JP2010018846A - Steel material for ballast tank, ballast tank, and ship - Google Patents

Steel material for ballast tank, ballast tank, and ship Download PDF

Info

Publication number
JP2010018846A
JP2010018846A JP2008180497A JP2008180497A JP2010018846A JP 2010018846 A JP2010018846 A JP 2010018846A JP 2008180497 A JP2008180497 A JP 2008180497A JP 2008180497 A JP2008180497 A JP 2008180497A JP 2010018846 A JP2010018846 A JP 2010018846A
Authority
JP
Japan
Prior art keywords
steel material
ballast tank
steel
corrosion
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008180497A
Other languages
Japanese (ja)
Other versions
JP5185712B2 (en
Inventor
Seiji Yoshida
誠司 吉田
Shinji Sakashita
真司 阪下
Akihiko Tatsumi
明彦 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008180497A priority Critical patent/JP5185712B2/en
Publication of JP2010018846A publication Critical patent/JP2010018846A/en
Application granted granted Critical
Publication of JP5185712B2 publication Critical patent/JP5185712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for a ballast tank which can positively keep corrosion resistance when it is applied to a sun deck back side where electrolytic protection does not act due to the absence of sea water even when ballast is loaded and to a part exposed to a high temperature and severe corrosive environment such as a heating unit of a cargo or near an engine. <P>SOLUTION: The steel material for a ballast tank contains 0.01 to 0.30 wt.% C (hereinafter, abbreviated simply as %), 0.01 to 2.0% Si, 0.01 to 2.0% Mn, 0.01% or less P, 0.0005 to 0.005% S, 0.005 to 0.10% Al, 0.01 to 5.0% Cu, 0.01 to 5.0% Ni, 0.01 to 5.0% Cr, and the balance Fe with unavoidable impurities. A zinc-rich primer containing a zinc powder and inorganic compound aggregate particles is applied to the surface of the steel material. The maximum height of the roughness Rz of the interface between the steel material and the primer is 20 to 90 μm. The average particle size of the zinc powder is 1 to 10 μm. The maximum major axis of the inorganic particles is 10 μm or more and twice the average film thickness of the primer or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、大型船舶の航行中における安定性を確保するために不可欠なバラストタンクに使用される鋼材であって、耐食鋼とその表面に塗布される防錆用ジンクリッチプライマーおよびその上に塗布される防食樹脂皮膜の組み合わせから成る耐食鋼に関する。   The present invention is a steel material used for a ballast tank indispensable for ensuring stability during navigation of a large ship, and is applied to corrosion-resistant steel, a zinc-rich primer for rust prevention applied to the surface thereof, and a coating thereon. The present invention relates to a corrosion-resistant steel comprising a combination of corrosion-resistant resin films.

過酷な腐食環境に曝される船舶用バラストタンクには、耐食性を有する鋼材に重防食塗装が施された材料が使用され、さらに、安全性と信頼性を向上するために、流電陽極法などの電気防食法が併用される場合が多いが、防食塗装された鋼材であっても腐食の回避は容易ではない。たとえば、タールエポキシ樹脂塗装を施した場合でも水分、塩分、酸素などの化学物質が浸透して塗膜下の鋼材を腐食させ、さらにはこの腐食生成物の膨張圧により塗膜が膨れて破壊されるに至って鋼材が露出し、外界との遮断性が完全に崩壊する。   Marine ballast tanks exposed to harsh corrosive environments use materials with heavy anticorrosion coating on corrosion-resistant steel. In addition, the galvanic anode method is used to improve safety and reliability. However, it is not easy to avoid corrosion even with a steel material coated with anticorrosion. For example, even when tar epoxy resin coating is applied, chemical substances such as moisture, salt, and oxygen penetrate and corrode the steel material under the coating film, and further, the coating film swells and is destroyed by the expansion pressure of this corrosion product. As a result, the steel material is exposed, and the barrier to the outside world is completely destroyed.

しかも塗装初期の塗膜自体の欠陥や船舶建造時における塗膜の傷損のみでなく、鋼材のエッジ部や施工不良部のように、防食塗膜が極度に薄くなりやすい部位では、素地鋼材が部分的に露出して集中的な腐食を招くことになる。   Moreover, in addition to defects in the coating film itself at the initial stage of painting and damage to the coating film during ship construction, the base steel material is used in areas where the anticorrosion coating film tends to become extremely thin, such as steel edges and poorly constructed parts. Partial exposure will lead to intensive corrosion.

なお、電気防食法を併用しても電気化学反応に必要な電解質水溶液が存在しない海水なき積荷時やバラストタンクに海水が注入されても上甲板裏などの海水が接触しない空間部分では、電気防食法による効果はいずれも期待できない。   In addition, when using an anti-corrosion method, there is no electrolyte solution required for the electrochemical reaction. No legal effect can be expected.

また、船体が海水にて冷却されているのに太陽熱により上甲板が加熱されてバラストタンク内が高温になるような状況では、バラストタンク内の防食塗膜に温度差勾配を生じ、そのために生起する浸透圧により水分が防食塗膜から素地鋼材に侵入して鋼材の腐食を促進する。   In addition, when the hull is cooled by seawater and the upper deck is heated by solar heat and the inside of the ballast tank becomes hot, a temperature difference gradient is created in the anticorrosion coating film in the ballast tank, and this occurs. Moisture penetrates the base steel material from the anticorrosion coating film by the osmotic pressure to promote corrosion of the steel material.

このように、従来の一般的なバラストタンク用鋼材の防食方法では、船舶の就航後それほどの日時を経過しないうちに塗装の修復やドックでの定期検査・補修時の再塗装が不可欠となる。   As described above, in the conventional general anti-corrosion method for steel for ballast tanks, it is indispensable to restore the paint and repaint at the time of regular inspection and repair at the dock before the ship goes into service.

もちろん、バラストタンク用鋼材自体の耐食性を向上させる目的で鋼組成を調整する方法も提案されている。たとえば下記特許文献1は、バラストタンクの腐食環境に対しては、鋼材界面のpH低下を抑制すれば耐食性が向上するとの着眼点にもとづいて、Mg、Ca、Cuなどの成分を添加した鋼材を開示する。   Of course, a method for adjusting the steel composition for the purpose of improving the corrosion resistance of the steel material for the ballast tank itself has also been proposed. For example, the following Patent Document 1 describes a steel material to which components such as Mg, Ca, and Cu are added based on the viewpoint that the corrosion resistance is improved if the pH reduction of the steel material interface is suppressed against the corrosive environment of the ballast tank. Disclose.

このような鋼材自体の改良には耐食性向上になお不十分な点があることから、特許文献2は、ジンクリッチプライマー塗装した鋼材を開示するが、この発明も鋼へのNi添加がZn腐食生成物のイオン透過抵抗を高めてプライマー塗装の防食効果を向上しようとするもので、鋼材自体の工夫に過ぎない。   Since the improvement of such steel material itself is still insufficient for improving the corrosion resistance, Patent Document 2 discloses a steel material coated with zinc rich primer. In this invention, the addition of Ni to the steel also generates Zn corrosion. It is intended to improve the anti-corrosion effect of primer coating by increasing the ion permeation resistance of objects, and is merely a device for the steel material itself.

なお、バラストタンク用鋼材の鋼組成を改良した発明として特許文献3が公開されている。   Patent Document 3 is disclosed as an invention in which the steel composition of the steel material for ballast tanks is improved.

これらの鋼組成を改良するだけでは、バラストタンク用鋼材の総括的な防食機能をさらに向上するにはなお限界があり、経済面からも不十分さを残している。
特開2000−17381号公報 特開2005−171332号公報 特開2008−31540号公報
By simply improving these steel compositions, there is still a limit to further improving the overall anticorrosion function of the steel material for ballast tanks, and there remains an insufficiency from the economic aspect.
Japanese Patent Laid-Open No. 2000-17371 JP 2005-171332 A JP 2008-31540 A

本発明は、鋼組成の改良にはなお限界があり、鋼組成の工夫と防食塗装の機能との両面からバラストタンク用鋼材の耐食性向上を企図するものである。すなわち、本発明は、バラスト時にも海水不在にて電気防食が作用しない上甲板裏側や積荷の加熱部あるいはエンジン近傍のように、高温での過酷な腐食環境に曝される部位に適用して確実に耐食性が保持できるバラストタンク用鋼材の提供を課題とする。   The present invention is still limited in improving the steel composition, and intends to improve the corrosion resistance of the steel material for ballast tanks from both aspects of the steel composition and the function of anticorrosion coating. That is, the present invention is surely applied to a part exposed to a severe corrosive environment at a high temperature such as the upper side of the upper deck where the anticorrosion does not act due to the absence of seawater during ballasting, the heating part of the load or the vicinity of the engine. Another objective is to provide a steel material for ballast tanks that can maintain corrosion resistance.

本発明のバラストタンク用鋼材は、上記課題を解決するために、鋼材の化学組成を下記する特定の範囲に調整すると同時に、その表面に施されるジンクリッチプライマーさらにはその上に塗装される防食塗膜との関係からも配慮する構成したことを特徴とする。すなわち、
(1)C:0.01〜0.30質量%(以下、%と略記。)、Si:0.01〜2.0%、Mn:0.01〜2.0%、P:0.01%以下、S:0.0005〜0.005%、Al:0.005〜0.10%、Cu:0.01〜5.0%、Ni:0.01〜5.0%、Cr:0.01〜5.0%を含有し、残部が鉄および不可避の不純物から成る鋼材の表面に、亜鉛粉末および無機化合物の粒子状骨材を含有するジンクリッチプライマーが塗布され、鋼材と同プライマーとの界面粗さの最大高さRz:20〜90μm、上記亜鉛粉末の平均粒径が1〜10μmであり、また上記無機化合物の粒子状骨材の最大長径が10μm以上で上記プライマーの平均膜厚の2倍以下であるバラストタンク用鋼材。
In order to solve the above problems, the steel material for ballast tank of the present invention adjusts the chemical composition of the steel material to a specific range described below, and at the same time, a zinc rich primer applied to the surface of the steel material and further an anticorrosion coated thereon. It is characterized in that it is also considered from the relationship with the coating film. That is,
(1) C: 0.01 to 0.30 mass% (hereinafter abbreviated as%), Si: 0.01 to 2.0%, Mn: 0.01 to 2.0%, P: 0.01 % Or less, S: 0.0005 to 0.005%, Al: 0.005 to 0.10%, Cu: 0.01 to 5.0%, Ni: 0.01 to 5.0%, Cr: 0 A zinc rich primer containing zinc powder and particulate aggregates of inorganic compounds is applied to the surface of the steel material containing 0.01 to 5.0% and the balance consisting of iron and inevitable impurities. The maximum height Rz of the interface roughness Rz: 20 to 90 μm, the average particle size of the zinc powder is 1 to 10 μm, and the maximum major axis of the particulate aggregate of the inorganic compound is 10 μm or more and the average film thickness of the primer Steel material for ballast tanks that is 2 times or less.

(2)Mg、CaまたはSrの1種以上をそれぞれ0.0001〜0.005%含有する上記1に記載されたバラストタンク用鋼材。   (2) The steel material for ballast tank described in 1 above, containing 0.0001 to 0.005% of one or more of Mg, Ca, or Sr.

(3)Co、TiまたはZrの1種以上をそれぞれ0.005〜0.20%含有する上記1または2に記載されたバラストタンク用鋼材。   (3) The steel material for ballast tank described in 1 or 2 above, containing 0.005 to 0.20% of one or more of Co, Ti, or Zr.

(4)B:0.0001〜0.010%、V:0.01〜0.50%またはNb:0.003〜0.50%の1種以上を含有する上記1、2または3に記載されたバラストタンク用鋼材。   (4) The above 1, 2 or 3 containing one or more of B: 0.0001 to 0.010%, V: 0.01 to 0.50% or Nb: 0.003 to 0.50% Steel for ballast tanks.

(5)上記1、2、3または4に記載された鋼材から構成され、そのジンクリッチプライマーの表面に、厚さが100〜800μmの防食樹脂皮膜を塗布したバラストタンク。   (5) A ballast tank composed of the steel material described in the above 1, 2, 3, or 4 and having an anticorrosive resin film having a thickness of 100 to 800 μm applied to the surface of the zinc rich primer.

(6)上記5に記載されたバラストタンクが搭載された船舶。   (6) A ship equipped with the ballast tank described in 5 above.

本発明は、上記したように、鋼自体の化学組成を特定し、かつ、素地鋼材の表面粗さを調整する一方で、防錆用ジンクリッチプライマーと防食塗料との配合成分を相互に調整することにより、鋼材自身の耐食性を向上するだけではなく、防食塗層膜の膨れによる劣化が効果的に抑制でき、過酷な環境条件下で使用されるバラストタンクさらには船舶に適用して確実に耐食性が発揮できる。   As described above, the present invention specifies the chemical composition of the steel itself and adjusts the surface roughness of the base steel material, while simultaneously adjusting the compounding components of the anticorrosive zinc rich primer and the anticorrosive paint. In addition to improving the corrosion resistance of the steel itself, it can effectively suppress deterioration due to swelling of the anticorrosion coating film, and it can be reliably applied to ballast tanks and ships used under harsh environmental conditions. Can be demonstrated.

本発明のバラストタンク用鋼材は、まず、その鋼材自体の化学組成を上記(1)に記載したように、この種鋼に必須とされるC、Si、Mn、Alなどの基本成分に加えてCu、Ni、Crをも必要成分として添加し、それらの含有量をつぎに説明するように適切に調整したことが特徴である。   In the steel material for ballast tank of the present invention, first, as described in the above (1), the chemical composition of the steel material itself is added to basic components such as C, Si, Mn, and Al which are essential for this seed steel. It is characterized in that Cu, Ni, and Cr are also added as necessary components, and their contents are appropriately adjusted as described below.

・C:0.01〜0.30%
バラストタンクの構造部材として要求される最低強度すなわち400MPa程度(但し、鋼材の肉厚による。)を得るために、0.01%以上のCを必要とするが、0.30%を超えると鋼の靭性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.30%とする。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.28%であり、より好ましくは0.26%以下とするのが良い。
C: 0.01-0.30%
In order to obtain the minimum strength required as a structural member of the ballast tank, that is, about 400 MPa (however, depending on the thickness of the steel material), 0.01% or more of C is required. The toughness of the steel deteriorates. For these reasons, the C content ranges from 0.01 to 0.30%. In addition, the minimum with preferable C content is 0.02%, More preferably, it is good to set it as 0.04% or more. Moreover, the upper limit with preferable C content is 0.28%, More preferably, it is good to set it as 0.26% or less.

・Si:0.01〜2.0%
Siは脱酸と強度確保に必要な元素であり、構造部材の最低強度を確保するために0.01%以上を必要とするが、2.0%を超えると溶接性が劣化するので、Siの含有量は0.01〜2.0%とする。尚、Si含有量の好ましい下限は0.02%であり、より好ましくは0.05%以上とするのが良い。また、Si含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
・ Si: 0.01-2.0%
Si is an element necessary for deoxidation and ensuring strength, and 0.01% or more is necessary to ensure the minimum strength of the structural member. However, if it exceeds 2.0%, weldability deteriorates. The content of is set to 0.01 to 2.0%. In addition, the minimum with preferable Si content is 0.02%, More preferably, it is good to set it as 0.05% or more. Moreover, the upper limit with preferable Si content is 1.80%, It is good to set it as 1.60% or less more preferably.

・Mn:0.01〜2.0%
Mnも脱酸と強度確保に必要な元素であり、構造部材の最低強度を確保するために0.01%以上を必要とするが、2.0%を超えると靭性が劣化する。従って、Mnの含有量0.01〜2.0%とする。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.10%以上とするのが良い。また、Mn含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
Mn: 0.01 to 2.0%
Mn is an element necessary for deoxidation and ensuring strength, and 0.01% or more is required to ensure the minimum strength of the structural member. However, if it exceeds 2.0%, toughness deteriorates. Therefore, the Mn content is set to 0.01 to 2.0%. In addition, the minimum with preferable Mn content is 0.05%, It is good to set it as 0.10% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.80%, More preferably, it is good to set it as 1.60% or less.

・P:0.01%以下
本発明は、鋼材の靭性および溶接性を重視するので、これらの性質を劣化させるPは可能な限りその含有量を低減させることが必要であり、0.01%以下とする。なお、Pは鋼材の耐海水性を向上するために0.02%以上を添加させる場合があるが、本発明はこの機能を利用する必要はないから、0.01%以下とする。
-P: 0.01% or less Since this invention attaches importance to the toughness and weldability of steel materials, it is necessary to reduce the content of P which degrades these properties as much as possible. The following. P may be added in an amount of 0.02% or more in order to improve the seawater resistance of the steel material. However, the present invention does not need to use this function, so the content is made 0.01% or less.

・S:0.0005〜0.005%
SもPと同様に鋼材の靭性および溶接性を劣化させるので、できるだけ含有量を低減させることが必要であり、許容限は0.01%であり、これを超えるとバラストタンク用の鋼材として必要な溶接性が確保できないので、本発明では0.005%以下とする。
・ S: 0.0005-0.005%
S, as well as P, deteriorates the toughness and weldability of steel, so it is necessary to reduce the content as much as possible. The allowable limit is 0.01%, and beyond this, it is necessary as steel for ballast tanks. Since it is not possible to secure a good weldability, the content is set to 0.005% or less in the present invention.

・Al:0.005〜0.10%
AlもSiおよびMnと同じく脱酸および強度確保に必要な元素であり、とくに脱酸のためには0.005%以上を要するが、0.10%を超えると溶接性を阻害する。従って、Alは0.005〜0.10%とする。尚、Al含有量の好ましい下限は0.010%であり、より好ましくは0.015%以上とするのが良い。また、Al含有量の好ましい上限は0.080%であり、より好ましくは0.090%以下とするのが良い。
-Al: 0.005-0.10%
Al, like Si and Mn, is an element necessary for deoxidation and securing of strength. Particularly, deoxidation requires 0.005% or more, but if it exceeds 0.10%, weldability is impaired. Therefore, Al is made 0.005 to 0.10%. In addition, the minimum with preferable Al content is 0.010%, It is good to set it as 0.015% or more more preferably. Moreover, the upper limit with preferable Al content is 0.080%, It is good to set it as 0.090% or less more preferably.

・Cu:0.01〜5.0%
Cuは耐食性向上に有効な元素である。Cuは防食塗膜下で発生する腐食反応を抑制する作用を有しており、塗装の薄膜部分などで発生しやすい塗幕下腐食による塗膜膨れを抑制する効果を有する元素である。また、塗膜欠陥部において、鋼材が腐食を受けた場合に生成錆を緻密化する作用も有しており、塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。これらの作用効果を十分に発揮させるためには、0.01%以上含有させることが必要であるが、過剰に含有させると溶接性や熱間加工性が劣化することから、5.0%を上限とする。Cuを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は0.90%である。
Cu: 0.01 to 5.0%
Cu is an element effective for improving corrosion resistance. Cu has an action of suppressing the corrosion reaction occurring under the anticorrosion coating film, and is an element having the effect of suppressing the swelling of the coating film due to undercoat corrosion that easily occurs in the thin film portion of the coating. In addition, it has an effect of densifying the generated rust when the steel material is corroded in the coating film defect part, and is an effective element for expressing the effect of suppressing the corrosion progress of the coating film scratched part. . In order to fully exhibit these effects, it is necessary to contain 0.01% or more, but if contained excessively, weldability and hot workability deteriorate, so 5.0% The upper limit. The more preferable lower limit when Cu is contained is 0.05%, and the more preferable upper limit is 0.90%.

・Ni:0.01〜5.0%
Niは耐食性向上に有効である。NiもCuと同様に防食塗膜下で発生する腐食反応を抑制する作用を有しており、塗装の薄膜部分などで発生しやすい塗幕下腐食による塗膜膨れを抑制する効果を有する元素である。また、塗膜欠陥部において、鋼材が腐食を受けた場合に生成錆を緻密化する作用も有しており、塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。また、Niは、Cu添加による赤熱脆性を防止するのに必要な元素である。こうした作用効果を十分に発揮させるためには0.01%以上含有させることが必要である。しかしながら、添加量が過剰になると溶接性や熱間加工性が劣化することから、5.0%以下に抑制しなければならない。尚、Niのより好ましい下限は0.05%であり、より好ましい上限は0.90%である。
・ Ni: 0.01-5.0%
Ni is effective in improving corrosion resistance. Ni, like Cu, has the effect of suppressing the corrosion reaction that occurs under the anticorrosion coating, and is an element that has the effect of suppressing the swelling of the coating due to undercoat corrosion that tends to occur in the thin film portion of the coating. . In addition, it has an effect of densifying the generated rust when the steel material is corroded in the coating film defect part, and is an effective element for expressing the effect of suppressing the corrosion progress of the coating film scratched part. . Ni is an element necessary to prevent red heat brittleness due to Cu addition. In order to fully exhibit these effects, it is necessary to contain 0.01% or more. However, if the addition amount is excessive, weldability and hot workability deteriorate, so it must be suppressed to 5.0% or less. A more preferable lower limit of Ni is 0.05%, and a more preferable upper limit is 0.90%.

・Cr:0.01〜5.0%
Crも耐食性の向上に有効な元素であるが、とくに防食塗膜下でのジンクリッチプライマー消耗を抑制する作用があり、さらには塗膜傷部の鋼材腐食の進展を抑制する効果も期待できる。また、Crの添加は鋼材の靭性を高めるので、バラストタンクの構成材として必要な機械特性を得るのに有効である。 これらの作用効果を発揮させるには、0.01%以上のCrが必要であるが、過剰のCrは鋼材の溶接性や熱間加工性を低下するので、5.0%をその上限とする。尚、Crを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は0.45%である。
・ Cr: 0.01-5.0%
Cr is also an element effective in improving corrosion resistance, but has an effect of suppressing the zinc rich primer consumption particularly under the anticorrosion coating, and can also be expected to have an effect of suppressing the progress of corrosion of the steel material at the scratched portion of the coating. Further, the addition of Cr increases the toughness of the steel material, and is therefore effective in obtaining the mechanical characteristics necessary as a constituent material of the ballast tank. In order to exert these effects, 0.01% or more of Cr is required, but excessive Cr lowers the weldability and hot workability of the steel material, so 5.0% is the upper limit. . In addition, a more preferable lower limit when Cr is contained is 0.05%, and a more preferable upper limit is 0.45%.

本発明のバラストタンク用鋼材をバラストタンク底板として実施する場合は、上記した基本的元素に加えてMg、Ca、Srの1種以上を、それぞれ0.0001〜0.005%の範囲で追添することにより、鋼の耐食性が向上し、鋼材の特性をさらに改善することができる。   When the steel material for ballast tank of the present invention is implemented as a ballast tank bottom plate, in addition to the basic elements described above, one or more of Mg, Ca, and Sr are added in the range of 0.0001 to 0.005%, respectively. By doing, the corrosion resistance of steel improves and the characteristic of steel materials can be improved further.

また、防食塗膜を施した鋼材に腐食が発生した場合、塗膜/鋼材界面における外部への水素イオン拡散が抑制され、鋼材腐食により溶解したFeイオンの加水分解によるpHが低下し、塗膜下腐食がさらに加速される。この事態に対して、Mg、Ca、Srの存在は、鋼材腐食によるpH低下を緩和するように作用し、結果的にはpH低下による腐食促進を抑制して塗膜膨れが効果的に防止できる。   In addition, when corrosion occurs in the steel material to which the anticorrosion coating film is applied, hydrogen ion diffusion to the outside at the coating film / steel material interface is suppressed, and the pH due to hydrolysis of Fe ions dissolved by the steel material corrosion decreases, and the coating film Under-corrosion is further accelerated. In response to this situation, the presence of Mg, Ca, Sr acts to alleviate the decrease in pH due to steel corrosion, and as a result, the promotion of corrosion due to the decrease in pH can be suppressed to effectively prevent swelling of the coating film. .

Mg、Ca、Srによるこれらの効果を発揮させるには、0.0001%の添加が必要であるが、0.005%を超えると鋼材の加工性および溶接性を劣化するので、好ましくは、0.0005%以上、0.004%以下がよい。なお、上記効果はMgにCoを共添する場合にとくに有効である。   In order to exert these effects by Mg, Ca, Sr, 0.0001% addition is necessary. However, if it exceeds 0.005%, the workability and weldability of the steel material are deteriorated. 0005% or more and 0.004% or less are preferable. The above effect is particularly effective when Co is co-added to Mg.

また、Co、Ti、Zrの1種以上を、それぞれ0.005〜0.20%の範囲で追添することにより、とくに海水の塩化物腐食環境で生成する錆びの緻密化を促進し、塗膜傷部における腐食の進展を抑制する効果が期待できる。このためには、各元素とも0.005%以上の添加が必要であるが、0.20%以上の添加は鋼材の加工性および溶接性を劣化するので、好ましい上限は0.15%、好ましい下限は0.008%である。   In addition, by adding one or more of Co, Ti, and Zr within a range of 0.005 to 0.20%, respectively, it is possible to promote the densification of rust generated especially in the chloride corrosive environment of seawater. The effect of suppressing the progress of corrosion at the film scratch can be expected. For this purpose, addition of 0.005% or more is necessary for each element, but addition of 0.20% or more deteriorates the workability and weldability of the steel material, so the preferable upper limit is 0.15%, preferably The lower limit is 0.008%.

さらに、B、V、Nbの1種以上を追添することにより、使用目的に応じて鋼材の機械特性を向上させることができる。Bは、0.0001%以上を含有させることにより、焼入性が向上して強度を高めるが、靭性の劣化を防止するために0.010%以下とする。好ましい上限は0.0090%、好ましい下限は0.0003%である。   Furthermore, by adding one or more of B, V, and Nb, the mechanical properties of the steel material can be improved according to the purpose of use. When B is contained in an amount of 0.0001% or more, the hardenability is improved and the strength is increased. However, B is made 0.010% or less in order to prevent deterioration of toughness. A preferable upper limit is 0.0090%, and a preferable lower limit is 0.0003%.

Vは0.01%以上の含有にて強度を高めるが、靭性の劣化を防止するために0.50%以下とする。好ましい上限は0.45%、好ましい下限は0.02%である。   V increases the strength when the content is 0.01% or more, but is 0.50% or less in order to prevent deterioration of toughness. A preferable upper limit is 0.45%, and a preferable lower limit is 0.02%.

Nbは0.003%以上の含有にて強度を高めるが、靭性の劣化を防止するために0.50%以下とする。好ましい上限は0.45%、好ましい下限は0.005%である。   Nb increases the strength when the content is 0.003% or more, but is 0.50% or less in order to prevent deterioration of toughness. A preferable upper limit is 0.45%, and a preferable lower limit is 0.005%.

なお、本発明のバラストタンク用鋼材における不可避の不純物にはO、N、H、Mo、Wなどがあるが、いずれも0.1%、できれば0.01%を超えないように制御するのがよい。   In addition, the inevitable impurities in the steel for ballast tanks of the present invention include O, N, H, Mo, W, etc., all of which are controlled to not exceed 0.1%, preferably 0.01%. Good.

上記化学組成の鋼材は、転炉あるいは電気炉による通常の製鋼法にて溶製し、連続鋳造等の造塊法により鋼塊としたのち、1100〜1200℃に加熱する熱間圧延により製造される。なお、バラストタンク用鋼材として適切な機械特性および溶接性を有するキルド鋼、とくにAlキルド鋼とするために、所要の脱酸形式を採用するのが好ましい。DH法やRH法等の炉外脱ガス法による炉外精錬を実施して非金属介在物を低減させることが好ましい。   The steel material of the above chemical composition is manufactured by hot rolling by heating to 1100 to 1200 ° C. after melting by a normal steel making method using a converter or an electric furnace and making it into an ingot by an ingot making method such as continuous casting. The In addition, it is preferable to employ a required deoxidation type in order to obtain a killed steel having suitable mechanical characteristics and weldability, particularly an Al killed steel, as a steel material for a ballast tank. It is preferable to reduce non-metallic inclusions by performing out-of-core refining by an out-of-furnace degassing method such as DH method or RH method.

さて、バラストタンク用鋼材は、製鉄所から出荷されて防食塗料が塗布されるまでの期間に発錆するのを防止する目的でジンクリッチプライマーが塗布されるが、本発明では、鋼材とジンクリッチプライマーとの密着性をよくするために、以下の手段を講ずる点に特徴がある。   The steel material for ballast tanks is coated with a zinc rich primer for the purpose of preventing rusting during the period until it is shipped from the steelworks and the anticorrosion paint is applied. In order to improve the adhesion with the primer, the following measures are taken.

ジンクリッチプライマーとの密着性をよくするために、通常、素地鋼材の表面はショットブラスト等により清浄化処理されるが、本発明では、ショットブラストの加工時間・ブラスト圧力を制御して素地鋼材の表面粗さを、その最大高さ(Rz)が20〜90μmとなるように調整する。素地鋼材の表面粗さがこの範囲を逸脱すると、ジンクリッチプライマーとの密着性が低下し、とくにRzが90μmを超えると防食性が損なわれるようになる。   In order to improve the adhesion with the zinc rich primer, the surface of the base steel is usually cleaned by shot blasting, etc.In the present invention, the processing time and blast pressure of the shot blast are controlled to control the base steel. The surface roughness is adjusted so that the maximum height (Rz) is 20 to 90 μm. When the surface roughness of the base steel material deviates from this range, the adhesion with the zinc rich primer is lowered, and particularly when Rz exceeds 90 μm, the corrosion resistance is impaired.

つぎに、本発明は、ジンクリッチプライマーに配合される亜鉛末の平均粒径を1〜10μmに調整することが特徴である。ジンクリッチプライマーは、通常、10〜30μmの厚さに塗布され、その乾燥膜厚はおよそ15μm前後となるが、亜鉛末の平均粒径が10μm以下であると、亜鉛末粒子がプライマーの乾燥膜厚内におさまって防錆作用が有効に機能することが確認できる。ただし、平均粒径が1μm以下の微粒子は取り扱いが困難であり、製造コスト面からも好ましくない。   Next, the present invention is characterized in that the average particle size of zinc powder blended in the zinc rich primer is adjusted to 1 to 10 μm. The zinc rich primer is usually applied to a thickness of 10 to 30 μm, and the dry film thickness is about 15 μm. If the average particle size of the zinc powder is 10 μm or less, the zinc powder particles are the dried film of the primer. It can be confirmed that the rust-proofing function functions effectively within the thickness. However, fine particles having an average particle diameter of 1 μm or less are difficult to handle and are not preferable from the viewpoint of production cost.

また、本発明では、亜鉛末に加えて、炭酸マグネシウム、炭酸バリウム、ホウ酸アルミニウム、マイカ、シリカ、カオリン、タルク、アルミナ等の無機化合物の粒子状骨材を含有するジンクリッチプライマーを素地鋼材に塗布することが特徴である。これらの粒子状骨材がジンクリッチプライマーに配合されると、亜鉛末の単独配合に比較して、塗料の密着性が増大するとともに防錆性を向上することが確認される。
さらに、本発明では、上記粒子状骨材の最大長径を10μm以上から、塗布されたジンクリッチプライマーの乾燥膜厚の2倍以下の範囲に調整することを特徴とする。粒子状骨材の最大長径が10μm以下の細粒になると、素地鋼材および防食樹脂塗装に対してジンクリッチプライマーの塗装密着性が不良化することが確認される。
また、上記したように、ジンクリッチプライマーは、通常、10〜30μmの厚さに塗布され、乾燥膜厚は一般的には15μm前後となるが、無機化合物の粒子状骨材の最大長径が同乾燥膜厚の2倍に相応する30μmを超えるほどの粗粒子であると、その部分に浸透した水分等が滞留しやすくなり、かえって耐食性を阻害することが確認される。
In the present invention, in addition to zinc powder, zinc rich primer containing particulate aggregates of inorganic compounds such as magnesium carbonate, barium carbonate, aluminum borate, mica, silica, kaolin, talc, and alumina is used as the base steel material. It is characteristic to apply. When these particulate aggregates are blended in the zinc rich primer, it is confirmed that the adhesion of the paint is increased and the rust prevention property is improved as compared with the single blending of zinc powder.
Furthermore, the present invention is characterized in that the maximum major axis of the particulate aggregate is adjusted to a range of 10 μm or more to twice or less the dry film thickness of the applied zinc rich primer. It is confirmed that the coating adhesion of the zinc rich primer is deteriorated with respect to the base steel material and the anticorrosion resin coating when the maximum long diameter of the particulate aggregate becomes 10 μm or less.
Further, as described above, the zinc rich primer is usually applied to a thickness of 10 to 30 μm, and the dry film thickness is generally around 15 μm, but the maximum major axis of the particulate aggregate of the inorganic compound is the same. It is confirmed that when the coarse particle exceeds 30 μm corresponding to twice the dry film thickness, moisture or the like that has permeated into the portion is likely to stay and inhibits corrosion resistance.

以上に説明した構成のジンクリッチプライマー塗布鋼材をバラストタンクに適用する場合、本発明は、その表面に防食樹脂塗装膜を100〜800μmの厚さに被着した耐食性鋼材を特徴とする。この防食樹脂は、タールエポキシ樹脂や変性エポキシ樹脂等のエポキシ樹脂系、ウレタン樹脂あるいはアクリル樹脂等が使用できる。   When the zinc rich primer-coated steel material having the above-described configuration is applied to a ballast tank, the present invention is characterized by a corrosion-resistant steel material having a corrosion-resistant resin coating film deposited on its surface to a thickness of 100 to 800 μm. As the anticorrosion resin, an epoxy resin such as a tar epoxy resin or a modified epoxy resin, a urethane resin, an acrylic resin, or the like can be used.

これらの防食樹脂塗装をほどこすのは、海水中の水分その他各種化合物成分が浸透するのを効果的に遅滞させることにより、使用環境が苛酷なバラストタンクに耐食性を付与するためである。そのためには、100μm以上の、好ましくは250μm以上の樹脂塗装膜を必要とするが、800μm以上の厚さは不必要であり、バラストタンク内外の温度勾配が厚い樹脂塗装膜をかえって膨張させて耐食性を損なうようになる。   The reason for applying these anticorrosion resin coatings is to impart corrosion resistance to a ballast tank having a severe use environment by effectively delaying the penetration of moisture and other various compound components in seawater. For that purpose, a resin coating film of 100 μm or more, preferably 250 μm or more is required, but a thickness of 800 μm or more is unnecessary, and the resin coating film with a large temperature gradient inside and outside the ballast tank is expanded and corroded. Will be damaged.

なお、本発明の実施に付随して、上記の樹脂塗装と流電陽極法や外部電源法等の電気防食を併用することを妨げるものではない。
(実施例)
本発明の実施例ならびに比較例として、表1〜4に示すAlキルド鋼を準備した。すなわち、転炉より出鋼した溶鋼を、RH真空脱ガス装置を用いてArガスによるバブリング処理をし、撹拌しながら所定の成分調整を行い、連続鋳造法により鋼塊とした。得られた鋼塊を1150℃に加熱し、熱間圧延して厚さ19mmの鋼板を作製した。
In addition, accompanying implementation of this invention, it does not prevent combined use of said resin coating, and cathodic protection, such as the galvanic anode method and the external power supply method.
(Example)
As examples and comparative examples of the present invention, Al killed steels shown in Tables 1 to 4 were prepared. That is, the molten steel produced from the converter was subjected to bubbling treatment with Ar gas using an RH vacuum degassing device, a predetermined component was adjusted while stirring, and a steel ingot was obtained by a continuous casting method. The obtained steel ingot was heated to 1150 ° C. and hot-rolled to produce a steel plate having a thickness of 19 mm.

得られた鋼板から30×30×5mmの大きさの試験片を切り出し、試験片の全面を湿式回転研磨機(研磨紙:#600)で研磨仕上げし、サンドブラストにより粗さを下記するように調整した。ついで、水洗およびアセトン洗浄後、下記するように別途調製したジンクリッチプライマーを平均膜厚が15μm(15±3μm)となるように塗布し、24時間以上デシケータ内で乾燥させた。次にワイヤブラシがけを行い、その上から、別途調製した変性エポキシ樹脂をエアレススプレーで塗布した。   A test piece of 30 × 30 × 5 mm size was cut out from the obtained steel plate, the entire surface of the test piece was polished with a wet rotary polishing machine (abrasive paper: # 600), and the roughness was adjusted by sandblasting as described below. did. Next, after washing with water and acetone, a zinc rich primer separately prepared as described below was applied so that the average film thickness was 15 μm (15 ± 3 μm), and dried in a desiccator for 24 hours or more. Next, wire brushing was performed, and a modified epoxy resin prepared separately was applied from above with an airless spray.

サンドブラストによる試験片の粗さ調整は、本発明の実施例ではすべてその最大高さRzが20〜90μmの範囲(表2、表4)で、比較例の2例では同範囲を逸脱するようにして(表2)実施した。   In the examples of the present invention, the roughness adjustment of the specimens by sand blasting is such that the maximum height Rz is in the range of 20 to 90 μm (Tables 2 and 4), and the two examples of the comparative examples deviate from the same range. (Table 2).

使用したジンクリッチプライマーは、質量比で亜鉛末92%および全体の5%以下の炭酸カルシウムなどの無機化合物の粒子状骨材を配合したものを用いた。   The zinc rich primer used was a blend of particulate aggregates of inorganic compounds such as calcium carbonate with a mass ratio of 92% zinc powder and 5% or less of the total.

また、亜鉛末の平均粒径は、本発明の実施例ではすべて1〜10μmの範囲(表2、表4)で、比較例の1例では同範囲を逸脱するもの(表2)を配合した。   Moreover, the average particle diameter of the zinc powder is in the range of 1 to 10 μm in all examples of the present invention (Tables 2 and 4), and in one example of the comparative example, the one deviating from the same range (Table 2) is blended. .

無機化合物の粒子状骨材は、その最大長径が、本発明の実施例ではすべて10μm以上で、ジンクリッチプライマーの平均膜厚15μm(15±3μm)の2倍以下より小さいもの(表2、表4)を、また比較例の1例ではそれより大きいもの(表2)をそれぞれ配合した。   In the particulate aggregates of inorganic compounds, the maximum major axis is 10 μm or more in all the examples of the present invention, and is less than twice the average film thickness of zinc rich primer of 15 μm (15 ± 3 μm) (Table 2, Table 2). 4), and in one of the comparative examples, a larger one (Table 2) was blended.

一方、防食樹脂塗装の膜厚については、本発明の実施例ではすべて100〜800μmの範囲(表2、表4)で、比較例の1例では同範囲を逸脱するもの(表2)を例示した。   On the other hand, as for the film thickness of the anticorrosion resin coating, all of the examples of the present invention are in the range of 100 to 800 μm (Tables 2 and 4), and one example of the comparative example is out of the same range (Table 2). did.

なお、比較例の大半はジンクリッチプライマーの配合条件が本発明の規制範囲と重複するが、以下に説明するように、これらの比較例に使用した試験片の鋼組成が本発明の規制範囲から逸脱している点に注目すべきである。
[腐食試験方法]
39種の試験片について、バラストタンク内を模擬したラボ評価試験方法により、実機バラストタンクと同様の使用条件下に相当する腐食の程度を検証した。
In most of the comparative examples, the blending conditions of the zinc rich primer overlap with the regulation range of the present invention, but as described below, the steel composition of the test pieces used in these comparative examples is out of the regulation range of the present invention. It should be noted that there is a deviation.
[Corrosion test method]
About 39 types of test pieces, the degree of corrosion corresponding to the same use conditions as the actual ballast tank was verified by a laboratory evaluation test method simulating the inside of the ballast tank.

図1に示すように、試験液の人工海水を満たした試験槽内に試験片を垂直に設置し、試験片の試験面側の温度を40℃に、その裏面を20℃に調整し、防食塗膜に温度差勾配を付与した。空荷のバラスト状態を模擬するように、試験片全体を水没させた状態で2週間保持し、その後、人工海水を排除し、図2に示すように、試験片を水面上に露出させた模擬積荷状態を1週間保持した。   As shown in FIG. 1, a test piece is vertically installed in a test tank filled with artificial seawater as a test solution, the temperature on the test surface side of the test piece is adjusted to 40 ° C., and the back surface is adjusted to 20 ° C. A temperature difference gradient was applied to the coating film. In order to simulate the ballast state of an empty load, the whole test piece is kept under water for two weeks, and then artificial seawater is removed, and the test piece is exposed on the water surface as shown in FIG. The loaded state was maintained for one week.

なお、図2の状態では、試験槽内の試験片より下部に人工海水を残存させて、気相部の温度差によって試験片の温度差勾配を維持させ、温度の高い側から低い側へ塗膜の水分浸透が促進されるように配慮した。そして、塗膜下腐食が顕著となる高温側(40℃)を試験面(評価面)とした。   In the state of FIG. 2, artificial seawater remains below the test piece in the test tank, and the temperature difference gradient of the test piece is maintained by the temperature difference in the gas phase portion, and is applied from the higher temperature side to the lower temperature side. Consideration was made so that moisture permeation of the membrane was promoted. And the high temperature side (40 degreeC) in which corrosion under a coating film becomes remarkable was made into the test surface (evaluation surface).

評価試験では、図1および図2の状態を繰り返し、合計24週間(168日)まで継続した。試験に供した試験片の個数は各5個である。   In the evaluation test, the states of FIGS. 1 and 2 were repeated and continued for a total of 24 weeks (168 days). The number of test pieces subjected to the test is 5 pieces each.

各試験片について、塗膜/鋼材界面での腐食生成物の膨張圧による塗膜膨れが発生するまでの時間を測定し、膨れ性を評価した。塗膜膨れ発生までの時間は、1日1回の目視による外観観察を行って、各々供試した5個の試験片のいずれかに塗膜膨れが認められるまでの時間とした。   About each test piece, time until the coating film swelling by the expansion pressure of the corrosion product in a coating film / steel material interface generate | occur | produces was measured, and the swelling property was evaluated. The time until the occurrence of the swelling of the coating film was observed until the appearance of the swelling of the coating film was observed in any one of the five test pieces tested by visual observation once a day.

[腐食試験結果]
腐食試験結果は表2および表4に示すように、塗膜膨れ発生までの時間を下記6段階に分けて評価した。
7日未満:×、7日以上14日未満:、△14日以上35日未満:○
35日以上56日未満:◎、56日以上77日未満:◎◎
77日以上:◎◎◎
以下、個別に評価結果を考察する。さきに比較例について:
・No,1は塗装の規定値は満たすものの、鋼材にCu,NiおよびCrが含有されておらず、鋼材の耐食性そのものが非常に劣るため、バラストタンクとしての耐食性が不十分である。
・No.2は粒子状無機化合物の粒子状骨材の最大長径が30μmを超えており、×の評価で非常に劣る。
・No.3およびNo.4は、それぞれCu含有量およびCr含有量が不足するため、鋼材の耐食性改善が不十分であり、バラストタンク用鋼材としては不適である。
・No.5は各添加元素の成分範囲は規定値を満たすが、鋼材の表面粗さの最大高さRzが非常に大きく、塗装耐食性改善が不十分であり、×である。
・No.6は樹脂塗膜が薄くなった部分を想定したもので、×となり非常に劣る。
・No.8は無機化合物骨材の最大長径が非常に細かく健闘しているが、塗装密着性が悪く、膨れが生じているため、△となり劣る。亜鉛末の平均粒径が大きい。
・No.10ではジンクリッチプライマー膜からはみ出している亜鉛末もあり、耐食性が悪く×であり、いずれも耐食性に優れるバラストタンクとしては満足できるものではない。
[Corrosion test results]
As shown in Tables 2 and 4, the results of the corrosion test were evaluated by dividing the time until the occurrence of film swelling into the following 6 stages.
Less than 7 days: ×, 7 days or more and less than 14 days: △ 14 days or more and less than 35 days: ○
35 days or more and less than 56 days: ◎, 56 days or more and less than 77 days: ◎◎
77 days or more: ◎◎◎
Below, the evaluation results are considered individually. About the comparative example:
-Although No, 1 satisfy | fills the regulation value of a coating, since Cu, Ni, and Cr are not contained in steel materials and the corrosion resistance of steel materials itself is very inferior, the corrosion resistance as a ballast tank is inadequate.
・ No. In No. 2, the maximum long diameter of the particulate aggregate of the particulate inorganic compound exceeds 30 μm, which is very poor in evaluation of x.
・ No. 3 and no. No. 4 has insufficient Cu content and Cr content, respectively, so that the corrosion resistance of the steel material is insufficiently improved and is not suitable as a steel material for ballast tanks.
・ No. In No. 5, the component range of each additive element satisfies the specified value, but the maximum height Rz of the surface roughness of the steel material is very large, and the coating corrosion resistance improvement is insufficient, and x.
・ No. No. 6 is assumed to be a portion where the resin coating film is thin, and becomes x, which is very inferior.
・ No. Although the maximum length of the inorganic compound aggregate 8 is very fine, No. 8 is inferior, because it has poor paint adhesion and swelling. The average particle size of zinc powder is large.
・ No. No. 10, some zinc powder protrudes from the zinc-rich primer film, and the corrosion resistance is poor, and neither is satisfactory as a ballast tank excellent in corrosion resistance.

これらの比較例に対して、各構成条件が本発明の範囲内に調整された実施例の鋼材(No.11〜39)は、耐食性がいずれも○以上のレベルに向上し、さらに、鋼材成分に加えて、本発明の条件を満足するように調整されたジンクリッチプライマーおよび防食樹脂塗装をほどこした試験片は、耐食性の向上と樹脂塗膜膨れの発生も確実に抑制されていることが明らかである。   With respect to these comparative examples, the steel materials (Nos. 11 to 39) of the examples in which the respective constituent conditions are adjusted within the scope of the present invention, the corrosion resistance is improved to a level of ◯ or more, and the steel material components In addition, it is clear that the test piece coated with the zinc rich primer and the anticorrosion resin coating adjusted to satisfy the conditions of the present invention has improved corrosion resistance and the occurrence of swelling of the resin coating film is surely suppressed. It is.

すなわち、防食樹脂塗装の膜厚について考察すると、その膜厚が100〜800μmの本発明範囲で、200μm以下のもの(たとえば、No.13、No.19、No.34、No.36)と、200μmを超えるもの(No.12、No.24、No.22)とを比較すると、樹脂膜厚が厚くなるほど耐食性が増して◎◎レベルになることが明らかである。これは樹脂膜が水分等の浸透を抑える作用がその厚さに比例して膨れ発生時間が長期化し鋼材の耐食性を向上するからである。   That is, when considering the film thickness of the anticorrosion resin coating, the film thickness is within the range of the present invention of 100 to 800 μm, and 200 μm or less (for example, No. 13, No. 19, No. 34, No. 36), When compared with those exceeding 200 μm (No. 12, No. 24, No. 22), it is clear that the corrosion resistance increases as the resin film thickness increases and becomes the level of ◎. This is because the resin film suppresses the penetration of moisture and the like, and the swelling time increases in proportion to its thickness, thereby improving the corrosion resistance of the steel material.

さらに防食樹脂塗装の膜厚を250μm以上に大きくし、かつ、含まれる最大長径が10〜15μmの無機化合物骨材をジンクリッチプライマー中に配合したもの(たとえば、No.22、No.27、No.31)は、◎◎レベルの耐食性を発揮している。ただし、粒子状骨材の最大長径があまり大きいもの(No.22)よりも、No.25のように最大長径が比較的に小さい方が、耐食性が比例して高くなることが理解できる。   Furthermore, the film thickness of the anticorrosion resin coating is increased to 250 μm or more, and an inorganic compound aggregate having a maximum major axis of 10 to 15 μm contained in the zinc rich primer (for example, No. 22, No. 27, No. .31) exhibits ◎◎ level of corrosion resistance. However, No. 22 is larger than No. 22 in which the maximum major axis of the particulate aggregate is too large. It can be understood that the corrosion resistance is proportionally higher when the maximum major axis is relatively small, such as 25.

つぎに、No.38およびNo.39の試験片は、防食樹脂塗装の膜厚が、ジンクリッチプライマー中の亜鉛末の平均粒径および粒子状骨材の最大長径に比べて十分に厚く、また、骨材の最大長径および亜鉛末の平均粒径もプライマー平均膜厚15μm以下であることから、77日を過ぎても塗膜膨れの発生が観察されず、特に優れた耐食性を示した。これらの結果から、CaおよびTiを含有し、かつ表面粗さの最大高さRzを40〜50μmに調整した素地鋼材に、平均粒径4.0〜5.0μmの亜鉛末および最大長径が10μm以上かつジンクリッチプライマーの膜厚の1倍以下の無機化合物骨材を含有するジンクリッチプライマーを塗布し、さらにその上に膜厚が250〜500μmの防食樹脂塗装膜を形成することが特に好ましいことが分かる。   Next, no. 38 and no. In the test piece 39, the film thickness of the anticorrosion resin coating was sufficiently thicker than the average particle diameter of the zinc dust in the zinc rich primer and the maximum major axis of the particulate aggregate, and the maximum major axis of the aggregate and the zinc dust Since the average particle diameter of the primer was 15 μm or less, the occurrence of coating swelling was not observed even after 77 days, indicating particularly excellent corrosion resistance. From these results, a green steel containing Ca and Ti and having a maximum surface roughness height Rz adjusted to 40 to 50 μm, zinc powder having an average particle size of 4.0 to 5.0 μm and a maximum major axis of 10 μm It is particularly preferable to apply a zinc rich primer containing an inorganic compound aggregate that is not more than 1 times the thickness of the zinc rich primer, and further form an anticorrosion resin coating film having a thickness of 250 to 500 μm thereon. I understand.

その他の実施例も○〜◎◎の評価を得ている。   Other examples also obtained evaluations of.

以上に例示されたように、本発明鋼材は、その構成材料である鋼材自体が耐食性にすぐれるために、塗膜膨れを起点とする塗膜劣化を遅延させ、腐食進展を抑制することができる。さらに、ジンクリッチプライマーおよび防食塗装のほどこされた本発明鋼材は、これらジンクリッチプライマーおよび防食塗装自体に、経時的な防食機能が付与されているから、上記鋼材自体の耐食性とあいまって海水に対する耐食防食機能がきわめてすぐれる。したがって、この鋼材により構成されたバラストタンクは耐食性に優れており、海水をはじめとする各種化学物質の鋼材面への浸透を遅らせることができ、さらにこのバラストタンクを船舶に搭載して技術面および保守点検面等で利点が得られる。   As exemplified above, the steel material of the present invention is excellent in corrosion resistance because the steel material itself is excellent in corrosion resistance, so that the deterioration of the coating film starting from the swelling of the coating film can be delayed and the progress of corrosion can be suppressed. . Furthermore, the steel material of the present invention that has been subjected to the zinc rich primer and the anticorrosion coating is provided with a corrosion protection function over time in the zinc rich primer and the anticorrosion coating itself. Anticorrosion function is very good. Therefore, the ballast tank composed of this steel material is excellent in corrosion resistance, can delay the penetration of various chemical substances such as seawater into the steel material surface, and is further equipped with this ballast tank on a ship for technical and technical reasons. Advantages can be obtained in terms of maintenance and inspection.

Figure 2010018846
Figure 2010018846

Figure 2010018846
Figure 2010018846

Figure 2010018846
Figure 2010018846

Figure 2010018846
Figure 2010018846

腐食試験法の模擬図(高水位:2週間)Corrosion test method (high water level: 2 weeks) 腐食試験法の模擬図(高水位:1週間)Corrosion test method (high water level: 1 week)

Claims (6)

C:0.01〜0.30質量%(以下、%と略記。)、Si:0.01〜2.0%、Mn:0.01〜2.0%、P:0.01%以下、S:0.0005〜0.005%、Al:0.005〜0.10%、Cu:0.01〜5.0%、Ni:0.01〜5.0%、Cr:0.01〜5.0%を含有し、残部が鉄および不可避の不純物から成る鋼材の表面に、亜鉛粉末および無機化合物の粒子状骨材を含有するジンクリッチプライマーが塗布され、鋼材と同プライマーとの界面粗さの最大高さRz:20〜90μm、上記亜鉛粉末の平均粒径が1〜10μmであり、また上記無機化合物の粒子状骨材の最大長径が10μm以上で上記プライマーの平均膜厚の2倍以下であることを特徴とするバラストタンク用鋼材。   C: 0.01 to 0.30 mass% (hereinafter abbreviated as%), Si: 0.01 to 2.0%, Mn: 0.01 to 2.0%, P: 0.01% or less, S: 0.0005 to 0.005%, Al: 0.005 to 0.10%, Cu: 0.01 to 5.0%, Ni: 0.01 to 5.0%, Cr: 0.01 to A zinc rich primer containing zinc powder and particulate aggregates of inorganic compounds is applied to the surface of the steel material containing 5.0% and the balance consisting of iron and inevitable impurities, and the interface roughness between the steel material and the primer is applied. Maximum height Rz: 20 to 90 μm, the average particle diameter of the zinc powder is 1 to 10 μm, and the maximum long diameter of the particulate aggregate of the inorganic compound is 10 μm or more and twice the average film thickness of the primer A steel material for a ballast tank characterized by the following. Mg、CaまたはSrの1種以上をそれぞれ0.0001〜0.005%含有する請求項1に記載されたバラストタンク用鋼材。   The steel material for ballast tanks described in Claim 1 which contains 0.0001-0.005% of 1 or more types of Mg, Ca, or Sr, respectively. Co、TiまたはZrの1種以上をそれぞれ0.005〜0.20%含有する請求項1または2に記載されたバラストタンク用鋼材。   The steel material for ballast tanks according to claim 1 or 2, which contains 0.005 to 0.20% of one or more of Co, Ti, or Zr. B:0.0001〜0.010%、V:0.01〜0.50%またはNb:0.003〜0.50%の1種以上を含有する請求項1、2または3に記載されたバラストタンク用鋼材。   It contained 1 or more types of B: 0.0001-0.010%, V: 0.01-0.50% or Nb: 0.003-0.50%, It was described in Claim 1, 2, or 3 Steel for ballast tanks. 請求項1、2、3または4に記載された鋼材から構成され、ジンクリッチプライマーの表面に、厚さが100〜800μmの防食樹脂皮膜を塗布したことを特徴とするバラストタンク。   A ballast tank comprising the steel material according to claim 1, wherein a corrosion-resistant resin film having a thickness of 100 to 800 μm is applied to the surface of the zinc rich primer. 請求項5に記載されたバラストタンクが搭載された船舶。   A ship equipped with the ballast tank according to claim 5.
JP2008180497A 2008-07-10 2008-07-10 Steel for ballast tanks, ballast tanks and ships Expired - Fee Related JP5185712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180497A JP5185712B2 (en) 2008-07-10 2008-07-10 Steel for ballast tanks, ballast tanks and ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180497A JP5185712B2 (en) 2008-07-10 2008-07-10 Steel for ballast tanks, ballast tanks and ships

Publications (2)

Publication Number Publication Date
JP2010018846A true JP2010018846A (en) 2010-01-28
JP5185712B2 JP5185712B2 (en) 2013-04-17

Family

ID=41704033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180497A Expired - Fee Related JP5185712B2 (en) 2008-07-10 2008-07-10 Steel for ballast tanks, ballast tanks and ships

Country Status (1)

Country Link
JP (1) JP5185712B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225299A (en) * 2010-04-15 2011-11-10 Ihi Corp Conveyor trough structure
JP2012153920A (en) * 2011-01-24 2012-08-16 Kobe Steel Ltd Corrosion resistant steel product for upper structure of ship
KR20160140728A (en) 2014-04-11 2016-12-07 신닛테츠 스미킨 가부시키가이샤 Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295071A (en) * 2000-04-06 2001-10-26 Kansai Paint Co Ltd Pretreatment method for steel sheet
JP2003171732A (en) * 2001-12-06 2003-06-20 Kobe Steel Ltd Corrosion resistant steel sheet having excellent coating corrosion resistance and pitting corrosion resistance
JP2008031540A (en) * 2006-07-31 2008-02-14 Kobe Steel Ltd Steel material having superior corrosion resistance for ballast tank, and ballast tank having superior durability
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2008156377A (en) * 2006-12-20 2008-07-10 Sumitomo Metal Ind Ltd Steel material for laser cutting and coating material composition thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295071A (en) * 2000-04-06 2001-10-26 Kansai Paint Co Ltd Pretreatment method for steel sheet
JP2003171732A (en) * 2001-12-06 2003-06-20 Kobe Steel Ltd Corrosion resistant steel sheet having excellent coating corrosion resistance and pitting corrosion resistance
JP2008031540A (en) * 2006-07-31 2008-02-14 Kobe Steel Ltd Steel material having superior corrosion resistance for ballast tank, and ballast tank having superior durability
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2008156377A (en) * 2006-12-20 2008-07-10 Sumitomo Metal Ind Ltd Steel material for laser cutting and coating material composition thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤靖: "ブラスト表面の粗さと塗膜性能", 実務表面技術, vol. 31, no. 7, JPN6012067957, July 1984 (1984-07-01), JP, pages 318 - 323, ISSN: 0002424348 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225299A (en) * 2010-04-15 2011-11-10 Ihi Corp Conveyor trough structure
JP2012153920A (en) * 2011-01-24 2012-08-16 Kobe Steel Ltd Corrosion resistant steel product for upper structure of ship
KR20160140728A (en) 2014-04-11 2016-12-07 신닛테츠 스미킨 가부시키가이샤 Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank

Also Published As

Publication number Publication date
JP5185712B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
KR101792406B1 (en) Steel material for painting excellent in corrosion resistance
JP4393291B2 (en) Marine steel with excellent corrosion resistance
WO2010074307A1 (en) Corrosion-resistant steel material for crude oil tanker
JP5453840B2 (en) Marine steel with excellent corrosion resistance
JP2011021248A (en) Steel for ship having excellent coating corrosion resistance
JP5774859B2 (en) Corrosion resistant steel for ship superstructure
JP4668141B2 (en) Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability
JP5481980B2 (en) Marine steel with excellent film swell resistance
KR101715581B1 (en) Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold
JP2010285673A (en) Steel for ship excellent in coating film-blistering resistance
JP2012091428A (en) Steel for ship excellent in coating corrosion resistance
JP2015151571A (en) Coated steel excellent in corrosion resistance
KR20180007676A (en) Painting steel material and method for producing the same
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP5216199B2 (en) Marine welded joints and welded structures with excellent crevice corrosion resistance
JP2012092404A (en) Steel for ship having excellent coating corrosion resistance
JP5265944B2 (en) Marine steel with excellent corrosion resistance
JP5185712B2 (en) Steel for ballast tanks, ballast tanks and ships
JP2012092403A (en) Steel for ship having excellent coating corrosion resistance
JP5318550B2 (en) Painted steel material for ballast tanks with excellent paint film blistering resistance, and ballast tanks and ships using the same
JP4923614B2 (en) Corrosion resistant steel for ships
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP2006009128A (en) Steel for vessel having excellent corrosion resistance
JP6409963B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees