JP2010029941A - Method for manufacturing circumferential weld joint of martensitic stainless steel tube - Google Patents

Method for manufacturing circumferential weld joint of martensitic stainless steel tube Download PDF

Info

Publication number
JP2010029941A
JP2010029941A JP2009193472A JP2009193472A JP2010029941A JP 2010029941 A JP2010029941 A JP 2010029941A JP 2009193472 A JP2009193472 A JP 2009193472A JP 2009193472 A JP2009193472 A JP 2009193472A JP 2010029941 A JP2010029941 A JP 2010029941A
Authority
JP
Japan
Prior art keywords
welding
steel pipe
less
weld
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193472A
Other languages
Japanese (ja)
Other versions
JP5040973B2 (en
Inventor
Yukio Miyata
由紀夫 宮田
Mitsuo Kimura
光男 木村
Katsumi Shomura
克身 正村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009193472A priority Critical patent/JP5040973B2/en
Publication of JP2010029941A publication Critical patent/JP2010029941A/en
Application granted granted Critical
Publication of JP5040973B2 publication Critical patent/JP5040973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a circumferential weld joint of a steel tube having a heat-affected zone with excellent intergranular stress corrosion cracking resistance. <P>SOLUTION: When forming a circumferential weld by butting ends of martensitic stainless steel tubes to each other, and performing the welding consisting of a plurality of weld passes in the circumferential direction, the welding is performed while adjusting the subsequent weld pass so that the heat cycle to improve the intergranular stress corrosion cracking resistance is applied to a HAZ (heat affected zone) heated so that the peak temperature Tp of an inner surface layer of the steel tubes is ≥950°C by the welding heat cycle based on at least one welding pass. More specifically, at least one weld pass is the weld pass with Tp exceeding A1 point and ≤950°C, and the following weld pass is the weld pass with Tp not exceeding A1 point. The subsequent weld passes are the weld passes with Tp not exceeding A1 point, and the total heat input parameter Ptotal of the subsequent weld passes is≤12,500 or ≥14,500. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、天然ガスや石油のパイプライン等の使途に好適なマルテンサイト系ステンレス鋼管に係り、とくにマルテンサイト系ステンレス鋼管円周溶接継手における溶接熱影響部の耐粒界応力腐食割れ性の改善に関する。   The present invention relates to a martensitic stainless steel pipe suitable for use in natural gas or petroleum pipelines, and in particular, to improve the intergranular stress corrosion cracking resistance of the weld heat affected zone in a martensitic stainless steel pipe circumferential welded joint. About.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇に対処するために、従来省みられなかったような深層油田や、開発が一旦放棄されていた腐食性の強いサワーガス田等に対する開発が、世界的規模で盛んになっている。このような油田、ガス田において、使用される鋼管には、耐食性に富むことが求められている。
従来、例えば、炭酸ガスを多量に含む環境では、防食手段としてインヒビターの添加が行われてきた。しかし、インヒビターの添加は、コスト高となるだけでなく、高温では十分な効果が得られないことがあるため、最近ではインヒビターを使用せず、耐食性に優れた鋼管を使用する傾向となっている。
In recent years, in order to cope with the rise in crude oil prices and the expected depletion of oil resources in the near future, deep oil fields that have not been excluded in the past, and highly corrosive sour gas fields that were once abandoned. Development on the world is thriving on a global scale. In such oil and gas fields, the steel pipes used are required to have high corrosion resistance.
Conventionally, for example, in an environment containing a large amount of carbon dioxide, an inhibitor has been added as a means for preventing corrosion. However, the addition of an inhibitor not only increases the cost, but may not be sufficiently effective at high temperatures, so recently there has been a tendency to use a steel pipe with excellent corrosion resistance without using an inhibitor. .

ラインパイプ用材料としては、API規格にC量を低減した12%Crマルテンサイト系ステンレス鋼が規定され、最近では、CO を含有する天然ガス用のラインパイプとしてマルテンサイト系ステンレス鋼管が多く使用されるようになってきている。しかし、マルテンサイト系ステンレス鋼管は、円周溶接時に予熱や後熱を必要とするうえ、溶接部靭性が劣るという問題があった。
このような問題に対し、例えば、特許文献1には、C:0.02%以下、N:0.07%以下に低減するとともに、Cr、Ni、Mo量をC量との関係で、また、Cr、Ni、Mo量をC、N量との関係で、さらにNi、Mn量をC、N量との関係で、適正量に調整したマルテンサイト系ステンレス鋼が提案されている。特許文献1に記載された技術で製造されたマルテンサイト系ステンレス鋼管は、耐炭酸ガス腐食性、耐応力腐食割れ性、溶接性、高温強度および溶接部靭性がともに優れた鋼管であるとされる。
As a material for line pipes, 12% Cr martensitic stainless steel with reduced C content is defined in the API standard, and recently, martensitic stainless steel pipes are often used as line pipes for natural gas containing CO 2. It has come to be. However, the martensitic stainless steel pipe has problems that it requires preheating and post-heating at the time of circumferential welding and has poor weld toughness.
For such a problem, for example, in Patent Document 1, C: 0.02% or less and N: 0.07% or less are reduced, and the Cr, Ni, and Mo amounts are related to the C amount, and Cr, Ni There has been proposed a martensitic stainless steel in which the Mo amount is adjusted to C and N amounts and the Ni and Mn amounts are adjusted to appropriate amounts in relation to the C and N amounts. The martensitic stainless steel pipe manufactured by the technique described in Patent Document 1 is said to be a steel pipe having excellent carbon dioxide corrosion resistance, stress corrosion cracking resistance, weldability, high temperature strength, and weld toughness. .

特開平9−316611号公報JP-A-9-316611

しかし、最近、CO を含有する環境下で、マルテンサイト系ステンレス鋼管を突き合わせて複数の溶接パスで円周溶接した円周溶接部の溶接熱影響部(以下、HAZともいう)に割れが生じ、マルテンサイト系ステンレス鋼管における新たな問題となっている。
従来、CO を含有する環境下で発生する腐食としては、母材の減肉を伴う、いわゆる炭酸ガス腐食、あるいは母材の応力腐食割れが知られている。しかし、最近問題となっている割れは、円周溶接部のHAZのみに発生し、しかも、いわゆる炭酸ガス腐食が全く問題とならないようなマイルドな環境でも発生するという特徴を有している。また、この割れは、粒界割れを呈することから、粒界応力腐食割れ(Intergranular Stress Corrosion Cracking)(以下、IGSCCともいう)であると推定されている。
However, recently, cracks have occurred in the weld heat affected zone (hereinafter also referred to as HAZ) of the circumferential welded part where the martensitic stainless steel pipes are butted together in multiple welding passes in an environment containing CO 2. This is a new problem in martensitic stainless steel pipes.
Conventionally, as the corrosion that occurs in an environment containing CO 2 , so-called carbon dioxide gas corrosion accompanied by thinning of the base material, or stress corrosion cracking of the base material is known. However, the crack that has recently become a problem is characterized by occurring only in the HAZ of the circumferential weld, and also in a mild environment in which so-called carbon dioxide corrosion is not a problem at all. Moreover, since this crack exhibits a grain boundary crack, it is estimated that the crack is an intergranular stress corrosion cracking (hereinafter also referred to as IGSCC).

このような円周溶接部のHAZに発生するIGSCCを防止するには、600〜650℃で3〜5min間保持するという、短時間の溶接後熱処理が有効であることが判明している。しかし、溶接後熱処理は、短時間といえども、パイプライン敷設工程を複雑にし、かつ工期を長びかせ、敷設コストを上昇させるという問題がある。このようなことから、溶接後熱処理を行うことなく、CO を含有する環境下で発生するHAZのIGSCCを防止できる、マルテンサイト系ステンレス鋼管円周溶接継手の製造方法が要望されている。 In order to prevent IGSCC occurring in the HAZ of such a circumferential weld, it has been proved that a short post-weld heat treatment is effective for holding at 600 to 650 ° C. for 3 to 5 minutes. However, the post-weld heat treatment has problems that it complicates the pipeline laying process, lengthens the construction period, and increases the laying cost, even for a short time. For these reasons, there is a demand for a method for manufacturing a martensitic stainless steel pipe circumferential welded joint that can prevent IGSCC of HAZ that occurs in an environment containing CO 2 without performing post-weld heat treatment.

本発明は、かかる要望に鑑みて成されたものであり、耐粒界応力腐食割れ性に優れた溶接熱影響部を有するマルテンサイト系ステンレス鋼管円周溶接継手の製造方法を提案することを目的とする。   The present invention has been made in view of such a demand, and an object of the present invention is to propose a method for manufacturing a martensitic stainless steel pipe circumferential welded joint having a weld heat affected zone with excellent intergranular stress corrosion cracking resistance. And

本発明者らは、上記した課題を達成するために、まず、マルテンサイト系ステンレス鋼管円周溶接部のHAZで発生するIGSCCの発生原因について鋭意考究した。その結果、図1(a)に示すように基地中に分散する炭化物が円周溶接時の溶接熱サイクルにより一旦基地中に固溶し、その後の溶接熱サイクルで旧オーステナイト粒界にCr炭化物として析出し、旧オーステナイト粒界近傍にCr欠乏層が形成されるため、IGSCCが発生することを突き止めた。   In order to achieve the above-described problems, the present inventors have intensively studied the cause of IGSCC occurring in the HAZ of a martensitic stainless steel pipe circumferential weld. As a result, as shown in FIG. 1 (a), the carbide dispersed in the base is once dissolved in the base by the welding heat cycle at the time of circumferential welding, and Cr carbide is formed in the prior austenite grain boundaries in the subsequent welding heat cycle. As a result of precipitation, a Cr-deficient layer was formed in the vicinity of the prior austenite grain boundary, and it was found that IGSCC was generated.

このようなメカニズムによる応力腐食割れは、オーステナイト系ステンレス鋼では知られていたが、マルテンサイト系ステンレス鋼で発生するとは考えられていなかった。というのは、マルテンサイト組織中のCrの拡散速度は、オーステナイト組織中のそれに比較し非常に大きいことから、マルテンサイト系ステンレス鋼では、Cr炭化物が生成してもCrが連続的に供給されるため、Cr欠乏層は形成されないと考えられていたからである。しかし、本発明者らは、マルテンサイト系ステンレス鋼でも特定の溶接条件の下ではCr欠乏層が形成され、マイルドな腐食環境でも粒界応力腐食割れに至ることを初めて見出した。
このようなことから、本発明者らは、基地中に分散する炭化物が一旦基地中に固溶するような溶接熱サイクル、すなわちピーク温度が950℃以上となる溶接熱サイクル、を少なくとも1回受けたHAZがその後の溶接パスにより受ける熱サイクルを、旧オーステナイト粒界でのCr炭化物形成を防止し、耐粒界応力腐食割れ性を向上させることができるものとすることにより、円周溶接部のHAZにおけるIGSCCの発生を防止することができることに思い至った。
そして、本発明者らは、円周溶接部のHAZのうち、950℃以上に加熱された鋼管内表層のHAZに、Cr炭化物が再溶解する熱サイクル、Cr炭化物が析出しない熱サイクル、あるいはCrが拡散しCr欠乏層を消滅させる熱サイクル等の、耐粒界応力腐食割れ性を向上させる熱サイクルを付与できるように、その後の溶接パスの入熱量(溶接条件)を調整して溶接することがよいことを見出した。
Stress corrosion cracking due to such a mechanism has been known in austenitic stainless steel, but was not considered to occur in martensitic stainless steel. This is because the diffusion rate of Cr in the martensite structure is much higher than that in the austenite structure, so in martensitic stainless steel, Cr is continuously supplied even if Cr carbide is generated. This is because it was thought that a Cr-deficient layer was not formed. However, the present inventors have found for the first time that even in martensitic stainless steel, a Cr-deficient layer is formed under specific welding conditions, leading to intergranular stress corrosion cracking even in a mild corrosive environment.
For this reason, the present inventors have received at least one welding heat cycle in which the carbide dispersed in the matrix once dissolves in the matrix, that is, a welding heat cycle in which the peak temperature becomes 950 ° C. or higher. The heat cycle that the HAZ undergoes in the subsequent welding pass can prevent the formation of Cr carbide at the prior austenite grain boundaries and improve the resistance to intergranular stress corrosion cracking. It came to the mind that the generation of IGSCC in HAZ can be prevented.
And the present inventors, among the HAZ of the circumferential weld, heat cycle in which Cr carbide is re-dissolved in HAZ of the steel pipe inner layer heated to 950 ° C. or higher, thermal cycle in which Cr carbide does not precipitate, or Cr Welding after adjusting the heat input (welding conditions) of the subsequent welding pass so that a thermal cycle that improves intergranular stress corrosion cracking resistance, such as a thermal cycle that diffuses and extinguishes the Cr-deficient layer, can be applied. Found good.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を製造するに当たり、前記円周溶接部における溶接熱影響部のうち、前記複数の溶接パスのうちの少なくとも1回の溶接パスによる溶接熱サイクルによりピーク温度で950℃以上に加熱された鋼管内表層の溶接熱影響部に、耐粒界応力腐食割れ性を向上させる熱サイクルが付与されるように、前記1回の溶接パスのその後の溶接パスのうち少なくとも1回の溶接パスを、前記鋼管内表層の溶接熱影響部のピーク温度が、前記マルテンサイト系ステンレス鋼管を完全焼入れし100体積%マルテンサイト組織としたのち所定の温度に加熱し20s間保持したときに1体積%以上オーステナイト相が生成される前記所定の温度のうちの下限の温度であるA1点超えでかつ950℃以下の温度となる溶接パスとし、該溶接パスに続くその後の全ての溶接パスを前記鋼管内表層の溶接熱影響部のピーク温度が前記A1点以下となる溶接パスとして、溶接することを特徴とする耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。
(2)マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を製造するに当たり、前記円周溶接部における溶接熱影響部のうち、前記複数の溶接パスのうちの少なくとも1回の溶接パスによる溶接熱サイクルによりピーク温度で950℃以上に加熱された鋼管内表層の溶接熱影響部に、耐粒界応力腐食割れ性を向上させる熱サイクルが付与されるように、前記1回の溶接パスのその後の溶接パスがいずれも、前記鋼管内表層の溶接熱影響部のピーク温度が、前記マルテンサイト系ステンレス鋼管を完全焼入れし100体積%マルテンサイト組織としたのち所定の温度に加熱し20s間保持したときに1体積%以上オーステナイト相が生成される前記所定の温度のうちの下限の温度であるA1点以下の温度となる溶接パスで、かつ該その後の溶接パスの次(1)式
Ptotal=(Tp+273)(20+logΣtp)………(1)
(ここで、Ptotal:その後の溶接パスの入熱による鋼管内表層の溶接熱影響部が受ける総入熱パラメータ、Tp:その後の溶接パスの入熱による鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのピーク温度(℃)、Σtp=Σ10{P(t)/(Tp+273)−20} (Σは、t=tsからt=tfまでの総計)、ts:鋼管内表層の溶接熱影響部が受ける溶接熱サイクルの開始時間、tf:鋼管内表層の溶接熱影響部が受ける溶接熱サイクルの終了時間、P(t)=(T(t)+273)(20+log(Δt/3600))、P(t):鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのある時点tにおける入熱パラメータ。P(t)は次式
P(t)=(T(t)+273)(20+log(Δt/3600))
で定義される。ここで、T(t):鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのある時点tにおける温度(℃)、Δt:鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのある時点tにおける保持時間(s))
で定義される総入熱パラメータPtotalが、12500以下、または14500以上となる溶接パスとして溶接することを特徴とする耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。
(3)(1)または(2)において、前記マルテンサイト系ステンレス鋼管が、mass%で、C:0.015%以下、N:0.015%以下、Cr:10〜14%、Ni:3〜8%、Si:1.0%以下、Mn:2.0%以下、P:0.03%以下、S:0.010%以下、Al:0.10%以下を含み、さらにCu:1〜4%、Co:1〜4%、Mo:1〜4%、W:1〜4%のうちから選ばれた1種又は2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とするマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。
(4)(3)において、前記組成に加えてさらに、mass%で、Ti:0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とするマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。
(5)(3)または(4)において、前記組成に加えてさらに、mass%で、Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上を含有することを特徴とするマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) After marching the end portions of martensitic stainless steel pipes, perform multi-pass welding consisting of a plurality of welding passes in the circumferential direction along the end portions to form a circumferential welded portion, thereby forming martensitic stainless steel When manufacturing a steel pipe circumferential welded joint, the peak temperature is heated to 950 ° C. or more by a welding heat cycle of at least one of the plurality of welding passes among the weld heat affected zone in the circumferential welded portion. At least one welding pass among the subsequent welding passes of the one welding pass so that a heat cycle for improving the intergranular stress corrosion cracking resistance is imparted to the weld heat affected zone of the surface layer in the steel pipe. The peak temperature of the weld heat-affected zone of the surface layer in the steel pipe is heated to a predetermined temperature after completely quenching the martensitic stainless steel pipe to obtain a 100% by volume martensite structure. A welding pass in which a temperature exceeding A1 which is the lower limit of the predetermined temperature at which 1% by volume or more of the austenite phase is generated when held for 0 s is reached and a temperature of 950 ° C. or lower is set, and then the welding pass is continued. Martensitic stainless steel having excellent intergranular stress corrosion cracking resistance, characterized in that all welding passes are welded as welding passes in which the peak temperature of the weld heat-affected zone of the surface layer in the steel pipe is the A1 point or less. Manufacturing method of steel pipe circumference welded joint.
(2) After marching the end portions of martensitic stainless steel pipes, perform multi-pass welding consisting of a plurality of welding passes in the circumferential direction along the end portions to form a circumferential welded portion, thereby forming martensitic stainless steel When manufacturing a steel pipe circumferential welded joint, the peak temperature is heated to 950 ° C. or more by a welding heat cycle of at least one of the plurality of welding passes among the weld heat affected zone in the circumferential welded portion. The subsequent weld pass of the one weld pass is the surface layer in the steel pipe so that a heat cycle for improving the intergranular stress corrosion cracking resistance is given to the weld heat affected zone of the steel pipe inner layer. The peak temperature of the weld heat-affected zone is 1 when the martensitic stainless steel pipe is completely quenched to a 100% by volume martensite structure, heated to a predetermined temperature and held for 20 s. In weld pass the point A1 a temperature below the temperature of the lower limit of the predetermined temperature at which the product percent austenite phase is generated, and the next (1) of the subsequent weld pass type
Ptotal = (Tp + 273) (20 + logΣtp) (1)
(Where Ptotal: the total heat input parameter received by the weld heat affected zone of the surface layer in the steel pipe due to the heat input of the subsequent weld pass, Tp: the weld received by the weld heat affected zone of the surface layer of the steel pipe due to the heat input of the subsequent weld pass Thermal cycle peak temperature (° C.), Σtp = Σ10 {P (t) / (Tp + 273) −20} (Σ is the total from t = ts to t = tf), ts: welding heat affected zone of steel pipe surface layer Start time of welding heat cycle received by t, tf: end time of welding heat cycle received by weld heat affected zone of steel pipe surface layer, P (t) = (T (t) +273) (20 + log (Δt / 3600)), P (T): Heat input parameter at a certain time t of the welding heat cycle that the weld heat affected zone of the surface layer in the steel pipe receives, P (t) is the following formula P (t) = (T (t) +273) (20 + log (Δt / 3600))
Defined by Here, T (t): temperature (° C.) at a certain time point t of the welding heat cycle affected by the weld heat affected zone of the steel pipe surface layer, Δt: time t of the weld heat cycle received by the weld heat affected zone of the steel pipe surface layer Retention time in (s))
Of Martensitic Stainless Steel Pipe Circumferential Welded Joints with Excellent Intergranular Stress Corrosion Cracking Resistance, characterized by Welding as Welding Passes with a Total Heat Input Parameter Ptotal Defined as ≦ 12500 or 14500 Method.
(3) In (1) or (2), the martensitic stainless steel pipe is mass%, C: 0.015% or less, N: 0.015% or less, Cr: 10-14%, Ni: 3-8%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.010% or less, Al: 0.10% or less, further Cu: 1-4%, Co: 1-4%, Mo: 1 Martensitic stainless steel pipe circumferential welding characterized by comprising one or more selected from -4% and W: 1-4%, and having a composition comprising the balance Fe and inevitable impurities A method for manufacturing a joint.
(4) In (3), in addition to the above composition, it is further mass%, Ti: 0.15% or less, Nb: 0.10% or less, V: 0.10% or less, Zr: 0.10% or less, Hf: 0.20% or less, Ta : A method for producing a martensitic stainless steel pipe circumferential welded joint, comprising a composition containing one or more selected from 0.20% or less.
(5) In (3) or (4), in addition to the above composition, it is further selected in mass%, Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.010% or less, B: 0.010% or less The manufacturing method of the martensitic stainless steel pipe circumference welded joint characterized by containing 1 type, or 2 or more types.

本発明によれば、溶接熱影響部の耐炭酸ガス腐食性に優れ、さらに溶接熱影響部のIGSCCを溶接後熱処理を施すことなく防止できる、耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手を安価に提供でき、産業上格段の効果を奏する。   According to the present invention, the martensite system is excellent in carbon dioxide gas corrosion resistance of the weld heat affected zone, and can further prevent the IGSCC of the weld heat affected zone without performing post-weld heat treatment. Stainless steel pipe circumferential welded joints can be provided at a low cost, and have a remarkable industrial effect.

円周溶接部に付与される溶接熱サイクルの一例を示す模式的に示す説明図である。It is explanatory drawing shown typically which shows an example of the welding heat cycle provided to a circumference welding part. 総入熱パラメータPtotalの計算時用いる、溶接熱サイクルのステップ状分割の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the step-like division | segmentation of a welding heat cycle used at the time of calculation of the total heat input parameter Ptotal. 実施例で使用した溶接熱サイクルを模式的に示す説明図である。It is explanatory drawing which shows typically the welding thermal cycle used in the Example. 実施例で使用したU曲げ応力腐食割れ試験用試験片の曲げ状況を模式的に示す説明図である。It is explanatory drawing which shows typically the bending condition of the test piece for U bending stress corrosion cracking tests used in the Example.

本発明では、マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を構成する。その際、円周溶接部における溶接熱影響部(以下、HAZともいう)のうち、鋼管内表層に形成され、しかも多層盛溶接の溶接パスの少なくとも1回の溶接パスにより950℃以上に加熱されたHAZ(以下、C固溶HAZともいう)に、該HAZを最後に950℃以上に加熱した溶接パス(以下、C固溶パスともいう、例えば、N層目パス)の、その後の溶接パス((N+1)層目以降のパス)のピーク温度、冷却速度等の溶接条件を調整して、Cr炭化物が再溶解する熱サイクル、Cr炭化物が析出しない熱サイクル、あるいはCrが拡散しCr欠乏層を消滅させる熱サイクル等の、耐粒界応力腐食割れ性を向上させる熱サイクルを付与する。
Cr炭化物が再溶解する熱サイクルの付与は、図1(b)に示すように最終の溶接パスを、鋼管内表層のC固溶HAZのピーク温度がA1点超えとなるように、ピーク温度、冷却速度等を調整した溶接パスとすることにより、達成できる。鋼管内表層のC固溶HAZのその後の溶接パスによるピーク温度がA1点以下では、固溶したCが旧オーステナイト粒界に析出し、旧オーステナイト粒界近傍にCr欠乏層が形成される可能性がある。最終の溶接パスによるピーク温度がA1点を超えることにより、析出した炭化物が一部再固溶する。これにより、旧オーステナイト粒界近傍のCr欠乏層は回復する。
なお、本発明では、A1点は、マルテンサイト系ステンレス鋼管を完全焼入れし100体積%マルテンサイト組織としたのち所定の温度に急加熱し20s間保持したときに1体積%以上オーステナイト相が生成される前記所定の温度のうちの下限の温度として定義される。
また、Cr炭化物が再溶解する熱サイクルの付与は、図1(c)に示すようにC固溶パスの後の溶接パスのうち少なくとも1層の溶接パス(例えば、M層目パス)を、鋼管内表層のC固溶HAZのピーク温度がA1点超えでかつ950℃以下の温度となる溶接パスとし、かつ該溶接パスに続くその後のすべての溶接パス((M+1)層目以降のパス)を鋼管内表層のC固溶HAZのピーク温度がA1点以下となる溶接パスとすることによっても、達成できる。鋼管内表層のC固溶HAZのピーク温度がA1点超えでかつ950℃以下の温度となる溶接パスを、最終層以前の溶接パスとした場合には、その後の溶接パスを鋼管内表層のC固溶HAZのピーク温度がA1点以下となる溶接パスとする。このような溶接パスとすることにより、結晶粒が微細化され、炭化物が析出したとしても、旧オーステナイト粒界近傍でのCr欠乏層の形成を防止できる。
また、Cr炭化物が析出しない熱サイクルの付与は、図1(d)に示すように、C固溶パス(N層目パス)の後の溶接パス(その後の溶接パス)を、すべて鋼管内表層のC固溶HAZのピーク温度がA1点以下とし、かつそれら溶接パスの次(1)式
Ptotal=(Tp+273)(20+logΣtp)………(1)
ここで、Ptotal:その後の溶接パスによる鋼管内表層の溶接熱影響部が受ける総入熱パラメータ、
Tp:その後の溶接パスによる鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのピーク温度(℃)、
Σtp:溶接熱サイクルの開始時間tsから終了時間tfまでのtpの合計、
tp:その後の溶接パスのピーク温度Tpにおける換算保持時間(h)
で定義される総入熱パラメータPtotalが、12500以下となるように調整することにより達成できる。ここで、総入熱パラメータPtotalは、鋼管内表層のC固溶HAZがC固溶パスの後の溶接パス(その後の溶接パス)により受ける総入熱の指標となるパラメータである。また、Tpは、その後の溶接パスにより鋼管内表層のC固溶HAZが受ける溶接熱サイクルのピーク温度のうち最高温度(℃)であり、Σtpはtpの合計時間(h)であり、tpはその後の溶接パスのピーク温度Tpにおける換算保持時間(h)である。
In the present invention, the end portions of the martensitic stainless steel pipes are butted together and then subjected to multi-layer welding consisting of a plurality of welding passes in the circumferential direction along the end portions to form a circumferential welded portion. Construct stainless steel pipe circumferential weld joint. At that time, it is formed on the surface layer in the steel pipe of the weld heat affected zone (hereinafter also referred to as HAZ) in the circumferential weld zone, and is heated to 950 ° C. or more by at least one welding pass of the multipass welding pass. The subsequent welding pass of the HAZ (hereinafter also referred to as C solid solution HAZ) and a welding pass (hereinafter also referred to as C solid solution pass, for example, Nth layer pass) in which the HAZ was finally heated to 950 ° C. or higher. (Pass after (N + 1) layer) Adjusting welding conditions such as peak temperature, cooling rate, etc., thermal cycle in which Cr carbide is remelted, thermal cycle in which Cr carbide is not precipitated, or Cr is diffused and Cr-depleted layer The thermal cycle which improves the intergranular stress corrosion cracking resistance, such as a thermal cycle that eliminates, is imparted.
As shown in FIG. 1 (b), the application of the thermal cycle in which Cr carbide is re-dissolved is carried out through the final welding pass so that the peak temperature of the C solid solution HAZ in the steel pipe inner layer exceeds the A1 point. This can be achieved by using a welding pass with the cooling rate adjusted. If the peak temperature by the subsequent welding pass of C solid solution HAZ on the surface layer in the steel pipe is A1 point or less, solid solution C may precipitate at the prior austenite grain boundary, and Cr deficient layer may be formed in the vicinity of the prior austenite grain boundary There is. When the peak temperature by the final welding pass exceeds the A1 point, the precipitated carbide is partially dissolved again. As a result, the Cr-depleted layer near the prior austenite grain boundary is recovered.
In the present invention, the point A1 indicates that an austenite phase of 1% by volume or more is generated when a martensitic stainless steel pipe is completely quenched to obtain a 100% by volume martensite structure and then rapidly heated to a predetermined temperature and held for 20s. Defined as the lower limit of the predetermined temperature.
In addition, as shown in FIG. 1C, the application of a thermal cycle in which Cr carbide is re-dissolved includes at least one welding pass (for example, M-th layer pass) among the welding passes after the C solid solution pass, The welding pass in which the peak temperature of C solid solution HAZ on the surface layer in the steel pipe exceeds the A1 point and becomes a temperature of 950 ° C. or less, and all subsequent welding passes following the welding pass (passes after the (M + 1) th layer) Can also be achieved by using a welding pass in which the peak temperature of C solute HAZ on the surface layer in the steel pipe is A1 or less. If the welding pass where the peak temperature of C solute HAZ on the surface layer in the steel pipe exceeds the A1 point and the temperature is 950 ° C. or less is the welding pass before the final layer, the subsequent welding pass is the C on the surface layer in the steel pipe. A welding pass in which the peak temperature of the solid solution HAZ is A1 or lower is used. By adopting such a welding pass, even if crystal grains are refined and carbides are precipitated, formation of a Cr-deficient layer in the vicinity of the prior austenite grain boundary can be prevented.
In addition, as shown in FIG. 1 (d), all the welding passes (subsequent welding passes) after the C solid solution pass (the Nth layer pass) are applied to the surface layer in the steel pipe as shown in FIG. 1 (d). The peak temperature of C solid solution HAZ is set to A1 point or less, and the following equation (1) of those welding passes
Ptotal = (Tp + 273) (20 + logΣtp) (1)
Here, Ptotal: the total heat input parameter received by the weld heat affected zone of the steel pipe inner layer by the subsequent welding pass,
Tp: Peak temperature (° C) of the welding heat cycle that the weld heat affected zone of the surface layer in the steel pipe undergoes the subsequent welding pass,
Σtp: the sum of tp from the start time ts to the end time tf of the welding heat cycle,
tp: Conversion holding time (h) at the peak temperature Tp of the subsequent welding pass
Can be achieved by adjusting the total heat input parameter Ptotal defined in (1) to be 12,500 or less. Here, the total heat input parameter Ptotal is a parameter serving as an index of the total heat input received by the C solid solution HAZ of the surface layer in the steel pipe through a welding pass (subsequent welding pass) after the C solid solution pass. Tp is the maximum temperature (° C.) of the peak temperature of the welding heat cycle that the C solid solution HAZ of the steel pipe inner layer receives in the subsequent welding pass, Σtp is the total time (h) of tp, and tp is It is the conversion holding time (h) at the peak temperature Tp of the subsequent welding pass.

本発明では、温度が時間とともに変化する溶接熱サイクルを、図2に示すように、溶接熱サイクル曲線に沿って時間間隔Δtで分割する。そして、対象とするその後の溶接パスによる溶接熱サイクルが、温度:T(t)で時間:Δtだけ保持する加熱保持をステップ状に繰り返す、繰返しステップ加熱と等価であると仮定する。なお、図2は、その後の溶接パスが2パスの場合であるが、本発明ではこれに限定されないことはいうまでもない。   In the present invention, the welding heat cycle in which the temperature changes with time is divided at a time interval Δt along the welding heat cycle curve as shown in FIG. Then, it is assumed that the welding heat cycle by the subsequent welding pass to be processed is equivalent to repeated step heating in which heating and holding at temperature: T (t) for time: Δt is repeated stepwise. Although FIG. 2 shows a case where the subsequent welding passes are two passes, it is needless to say that the present invention is not limited to this.

例えば、時間tにおけるステップ加熱は、温度:T(t)で時間:Δtだけ保持する加熱であり、このステップ加熱によるHAZ特性への影響を、焼戻しパラメータと同様な考えに基づき、次式
P(t)=(T(t)+273)(20+(logΔt/3600))
で定義される入熱パラメータ:P(t)を指標として用いて、評価する。この入熱パラメータ:P(t)をもちいれば、同一P(t)において、加熱温度又は加熱保持時間を等価な加熱保持時間又は加熱温度に換算することができる。
そして、本発明では、溶接熱サイクル曲線に沿って分割された各ステップ加熱ごとに、P(t)を算出する。この入熱パラメータ:P(t)を用いることにより、溶接熱サイクルの加熱温度、保持時間の違いによるHAZ特性への影響を一元的に評価できる。
算出された各P(t)について、対象とする溶接熱サイクルの最高ピーク温度:Tp(℃)における保持時間tpに換算する。ピーク温度:Tp(℃)における保持時間tpは、次式
tp=10{P(t)/(Tp+273)−20}
で計算する。得られた各ステップ加熱におけるtpを、溶接熱サイクルの開始時間tsから終了時間tfまでのステップ加熱について合計し、Σtpを求める。算出されたΣtpと対象とする溶接熱サイクルのピーク温度Tpとから、対象とする溶接熱サイクルによる総入熱の指標である、総入熱パラメータ:Ptotalを前記(1)式を用いて計算する。
For example, the step heating at the time t is a heating that maintains the time: Δt at the temperature: T (t), and the influence of the step heating on the HAZ characteristic is expressed by the following formula P ( t) = (T (t) +273) (20+ (log Δt / 3600))
The heat input parameter defined by (1) is evaluated using P (t) as an index. If this heat input parameter: P (t) is used, the heating temperature or heating holding time can be converted into an equivalent heating holding time or heating temperature at the same P (t).
In the present invention, P (t) is calculated for each step heating divided along the welding heat cycle curve. By using this heat input parameter: P (t), the influence on the HAZ characteristics due to the difference in the heating temperature and holding time of the welding heat cycle can be evaluated in an integrated manner.
About each calculated P (t), it converts into the retention time tp in the highest peak temperature: Tp (degreeC) of the welding heat cycle made into object. Peak temperature: The retention time tp at Tp (° C.) is expressed by the following formula tp = 10 {P (t) / (Tp + 273) −20}
Calculate with The obtained tp in each step heating is summed up for the step heating from the start time ts to the end time tf of the welding heat cycle to obtain Σtp. Based on the calculated Σtp and the peak temperature Tp of the target welding heat cycle, the total heat input parameter: Ptotal, which is an index of the total heat input by the target welding heat cycle, is calculated using the equation (1). .

本発明では、このPtotalが12500以下となるように、C固溶パスの後の溶接パス(その後の溶接パス)を調整する。その後の溶接パスのPtotalが12500超えとなると、旧オーステナイト粒界にCr炭化物が析出し、Cr欠乏層が形成される可能性が大きくなり、IGSCCが発生する危険性が増大する。このため、本発明ではPtotalを12500以下とすることが好ましい。   In the present invention, the welding pass after the C solid solution pass (the subsequent welding pass) is adjusted so that the Ptotal is 12500 or less. When Ptotal of the subsequent welding pass exceeds 12500, Cr carbide precipitates on the prior austenite grain boundaries, and a possibility that a Cr-deficient layer is formed increases, and the risk of occurrence of IGSCC increases. For this reason, in this invention, it is preferable to make Ptotal 12500 or less.

また、C固溶パスの後の溶接パス(その後の溶接パス)を、鋼管内表層のC固溶HAZのピーク温度がA1点以下で、かつそれら溶接パスのPtotalが14500以上となる溶接パスとしてもよい。これにより、Crの拡散が可能となり、Cr欠乏層を消滅させることができ、旧オーステナイト粒界近傍にCr欠乏層が形成されることを防止できる。
つぎに、本発明で好適に用いられるマルテンサイト系ステンレス鋼管の組成について説明する。以下、組成におけるmass%は単に%と記す。
Also, the welding pass after the C solid solution pass (the subsequent weld pass) is a welding pass in which the peak temperature of the C solid solution HAZ of the surface layer in the steel pipe is A1 point or less and the Ptotal of those weld passes is 14500 or more. Also good. Thereby, Cr can be diffused, the Cr-deficient layer can be eliminated, and the Cr-deficient layer can be prevented from being formed in the vicinity of the prior austenite grain boundary.
Next, the composition of the martensitic stainless steel pipe preferably used in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.

C:0.015%以下
Cは、鋼に固溶し、鋼の強度増加に寄与する元素であるが、多量の含有は、HAZを硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させるため、本発明では、できるだけ低減することが望ましい。本発明では、とくにHAZのIGSCCの発生を防止するため、Cr炭化物として析出してCr欠乏層形成の原因となるCを、0.015%以下に限定することが好ましい。Cを0.015%を超えて含有すると、HAZのIGSCCの発生を防止することが困難となる。なお、より好ましくは0.010%以下である。
N:0.015%以下
Nは、Cと同様に、鋼に固溶し、鋼の強度増加に寄与する元素であり、多量の含有は、HAZを硬化させ、溶接割れを生じさせたり、溶接熱影響部靭性を劣化させる。また、Nは、Ti、Nb、Zr、V、Hf、Taと結合し窒化物を形成するため、炭化物を形成しCr炭化物の形成を防止できるTi、Nb、Zr、V、Hf、Ta量を実質的に低減することになり、これら元素のCr欠乏層形成を抑制しIGSCCを抑制する効果を低下させることになる。このため、Nはできるだけ低減することが望ましい。上記したNの悪影響は、0.015%以下であれば許容できるため、本発明では、Nは0.015%以下に限定することが好ましい。なお、より好ましくは0.010%以下である。
C: 0.015% or less C is an element that dissolves in steel and contributes to increasing the strength of the steel. However, if contained in a large amount, HAZ is hardened to cause weld cracks or toughness of the weld heat affected zone. Therefore, in the present invention, it is desirable to reduce as much as possible. In the present invention, in order to prevent the generation of IGSCC in HAZ, it is preferable to limit C, which precipitates as Cr carbide and causes Cr deficient layer formation, to 0.015% or less. If the C content exceeds 0.015%, it will be difficult to prevent the generation of IGSCC in HAZ. More preferably, it is 0.010% or less.
N: 0.015% or less N, like C, is an element that dissolves in steel and contributes to an increase in the strength of the steel. If a large amount is contained, it will harden HAZ, cause weld cracking, or affect the heat of welding. Deteriorates toughness. In addition, N combines with Ti, Nb, Zr, V, Hf, and Ta to form nitrides. Therefore, the amount of Ti, Nb, Zr, V, Hf, and Ta that can form carbides and prevent the formation of Cr carbides is reduced. This substantially reduces the effect of suppressing the formation of a Cr-deficient layer of these elements and reducing the IGSCC. For this reason, it is desirable to reduce N as much as possible. Since the adverse effect of N described above is acceptable if it is 0.015% or less, in the present invention, N is preferably limited to 0.015% or less. More preferably, it is 0.010% or less.

Cr:10〜14%
Crは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性等の耐食性を向上させるための基本元素であり、本発明では10%以上含有することが望ましい。一方、14%を超える含有は、フェライト相が形成しやすくなり、マルテンサイト組織を安定して確保するために多量の合金元素添加を必要とし材料コストの上昇を招く。このため、本発明ではCrは10〜14%の範囲に限定することが好ましい。
Ni:3〜8%
Niは、耐炭酸ガス腐食性を向上させるとともに、固溶して強度上昇に寄与し、また靭性を向上させる元素である。また、オーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、3%以上の含有を必要とする。一方、8%を超える含有は、変態点が低下しすぎて、所望の特性を確保するための焼戻し処理が長時間となるうえ、材料コストの高騰を招く。このため、Niは3〜8%の範囲に限定することが好ましい。なお、より好ましくは4〜7%である。
Si:1.0%以下
Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素であり、本発明では0.1%以上含有することが望ましい。しかし、Siはフェライト生成元素でもあり、1.0%を超える多量の含有は母材およびHAZ靭性を劣化させる。このため、Siは1.0%以下に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。
Mn:2.0%以下
Mnは、固溶して鋼の強度上昇に寄与するとともに、オーステナイト生成元素であり、フェライト生成を抑制して母材および溶接熱影響部靭性を向上させる。このような効果を得るためには0.2%以上含有することが好ましい。一方、2.0%を超えて含有しても効果が飽和する。このため、Mnは2.0%以下に限定することが好ましい。なお、より好ましくは0.2〜1.2%である。
P:0.03%以下
Pは、粒界に偏析して粒界強度を低下させ、耐応力腐食割れ性に悪影響を及ぼす元素であり、できるだけ低減することが好ましいが、0.03%までは許容できる。このため、Pは0.03%以下に限定することが好ましい。なお、熱間加工性の観点からは、0.02%以下とすることがより好ましい。
S:0.010%以下
Sは、MnS等の硫化物を形成し、加工性を低下させる元素であり、本発明ではできるだけ低減することが好ましいが、0.010%までは許容できる。このため、Sは0.010%以下に限定することが好ましい。
Al:0.10%以下
Alは、脱酸剤として作用し、0.01%以上含有することが好ましいが、0.10%を超える含有は靭性を劣化させる。このため、Alは0.10%以下に限定することが好ましい。なお、より好ましくは0.01〜0.04%である。
Cu:1〜4%、Co:1〜4%、Mo:1〜4%、W:1〜4%のうちから選ばれた1種又は2種以上
Cu、Co、Mo、Wはいずれも、COを含有する天然ガスを輸送するラインパイプ用鋼管に要求される特性である耐炭酸ガス腐食性を向上させる元素であり、本発明では選択して1種又は2種以上をCr、Niとともに、含有することが好ましい。
Cu:1〜4%
Cuは、耐炭酸ガス腐食性を向上させるとともに、オーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、1%以上含有することが好ましい。一方、4%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Cuは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜2.5%である。
Co:1〜4%、
Coは、Cuと同様に、耐炭酸ガス腐食性を向上させるとともに、オーステナイト形成元素であり、低炭素域でマルテンサイト組織を安定して確保するために有効に作用する。このような効果を得るためには、1%以上含有することが好ましい。一方、4%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Coは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜2.5%である。
Mo:1〜4%
Moは、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、その効果を得るためには1%以上含有することが好ましい。一方、4%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Moは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜3.0%である。
W:1〜4%
Wは、Moと同様に、耐応力腐食割れ性、さらには耐硫化物応力腐食割れ性、耐孔食性を向上させる元素であり、その効果を得るためには1%以上含有することが好ましい。一方、4%を超える含有は、フェライトを生成しやすくするとともに、耐硫化物応力腐食割れ性向上効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Wは1〜4%の範囲に限定することが好ましい。なお、より好ましくは1.5〜3.0%である。
Ti:0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上
Ti、Nb、V、Zr、Hf、Taはいずれも、炭化物形成元素であり、1種または2種以上を選択して含有することが好ましい。Ti、Nb、V、Zr、Hf、Ta はいずれも、Crに比べて炭化物形成能が強く、溶接熱で固溶したCが、冷却時にCr炭化物として旧オーステナイト粒界に析出するのを抑制し、HAZの耐粒界応力腐食割れ性を向上させる効果を有する。また、Ti、Nb、V、Zr、Hf、Ta の炭化物は、溶接熱で高温に加熱されても溶解しにくく固溶Cの発生が抑制され、このことを介してCr炭化物の形成を抑制し、HAZの耐粒界応力腐食割れ性を向上させるという効果もある。このような効果を得るためには、Ti:0.03%以上、Nb:0.03%以上、V:0.02%以上、Zr:0.03%以上、Hf:0.03%以上、Ta:0.03%以上、をそれぞれ含有することが好ましい。一方、Ti:0.15%、Nb:0.10%、V:0.10%、Zr:0.10%、Hf:0.20%、Ta:0.20%を超える含有は、耐溶接割れ性、靭性を劣化させる。このため、Ti:0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下にそれぞれ限定することが好ましい。なお、より好ましくは、Ti:0.03〜0.12%、Nb:0.03〜0.08%、V:0.02〜0.08%、Zr:0.03〜0.08%、Hf:0.10〜0.18%、Ta:0.10〜0.18%である。
Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上
Ca、Mg、REM、Bは、いずれも熱間加工性、連続鋳造における安定製造性の向上に有効に作用する元素であり、必要に応じ選択して含有できる。このような効果を得るためには、Ca:0.0005%以上、Mg:0.0010%以上、REM:0.0010%以上、B:0.0005%以上、それぞれ含有することが好ましい。一方、Ca:0.010%、Mg:0.010%、REM:0.010%、B:0.010%を超えて含有すると粗大介在物として存在しやすくなるため耐食性の劣化、靭性の低下が著しくなる。このため、Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、B:0.010%以下にそれぞれ限定することが好ましい。なお、Caは、鋼管の品質安定性が高く、製造コストも低く抑えることができ、品質安定性、経済性の観点から最も有効である。Caのより好ましい範囲は0.0005〜0.0030%である。
上記した成分以外の残部はFeおよび不可避的不純物とすることが好ましい。
Cr: 10-14%
Cr is a basic element for improving corrosion resistance such as carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and is desirably contained in an amount of 10% or more in the present invention. On the other hand, if the content exceeds 14%, a ferrite phase tends to be formed, and a large amount of alloying element is required to stably secure a martensite structure, leading to an increase in material cost. For this reason, in the present invention, Cr is preferably limited to a range of 10 to 14%.
Ni: 3-8%
Ni is an element that improves the corrosion resistance of carbon dioxide gas, contributes to an increase in strength by solid solution, and improves toughness. Moreover, it is an austenite forming element, and acts effectively in order to stably secure a martensite structure in a low carbon region. In order to obtain such an effect, the content of 3% or more is required. On the other hand, if the content exceeds 8%, the transformation point is excessively lowered, and the tempering treatment for securing the desired characteristics takes a long time, and the material cost increases. For this reason, it is preferable to limit Ni to the range of 3-8%. In addition, More preferably, it is 4 to 7%.
Si: 1.0% or less
Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In the present invention, Si is preferably contained in an amount of 0.1% or more. However, Si is also a ferrite-forming element, and a large content exceeding 1.0% deteriorates the base material and the HAZ toughness. For this reason, it is preferable to limit Si to 1.0% or less. In addition, More preferably, it is 0.1 to 0.5%.
Mn: 2.0% or less
Mn dissolves and contributes to increasing the strength of the steel, and is an austenite-generating element, and suppresses ferrite formation to improve the base material and the weld heat-affected zone toughness. In order to acquire such an effect, it is preferable to contain 0.2% or more. On the other hand, even if the content exceeds 2.0%, the effect is saturated. For this reason, it is preferable to limit Mn to 2.0% or less. In addition, More preferably, it is 0.2 to 1.2%.
P: 0.03% or less P is an element that segregates at the grain boundary to lower the grain boundary strength and adversely affects the stress corrosion cracking resistance, and is preferably reduced as much as possible, but is acceptable up to 0.03%. For this reason, it is preferable to limit P to 0.03% or less. In view of hot workability, it is more preferably 0.02% or less.
S: 0.010% or less S is an element that forms sulfides such as MnS and reduces workability. In the present invention, S is preferably reduced as much as possible, but 0.010% is acceptable. For this reason, it is preferable to limit S to 0.010% or less.
Al: 0.10% or less
Al acts as a deoxidizer and is preferably contained in an amount of 0.01% or more. However, if it exceeds 0.10%, the toughness deteriorates. For this reason, it is preferable to limit Al to 0.10% or less. In addition, More preferably, it is 0.01 to 0.04%.
One or more selected from Cu: 1-4%, Co: 1-4%, Mo: 1-4%, W: 1-4%
Cu, Co, Mo, and W are all elements that improve carbon dioxide corrosion resistance, which is a characteristic required for steel pipes for line pipes that transport natural gas containing CO 2 , and are selected in the present invention. It is preferable to contain 1 type or 2 types or more with Cr and Ni.
Cu: 1-4%
Cu is an austenite forming element as well as improving the carbon dioxide gas corrosion resistance, and effectively acts to secure a stable martensite structure in a low carbon region. In order to acquire such an effect, it is preferable to contain 1% or more. On the other hand, if the content exceeds 4%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Cu to the range of 1-4%. In addition, More preferably, it is 1.5 to 2.5%.
Co: 1-4%
Co, like Cu, improves the corrosion resistance of carbon dioxide gas and is an austenite forming element, and effectively acts to stably secure a martensite structure in a low carbon region. In order to acquire such an effect, it is preferable to contain 1% or more. On the other hand, if the content exceeds 4%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Co to the range of 1-4%. In addition, More preferably, it is 1.5 to 2.5%.
Mo: 1-4%
Mo is an element that improves the resistance to stress corrosion cracking, further resistance to sulfide stress corrosion cracking, and pitting corrosion resistance. In order to obtain the effect, Mo is preferably contained in an amount of 1% or more. On the other hand, if the content exceeds 4%, ferrite is easily generated, and the effect of improving the resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Mo to the range of 1-4%. In addition, More preferably, it is 1.5 to 3.0%.
W: 1-4%
W, like Mo, is an element that improves stress corrosion cracking resistance, further sulfide stress corrosion cracking resistance, and pitting corrosion resistance. In order to obtain the effect, W is preferably contained in an amount of 1% or more. On the other hand, if the content exceeds 4%, ferrite is easily generated, and the effect of improving the resistance to sulfide stress corrosion cracking is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit W to the range of 1-4%. In addition, More preferably, it is 1.5 to 3.0%.
One or more selected from Ti: 0.15% or less, Nb: 0.10% or less, V: 0.10% or less, Zr: 0.10% or less, Hf: 0.20% or less, Ta: 0.20% or less
Ti, Nb, V, Zr, Hf, and Ta are all carbide-forming elements, and it is preferable that one or two or more are selected and contained. Ti, Nb, V, Zr, Hf, and Ta all have a stronger carbide forming ability than Cr, and suppress the precipitation of C, which is solid-solved by welding heat, into the prior austenite grain boundaries as Cr carbide during cooling. , HAZ has the effect of improving intergranular stress corrosion cracking resistance. In addition, Ti, Nb, V, Zr, Hf, and Ta carbides are difficult to dissolve even when heated to high temperatures by welding heat, and the formation of solute C is suppressed, which suppresses the formation of Cr carbides. There is also an effect of improving the intergranular stress corrosion cracking resistance of HAZ. In order to obtain such effects, Ti: 0.03% or more, Nb: 0.03% or more, V: 0.02% or more, Zr: 0.03% or more, Hf: 0.03% or more, Ta: 0.03% or more are contained. It is preferable. On the other hand, the content exceeding Ti: 0.15%, Nb: 0.10%, V: 0.10%, Zr: 0.10%, Hf: 0.20%, Ta: 0.20% deteriorates weld crack resistance and toughness. Therefore, Ti is preferably limited to 0.15% or less, Nb: 0.10% or less, V: 0.10% or less, Zr: 0.10% or less, Hf: 0.20% or less, and Ta: 0.20% or less. More preferably, they are Ti: 0.03-0.12%, Nb: 0.03-0.08%, V: 0.02-0.08%, Zr: 0.03-0.08%, Hf: 0.10-0.18%, Ta: 0.10-0.18%.
One or more selected from Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.010% or less, B: 0.010% or less
Ca, Mg, REM, and B are all elements that effectively work to improve hot workability and stable manufacturability in continuous casting, and can be selected and contained as necessary. In order to acquire such an effect, it is preferable to contain Ca: 0.0005% or more, Mg: 0.0010% or more, REM: 0.0010% or more, and B: 0.0005% or more. On the other hand, if Ca exceeds 0.010%, Mg: 0.010%, REM: 0.010%, B: more than 0.010%, it tends to exist as coarse inclusions, so that the corrosion resistance is deteriorated and the toughness is significantly reduced. For this reason, it is preferable to limit to Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.010% or less, and B: 0.010% or less. Ca is the most effective from the viewpoints of quality stability and economical efficiency because the quality stability of the steel pipe is high and the manufacturing cost can be kept low. A more preferable range of Ca is 0.0005 to 0.0030%.
The balance other than the above components is preferably Fe and inevitable impurities.

本発明で好適に使用するマルテンサイト系ステンレス鋼管は、上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等の公知の方法で、ビレット等の鋼管素材とし、ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式等の製造設備を用いて熱間加工、造管して、所望寸法の継目無鋼管とすることが好ましい。なお、得られた継目無鋼管は、空冷以上の冷却速度で室温まで冷却することが好ましい。なお、鋼管素材を、プレス方式の熱間押出設備を用いて継目無鋼管としても何ら問題はない。   The martensitic stainless steel pipe suitably used in the present invention is prepared by melting the molten steel having the above composition by a normal melting method such as a converter, electric furnace, vacuum melting furnace, etc. In a known method such as a lump rolling method, a steel pipe material such as a billet is used, and then these steel pipe materials are heated and hot-worked using a manufacturing facility such as a normal Mannesmann-plug mill method or a Mannesmann-Mandrel mill method, It is preferable to produce a seamless steel pipe having a desired dimension by pipe making. In addition, it is preferable that the obtained seamless steel pipe is cooled to room temperature at a cooling rate equal to or higher than air cooling. In addition, there is no problem even if a steel pipe raw material is used as a seamless steel pipe using a press type hot extrusion equipment.

上記した組成の継目無鋼管であれば、熱間加工後、空冷以上の冷却速度で冷却すれば、マルテンサイト組織とすることができるが、熱間加工後室温まで冷却し、焼戻し処理を施すことが好ましい。また、熱間加工後、室温まで冷却したのち、さらにAc3 変態点以上の温度に再加熱したのち空冷以上の冷却速度で冷却する焼入れ処理を行ってもよい。焼入れ処理を施された継目無鋼管は、ついでAc1 変態点以下の温度で焼戻し処理を行うことが好ましい。なお、本発明で好適に使用される鋼管は、上記したような継目無鋼管に限定されるものではなく、上記した組成の鋼管素材を用いて、通常の工程に従い、電縫鋼管、UOE鋼管、スパイラル鋼管などの溶接鋼管としてもよい。 If it is a seamless steel pipe having the above composition, it can be made into a martensite structure if it is cooled at a cooling rate higher than air cooling after hot working, but it is cooled to room temperature after hot working and subjected to tempering treatment. Is preferred. In addition, after hot working, after cooling to room temperature, reheating to a temperature not lower than the Ac 3 transformation point and then cooling at a cooling rate not lower than air cooling may be performed. The seamless steel pipe subjected to the quenching treatment is preferably subjected to a tempering treatment at a temperature not higher than the Ac 1 transformation point. In addition, the steel pipe suitably used in the present invention is not limited to the seamless steel pipe as described above, and using a steel pipe material having the above composition, according to a normal process, an electric resistance steel pipe, a UOE steel pipe, A welded steel pipe such as a spiral steel pipe may be used.

表1に示す組成のマルテンサイト系ステンレス鋼継目無管(外径219φ×肉厚11mm )から、厚さ4mm×幅15mm×長さ115mmの試験用素材を採取し、試験用素材の中央部に、溶接熱サイクルを付与した。付与した溶接熱サイクルは、マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に5層の溶接パスからなる、入熱:10kJ/cmのGMAW法による多層盛溶接を施して円周溶接部を形成した際に、鋼管内表層のHAZが受ける溶接熱サイクルを模擬した多重溶接熱サイクルとした。付与した多重溶接熱サイクルを、図3に模式的に示す。付与した多重溶接熱サイクルでは、第3層以降の熱サイクルのピーク温度を種々変化させた。なお、各パスの冷却条件は、t800〜500=9sとした。また、パス間温度は100℃とした。また、付与した多重溶接熱サイクルにおいて、第3層以降の溶接パスによる総入熱パラメータPtotalを、図2に示す方法で溶接熱サイクル曲線をステップ状に分割して各分割区間におけるP(t)を計算し、これらP(t)から最高ピーク温度Tpにおける換算保持時間tを計算し、(1)式を用いてPtotalを算出した。また、各鋼管を加熱したのち水冷し100体積%マルテンサイト組織としたのち、400〜700℃の各温度に急熱し、保持したときの収縮量の時間変化を測定することによりオ−ステナイト相の形成量を算定し、20s間保持したときに1体積%以上のオ−ステナイト相が形成される温度のうちの下限の温度を、A1点とした。
ついで、これら溶接熱サイクル付与済みの試験片素材中央部から、厚さ2mm×幅15mm×長さ75mmの試験片を切出し、U曲げ応力腐食割れ試験を実施した。
U曲げ応力腐食割れ試験は、図4に示すような治具を用いて試験片を内半径:8mmでU字型に曲げ、腐食環境中に浸漬する試験とした。試験期間は168時間とした。使用した腐食環境は、液温:100℃、CO2圧:0.1MPa 、pH:2.0の5%NaCl液とした。試験後、試験片断面について、100倍の光学顕微鏡で割れの有無を観察し、耐粒界応力腐食割れ性を評価した。割れがある場合を×、割れがない場合を○とした。
From a martensitic stainless steel seamless pipe (outer diameter 219φ x wall thickness 11mm) with the composition shown in Table 1, a test material with a thickness of 4mm x width 15mm x length 115mm was sampled and placed in the center of the test material. A welding heat cycle was applied. The applied welding heat cycle consists of a multi-layered GMAW method with a heat input of 10 kJ / cm, consisting of five layers of weld passes in the circumferential direction along the ends after abutting the ends of martensitic stainless steel pipes. When the circumferential weld was formed by performing the prime welding, a multiple welding thermal cycle simulating the welding thermal cycle received by the HAZ on the surface layer in the steel pipe was used. The applied multiple welding thermal cycle is schematically shown in FIG. In the applied multiple welding thermal cycle, the peak temperature of the thermal cycle after the third layer was variously changed. The cooling conditions for each pass were t800-500 = 9s. The interpass temperature was 100 ° C. In addition, in the given multiple welding heat cycle, the total heat input parameter Ptotal by the welding pass after the third layer is divided into steps in the welding heat cycle curve by the method shown in FIG. 2, and P (t) in each divided section. was calculated, the conversion retention times from those P (t) at the maximum peak temperature Tp t p were calculated and calculated Ptotal using equation (1). In addition, each steel pipe is heated and then cooled with water to obtain a 100% by volume martensite structure, and then rapidly heated to each temperature of 400 to 700 ° C., and the time change of the shrinkage amount when held is measured. The amount of formation was calculated, and the lower limit temperature among the temperatures at which 1 volume% or more of the austenite phase was formed when held for 20 s was defined as point A1.
Next, a test piece having a thickness of 2 mm, a width of 15 mm, and a length of 75 mm was cut out from the center of the test piece material having been subjected to the welding heat cycle, and a U-bending stress corrosion cracking test was performed.
The U bending stress corrosion cracking test was a test in which a test piece was bent into a U shape with an inner radius of 8 mm using a jig as shown in FIG. 4 and immersed in a corrosive environment. The test period was 168 hours. The corrosive environment used was a 5% NaCl solution having a liquid temperature of 100 ° C., a CO 2 pressure of 0.1 MPa, and a pH of 2.0. After the test, the cross section of the test piece was observed for cracking with a 100 × optical microscope to evaluate the intergranular stress corrosion cracking resistance. The case where there was a crack was rated as x, and the case where there was no crack was marked as ○.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 2010029941
Figure 2010029941

Figure 2010029941
Figure 2010029941

本発明例はいずれも、溶接後熱処理を施すことなく溶接熱影響部のIGSCCを防止することができ、溶接熱影響部の耐粒界応力腐食割れ性に優れていることがわかる。これに対し、本発明の範囲を外れる比較例は、HAZにIGSCCが発生し、HAZの耐粒界応力腐食割れ性が不足している。   It can be seen that all of the examples of the present invention can prevent IGSCC in the weld heat affected zone without performing post-weld heat treatment, and are excellent in intergranular stress corrosion cracking resistance of the weld heat affected zone. On the other hand, in the comparative example outside the scope of the present invention, IGSCC is generated in the HAZ, and the intergranular stress corrosion cracking resistance of the HAZ is insufficient.

Claims (5)

マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を製造するに当たり、前記円周溶接部における溶接熱影響部のうち、前記複数の溶接パスのうちの少なくとも1回の溶接パスによる溶接熱サイクルによりピーク温度で950℃以上に加熱された鋼管内表層の溶接熱影響部に、耐粒界応力腐食割れ性を向上させる熱サイクルが付与されるように、前記1回の溶接パスのその後の溶接パスのうち少なくとも1回の溶接パスを、前記鋼管内表層の溶接熱影響部のピーク温度が、前記マルテンサイト系ステンレス鋼管を完全焼入れし100体積%マルテンサイト組織としたのち所定の温度に加熱し20s間保持したときに1体積%以上オーステナイト相が生成される前記所定の温度のうちの下限の温度であるA1点超えでかつ950℃以下の温度となる溶接パスとし、該溶接パスに続くその後の全ての溶接パスを前記鋼管内表層の溶接熱影響部のピーク温度が前記A1点以下となる溶接パスとして、溶接することを特徴とする耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。   After the ends of the martensitic stainless steel pipes are butted together, multi-pass welding consisting of a plurality of welding passes is performed in the circumferential direction along the ends to form a circumferential welded portion, and the martensitic stainless steel pipe circumference In producing a welded joint, a steel pipe heated to a peak temperature of 950 ° C. or higher by a welding heat cycle of at least one welding pass among the plurality of welding passes among the weld heat affected zone in the circumferential weld. The welding heat-affected zone of the inner surface layer is provided with a thermal cycle that improves intergranular stress corrosion cracking resistance, and at least one welding pass among the subsequent welding passes of the one welding pass is The peak temperature of the weld heat-affected zone on the surface layer of the steel pipe is completely quenched by heating the martensitic stainless steel pipe to a 100% by volume martensite structure, and then heated to a predetermined temperature for 20 seconds. 1% by volume or more of the predetermined temperature at which the austenite phase is generated is a lower limit of the predetermined temperature, and a temperature that is lower than the A1 point and lower than 950 ° C. A martensitic stainless steel pipe with excellent intergranular stress corrosion cracking resistance, characterized in that welding is performed as a welding pass in which the peak temperature of the weld heat-affected zone of the surface layer in the steel pipe is not more than the A1 point. A method of manufacturing a circumferential welded joint. マルテンサイト系ステンレス鋼管の端部同士を突き合わせたのち、該端部に沿って円周方向に複数の溶接パスからなる多層盛溶接を施して円周溶接部を形成しマルテンサイト系ステンレス鋼管円周溶接継手を製造するに当たり、前記円周溶接部における溶接熱影響部のうち、前記複数の溶接パスのうちの少なくとも1回の溶接パスによる溶接熱サイクルによりピーク温度で950℃以上に加熱された鋼管内表層の溶接熱影響部に、耐粒界応力腐食割れ性を向上させる熱サイクルが付与されるように、前記1回の溶接パスのその後の溶接パスがいずれも、前記鋼管内表層の溶接熱影響部のピーク温度が、前記マルテンサイト系ステンレス鋼管を完全焼入れし100体積%マルテンサイト組織としたのち所定の温度に加熱し20s間保持したときに1体積%以上オーステナイト相が生成される前記所定の温度のうちの下限の温度であるA1点以下の温度となる溶接パスで、かつ該その後の溶接パスの下記(1)式で定義される総入熱パラメータPtotalが、12500以下、または14500以上となる溶接パスとして、溶接することを特徴とする耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。

Ptotal=(Tp+273)(20+logΣtp)………(1)
ここで、Ptotal:その後の溶接パスの入熱による鋼管内表層の溶接熱影響部が受け
る総入熱パラメータ、
Tp:その後の溶接パスの入熱による鋼管内表層の溶接熱影響部が受ける溶接
熱サイクルのピーク温度(℃)、
Σtp:Σ10{P(t)/(Tp+273)−20} (Σは、t=tsからt=tfまでの総計)、
ts:鋼管内表層の溶接熱影響部が受ける溶接熱サイクルの開始時間、
tf:鋼管内表層の溶接熱影響部が受ける溶接熱サイクルの終了時間、
P(t):鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのある時点tにおける入熱パラメータ。
P(t)=(T(t)+273)(20+log(Δt/3600))、
ここで、T(t):鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのある時点tにおける温度(℃)、
Δt:鋼管内表層の溶接熱影響部が受ける溶接熱サイクルのある時点tにおける保持時間(s))
After the ends of martensitic stainless steel pipes are butted together, multi-pass welding consisting of a plurality of welding passes is performed in the circumferential direction along the ends to form a circumferential welded portion, and the martensitic stainless steel pipe circumference In producing a welded joint, a steel pipe heated to a peak temperature of 950 ° C. or higher by a welding heat cycle of at least one welding pass among the plurality of welding passes among the weld heat affected zone in the circumferential weld. In order to give a heat cycle that improves the intergranular stress corrosion cracking resistance to the weld heat-affected zone of the inner surface layer, all subsequent welding passes of the one-time welding pass are weld heat of the inner surface layer of the steel pipe. The peak temperature of the affected area is 1% by volume when the martensitic stainless steel pipe is completely quenched to obtain a 100% by volume martensite structure and then heated to a predetermined temperature and held for 20s. The total heat input parameter defined by the following equation (1) of the welding pass at which the upper austenite phase is generated at a temperature below the A1 point which is the lower limit temperature of the predetermined temperature. A method for manufacturing a martensitic stainless steel pipe circumferential welded joint with excellent intergranular stress corrosion cracking resistance, characterized by welding as a welding pass with Ptotal of 12500 or less, or 14500 or more.
Record
Ptotal = (Tp + 273) (20 + logΣtp) (1)
Where, Ptotal: the weld heat affected zone of the surface layer in the steel pipe due to the heat input of the subsequent welding pass
Total heat input parameters,
Tp: Peak temperature (° C) of the welding heat cycle that the weld heat affected zone of the steel pipe inner layer receives due to the heat input of the subsequent welding pass,
Σtp: Σ10 {P (t) / (Tp + 273) −20} (Σ is the total from t = ts to t = tf),
ts: the start time of the welding heat cycle that the weld heat affected zone of the surface layer in the steel pipe receives,
tf: the end time of the welding heat cycle that the heat affected zone of the surface layer in the steel pipe receives,
P (t): a heat input parameter at a point in time t of the welding heat cycle received by the weld heat affected zone of the surface layer in the steel pipe.
P (t) = (T (t) +273) (20 + log (Δt / 3600)),
Here, T (t): temperature (° C.) at a certain time t of the welding heat cycle that the weld heat affected zone of the surface layer in the steel pipe receives
Δt: retention time (s) at a certain time t of the welding heat cycle that the weld heat affected zone of the surface layer in the steel pipe receives
前記マルテンサイト系ステンレス鋼管が、mass%で、
C:0.015%以 、 N:0.015%以下、
Cr:10〜14%、 Ni:3〜8%、
Si:1.0%以下、 Mn:2.0%以下、
P:0.03%以下、 S:0.010%以下、
Al:0.10%以下
を含み、さらにCu:1〜4%、Co:1〜4%、Mo:1〜4%、W:1〜4%のうちから選ばれた1種又は2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする請求項1または2に記載のマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。
The martensitic stainless steel pipe is mass%,
C: 0.015% or less, N: 0.015% or less,
Cr: 10-14%, Ni: 3-8%,
Si: 1.0% or less, Mn: 2.0% or less,
P: 0.03% or less, S: 0.010% or less,
Including Al: 0.10% or less, further containing Cu: 1-4%, Co: 1-4%, Mo: 1-4%, W: 1-4% selected from 1 to 4% And the manufacturing method of the martensitic stainless steel pipe circumference welded joint of Claim 1 or 2 which has a composition which consists of remainder Fe and an unavoidable impurity.
前記組成に加えてさらに、mass%で、Ti:0.15%以下、Nb:0.10%以下、V:0.10%以下、Zr:0.10%以下、Hf:0.20%以下、Ta:0.20%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項3に記載のマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。   In addition to the above composition, mass%, Ti: 0.15% or less, Nb: 0.10% or less, V: 0.10% or less, Zr: 0.10% or less, Hf: 0.20% or less, Ta: 0.20% or less 4. The method for producing a martensitic stainless steel pipe circumferential welded joint according to claim 3, wherein the composition contains one or more of the above-described compositions. 前記組成に加えてさらに、mass%で、Ca:0.010%以下、Mg:0.010%以下、REM:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項3または4に記載のマルテンサイト系ステンレス鋼管円周溶接継手の製造方法。   In addition to the above-described composition, it may further contain at least one selected from mass: Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.010% or less, B: 0.010% or less. The manufacturing method of the martensitic stainless steel pipe circumference welded joint of Claim 3 or 4 characterized by these.
JP2009193472A 2009-08-24 2009-08-24 Method for producing martensitic stainless steel pipe circumferential welded joint Active JP5040973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193472A JP5040973B2 (en) 2009-08-24 2009-08-24 Method for producing martensitic stainless steel pipe circumferential welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193472A JP5040973B2 (en) 2009-08-24 2009-08-24 Method for producing martensitic stainless steel pipe circumferential welded joint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004253106A Division JP4765283B2 (en) 2004-08-31 2004-08-31 Method for producing martensitic stainless steel pipe circumferential welded joint

Publications (2)

Publication Number Publication Date
JP2010029941A true JP2010029941A (en) 2010-02-12
JP5040973B2 JP5040973B2 (en) 2012-10-03

Family

ID=41735066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193472A Active JP5040973B2 (en) 2009-08-24 2009-08-24 Method for producing martensitic stainless steel pipe circumferential welded joint

Country Status (1)

Country Link
JP (1) JP5040973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941861A (en) * 2018-07-10 2018-12-07 蚌埠市行星工程机械有限公司 27SiMn seamless steel pipe flat welding process
CN117887950A (en) * 2024-03-15 2024-04-16 上海电气核电集团有限公司 SIMP steel welding joint heat treatment method and SIMP steel welding piece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413433A (en) * 1977-07-01 1979-01-31 Ishikawajima Harima Heavy Ind Co Ltd Welding method for stainless steel
JPH0598347A (en) * 1990-12-06 1993-04-20 Nippon Steel Corp Production of martensitic 13%cr stainless steel excellent in toughness and stress corrosion cracking resistance
JP2001115238A (en) * 1999-08-06 2001-04-24 Sumitomo Metal Ind Ltd Martensitic stainless steel welded steel pipe
JP2001300730A (en) * 2000-04-17 2001-10-30 Kawasaki Steel Corp Method for connecting high-strength martensitic stainless steel pipe for oil well
JP2003328083A (en) * 2002-05-10 2003-11-19 Nisshin Steel Co Ltd High-strength stainless steel sheet with plural phases for welded structure, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413433A (en) * 1977-07-01 1979-01-31 Ishikawajima Harima Heavy Ind Co Ltd Welding method for stainless steel
JPH0598347A (en) * 1990-12-06 1993-04-20 Nippon Steel Corp Production of martensitic 13%cr stainless steel excellent in toughness and stress corrosion cracking resistance
JP2001115238A (en) * 1999-08-06 2001-04-24 Sumitomo Metal Ind Ltd Martensitic stainless steel welded steel pipe
JP2001300730A (en) * 2000-04-17 2001-10-30 Kawasaki Steel Corp Method for connecting high-strength martensitic stainless steel pipe for oil well
JP2003328083A (en) * 2002-05-10 2003-11-19 Nisshin Steel Co Ltd High-strength stainless steel sheet with plural phases for welded structure, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941861A (en) * 2018-07-10 2018-12-07 蚌埠市行星工程机械有限公司 27SiMn seamless steel pipe flat welding process
CN117887950A (en) * 2024-03-15 2024-04-16 上海电气核电集团有限公司 SIMP steel welding joint heat treatment method and SIMP steel welding piece

Also Published As

Publication number Publication date
JP5040973B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP6226062B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP4400423B2 (en) Martensitic stainless steel pipe
JP5549176B2 (en) Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP2007321181A (en) Method for forming martenstic stainless steel material welded part
US8038811B2 (en) Process for producing bent pipe for line pipe
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
JP5014831B2 (en) ERW steel pipe for expanded oil well with excellent pipe expansion performance and corrosion resistance and method for producing the same
JP4765283B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP5040973B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP4997695B2 (en) Martensitic stainless steel seamless steel pipe circumferential welded joint for line pipe with excellent intergranular stress corrosion cracking resistance and martensitic stainless steel seamless pipe for line pipe
JP6354281B2 (en) Ferritic heat resistant steel pipe
WO2013161089A1 (en) Cr-CONTAINING STEEL PIPE FOR LINEPIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELDED HEAT AFFECTED ZONE
JP5387440B2 (en) Heat treatment method for welded portion of martensitic high Cr electric resistance welded steel pipe and method for manufacturing martensitic high Cr electric resistance welded steel pipe
JP5782829B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP5446980B2 (en) Heat treatment method for martensitic high Cr electric resistance welded steel pipe welded part and martensitic high Cr electric resistance welded steel pipe manufacturing method
WO2020196214A1 (en) Steel material for line pipes and method for manufacturing same, and line pipe and method for manufacturing same
JPH08295939A (en) Production of high chromium martensitic steel pipe for line pipe
JP2004285482A (en) Martensitic stainless steel having excellent corrosion resistance and weldability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250