JP2010028920A - Charger device of battery charger - Google Patents

Charger device of battery charger Download PDF

Info

Publication number
JP2010028920A
JP2010028920A JP2008184726A JP2008184726A JP2010028920A JP 2010028920 A JP2010028920 A JP 2010028920A JP 2008184726 A JP2008184726 A JP 2008184726A JP 2008184726 A JP2008184726 A JP 2008184726A JP 2010028920 A JP2010028920 A JP 2010028920A
Authority
JP
Japan
Prior art keywords
battery
voltage
charger
charging
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008184726A
Other languages
Japanese (ja)
Other versions
JP5187040B2 (en
Inventor
Yoichi Suetsugu
洋一 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2008184726A priority Critical patent/JP5187040B2/en
Publication of JP2010028920A publication Critical patent/JP2010028920A/en
Application granted granted Critical
Publication of JP5187040B2 publication Critical patent/JP5187040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger device of a battery which can charge each battery efficiently with proper balance, even when a plurality of battery packs are connected in parallel. <P>SOLUTION: A charger device of a battery charger includes a plurality of battery packs 1, having a plurality of battery chargers connected in series and connected in parallel with the battery chargers 3; voltage measuring instruments provided to each battery charger for measuring the voltage between the terminals of the battery charger; bypass switches provided for each battery charger; internal resistance measuring instruments provided for every battery charger for measuring the internal resistance of the battery charger; variable resistors provided for every battery pack 1; and a control section 9, which controls the bypass switch to short-circuit the opposite ends of a battery charger, having the voltage between terminals which has reached the charging completion voltage, adjusts the resistance of a variable resistor provided in a battery pack 1, where the battery charger having the voltage between terminals which has reached the charging completion voltage exists, and maintains equalization of a charging voltage being applied to the battery chargers, other than the battery charger having the voltage between terminals which has reached the charging completion voltage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、充電池の充電装置に関するものである。   The present invention relates to a charging device for a rechargeable battery.

リチウムイオン二次電池は、体積エネルギー密度が高い電池として知られている。このため、携帯電話機やコードレス電話機などの移動無線通信機をはじめ、ビデオカメラやノート型パソコン等で多く利用されている。このリチウムイオン二次電池は、通常、単電池を複数個、直列接続され、電子機器の電源として使用される。   Lithium ion secondary batteries are known as batteries having a high volumetric energy density. For this reason, it is widely used in mobile wireless communication devices such as mobile phones and cordless phones, as well as video cameras and notebook computers. In this lithium ion secondary battery, a plurality of unit cells are usually connected in series and used as a power source for electronic equipment.

従来、リチウムイオン二次電池の充電には、定電流・定電圧充電方式が採用されている。具体的には、充電電圧が、単電池当り4.1Vという充電完了電圧に設定される。そして、電池電圧がこれらの充電完了電圧に達するまでは一定電流値で充電され、充電完了電圧に達した以後は、定電圧充電に移行される。   Conventionally, a constant current / constant voltage charging method has been adopted for charging a lithium ion secondary battery. Specifically, the charging voltage is set to a charging completion voltage of 4.1 V per unit cell. Then, the battery voltage is charged at a constant current value until the battery voltage reaches these charge completion voltages, and after reaching the charge completion voltage, the process proceeds to constant voltage charging.

しかし、上述した定電流・定電圧充電方式では、単電池の端子電圧が個別に監視されていない。このため、充電時に各単電池の端子電圧にばらつきがあると、任意の単電池が充電完了電圧に達しても他の単電池が充電完了電圧に達していない場合もある。この場合、充電が継続して行われ、一番初めに充電完了電圧に達した単電池は過充電になる。   However, in the constant current / constant voltage charging method described above, the terminal voltage of the unit cell is not individually monitored. For this reason, if there is a variation in the terminal voltage of each unit cell during charging, even if any unit cell reaches the charge completion voltage, other unit cells may not reach the charge completion voltage. In this case, the charging is continuously performed, and the unit cell that reaches the charging completion voltage first is overcharged.

また、全ての単電池の容量あるいは内部抵抗が常に同じであれば、直列接続された複数のリチウムイオン二次電池は、バランス良く充電される。しかし、実際には、単電池の容量あるいは内部抵抗には、若干のばらつきが存在する。更に、初期において同じ内部抵抗であったとしても、時間の経過とともに単電池の内部特性が変化し、単電池の容量および内部抵が変化する場合もある。その結果、各単電池のバランスが崩れ、特定の単電池が過充電となることもある。   Moreover, if the capacity | capacitance or internal resistance of all the single cells is always the same, the some lithium ion secondary battery connected in series will be charged with sufficient balance. However, in practice, there is some variation in the capacity or internal resistance of the unit cell. Furthermore, even if the internal resistance is the same in the initial stage, the internal characteristics of the unit cell may change over time, and the capacity and internal resistance of the unit cell may change. As a result, the balance of each unit cell may be lost, and a specific unit cell may be overcharged.

一方、他の単電池は、満充電に達しない状態で充電が終わってしまう。このため、単電池の保有している能力を十分に取り出すことができない。即ち、従来の充電方式では、各単電池を確実に満充電状態まで充電することができない場合がある。   On the other hand, the other cells are completely charged without reaching full charge. For this reason, the capacity possessed by the unit cell cannot be taken out sufficiently. That is, in the conventional charging method, each unit cell may not be reliably charged to a fully charged state.

そこで、直流負荷に電力を供給する直流電源の出力に、直流負荷と並列に、複数のリチウムイオン二次電池が直列接続されてなる組電池が接続されて使用される各リチウムイオン二次電池の充電を行うリチウムイオン二次電池の充電方法であって、組電池を構成する各リチウムイオン二次電池を充電し、かつ組電池を構成する各リチウムイオン二次電池の端子間電圧を検出すると共に、組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡して充電電流をバイパスし、組電池を構成する全てのリチウムイオン二次電池が充電完了電圧に達した後に組電池を構成する各リチウムイオン二次電池に対してトリクル充電を行うことを特徴とするリチウムイオン二次電池の充電方法が提案されている(例えば、特許文献1参照)。   Therefore, each lithium ion secondary battery used is connected to an output of a direct current power source that supplies power to the direct current load, in parallel with the direct current load, and a plurality of lithium ion secondary batteries are connected in series. A charging method for a lithium ion secondary battery that performs charging, charging each lithium ion secondary battery constituting the assembled battery, and detecting a voltage between terminals of each lithium ion secondary battery constituting the assembled battery , Among the lithium ion secondary batteries constituting the assembled battery, the lithium ion secondary batteries that have reached a preset charge completion voltage are sequentially short-circuited between both ends of the lithium ion secondary battery to obtain a charging current. Bypassing and performing trickle charging for each lithium ion secondary battery constituting the assembled battery after all the lithium ion secondary batteries constituting the assembled battery reach the charging completion voltage Charging method for a lithium ion secondary battery, wherein there has been proposed (e.g., see Patent Document 1).

特開2003−217675号公報JP 2003-217675 A

しかし、特許文献1記載のものにおいても、複数の組電池が並列に接続された場合に、各単電池をバランス良く効率的に充電することはできなかった。   However, even the one described in Patent Document 1 cannot efficiently charge each single cell in a balanced manner when a plurality of assembled batteries are connected in parallel.

この発明は、上述のような課題を解決するためになされたもので、その目的は、複数の組電池が並列に接続された場合でも、各単電池をバランス良く効率的に充電することができる充電地の充電装置を提供することである。   The present invention has been made to solve the above-described problems, and its object is to charge each single cell in a balanced and efficient manner even when a plurality of assembled batteries are connected in parallel. It is to provide a charging device in a charging place.

この発明に係る充電池の充電装置は、直列に接続された複数の充電池を有し、充電器に対して、並列に接続された複数の組電池と、前記充電池毎に設けられ、前記充電池の端子間電圧を計測する電圧計測器と、前記充電池毎に設けられたバイパス用スイッチと、前記充電池毎に設けられ、前記充電池の内部抵抗を計測する内部抵抗計測器と、前記組電池毎に設けられた可変抵抗器と、前記バイパス用スイッチに、前記端子間電圧が充電完了電圧に達した充電池の両端間を短絡させ、前記端子間電圧が充電完了電圧に達した充電池が存在する組電池に設けられた可変抵抗器の抵抗値を調整し、前記端子間電圧が充電完了電圧に達した充電池以外の充電池にかかる充電電圧の均等化を維持する制御部とを備えたものである。   A charging device for a rechargeable battery according to the present invention includes a plurality of rechargeable batteries connected in series, and is provided for each of the rechargeable batteries, with a plurality of assembled batteries connected in parallel to the charger, A voltage measuring instrument that measures the voltage between the terminals of the rechargeable battery, a bypass switch provided for each rechargeable battery, an internal resistance measuring instrument that is provided for each rechargeable battery and measures the internal resistance of the rechargeable battery, The variable resistor provided for each assembled battery and the bypass switch are short-circuited between both ends of the rechargeable battery whose inter-terminal voltage has reached the charging completion voltage, and the inter-terminal voltage has reached the charging completion voltage. A control unit that adjusts the resistance value of the variable resistor provided in the assembled battery in which the rechargeable battery exists and maintains equalization of the charge voltage applied to rechargeable batteries other than the rechargeable battery in which the voltage between the terminals has reached the charge completion voltage. It is equipped with.

この発明によれば、複数の組電池が並列に接続された場合に、各単電池をバランス良く効率的に充電することができる。   According to this invention, when a plurality of assembled batteries are connected in parallel, each single battery can be efficiently charged with good balance.

この発明を実施するための最良の形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   The best mode for carrying out the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

実施の形態1.
図1はこの発明の実施の形態1における充電池の充電装置の全体構成図である。
Embodiment 1 FIG.
1 is an overall configuration diagram of a charging device for a rechargeable battery according to Embodiment 1 of the present invention.

図1において、1は複数の組電池である。本実施の形態の組電池1は、n個からなる。これらの組電池1は、直列に接続された複数のリチウムイオン二次電池2を有する。本実施の形態においては、組電池1は、n個のリチウムイオン二次電池2からなる。具体的には、左端の組電池1のリチウムイオン二次電池2から、順に、1a〜1n、2a〜2n等と表記される。   In FIG. 1, reference numeral 1 denotes a plurality of assembled batteries. The assembled battery 1 of this Embodiment consists of n pieces. These assembled batteries 1 have a plurality of lithium ion secondary batteries 2 connected in series. In the present embodiment, the assembled battery 1 includes n lithium ion secondary batteries 2. Specifically, the lithium ion secondary battery 2 of the leftmost assembled battery 1 is sequentially written as 1a to 1n, 2a to 2n, and the like.

複数の組電池1は、充電器3及び直流負荷4に対し、並列に接続される。そして、複数の組電池1は、充電器3から供給される電力により充電される。また、複数の組電池1は、放電して、直流負荷4に電力を供給する。即ち、図1に示す回路では、リチウムイオン二次電池2が充電池として機能し、組電池1の充放電が繰り返される。   The plurality of assembled batteries 1 are connected in parallel to the charger 3 and the DC load 4. The plurality of assembled batteries 1 are charged with electric power supplied from the charger 3. The plurality of assembled batteries 1 are discharged to supply power to the DC load 4. That is, in the circuit shown in FIG. 1, the lithium ion secondary battery 2 functions as a rechargeable battery, and charging / discharging of the assembled battery 1 is repeated.

5は複数の充電制御用半導体スイッチである。これらの充電制御用半導体スイッチ5は、リチウムイオン二次電池2毎に直列に接続されて設けられる。具体的には、左端の組電池1のリチウムイオン二次電池2に対応したものから、順に、A11〜A1n、A21〜A2n等と表記される。これらの充電制御用半導体スイッチ5は、リチウムイオン二次電池2の充電制御に用いられる。   Reference numeral 5 denotes a plurality of charge control semiconductor switches. These charge control semiconductor switches 5 are connected in series for each lithium ion secondary battery 2. Specifically, from the one corresponding to the lithium ion secondary battery 2 of the leftmost assembled battery 1, they are written in order as A11 to A1n, A21 to A2n, and the like. These charge control semiconductor switches 5 are used for charge control of the lithium ion secondary battery 2.

6は複数の放電用ダイオード6である。これらの放電用ダイオード6は、リチウムイオン2次電池2毎に設けられる。具体的には、左端の組電池1のリチウムイオン二次電池2に対応したものから、順に、B11〜B1n、B21〜B2n等と表記される。これらの放電用ダイオード6は、リチウムイオン二次電池2の放電電流を直流負荷4側へ通過させるものである。   Reference numeral 6 denotes a plurality of discharging diodes 6. These discharge diodes 6 are provided for each lithium ion secondary battery 2. Specifically, from the one corresponding to the lithium ion secondary battery 2 of the leftmost assembled battery 1, B11 to B1n, B21 to B2n, and the like are sequentially written. These discharge diodes 6 allow the discharge current of the lithium ion secondary battery 2 to pass to the DC load 4 side.

7は複数の計測器である。これらの計測器7は、リチウムイオン二次電池2毎に設けられる。これらの計測器7は、リチウムイオン二次電池2の端子間電圧を計測する電圧計測器として機能する。   Reference numeral 7 denotes a plurality of measuring instruments. These measuring instruments 7 are provided for each lithium ion secondary battery 2. These measuring instruments 7 function as voltage measuring instruments that measure the voltage between the terminals of the lithium ion secondary battery 2.

8は複数のバイパス用半導体スイッチである。これらのバイパス用半導体スイッチ8は、リチウムイオン二次電池2毎の両端間に接続されて設けられる。具体的には、左端の組電池1のリチウムイオン二次電池2に対応したものから、順に、C11〜C1n、C21〜C2n等と表記される。このバイパス用半導体スイッチ8は、閉状態のときは、リチウムイオン二次電池2の両端間を短絡する機能を有する。   Reference numeral 8 denotes a plurality of bypass semiconductor switches. These bypass semiconductor switches 8 are connected between both ends of each lithium ion secondary battery 2. Specifically, from the one corresponding to the lithium ion secondary battery 2 of the leftmost assembled battery 1, they are expressed in order as C11 to C1n, C21 to C2n, and the like. The bypass semiconductor switch 8 has a function of short-circuiting both ends of the lithium ion secondary battery 2 when in the closed state.

9は制御部である。この制御部9には、計測器7から各リチウムイオン二次電池2の端子間電圧が入力される。そして、制御部9は、ゲートドライブ制御信号を介して、端子間電圧が充電完了電圧に達したリチウムイオン二次電池2に設けられたバイパス用半導体スイッチ8を閉じて、リチウムイオン二次電池2の両端間を短絡させる機能を有する。かかる制御部9の制御により、端子間電圧が充電完了電圧に達したリチウムイオン二次電池2の過充電が防止される。   Reference numeral 9 denotes a control unit. The voltage between terminals of each lithium ion secondary battery 2 is input from the measuring instrument 7 to the control unit 9. Then, the control unit 9 closes the bypass semiconductor switch 8 provided in the lithium ion secondary battery 2 whose inter-terminal voltage has reached the charge completion voltage via the gate drive control signal, and the lithium ion secondary battery 2. It has a function of short-circuiting between both ends. The control of the control unit 9 prevents overcharging of the lithium ion secondary battery 2 whose inter-terminal voltage has reached the charging completion voltage.

本実施の形態における計測器7は、リチウムイオン二次電池2の内部抵抗を計測する内部抵抗計測器としても機能する。また、本実施の形態においては、組電池1毎に、複数の可変抵抗器回路10が設けられる。具体的には、左端の組電池1に対応したものから、順に、R1、R2等と表記される。そして、本実施の形態における制御部9は、両端間が短絡されたリチウムイオン二次電池2が存在する組電地1に設けられた可変抵抗器回路10の抵抗値を調整する。   The measuring instrument 7 in the present embodiment also functions as an internal resistance measuring instrument that measures the internal resistance of the lithium ion secondary battery 2. In the present embodiment, a plurality of variable resistor circuits 10 are provided for each assembled battery 1. Specifically, R1, R2, etc. are sequentially written from the one corresponding to the leftmost assembled battery 1. And the control part 9 in this Embodiment adjusts the resistance value of the variable resistor circuit 10 provided in the electrical ground 1 where the lithium ion secondary battery 2 by which both ends were short-circuited exists.

具体的には、制御部9は、両端間が短絡されたリチウムイオン二次電池2以外のリチウムイオン二次電池2の内部抵抗に基づいて、可変抵抗器回路10の抵抗値を調整する。これにより、両端が短絡されたリチウムイオン二次電池2が存在する組電池1の合成抵抗と他の組電池1の合成抵抗とが均等化された状態が維持される。その結果、端子間電圧が充電完了電圧に達したリチウムイオン二次電池2以外のリチウムイオン二次電池2にかかる充電電圧の均等化が維持される。即ち、両端が短絡されたリチウムイオン二次電池2が存在する組電池1の列抵抗の補償制御が行われる。   Specifically, the control unit 9 adjusts the resistance value of the variable resistor circuit 10 based on the internal resistance of the lithium ion secondary batteries 2 other than the lithium ion secondary battery 2 whose both ends are short-circuited. Thereby, the state in which the combined resistance of the assembled battery 1 in which the lithium ion secondary battery 2 whose both ends are short-circuited and the combined resistance of the other assembled battery 1 are equalized is maintained. As a result, equalization of the charging voltage applied to the lithium ion secondary batteries 2 other than the lithium ion secondary battery 2 whose inter-terminal voltage has reached the charging completion voltage is maintained. That is, compensation control of the column resistance of the assembled battery 1 in which the lithium ion secondary battery 2 whose both ends are short-circuited exists.

さらに、本実施の形態においては、組電池1毎に、複数の列充電制御用半導体スイッチ11も設けられる。具体的には、左端の組電池1に対応したものから、順に、A10、A20等と表記される。制御部9は、ゲートドライブ制御信号を介して、列充電制御用半導体スイッチ11を動作させる。この動作により、全てのリチウムイオン二次電池2が充電完了電圧に達した組電池1は、充電器3から遮断される。   Further, in the present embodiment, a plurality of column charge control semiconductor switches 11 are also provided for each assembled battery 1. Specifically, A10, A20, and the like are sequentially written from the one corresponding to the leftmost assembled battery 1. The control unit 9 operates the column charge control semiconductor switch 11 via the gate drive control signal. By this operation, the assembled battery 1 in which all the lithium ion secondary batteries 2 have reached the charging completion voltage is disconnected from the charger 3.

また、組電池1毎に、列放電用ダイオード12も設けられる。具体的には、左端の組電池1に対応したものから、順に、B10、B20等と表記される。これらの列放電用ダイオード12は、リチウムイオン二次電池2の放電電流を直流負荷4側へ通過させるものである。   A column discharge diode 12 is also provided for each assembled battery 1. Specifically, B10, B20, and the like are sequentially written from the one corresponding to the leftmost assembled battery 1. These column discharge diodes 12 allow the discharge current of the lithium ion secondary battery 2 to pass to the DC load 4 side.

次に、図2を用いて、電池の充電装置の動作を説明する。
図2はこの発明の実施の形態1における電池の充電装置の動作表を示す図である。
図2において、左端の列はモードを表し、他の列は各半導体スイッチ5等の状態を表す。各半導体スイッチ5等の状態において、「ON」は導通状態を表し、「OFF」は非導通状態を表す。また、「−」は前回状態を保持した場合を表す。
Next, the operation of the battery charger will be described with reference to FIG.
FIG. 2 is a diagram showing an operation table of the battery charger according to Embodiment 1 of the present invention.
In FIG. 2, the leftmost column indicates the mode, and the other columns indicate the states of the semiconductor switches 5 and the like. In the state of each semiconductor switch 5 or the like, “ON” represents a conduction state, and “OFF” represents a non-conduction state. “-” Represents a case where the previous state is held.

まず、放電が終了したリチウムイオン二次電池2の充電は、充電初期のモードとなる。即ち、充電制御用半導体スイッチ5は導通状態、バイパス用半導体スイッチ8は非導通状態、列充電制御用半導体スイッチ11は導通状態となる。ここで、充電は、定電流一定電圧制御で行われる。即ち、単電池当りの充電完了電圧を4.1Vとすると、組電池1毎の充電完了電圧はn×4.1Vであり、この電圧まで定電流で充電を行うこととなる。   First, the charging of the lithium ion secondary battery 2 that has been discharged is in an initial charging mode. That is, the charge control semiconductor switch 5 is turned on, the bypass semiconductor switch 8 is turned off, and the column charge control semiconductor switch 11 is turned on. Here, charging is performed by constant current and constant voltage control. That is, if the charging completion voltage per unit cell is 4.1 V, the charging completion voltage for each battery pack 1 is n × 4.1 V, and charging is performed at a constant current up to this voltage.

そして、1aと表記されたリチウムイオン二次電池2が充電完了電圧に達したときは、A11と表記された充電制御用半導体スイッチ5が非導通状態となるとともに、C11と表記されたバイパス用半導体スイッチ8が導通状態となる。   When the lithium ion secondary battery 2 denoted as 1a reaches the charge completion voltage, the charge control semiconductor switch 5 denoted as A11 becomes non-conductive and the bypass semiconductor denoted as C11. The switch 8 becomes conductive.

これにより、1aと表記されたリチウムイオン二次電池2の両端が短絡する。また、これと同時に、R1と表記された可変抵抗器回路10の抵抗値が調整される。具体的には、R1と表記された可変抵抗器回路10は、1aと表記されたリチウムイオン二次電池2の内部抵抗値分増加するように指令を受ける。これにより、図1の左端に示された組電池1の合成抵抗と他の組電池1の合成抵抗とが均等化した状態が維持される。その結果、1aと表記されたリチウムイオン二次電池2以外のリチウムイオン二次電池2にかかる充電電圧の均等化が維持される。即ち、組電池1毎の充電電流のアンバランスが抑制される。   Thereby, both ends of the lithium ion secondary battery 2 labeled 1a are short-circuited. At the same time, the resistance value of the variable resistor circuit 10 labeled R1 is adjusted. Specifically, the variable resistor circuit 10 denoted as R1 is instructed to increase by the internal resistance value of the lithium ion secondary battery 2 denoted as 1a. Thereby, the state in which the combined resistance of the assembled battery 1 shown at the left end of FIG. 1 and the combined resistance of the other assembled battery 1 are equalized is maintained. As a result, equalization of the charging voltage applied to the lithium ion secondary batteries 2 other than the lithium ion secondary battery 2 labeled 1a is maintained. That is, the imbalance of the charging current for each assembled battery 1 is suppressed.

その後、1b、1n、n1、n2、nnと表記されたリチウムイオン二次電池2が充電完了電圧に達したときも、同様の動作となる。そして、全てのリチウムイオン二次電池2が充電完了電圧に達した組電池1に設けられた列充電制御用半導体スイッチ11が非導通状態となる。これにより、当該組電池1は、充電器3から遮断される。また、これと同時に、当該組電池1に設けられた可変抵抗器回路10の抵抗値が「0」にリセットされる。   Thereafter, the same operation is performed when the lithium ion secondary battery 2 denoted as 1b, 1n, n1, n2, nn reaches the charge completion voltage. Then, the column charge control semiconductor switch 11 provided in the assembled battery 1 in which all the lithium ion secondary batteries 2 have reached the charge completion voltage is turned off. Thereby, the assembled battery 1 is disconnected from the charger 3. At the same time, the resistance value of the variable resistor circuit 10 provided in the assembled battery 1 is reset to “0”.

以上で説明した実施の形態1によれば、制御部9が、両端間が短絡された電池が存在する組電池1に設けられた可変抵抗器回路10の抵抗値を調整する。そして、これにより、端子間電圧が充電完了電圧に達したリチウムイオン二次電池2以外のリチウムイオン二次電池2にかかる充電電圧の均等化が維持される。このため、複数の組電池1が並列に接続された場合でも、リチウムイオン二次電池2をバランス良く効率的に充電することができる。   According to Embodiment 1 demonstrated above, the control part 9 adjusts the resistance value of the variable resistor circuit 10 provided in the assembled battery 1 with the battery short-circuited between both ends. Thereby, equalization of the charging voltage applied to the lithium ion secondary batteries 2 other than the lithium ion secondary battery 2 whose inter-terminal voltage has reached the charging completion voltage is maintained. For this reason, even when the some assembled battery 1 is connected in parallel, the lithium ion secondary battery 2 can be charged efficiently with sufficient balance.

また、列充電制御用半導体スイッチ11が、全てのリチウムイオン二次電池2が充電完了電圧に達した組電池1を、充電器3から遮断する。これにより、全てのリチウムイオン二次電池2が充電完了電圧に達しても、充電器3の両端間の短絡が防止される。   In addition, the column charge control semiconductor switch 11 shuts off the assembled battery 1 from which the lithium ion secondary batteries 2 have reached the charge completion voltage from the charger 3. Thereby, even if all the lithium ion secondary batteries 2 reach the charge completion voltage, a short circuit between both ends of the charger 3 is prevented.

この発明の実施の形態1における電池の充電装置の全体構成図である。1 is an overall configuration diagram of a battery charging device according to Embodiment 1 of the present invention. この発明の実施の形態1における電池の充電装置の動作表を示す図である。It is a figure which shows the operation | movement table | surface of the battery charging device in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 組電池、 2 リチウムイオン二次電池、 3 充電器、 4 直流負荷、
5 充電制御用半導体スイッチ、 6 放電用ダイオード、 7 計測器、
8 バイパス用半導体スイッチ、 9 制御部、 10 可変抵抗器回路、
11 列充電制御用半導体スイッチ、 12 列放電用ダイオード
1 assembled battery, 2 lithium ion secondary battery, 3 charger, 4 DC load,
5 Semiconductor switch for charge control, 6 Diode for discharge, 7 Measuring instrument,
8 Bypass semiconductor switch, 9 Control unit, 10 Variable resistor circuit,
11 row charge control semiconductor switch, 12 row discharge diode

Claims (2)

直列に接続された複数の充電池を有し、充電器に対して、並列に接続された複数の組電池と、
前記充電池毎に設けられ、前記充電池の端子間電圧を計測する電圧計測器と、
前記充電池毎に設けられたバイパス用スイッチと、
前記充電池毎に設けられ、前記充電池の内部抵抗を計測する内部抵抗計測器と、
前記組電池毎に設けられた可変抵抗器と、
前記バイパス用スイッチに、前記端子間電圧が充電完了電圧に達した充電池の両端間を短絡させ、
前記端子間電圧が充電完了電圧に達した充電池が存在する組電池に設けられた可変抵抗器の抵抗値を調整し、前記端子間電圧が充電完了電圧に達した充電池以外の充電池にかかる充電電圧の均等化を維持する制御部と、
を備えたことを特徴とする充電池の充電装置。
A plurality of rechargeable batteries connected in series, a plurality of assembled batteries connected in parallel to the charger; and
A voltage measuring instrument that is provided for each rechargeable battery and measures a voltage between terminals of the rechargeable battery;
A bypass switch provided for each rechargeable battery;
An internal resistance measuring instrument that is provided for each rechargeable battery and measures the internal resistance of the rechargeable battery;
A variable resistor provided for each of the assembled batteries;
The bypass switch is short-circuited between both ends of the rechargeable battery in which the voltage between the terminals has reached the charge completion voltage,
Adjust the resistance value of the variable resistor provided in the assembled battery in which the rechargeable battery whose inter-terminal voltage has reached the charging completion voltage is present, and to rechargeable batteries other than the rechargeable battery whose inter-terminal voltage has reached the charging completion voltage A control unit for maintaining equalization of the charging voltage;
A charging device for a rechargeable battery comprising:
前記組電池毎に設けられ、全ての充電池が充電完了電圧に達した組電池を、前記充電器から遮断する列充電制御用スイッチ、
を備えたことを特徴とする請求項1記載の充電池の充電装置。
A switch for column charge control that is provided for each assembled battery and shuts off the assembled battery from which the rechargeable battery has reached the charging completion voltage from the charger,
The charging device for a rechargeable battery according to claim 1.
JP2008184726A 2008-07-16 2008-07-16 Rechargeable battery charger Expired - Fee Related JP5187040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184726A JP5187040B2 (en) 2008-07-16 2008-07-16 Rechargeable battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184726A JP5187040B2 (en) 2008-07-16 2008-07-16 Rechargeable battery charger

Publications (2)

Publication Number Publication Date
JP2010028920A true JP2010028920A (en) 2010-02-04
JP5187040B2 JP5187040B2 (en) 2013-04-24

Family

ID=41734195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184726A Expired - Fee Related JP5187040B2 (en) 2008-07-16 2008-07-16 Rechargeable battery charger

Country Status (1)

Country Link
JP (1) JP5187040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096430A1 (en) * 2010-02-08 2011-08-11 三洋電機株式会社 Power supply device
WO2012124845A1 (en) * 2011-03-17 2012-09-20 엘지전자 주식회사 Method and device for cell balancing of battery pack
JP2021045017A (en) * 2019-09-13 2021-03-18 矢崎総業株式会社 Battery control unit and cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283210A (en) * 1993-01-29 1994-10-07 Canon Inc Storage battery device and power system
JPH10304586A (en) * 1997-04-24 1998-11-13 Shin Kobe Electric Mach Co Ltd Secondary battery charging device
JP2003217675A (en) * 2002-01-23 2003-07-31 Ntt Power & Building Facilities Inc Charging method and device for lithium ion secondary battery
JP2006318843A (en) * 2005-05-16 2006-11-24 Toshiba Mitsubishi-Electric Industrial System Corp Charge/discharge circuit of lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283210A (en) * 1993-01-29 1994-10-07 Canon Inc Storage battery device and power system
JPH10304586A (en) * 1997-04-24 1998-11-13 Shin Kobe Electric Mach Co Ltd Secondary battery charging device
JP2003217675A (en) * 2002-01-23 2003-07-31 Ntt Power & Building Facilities Inc Charging method and device for lithium ion secondary battery
JP2006318843A (en) * 2005-05-16 2006-11-24 Toshiba Mitsubishi-Electric Industrial System Corp Charge/discharge circuit of lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096430A1 (en) * 2010-02-08 2011-08-11 三洋電機株式会社 Power supply device
US9030167B2 (en) 2010-02-08 2015-05-12 Sanyo Electric Co., Ltd. Power source apparatus
WO2012124845A1 (en) * 2011-03-17 2012-09-20 엘지전자 주식회사 Method and device for cell balancing of battery pack
JP2021045017A (en) * 2019-09-13 2021-03-18 矢崎総業株式会社 Battery control unit and cell system

Also Published As

Publication number Publication date
JP5187040B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US9537331B2 (en) Battery pack
US7061207B2 (en) Cell equalizing circuit
KR101097262B1 (en) Battery pack and charging method of the same
EP1681740B1 (en) Multi-series connection type battery cell pack
KR100993110B1 (en) Apparatus and Method for balancing of batter cell&#39;s charge capacity
US6492792B1 (en) Battery trickle charging circuit
KR102331070B1 (en) battery pack and charging control method for battery pack
KR101387733B1 (en) Battery pack, battery pack arrangement and electric apparatus
KR101562015B1 (en) Charging control apparatus and method of charging parallel connected secondary batteries
US8854780B2 (en) Protection circuit of battery pack and battery pack using the same
KR20140028531A (en) Battery pack, and controlling method of the same
KR101193170B1 (en) Battery pack and controlling method of the same
KR20160063756A (en) Battery pack and method for controlling the same
KR101136151B1 (en) Secondary Battery
JP2010536027A (en) Battery cell voltage measuring apparatus and method using an insulating capacitor
KR100453898B1 (en) A battery pack for a portable electronic device
JP4641862B2 (en) Lithium-ion secondary battery charge / discharge circuit
JP5187040B2 (en) Rechargeable battery charger
US9935472B2 (en) Battery pack
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
US20040183543A1 (en) Power source test instrument
KR20160063757A (en) Battery charging method and battery pack using the method
US9391464B2 (en) External battery for determining the amplitude of charge current
EP1978577A1 (en) Battery having a plurality of cells, battery arrangement, power tool, and method of balancing voltage levels of cells of this battery
TWI552481B (en) Active charge equalization method with individual charging and controlling system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees