direction auxiliary fiber yarns 4 and the function as the resin flow path is more easily expressed.

さらに、経方向補助繊維糸条4の周囲には、樹脂リッチ部が形成されるため、熱サイクル耐久性試験時に、経方向補助繊維糸条4とマトリックス樹脂との間の剥離を起点に、微小き裂が発生する懸念があるため、経方向補助繊維糸条4の単繊維における二乗平均粗さRqが20〜200nmの範囲にすることにより、経方向補助繊維糸条4の単繊維の強度とマトリックス樹脂との接着性を両立し、熱サイクル耐久性試験時に、経方向補助繊維糸条4の周囲に形成された樹脂リッチ部に微小き裂の発生を抑制することができるため好ましい。二乗平均粗さRqが20nmよりも小さいと、粒子流路としての機能が不足する、またマトリクス樹脂との接着性が低下し、熱サイクル耐久性試験時に、経方向補助繊維糸条4の周囲に形成された樹脂リッチ部に微小き裂が発生するなどの問題が生じる懸念がある。一方、二乗平均粗さRqが200nmよりも大きいと、単繊維の強度が低下し、複合材料が応力負担時に、経方向補助繊維糸条4が破壊の起点となる場合がある。   Further, since a resin-rich portion is formed around the warp-direction auxiliary fiber yarns 4, a minute amount starts from the separation between the warp-direction auxiliary fiber yarns 4 and the matrix resin during the heat cycle durability test. Since there is a concern that cracks may occur, by making the root mean square roughness Rq of the single fibers of the warp auxiliary fiber yarns 4 within a range of 20 to 200 nm, It is preferable because the adhesiveness with the matrix resin is compatible, and the occurrence of microcracks can be suppressed in the resin rich portion formed around the warp direction auxiliary fiber yarn 4 during the thermal cycle durability test. If the root mean square roughness Rq is less than 20 nm, the function as a particle flow path is insufficient, and the adhesiveness to the matrix resin is lowered, and the thermal fiber durability test is performed around the warp direction auxiliary fiber yarn 4. There is a concern that problems such as generation of microcracks occur in the formed resin-rich portion. On the other hand, when the root mean square roughness Rq is larger than 200 nm, the strength of the single fiber is lowered, and the warp-direction auxiliary fiber yarn 4 may be the starting point of breakage when the composite material is subjected to stress.

さらに、強化繊維糸条2の単繊維の直径は2〜7μmであり、かつ、経方向補助繊維糸条4の単繊維の直径が4〜15μmであることが好ましい。強化繊維糸条2の単繊維の直径を2〜7μmとすることにより、複合材料における強化繊維糸条2の単繊維の密度を向上することができるため好ましい。一方、経方向補助繊維糸条4の単繊維の直径を4〜15μmとすることにより、経方向補助繊維糸条4の間により隙間を形成することができ、樹脂流路としての機能をより発現しやすくなるため、好ましい。   Furthermore, the diameter of the single fiber of the reinforcing fiber yarn 2 is preferably 2 to 7 μm, and the diameter of the single fiber of the warp direction auxiliary fiber yarn 4 is preferably 4 to 15 μm. By setting the diameter of the single fiber of the reinforcing fiber yarn 2 to 2 to 7 μm, it is preferable because the density of the single fiber of the reinforcing fiber yarn 2 in the composite material can be improved. On the other hand, by setting the diameter of the single fiber of the warp direction auxiliary fiber yarn 4 to 4 to 15 μm, a gap can be formed between the warp direction auxiliary fiber yarns 4 and the function as a resin flow path is more manifested. Since it becomes easy to do, it is preferable.

特に、経方向補助繊維糸条4の単繊維の直径を強化繊維糸条2の単繊維の直径よりも大きくすることにより、より選択的に経方向補助繊維糸条4の間に隙間を形成し、樹脂流路の機能を設けることができるため、好ましい。   In particular, by making the diameter of the single fiber of the warp direction auxiliary fiber yarn 4 larger than the diameter of the single fiber of the reinforcing fiber yarn 2, a gap is formed more selectively between the warp direction auxiliary fiber yarns 4. Since the function of the resin flow path can be provided, it is preferable.

さらに、強化繊維糸条2の繊度が800〜3500tex、フィラメント数12,000〜50,000本の炭素繊維糸条であり、かつ、経方向補助繊維糸条4が繊度20〜200tex、フィラメント数300〜3,000本の炭素繊維糸条であることが好ましい。強化繊維糸条2の繊度およびフィラメント数がかかる範囲より小さいと、強化繊維基材に交錯点が多すぎ、クリンプが大きくなるだけでなくその数も多くなり、力学特性に劣る場合がある。一方、かかる範囲より大きいと、織物での交錯点が少なすぎて、強化繊維基材の形態安定性に劣る場合がある。また、経方向補助繊維糸条4は、強化繊維糸条2との交錯点での強化繊維糸条2の屈曲を小さくして、本発明の炭素繊維の特性を最大限に発現させるために、かかる範囲にすることが好ましい。また、強化繊維糸条と経方向補助繊維糸条を共に炭素繊維とすることにより、強化繊維糸条と経方向補助繊維糸条の線膨張係数を実質的に同一とすることができるため、複合材料の製造時におけるマトリックス樹脂の加熱硬化によって、経方向補助繊維糸条によって形成される樹脂リッチ周辺の残留熱応力を低減が期待され、結果として該樹脂リッチ周辺のき裂発生を抑制することができるため好ましい。   Further, the reinforcing fiber yarn 2 is a carbon fiber yarn having a fineness of 800 to 3500 tex and a filament number of 12,000 to 50,000, and the warp direction auxiliary fiber yarn 4 is a fineness of 20 to 200 tex and a filament number of 300. It is preferably ˜3,000 carbon fiber yarns. If the fineness and the number of filaments of the reinforcing fiber yarn 2 are smaller than the above ranges, the reinforcing fiber base has too many crossing points, and not only the crimp becomes large but also the number thereof increases, and the mechanical properties may be inferior. On the other hand, if it is larger than this range, there are too few crossing points in the woven fabric, and the shape stability of the reinforcing fiber substrate may be inferior. In addition, the warp direction auxiliary fiber yarn 4 has a small bending of the reinforcing fiber yarn 2 at the intersection with the reinforcing fiber yarn 2 to maximize the characteristics of the carbon fiber of the present invention. Such a range is preferable. In addition, since both the reinforcing fiber yarn and the warp direction auxiliary fiber yarn are made of carbon fiber, the linear expansion coefficient of the reinforcing fiber yarn and the warp direction auxiliary fiber yarn can be made substantially the same. It is expected that the residual thermal stress around the resin rich formed by the warp auxiliary fiber yarns will be reduced by heat curing of the matrix resin at the time of manufacturing the material, and as a result, the crack generation around the resin rich can be suppressed. This is preferable because it is possible.

さらに、強化繊維基材1は図1に示すように、基材の両面側に緯方向補助繊維糸8が配されており、該緯方向補助繊維糸条群9を構成する緯方向補助繊維糸条8と経方向補助繊維糸条群5を構成する経方向補助繊維糸条4とが織組織を構成している一方向ノンクリンプ織物であることが好ましい。   Further, as shown in FIG. 1, the reinforcing fiber base material 1 is provided with weft direction auxiliary fiber yarns 8 on both sides of the base material, and the weft direction auxiliary fiber yarns constituting the weft direction auxiliary fiber yarn group 9. It is preferable that the warp-direction auxiliary fiber yarns 4 constituting the warp-direction auxiliary fiber yarn group 5 are unidirectional non-crimp fabrics constituting a woven structure.

一方向ノンクリンプ織物とすることにより、本発明で使用する強化繊維糸条2の屈曲(クリンプ)を抑制し、強化繊維糸条の特性を最大限に発現させることができるため好ましい。   It is preferable to use a unidirectional non-crimp fabric since the bending (crimping) of the reinforcing fiber yarn 2 used in the present invention can be suppressed and the properties of the reinforcing fiber yarn can be expressed to the maximum.

特に、緯方向補助繊維糸条8は繊度が1〜20tex、フィラメント数1〜200本の合成繊維またはガラス繊維であることが好ましい。この範囲の繊度の緯方向補助繊維糸条8を用いることにより、強化繊維糸条2の屈曲(クリンプ)を抑制し、強化繊維基材1を構成することができるため好ましい。さらに緯方向補助繊維糸条8の種類は任意のものが使用できるが、なかでも強化繊維基材1の基材密度の安定性の観点から、成形時の加熱などにより、収縮しにくいものが好ましいため、ガラス繊維が好ましい。   In particular, the weft direction auxiliary fiber yarn 8 is preferably a synthetic fiber or glass fiber having a fineness of 1 to 20 tex and a filament number of 1 to 200. It is preferable to use the auxiliary fiber yarns 8 in the weft direction having a fineness in this range because the reinforcing fiber yarns 2 can be prevented from being bent and the reinforcing fiber substrate 1 can be formed. Further, any type of weft-direction auxiliary fiber yarn 8 can be used, but in particular, from the viewpoint of the stability of the substrate density of the reinforcing fiber substrate 1, those which are difficult to shrink due to heating during molding are preferred. Therefore, glass fiber is preferable.

また、該緯方向補助繊維糸条8織密度は、強化繊維基材1の形態安定性、クリンプの影響最小限化の観点から、0.3〜6本/cmであることがより好ましい。   Further, the weft direction auxiliary fiber yarn 8 weave density is more preferably 0.3 to 6 yarns / cm from the viewpoint of the stability of the shape of the reinforcing fiber substrate 1 and the minimization of the influence of crimp.

さらに、強化繊維基材1の少なくとも片表面に熱可塑性樹脂を主成分とする樹脂材料10が、強化繊維基材100重量%に対して2〜20重量%の範囲内で存在していることが好ましい。より具体的には、樹脂材料10が強化繊維基材1の表面に接着している。上記範囲内で樹脂材料10が強化繊維基材1に接着していると、強化繊維基材1を積層してプリフォームを得る際の強化繊維基材同士の接着性が付与できる。更に、強化繊維基材に適度なコシが生じるだけでなく、強化繊維基材1である一方向織物において、不要な目ズレを防止するなどの強化繊維基材の形態安定効果をも発現し、取り扱い性に優れた強化繊維基材が得られるため好ましい。さらに、樹脂材料10が強化繊維基材を積層して得られる複合材料において、クラックストッパーになること、成形時の残留応力を緩和することなどにより、特に複合材料が衝撃を受けた時に強化繊維基材の層間の損傷を抑制でき、優れた力学特性(特にCAI、引張強度、圧縮強度)を達成できる層間の高靭性化効果を発現することができるため、好ましい。これにより、本発明の強化繊維基材1は、一方向強化繊維基材としての高い力学特性と経方向補助繊維糸条群5による樹脂含浸性を両立するだけでなく、特に航空機用材料に求められる耐衝撃特性をも向上することができるのである。   Furthermore, the resin material 10 which has a thermoplastic resin as a main component on at least one surface of the reinforcing fiber base 1 is present in the range of 2 to 20% by weight with respect to 100% by weight of the reinforcing fiber base. preferable. More specifically, the resin material 10 is bonded to the surface of the reinforcing fiber base 1. When the resin material 10 adheres to the reinforcing fiber base 1 within the above range, adhesion between the reinforcing fiber bases when the reinforcing fiber base 1 is laminated to obtain a preform can be imparted. Furthermore, not only moderate stiffness occurs in the reinforcing fiber base, but also in the unidirectional woven fabric that is the reinforcing fiber base 1, it also exhibits the form stabilizing effect of the reinforcing fiber base such as preventing unnecessary misalignment, It is preferable because a reinforcing fiber substrate having excellent handleability can be obtained. Further, in the composite material obtained by laminating the reinforcing fiber base material with the resin material 10, it becomes a crack stopper, relieving the residual stress at the time of molding, etc. It is preferable because damage between layers of the material can be suppressed and an effect of increasing toughness between layers capable of achieving excellent mechanical properties (particularly CAI, tensile strength, compressive strength) can be achieved. Thereby, the reinforcing fiber substrate 1 of the present invention is not only compatible with the high mechanical properties as the unidirectional reinforcing fiber substrate and the resin impregnation property by the warp-direction auxiliary fiber yarn group 5, but also particularly required for aircraft materials. The impact resistance characteristics can also be improved.

さらに、樹脂材料10が、融点を有さない非晶性であり、かつ、ガラス転移温度が50〜150℃であることが好ましい。ここで、融点を有さない非晶性の熱可塑性樹脂とは、示差走査熱量計(DSC)を用いてJIS K7121(1987)「プラスチックの転移温度測定方法」に従い、絶乾状態で20℃/minの昇温速度にて測定される融点、すなわち結晶構造に起因した吸熱ピークを示さない、結晶構造を形成しない熱可塑性樹脂を指す。なお、非晶性の熱可塑性樹脂は、融点を示さないもののガラス転移温度は有し、同様にDSCにて測定される。   Furthermore, it is preferable that the resin material 10 is amorphous which does not have melting | fusing point, and a glass transition temperature is 50-150 degreeC. Here, the amorphous thermoplastic resin having no melting point is 20 ° C./° C. in an absolutely dry state using a differential scanning calorimeter (DSC) according to JIS K7121 (1987) “Plastic transition temperature measurement method”. A melting point measured at a heating rate of min, that is, a thermoplastic resin that does not show an endothermic peak due to the crystal structure and does not form a crystal structure. The amorphous thermoplastic resin does not show a melting point but has a glass transition temperature, and is similarly measured by DSC.

本発明で好ましく使用する樹脂材料のガラス転移温度は、積層、賦形時のタック性を発現する加工温度の観点から、50〜150℃であることが好ましい。ここでガラス転移温度とは、示差走査熱量計(DSC)から計測される樹脂のガラス転移温度のことを意味する。また、50℃よりも低いと製造される複合材料の耐熱性が低下する場合がある。   The glass transition temperature of the resin material preferably used in the present invention is preferably 50 to 150 ° C. from the viewpoint of the processing temperature at which tackiness at the time of lamination and shaping is expressed. Here, the glass transition temperature means the glass transition temperature of the resin measured by a differential scanning calorimeter (DSC). On the other hand, if it is lower than 50 ° C., the heat resistance of the composite material to be produced may be lowered.

さらに、樹脂材料の主成分である熱可塑性樹脂は、耐熱性の観点から高いガラス転移温度を有するものが好ましく、例えば、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルイミド、ポリイミド、ポリフェニレンエーテル、それらの共重合体が好ましく用いられる。また、その配合量は樹脂材料の総重量に対し70〜100重量%の範囲内であることが好ましい。より好ましくは75〜97重量%、さらに好ましくは80〜95重量%の範囲内である。かかる配合量が70重量%未満であると本発明の課題の一つである力学特性に優れた複合材料を得にくいことがある。上記の高いガラス転移温度を有する熱可塑性樹脂は、強化繊維基材1への接着性や接着加工性が劣るため、樹脂材料には副成分としてエポキシ樹脂やアミン化合物などの粘着付与剤、可塑剤等を配合することが好ましい。   Further, the thermoplastic resin that is the main component of the resin material is preferably one having a high glass transition temperature from the viewpoint of heat resistance. For example, polyether sulfone, polysulfone, polyetherimide, polyimide, polyphenylene ether, and their co-polymers. A polymer is preferably used. Moreover, it is preferable that the compounding quantity exists in the range of 70 to 100 weight% with respect to the total weight of a resin material. More preferably, it is in the range of 75 to 97% by weight, and still more preferably in the range of 80 to 95% by weight. If the blending amount is less than 70% by weight, it may be difficult to obtain a composite material having excellent mechanical properties, which is one of the problems of the present invention. The thermoplastic resin having a high glass transition temperature is inferior in adhesion to the reinforcing fiber substrate 1 and adhesion processability. Therefore, the resin material has a tackifier such as an epoxy resin or an amine compound as a secondary component, and a plasticizer. Etc. are preferably blended.

さらに、本発明で製造する積層体11は、図5に示すように、本発明の強化繊維基材1が複数積層されて構成され、かつ、強化繊維基材同士が樹脂材料10により少なくとも部分的に接着して一体化していることが好ましい。本発明の強化繊維基材を用いて部材を製造する際において、予め強化繊維基材を所定の積層構成に基づき積層し、強化繊維基材同士が樹脂材料により部分的に接着して一体化している積層体を用いることにより、強化繊維基材を一枚毎に部材を成形する型に積層する手間が省けるため好ましいのである。一方、強化繊維基材同士を樹脂材料により、部分的ではなく、全面的に接着一体化してしまうと、強化繊維基材が本来有している賦形性が損なわれる場合がある。   Furthermore, as shown in FIG. 5, the laminate 11 produced according to the present invention is configured by laminating a plurality of the reinforcing fiber bases 1 of the present invention, and the reinforcing fiber bases are at least partially made of the resin material 10. It is preferable to be bonded and integrated. When manufacturing a member using the reinforcing fiber base material of the present invention, the reinforcing fiber base materials are laminated in advance based on a predetermined laminated structure, and the reinforcing fiber base materials are partially bonded and integrated by a resin material. It is preferable to use the laminated body because the labor of laminating the reinforcing fiber base material on the mold for molding the members one by one can be saved. On the other hand, if the reinforcing fiber bases are bonded and integrated entirely with the resin material rather than partially, the formability inherent to the reinforcing fiber bases may be impaired.

積層体11の強化繊維基材1の間を部分接着する方法は、特に限定されないが、積層体11を加熱した状態において、図6に示すような圧子12を用いて、部分接着したい箇所を選択的に加圧する方法が挙げられる。積層体11を圧子12の取付けられた圧子プレート13と下部プレート14の間に挿入し、積層体11を加熱した状態において、圧子プレート13を積層体11に押し当てることにより、圧子12にて積層体11を部分的に加圧することより、強化繊維基材1の間を部分接着することができる。図6では、強化繊維基材1の間を部分接着している樹脂材料15と強化繊維基材1の間を部分接着していない樹脂材料10を色分けして示している。部分接着の場所、範囲などは圧子の大きさ、配置方法、加熱温度などの接着条件により制御することが可能である。   The method of partially bonding between the reinforcing fiber bases 1 of the laminated body 11 is not particularly limited, but in a state where the laminated body 11 is heated, a portion to be partially bonded is selected using an indenter 12 as shown in FIG. The method of pressurizing automatically is mentioned. The laminated body 11 is inserted between the indenter plate 13 to which the indenter 12 is attached and the lower plate 14, and the indenter plate 13 is pressed against the laminated body 11 while the laminated body 11 is heated. By partially pressing the body 11, the reinforcing fiber base 1 can be partially bonded. In FIG. 6, the resin material 15 that is partially bonded between the reinforcing fiber bases 1 and the resin material 10 that is not partially bonded between the reinforcing fiber bases 1 are shown in different colors. The location and range of partial bonding can be controlled by bonding conditions such as indenter size, arrangement method, and heating temperature.

さらに本発明の強化繊維基材または積層体をマトリックス樹脂で固化した複合材料において、次の熱サイクル処理の後にき裂が発生しない、複合材料であることを特徴とする。
・熱サイクル処理:複合材料を温度50℃、湿度95%環境下で12時間放置し、次いで温度−55℃で1時間放置し、さらに下限−55℃で5分間、上限70℃で5分間、の熱サイクルを2000回繰り返す処理。
Furthermore, the composite material obtained by solidifying the reinforcing fiber substrate or laminate of the present invention with a matrix resin is characterized in that the composite material does not generate cracks after the next thermal cycle treatment.
Thermal cycle treatment: The composite material is allowed to stand at a temperature of 50 ° C. and a humidity of 95% for 12 hours, then left at a temperature of −55 ° C. for 1 hour, and further at a lower limit of −55 ° C. for 5 minutes and an upper limit of 70 ° C. for 5 minutes. The heat cycle is repeated 2000 times.

複合材料に発生するき裂は、光学顕微鏡にて複合材料の表面(成形型16の面を転写している表面)を、倍率200倍にて観察する。ここで問題としているき裂は、200倍の倍率にて十分に観察できるき裂を対象としている。通常、複合材料の表面に発生するき裂は、樹脂の流路を形成し、樹脂リッチとなっている部分、すなわち強化繊維糸条間の経方向補助繊維糸条に沿って発生しやすい。特に強化繊維糸条と経方向補助繊維糸条に異なる繊維(例えば、強化繊維糸条に炭素繊維、経方向補助繊維糸条にガラス繊維など)を用いると、それぞれの繊維の線膨張係数が異なるため、残留熱応力が発生し、き裂が発生しやすい。このため、本発明のように、経方向補助繊維糸条の真円度を40〜80%とすることにより、より接着性を向上することにより、き裂の発生を抑制する、または強化繊維糸条と経方向補助繊維糸条をともに炭素繊維にすることにより、線膨張係数の差に起因する残留熱応力を低減することにより、き裂の発生を抑制することができるため好ましい。   For the crack generated in the composite material, the surface of the composite material (the surface on which the surface of the mold 16 is transferred) is observed with an optical microscope at a magnification of 200 times. The crack in question here is a crack that can be sufficiently observed at a magnification of 200 times. Usually, a crack generated on the surface of the composite material forms a resin flow path and is likely to occur along the warp-direction auxiliary fiber yarns between the resin-rich portions, that is, between the reinforcing fiber yarns. In particular, when different fibers are used for the reinforcing fiber yarn and the warp direction auxiliary fiber yarn (for example, carbon fiber for the reinforcing fiber yarn, glass fiber for the warp direction auxiliary fiber yarn, etc.), the linear expansion coefficient of each fiber is different. Therefore, residual thermal stress is generated and cracks are likely to occur. Therefore, as in the present invention, by setting the roundness of the warp direction auxiliary fiber yarn to 40 to 80%, the adhesion is further improved, thereby suppressing the occurrence of cracks or the reinforcing fiber yarn. It is preferable to use both carbon fibers and warp-direction auxiliary fiber yarns as carbon fibers to reduce residual thermal stress due to the difference in linear expansion coefficient, thereby suppressing the occurrence of cracks.

以下に本発明を実施例と比較例を用いて、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail using examples and comparative examples.

1.炭素繊維糸条:
PAN系炭素繊維、24,000フィラメント、繊度:1.030tex、引張強度:5.9GPa、引張弾性率:295GPa、破断伸度:2.0%、真円度:100%(真円状)、単繊維直径:5.5μm
2.経方向補助繊維糸条:
<経方向補助繊維糸条A>
PAN系炭素繊維、1,000フィラメント、繊度:66tex、引張強度:3.5GPa、
引張弾性率:230GPa、破断伸度:1.5%、真円度:64%(空豆状)、単繊維直径:7μm
<経方向補助繊維糸条B>
PAN系炭素繊維、1,000フィラメント、繊度:56tex、引っ張り強度:4.0GPa、
引張弾性率:294GPa、破断伸度:1.3%、真円度:61%(空豆状)、単繊維直径:5.2μm
<経方向補助繊維糸条C>
ガラス繊維、ECG75 1/0 1.0Z、繊度:67.5tex、真円度99%(真円状)、単繊維直径:9.2μm
3.緯方向補助繊維糸条
ガラス繊維、ECE225 1/0 1.0Z、繊度:22.5tex
4.樹脂材料:
ポリエーテルスルフォン樹脂60重量部と、エポキシ樹脂組成物(ジャパンエポキシレジン(株)製“エピコート“806を21重量部、日本化薬(株)製NC−3000を12.5重量部、および日産化学工業(株)製TEPIC4重量部を、100℃で均一になるまで攪拌したもの。)40重量部とを、2軸押出機にて溶融混練して相溶させた樹脂組成物を、冷凍粉砕して粒子にした。なお、平均粒径D50(レーザー回折・散乱法を用い、(株)セイシン企業製LMS−24にて測定した。):115μm、ガラス転移点:92℃であった。
1. Carbon fiber yarn:
PAN-based carbon fiber, 24,000 filament, fineness: 1.030 tex, tensile strength: 5.9 GPa, tensile elastic modulus: 295 GPa, elongation at break: 2.0%, roundness: 100% (circular shape), Single fiber diameter: 5.5 μm
2. Warp direction auxiliary fiber yarn:
<Wrong direction auxiliary fiber yarn A>
PAN-based carbon fiber, 1,000 filament, fineness: 66 tex, tensile strength: 3.5 GPa,
Tensile modulus: 230 GPa, elongation at break: 1.5%, roundness: 64% (empty beans), single fiber diameter: 7 μm
<Auxiliary fiber yarn B>
PAN-based carbon fiber, 1,000 filament, fineness: 56 tex, tensile strength: 4.0 GPa,
Tensile modulus: 294 GPa, elongation at break: 1.3%, roundness: 61% (empty bean shape), single fiber diameter: 5.2 μm
<Auxiliary fiber yarn C>
Glass fiber, ECG75 1/0 1.0Z, fineness: 67.5 tex, roundness 99% (round shape), single fiber diameter: 9.2 μm
3. Weft direction auxiliary fiber yarn Glass fiber, ECE225 1/0 1.0Z, fineness: 22.5 tex
4). Resin material:
60 parts by weight of a polyether sulfone resin, an epoxy resin composition (21 parts by weight of “Epicoat” 806 manufactured by Japan Epoxy Resin Co., Ltd., 12.5 parts by weight of NC-3000 manufactured by Nippon Kayaku Co., Ltd.), and Nissan Chemical 4 parts by weight of TEPIC manufactured by Kogyo Co., Ltd. was stirred until uniform at 100 ° C.) 40 parts by weight of a resin composition melted and kneaded with a twin-screw extruder was dissolved and freeze-ground. Into particles. The average particle size D 50 (measured with LMS-24 manufactured by Seishin Enterprise Co., Ltd. using a laser diffraction / scattering method): 115 μm and glass transition point: 92 ° C.

5.マトリックス樹脂:
次の主液100重量部に、次の硬化液を39重量部加え、80℃にて均一になる様に攪拌したエポキシ樹脂組成物を用いた。なお、80℃におけるE型粘度計による粘度:55mPa・s、1時間後の粘度:180mPa・s、180℃で2時間硬化後のガラス転移点:197℃、曲げ弾性率(JIS−K7171):3.3GPaであった。
5). Matrix resin:
The epoxy resin composition which added 39 weight part of the following hardening liquid to 100 weight part of the following main liquid, and was stirred so that it might become uniform at 80 degreeC was used. In addition, the viscosity with an E-type viscometer at 80 ° C .: 55 mPa · s, viscosity after 1 hour: 180 mPa · s, glass transition point after curing at 180 ° C. for 2 hours: 197 ° C., flexural modulus (JIS-K7171): 3.3 GPa.

・主液
エポキシとして、Vantico(株)製“アラルダイト”MY−721:40重量部、ジャパンエポキシレジン(株)製“エピコート”825:35重量部、日本化薬(株)製GAN:15重量部、および、ジャパンエポキシレジン(株)製“エピコート“630:10重量部を70℃で1時間攪拌して均一溶解させたものを用いた。
・ Main liquid As epoxy, “Araldite” MY-721: 40 parts by weight manufactured by Vantico Co., Ltd. “Epicoat” 825: 35 parts by weight manufactured by Japan Epoxy Resin Co., Ltd. GAN: 15 parts by weight manufactured by Nippon Kayaku Co., Ltd. In addition, “Epicoat” 630: 10 parts by weight manufactured by Japan Epoxy Resin Co., Ltd. was stirred at 70 ° C. for 1 hour and uniformly dissolved.

・硬化液
ポリアミンとして、ジャパンエポキシレジン(株)製“エピキュア”W:70重量部、三井化学ファイン(株)製3,3’−ジアミノジフェニルスルホン:20重量部、および、住友化学工業社製“スミキュア”S:10重量部を、100℃で1時間攪拌して均一にした後に70℃に降温し、硬化促進剤として、宇部興産(株)製t−ブチルカテコール:2重量部を、さらに70℃で30分間攪拌して均一溶解させたものを用いた。
Curing solution As polyamine, “Epicure” W manufactured by Japan Epoxy Resin Co., Ltd .: 70 parts by weight, 3,3′-diaminodiphenylsulfone manufactured by Mitsui Chemicals Fine Co., Ltd .: 20 parts by weight, and “Sumitomo Chemical Industries, Ltd.” SumiCure “S: 10 parts by weight was stirred at 100 ° C. for 1 hour to be uniform and then cooled to 70 ° C., and as a curing accelerator, 2 parts by weight of t-butylcatechol manufactured by Ube Industries, Ltd. was further added. What was stirred at 30 degreeC for 30 minutes and dissolved uniformly was used.

(実施例1)
184本の上記炭素繊維糸条をお互いに並行に引き揃え(引出工程)、1.8本/cmの密度で一方向に配列し、1m幅のシート状の強化繊維糸条群を形成した。また、経方向補助繊維糸条Aを、お互いが並行に引き揃え、1.8本/cmの密度で、炭素繊維糸条群と同じ方向で、且つ、炭素繊維糸条と交互に一方向に配列し、経方向補助繊維糸条群を形成した。両者を用いてシート状の経方向糸条群を形成した。次に、緯方向繊維糸条を、お互いに並行に引き揃え、3本/cmの密度で、経方向糸条群と直交する方向に配列し、上記経方向補助繊維糸条Aと緯方向補助繊維糸条とを織機を用いて平織組織に交錯させ、一方向性ノンクリンプ織物を形成した。かかる一方向性ノンクリンプ織物に、粒子状の樹脂材料を、均一分散させながら、織物の両表面に13g/m塗布し、185℃、0.3m/minの条件にて遠赤外線ヒーターを通過させ、樹脂材料を基材織物の両表面に接着して炭素繊維強化基材Aを形成した(基材形成工程)。次いで、離型紙で挟み、160℃のプレスロールを連続的に通過させ(加圧工程)、冷却した後、ロールに巻き取った(巻取工程)。
Example 1
The 184 carbon fiber yarns were drawn in parallel with each other (drawing step) and arranged in one direction at a density of 1.8 yarns / cm to form a 1 m wide sheet-like reinforcing fiber yarn group. Further, the warp direction auxiliary fiber yarns A are aligned in parallel with each other at a density of 1.8 yarns / cm, in the same direction as the carbon fiber yarn group, and alternately in one direction with the carbon fiber yarns. A warp direction auxiliary fiber yarn group was formed. Both were used to form a sheet-like warp direction yarn group. Next, the weft-direction fiber yarns are aligned in parallel with each other and arranged in a direction orthogonal to the warp-direction yarn group at a density of 3 / cm. The fiber yarns were crossed into a plain weave structure using a loom to form a unidirectional non-crimp fabric. In this unidirectional non-crimp fabric, a particulate resin material is uniformly dispersed while being applied to both surfaces of the fabric at 13 g / m 2 and passed through a far-infrared heater under the conditions of 185 ° C. and 0.3 m / min. The carbon fiber reinforced base material A was formed by bonding the resin material to both surfaces of the base material fabric (base material forming step). Next, the product was sandwiched between release papers, continuously passed through a 160 ° C. press roll (pressurization step), cooled, and wound on a roll (winding step).

得られた炭素繊維強化基材Aは、樹脂材料が織物の両表面に塗布されているため、基材の取扱性に優れるだけでなく、強化繊維糸条の真直性を保つことができた。炭素繊維糸条単位面積あたりの重量は190g/m、基材の厚みは0.24mmであった。 In the obtained carbon fiber reinforced base material A, since the resin material was applied to both surfaces of the woven fabric, not only the handling property of the base material was excellent, but also the straightness of the reinforcing fiber yarn could be maintained. The weight per unit area of the carbon fiber yarn was 190 g / m 2 , and the thickness of the base material was 0.24 mm.

(実施例2)
基材形成工程において、経方向補助繊維糸条Aを経方向補助繊維糸条Bに変更した以外は、実施例1と同様にして炭素繊維強化基材Bを得た。
(Example 2)
A carbon fiber reinforced base material B was obtained in the same manner as in Example 1 except that the warp direction auxiliary fiber yarn A was changed to the warp direction auxiliary fiber yarn B in the base material forming step.

得られた炭素繊維強化基材Bは、樹脂材料が織物の両表面に塗布されているため、基材の取扱性に優れるだけでなく、強化繊維糸条の真直性を保つことができた。炭素繊維糸条単位面積あたりの重量は190g/m、基材の厚みは0.24mmであった。 In the obtained carbon fiber reinforced base material B, since the resin material was applied to both surfaces of the woven fabric, not only the handling property of the base material was excellent, but also the straightness of the reinforcing fiber yarn could be maintained. The weight per unit area of the carbon fiber yarn was 190 g / m 2 , and the thickness of the base material was 0.24 mm.

(比較例1)
基材形成工程において、経方向補助繊維糸条Aを経方向補助繊維糸条Cに変更した以外は、実施例1と同様にして炭素繊維強化基材Cを得た。
(Comparative Example 1)
A carbon fiber reinforced base material C was obtained in the same manner as in Example 1 except that the warp direction auxiliary fiber yarn A was changed to the warp direction auxiliary fiber yarn C in the base material forming step.

得られた炭素繊維強化基材Cは、樹脂材料が織物の両表面に塗布されているため、基材の取扱性に優れるだけでなく、強化繊維糸条の真直性を保つことができた。炭素繊維糸条単位面積あたりの重量は190g/m、基材の厚みは0.24mmであった。 In the obtained carbon fiber reinforced base material C, since the resin material was applied to both surfaces of the woven fabric, not only the handling property of the base material was excellent, but also the straightness of the reinforcing fiber yarn could be maintained. The weight per unit area of the carbon fiber yarn was 190 g / m 2 , and the thickness of the base material was 0.24 mm.

<成形方法>
以下に、本発明の複合材料の製造方法を用いた実施例を、図面を参照しながら説明する。
<Molding method>
Examples using the method for producing a composite material of the present invention will be described below with reference to the drawings.

図7は、本実施例で用いた複合材料の製造装置の概略断面図である。図7に示す様に、平面状のアルミ製成形型16の表面に、炭素繊維強化基材17を所定の枚数と角度で積層した。含浸性評価用サンプルの積層構成は[45/0/−45/90]30、熱サイクル試験用サンプルの積層構成は[45/0/−45/90]2Sである。ここで[]内の数字は積層角度、[]外の数字は[]内の積層構成の繰り返し数を意味する。[]外のSは鏡面対象積層を意味する。 FIG. 7 is a schematic cross-sectional view of the composite material manufacturing apparatus used in this example. As shown in FIG. 7, carbon fiber reinforced substrates 17 were laminated on the surface of a flat aluminum mold 16 at a predetermined number and angle. The laminate configuration of the impregnation evaluation sample is [45/0 / −45 / 90] 30 , and the laminate configuration of the thermal cycle test sample is [45/0 / −45 / 90] 2S . Here, the number in [] means the stacking angle, and the number outside [] means the number of repetitions of the stacking structure in []. S outside [] means mirror surface target lamination.

積層体の最表面にピールプライ18であるポリエステル繊維の離型処理された織物を配置し、更にその上に樹脂拡散媒体(メディア)19であるポリプロピレン製メッシュ状シートを配置し、さらにその上に、押さえ板となるアルミ製カウルプレート20を配置した。   A polyester fabric release treatment of polyester fibers as the peel ply 18 is arranged on the outermost surface of the laminate, and a polypropylene mesh sheet as a resin diffusion medium (media) 19 is further arranged thereon, and further, An aluminum cowl plate 20 serving as a pressing plate was disposed.

全体をバッグ材21であるナイロンフィルムで覆い、バッグ材21と成形型16の周囲をシール材22で密閉した。樹脂注入口23は、メディア19に接するように取付け、シール材で密閉する。真空吸引口24は、樹脂吸引用に配置したポリプロピレン製メッシュ状シート25(樹脂拡散媒体19と同じ材料)に接するように取付け、同様にシールする。真空吸引口24から吸引し、バッグ材の内が0.08〜0.1MPaの圧力になるように真空吸引した。3℃/minの速度で、装置全体を80℃に昇温した。真空吸引を継続しながら、積層体が80℃に達してから1時間保持する。その後、樹脂注入口23を開放して、樹脂拡散媒体19を通じて、マトリックス樹脂を必要な量だけ炭素繊維強化基材17に注入、含浸した。   The whole was covered with a nylon film as the bag material 21, and the bag material 21 and the mold 16 were sealed with a sealing material 22. The resin injection port 23 is attached so as to be in contact with the medium 19 and sealed with a sealing material. The vacuum suction port 24 is attached so as to be in contact with a polypropylene mesh sheet 25 (the same material as the resin diffusion medium 19) disposed for resin suction, and is similarly sealed. Suction was performed from the vacuum suction port 24, and vacuum suction was performed so that the inside of the bag material had a pressure of 0.08 to 0.1 MPa. The entire apparatus was heated to 80 ° C. at a rate of 3 ° C./min. While the vacuum suction is continued, the laminate is held for 1 hour after reaching 80 ° C. Thereafter, the resin injection port 23 was opened, and a required amount of matrix resin was injected and impregnated into the carbon fiber reinforced substrate 17 through the resin diffusion medium 19.

ここで含浸性評価用サンプルは、1時間の樹脂注入、含浸を行い、注入開始1時間後に樹脂注入口23を閉め、マトリックス樹脂の注入を中止した。   Here, the sample for impregnation evaluation was subjected to resin injection and impregnation for 1 hour, and after 1 hour from the start of injection, the resin injection port 23 was closed and injection of the matrix resin was stopped.

熱サイクル用サンプルは、真空吸引口24からマトリックス樹脂の流出を目視により観察した時点で、含浸完了と判断し、樹脂注入口23を閉め、マトリックス樹脂の注入を中止した。マトリックス樹脂の注入を中止した後、樹脂注入口23を真空吸引ラインにつなぎ、従来の真空吸引口24と真空吸引ラインにつなぎなおした樹脂注入口23の両方から、真空吸引を行い、炭素繊維強化基材17に余分に注入、含浸したマトリックス樹脂を排出した。   The sample for the heat cycle was determined to be impregnated when the outflow of the matrix resin was visually observed from the vacuum suction port 24, the resin injection port 23 was closed, and the injection of the matrix resin was stopped. After stopping the injection of the matrix resin, the resin injection port 23 is connected to the vacuum suction line, and vacuum suction is performed from both the conventional vacuum suction port 24 and the resin injection port 23 reconnected to the vacuum suction line to strengthen the carbon fiber. The matrix resin excessively injected and impregnated into the base material 17 was discharged.

その後、含浸性評価用サンプル、熱サイクル評価用サンプル共に、樹脂注入口23及び真空吸引口24を共に閉め、1.5℃/minの昇温速度で装置全体を130℃まで昇温した。130℃に達してから2時間保持してマトリックス樹脂を硬化した。その後、3℃/minの降温速度で常温まで降温した。バッグ材21、アルミ製カウルプレート20、樹脂拡散媒体19、ピールプライ18を除去して、複合材料を成形型16から脱型した。次に複合材料を、成形型上に配置した状態(フリースタンド状態)にて、1.5℃/minの昇温速度で180℃まで昇温した。180℃に達してから2時間保持してマトリックス樹脂を二次硬化した。その後、3℃/minの降温速度で常温まで降温して、複合材料を得た。   Thereafter, in both the impregnation evaluation sample and the thermal cycle evaluation sample, both the resin injection port 23 and the vacuum suction port 24 were closed, and the entire apparatus was heated to 130 ° C. at a temperature increase rate of 1.5 ° C./min. After reaching 130 ° C., the matrix resin was cured by holding for 2 hours. Thereafter, the temperature was lowered to room temperature at a rate of 3 ° C./min. The bag material 21, the aluminum cowl plate 20, the resin diffusion medium 19, and the peel ply 18 were removed, and the composite material was removed from the mold 16. Next, the composite material was heated to 180 ° C. at a temperature increase rate of 1.5 ° C./min in a state of being placed on the mold (in a free stand state). After reaching 180 ° C., the matrix resin was secondarily cured by holding for 2 hours. Thereafter, the temperature was lowered to room temperature at a rate of 3 ° C./min to obtain a composite material.

<評価方法>
(1)含浸性評価
二次硬化完了後、複合材料をダイヤモンドカッターにて切断し、切断面を観察し、マトリックス樹脂が完全に含浸している基材の枚数を数えた。
<Evaluation method>
(1) Impregnation evaluation After the completion of secondary curing, the composite material was cut with a diamond cutter, the cut surface was observed, and the number of substrates completely impregnated with the matrix resin was counted.

(2)熱サイクル試験評価
サンプルを50mm×80mmに切断加工した後、以下の前処理1、前処理2の順番で前処理を施した後、熱サイクル試験を行った。
(2) Thermal cycle test evaluation After the sample was cut into 50 mm x 80 mm, pretreatment was performed in the order of the following pretreatment 1 and pretreatment 2, and then a thermal cycle test was performed.

前処理1条件:温度50℃、湿度95%、12時間
前処理2条件:温度−55℃、1時間
熱サイクル条件:低温−55℃、高温70℃のサイクルを連続的に2000回繰り返した。各サイクルにおいて、低温、高温共に5分保持した。
Pretreatment 1 condition: temperature 50 ° C., humidity 95%, 12 hours Pretreatment 2 condition: temperature −55 ° C., 1 hour Thermal cycle condition: low temperature −55 ° C., high temperature 70 ° C. cycle was repeated 2000 times continuously. In each cycle, both low and high temperatures were held for 5 minutes.

熱サイクル試験完了後、顕微鏡にてサンプル表面(成形型16を転写している表面)を倍率200倍にて観察し、き裂の有無及びき裂の発生箇所を確認した。   After completion of the thermal cycle test, the surface of the sample (the surface to which the mold 16 was transferred) was observed with a microscope at a magnification of 200 times to confirm the presence or absence of cracks and the occurrence of cracks.

(実施例3)
実施例1の炭素繊維強化基材Aを用いて、上記の成形方法および評価方法によって、複合材料を成形し、評価した。含浸性評価の結果、含浸枚数は80枚であった。熱サイクル試験評価の結果、き裂発生は認められなかった。
(Example 3)
Using the carbon fiber reinforced base material A of Example 1, a composite material was molded and evaluated by the molding method and the evaluation method described above. As a result of the impregnation evaluation, the number of impregnations was 80. As a result of thermal cycle test evaluation, no cracks were observed.

(実施例4)
実施例2の炭素繊維強化基材Bを用いて、上記の成形方法および評価方法によって、複合材料を成形し、評価した。含浸性評価の結果、含浸枚数は78枚であった。熱サイクル試験評価の結果、き裂発生は認められなかった。
Example 4
Using the carbon fiber reinforced base material B of Example 2, a composite material was molded and evaluated by the molding method and the evaluation method described above. As a result of the impregnation evaluation, the number of impregnations was 78. As a result of thermal cycle test evaluation, no cracks were observed.

(比較例2)
比較例1の炭素繊維強化基材Cを用いて、上記成形方法および評価方法によって、複合材料を成形し、評価した。含浸性評価の結果、含浸枚数は62枚であった。熱サイクル試験評価の結果、サンプルの表面に見られるすべての経方向補助繊維糸条Cに沿って、き裂が発生していることを確認した。
(Comparative Example 2)
Using the carbon fiber reinforced substrate C of Comparative Example 1, a composite material was molded and evaluated by the molding method and the evaluation method. As a result of the impregnation evaluation, the number of impregnations was 62. As a result of the thermal cycle test evaluation, it was confirmed that cracks occurred along all the warp auxiliary fiber yarns C found on the surface of the sample.

本発明の強化繊維基材の概略図である。It is the schematic of the reinforced fiber base material of this invention. 本発明で使用する強化繊維糸条及び経方向補助繊維糸条の真円度の定義を説明する概略図である。It is the schematic explaining the definition of the roundness of the reinforcing fiber yarn used by this invention, and a warp direction auxiliary | assistant fiber yarn. 本発明で使用する強化繊維糸条の断面の一態様(写真)である。It is one aspect | mode (photograph) of the cross section of the reinforced fiber yarn used by this invention. 本発明で使用する経方向補助繊維糸条の一態様(写真)である。It is one aspect | mode (photograph) of the warp direction auxiliary | assistant fiber yarn used by this invention. 本発明の強化繊維基材の積層体の概略図である。It is the schematic of the laminated body of the reinforced fiber base material of this invention. 本発明の強化繊維基材の積層体の部分接着方法の一態様を示す概略図である。It is the schematic which shows one aspect | mode of the partial adhesion method of the laminated body of the reinforced fiber base material of this invention. 本発明の複合材料の成形方法に用いる製造装置の一態様(実施例)を示す概略図である。It is the schematic which shows the one aspect | mode (Example) of the manufacturing apparatus used for the shaping | molding method of the composite material of this invention.

符号の説明Explanation of symbols

1:強化繊維基材
2:強化繊維糸条
3:強化繊維糸条群
4:経方向補助繊維糸条
5:経方向補助繊維糸条群
6:単繊維
7:空隙
8:緯方向補助繊維糸条
9:緯方向補助繊維糸条群
10:樹脂材料
11:積層体
12:圧子
13:圧子プレート
14:下部プレート
15:部分接着している樹脂材料
16:成形型
17:強化繊維基材
18:ピールプライ
19:樹脂拡散媒体
20:カウルプレート
21:バッグ材
22:シール材
23:樹脂注入口
24:真空吸引口
25:ポリプロピレン製メッシュ状シート
1: Reinforcing fiber substrate 2: Reinforcing fiber yarn 3: Reinforcing fiber yarn group 4: Warp direction auxiliary fiber yarn group 5: Warp direction auxiliary fiber yarn group 6: Single fiber 7: Cavity 8: Weft direction auxiliary fiber yarn Strip 9: Weft direction auxiliary fiber yarn group 10: Resin material 11: Laminated body 12: Indenter 13: Indenter plate 14: Lower plate 15: Partially bonded resin material 16: Mold 17: Reinforcing fiber substrate 18: Peel ply 19: Resin diffusion medium 20: Cowl plate 21: Bag material 22: Sealing material 23: Resin injection port 24: Vacuum suction port 25: Polypropylene mesh sheet

Claims (11)

少なくとも、連続した強化繊維糸条を一方向に並行するように引き揃えた強化繊維糸条群と、強化繊維糸条と並行する方向に延在する経方向補助繊維糸条から構成される経方向補助繊維糸条群とから構成される強化繊維基材であって、強化繊維糸条の単繊維の真円度が80〜100%であり、かつ、経方向補助繊維糸条の単繊維の真円度が40〜80%である、強化繊維基材。 At least a warp direction composed of a group of reinforcing fiber yarns in which continuous reinforcing fiber yarns are aligned so as to be parallel to one direction, and a warp auxiliary fiber yarn extending in a direction parallel to the reinforcing fiber yarns. A reinforcing fiber base composed of an auxiliary fiber yarn group, wherein the roundness of the single fiber of the reinforcing fiber yarn is 80 to 100%, and the true fiber of the single fiber of the warp direction auxiliary fiber yarn A reinforcing fiber substrate having a circularity of 40 to 80%. 強化繊維糸条の単繊維が95〜100%の真円状であり、かつ、経方向補助繊維糸条の単繊維の真円度が55〜75%の空豆状である、請求項1に記載の強化繊維基材。 The single fiber of the reinforcing fiber yarn has a round shape of 95 to 100%, and the roundness of the single fiber of the warp direction auxiliary fiber yarn has a round bean shape of 55 to 75%. Reinforced fiber base material. 強化繊維糸条の単繊維における三次元粗さの二乗平均粗さRqが20nm未満であり、かつ、経方向補助繊維糸条の単繊維における二乗平均粗さRqが20〜200nmである、請求項1または2に記載の強化繊維基材。 The root mean square roughness Rq of the three-dimensional roughness in the single fiber of the reinforcing fiber yarn is less than 20 nm, and the root mean square roughness Rq in the single fiber of the warp auxiliary fiber yarn is 20 to 200 nm. The reinforcing fiber substrate according to 1 or 2. 強化繊維糸条の単繊維直径が2〜7μmであり、かつ、経方向補助繊維糸条の単繊維直径が4〜15μmである、請求項1〜3のいずれかに記載の強化繊維基材。 The reinforcing fiber substrate according to any one of claims 1 to 3, wherein the reinforcing fiber yarn has a single fiber diameter of 2 to 7 µm, and the warp direction auxiliary fiber yarn has a single fiber diameter of 4 to 15 µm. 強化繊維糸条が繊度800〜3500tex、フィラメント数12,000〜50,000本の炭素繊維糸条であり、かつ、経方向補助繊維糸条が繊度20〜200tex、フィラメント数300〜3,000本の炭素繊維糸条である、請求項1〜4のいずれかに記載の強化繊維基材。 The reinforcing fiber yarn is a carbon fiber yarn having a fineness of 800 to 3500 tex and a filament number of 12,000 to 50,000, and the warp direction auxiliary fiber yarn is a fineness of 20 to 200 tex and the number of filaments of 300 to 3,000. The reinforcing fiber substrate according to any one of claims 1 to 4, which is a carbon fiber yarn. 強化繊維基材において、基材の両面側に緯方向補助繊維糸条群が配されており、該緯方向補助繊維糸条群を構成する緯方向補助繊維糸条と経方向補助繊維糸条群を構成する経方向補助繊維糸条とが織組織を構成している一方向性ノンクリンプ織物である、請求項1〜5のいずれかに記載の強化繊維基材。 In the reinforcing fiber base material, weft-direction auxiliary fiber yarn groups are arranged on both sides of the base material, and the weft-direction auxiliary fiber yarn group and the warp-direction auxiliary fiber yarn group constituting the weft-direction auxiliary fiber yarn group The reinforcing fiber substrate according to any one of claims 1 to 5, which is a unidirectional non-crimp fabric in which a warp direction auxiliary fiber yarn constituting the woven fabric constitutes a woven structure. 緯方向補助繊維糸条が繊度1〜20tex、フィラメント数1〜200本の合成繊維またはガラス繊維である、請求項1〜6のいずれかに記載の強化繊維基材。 The reinforcing fiber substrate according to any one of claims 1 to 6, wherein the weft direction auxiliary fiber yarn is a synthetic fiber or glass fiber having a fineness of 1 to 20 tex and a filament number of 1 to 200. 強化繊維基材の少なくとも片表面に熱可塑性樹脂を主成分とする樹脂材料が、強化繊維基材100重量%に対して2〜20重量%の範囲内で存在している、請求項1〜7のいずれかに記載の強化繊維基材。 The resin material which has a thermoplastic resin as a main component is present in the range of 2 to 20% by weight with respect to 100% by weight of the reinforcing fiber base on at least one surface of the reinforcing fiber base. The reinforcing fiber substrate according to any one of the above. 樹脂材料が、融点を有さない非晶性であり、かつ、ガラス転移温度が50〜150℃である、請求項1〜8のいずれかに記載の強化繊維基材。 The reinforcing fiber substrate according to any one of claims 1 to 8, wherein the resin material is amorphous having no melting point and has a glass transition temperature of 50 to 150 ° C. 請求項1〜9のいずれかに記載の強化繊維基材が複数積層されて構成される積層体であって、強化繊維基材同士が、樹脂材料により少なくとも部分的に接着して一体化している、積層体。 A laminate comprising a plurality of the reinforcing fiber bases according to any one of claims 1 to 9, wherein the reinforcing fiber bases are at least partially bonded and integrated by a resin material. , Laminate. 請求項1〜9のいずれかに記載の強化繊維基材または請求項10に記載の積層体を、マトリックス樹脂で固化した複合材料において、次の熱サイクル処理の後にき裂が発生しない、複合材料。
熱サイクル処理:複合材料を温度50℃、湿度95%環境下で12時間放置し、次いで温度−55℃で1時間放置し、さらに下限−55℃で5分間、上限70℃で5分間、の熱サイクルを2000回繰り返す処理
A composite material in which the reinforcing fiber substrate according to any one of claims 1 to 9 or the laminate according to claim 10 is solidified with a matrix resin, wherein no crack is generated after the next thermal cycle treatment. .
Thermal cycle treatment: The composite material is allowed to stand at a temperature of 50 ° C. and a humidity of 95% for 12 hours, then left at a temperature of −55 ° C. for 1 hour, and further at a lower limit of −55 ° C. for 5 minutes and an upper limit of 70 ° C. for 5 minutes. Treatment that repeats the heat cycle 2000 times
JP2008204094A 2008-08-07 2008-08-07 Reinforced fiber substrate, laminate and composite material Expired - Fee Related JP5125867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204094A JP5125867B2 (en) 2008-08-07 2008-08-07 Reinforced fiber substrate, laminate and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204094A JP5125867B2 (en) 2008-08-07 2008-08-07 Reinforced fiber substrate, laminate and composite material

Publications (2)

Publication Number Publication Date
JP2010037694A true JP2010037694A (en) 2010-02-18
JP5125867B2 JP5125867B2 (en) 2013-01-23

Family

ID=42010527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204094A Expired - Fee Related JP5125867B2 (en) 2008-08-07 2008-08-07 Reinforced fiber substrate, laminate and composite material

Country Status (1)

Country Link
JP (1) JP5125867B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066805A1 (en) * 2010-11-19 2012-05-24 三菱電機株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
JP2012246583A (en) * 2011-05-27 2012-12-13 Mitsubishi Rayon Co Ltd Unidirectional reinforcement fabric and method for manufacturing the same, and prepreg and carbon fiber composite material using the same
WO2013015087A1 (en) * 2011-07-26 2013-01-31 株式会社 豊田自動織機 Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite
JP2014506200A (en) * 2010-12-15 2014-03-13 ザ・ボーイング・カンパニー Controlled fiber-matrix adhesion in polymer fiber composites
JP2018165421A (en) * 2017-03-29 2018-10-25 東レ株式会社 Composite fiber-reinforced sheet
WO2021157442A1 (en) * 2020-02-03 2021-08-12 東レ株式会社 Molding material and fiber reinforced composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203844A (en) * 1986-11-05 1988-08-23 ブロシエール・ソシエテ・アノニム Reinforcing fabric material
JPH07243149A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Woven fabric for one direction reinforcement
JP2000160436A (en) * 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP2002061035A (en) * 2000-08-10 2002-02-28 Toray Ind Inc Carbon fiber and method for manufacturing the same, and carbon fiber reinforced composite material
JP2003073932A (en) * 2001-08-30 2003-03-12 Mitsubishi Rayon Co Ltd Carbon fiber
JP2005022396A (en) * 2002-11-14 2005-01-27 Toray Ind Inc Reinforced fiber base material, composite material and their manufacturing method
JP2007177368A (en) * 2005-12-01 2007-07-12 Toho Tenax Co Ltd Carbon fiber and precursor and method for producing carbon fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203844A (en) * 1986-11-05 1988-08-23 ブロシエール・ソシエテ・アノニム Reinforcing fabric material
JPH07243149A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Woven fabric for one direction reinforcement
JP2000160436A (en) * 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP2002061035A (en) * 2000-08-10 2002-02-28 Toray Ind Inc Carbon fiber and method for manufacturing the same, and carbon fiber reinforced composite material
JP2003073932A (en) * 2001-08-30 2003-03-12 Mitsubishi Rayon Co Ltd Carbon fiber
JP2005022396A (en) * 2002-11-14 2005-01-27 Toray Ind Inc Reinforced fiber base material, composite material and their manufacturing method
JP2007177368A (en) * 2005-12-01 2007-07-12 Toho Tenax Co Ltd Carbon fiber and precursor and method for producing carbon fiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066805A1 (en) * 2010-11-19 2012-05-24 三菱電機株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
CN103189188A (en) * 2010-11-19 2013-07-03 三菱电机株式会社 Method for producing molded fiber-reinforced plastic, preform, method for producing same, and adhesive film
JP5611365B2 (en) * 2010-11-19 2014-10-22 三菱電機株式会社 Method for producing fiber-reinforced plastic molded body, preform and method for producing the same, and adhesive film
US9144942B2 (en) 2010-11-19 2015-09-29 Mitsubishi Electric Corporation Method for producing fiber-reinforced plastic molding, preform and method for producing same, and adhesive film
JP2014506200A (en) * 2010-12-15 2014-03-13 ザ・ボーイング・カンパニー Controlled fiber-matrix adhesion in polymer fiber composites
JP2012246583A (en) * 2011-05-27 2012-12-13 Mitsubishi Rayon Co Ltd Unidirectional reinforcement fabric and method for manufacturing the same, and prepreg and carbon fiber composite material using the same
WO2013015087A1 (en) * 2011-07-26 2013-01-31 株式会社 豊田自動織機 Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite
JP2013022946A (en) * 2011-07-26 2013-02-04 Toyota Industries Corp Reinforced fiber sheet, fiber-reinforced composite material, method for manufacturing reinforced fiber sheet, and method for manufacturing fiber-reinforced composite material
JP2018165421A (en) * 2017-03-29 2018-10-25 東レ株式会社 Composite fiber-reinforced sheet
WO2021157442A1 (en) * 2020-02-03 2021-08-12 東レ株式会社 Molding material and fiber reinforced composite material
CN115052920A (en) * 2020-02-03 2022-09-13 东丽株式会社 Molding material and fiber-reinforced composite material
CN115052920B (en) * 2020-02-03 2024-05-03 东丽株式会社 Molding material and fiber-reinforced composite material

Also Published As

Publication number Publication date
JP5125867B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP3894035B2 (en) Carbon fiber reinforced substrate, preform and composite material comprising the same
JP4561081B2 (en) Reinforcing fiber substrate, composite material, and production method thereof
JP5125867B2 (en) Reinforced fiber substrate, laminate and composite material
JP5309561B2 (en) Method for producing reinforcing fiber base laminate for preform, method for producing preform, and method for producing reinforcing fiber plastic
JP5157391B2 (en) Reinforced fiber substrate, laminate and fiber reinforced resin
EP3263632B1 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
JP4254158B2 (en) Carbon fiber substrate manufacturing method, preform manufacturing method, and composite material manufacturing method
TW201402311A (en) Carbon fiber-reinforced composite material and method for producing same
JP6702185B2 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
JP2006192745A (en) Reinforcing fiber base material, preform, fiber reinforced resin molded product and its manufacturing method
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2006103305A (en) Substrate for preform
JP2005219228A (en) Reinforcing fiber base material manufacturing method, preform manufacturing method and composite material manufacturing method
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2005213469A (en) Reinforced fiber base material, preform and composite material and method of manufacturing the base material
JP2006328292A (en) Prepreg for honeycomb cocuring and its manufacturing method
JP2006104649A (en) Rod-shaped preform and method for producing the same
JP2004277955A (en) Unidirectionally reinforced cloth, preform and composite material
JP2005272526A (en) Composite material and manufacturing method of the same
JP2019111710A (en) Carbon fiber tape material and laminate sheet base thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees