JP2010018481A - Ultraviolet ray- and infrared ray-absorbing synthetic silica glass and method for producing the same - Google Patents

Ultraviolet ray- and infrared ray-absorbing synthetic silica glass and method for producing the same Download PDF

Info

Publication number
JP2010018481A
JP2010018481A JP2008180404A JP2008180404A JP2010018481A JP 2010018481 A JP2010018481 A JP 2010018481A JP 2008180404 A JP2008180404 A JP 2008180404A JP 2008180404 A JP2008180404 A JP 2008180404A JP 2010018481 A JP2010018481 A JP 2010018481A
Authority
JP
Japan
Prior art keywords
silica glass
synthetic silica
infrared
ultraviolet
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008180404A
Other languages
Japanese (ja)
Other versions
JP5284702B2 (en
Inventor
Tatsuhiro Sato
龍弘 佐藤
Yoshimasa Yoshida
宜正 吉田
Katsuhide Orikasa
勝英 折笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2008180404A priority Critical patent/JP5284702B2/en
Publication of JP2010018481A publication Critical patent/JP2010018481A/en
Application granted granted Critical
Publication of JP5284702B2 publication Critical patent/JP5284702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide ultraviolet ray- and infrared ray-absorbing synthetic silica glass which has reduced light transmittance in the ultraviolet region and infrared region without incorporation of a metal impurity into the glass and has high transmittance in the visible light region, and to provide a method for producing the same. <P>SOLUTION: The ultraviolet ray- and infrared ray-absorbing synthetic silica glass is characterized in that the total concentration of metal impurities is ≤1 ppm, the oxygen-deficient defect amount at a wavelength of 250 nm is 0.1-2/cm in terms of absorption coefficient, the internal transmittance of light having a wavelength of ≤250 nm is 0-80 %/cm, the internal transmittance of light having a wavelength of 500-1,100 nm is 50-92%/cm, and the internal transmittance of light having a wavelength of ≥1,500 nm is 0-85 %/cm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、紫外線赤外線吸収合成シリカガラス及びその製造方法に関する。   The present invention relates to an ultraviolet and infrared absorbing synthetic silica glass and a method for producing the same.

シリカガラスは、赤外線から真空紫外線までの広い波長範囲において透明であるばかりでなく、耐熱性、耐薬品性にも優れ、様々な製造装置、実験装置において、多用されてきた。反面、透明性が高いことによって、例えば発光源からの紫外線を遮断したり、高温発光源からの赤外線を遮蔽して保熱する用途には、不適であった。   Silica glass is not only transparent in a wide wavelength range from infrared rays to vacuum ultraviolet rays, but also excellent in heat resistance and chemical resistance, and has been widely used in various production apparatuses and experimental apparatuses. On the other hand, the high transparency makes it unsuitable for applications such as blocking ultraviolet rays from a light-emitting source or shielding infrared rays from a high-temperature light-emitting source to retain heat.

これらの問題を解決する為に、特許文献1においては、金属不純物を高濃度に含有させて紫外と赤外域の光線を吸収する紫外線赤外線吸収ガラスを提案している。但し、このようにして作られた紫外線赤外線吸収ガラスは、1000℃を超えるような高温用途では耐熱性が不足し、また、金属不純物による汚染が問題視される用途には、使用することができなかった。   In order to solve these problems, Patent Document 1 proposes an ultraviolet-infrared absorbing glass that contains a metal impurity at a high concentration and absorbs light in the ultraviolet and infrared regions. However, the ultraviolet and infrared absorbing glass made in this way can be used for applications where heat resistance is insufficient for high temperature applications exceeding 1000 ° C. and contamination by metal impurities is considered a problem. There wasn't.

例えば、半導体製造工程で使用されるシリカガラス部材に要求される金属不純物の純度レベルは、極めて高い。天然シリカガラス中に含まれる金属不純物は、ppmレベルであるにも関わらず、近年の半導体製造工程では、許容されず、より高純度である合成シリカガラスの必要性が高まっている。但し、シリカガラスは、紫外から赤外まで光透過率が極めて高く、特に、紫外線の遮蔽や、赤外線を遮蔽しての保熱しが必要な半導体製造装置用途には適さず、製造される半導体素子の収率が大幅に低下する問題があった。
特開平6−92678号公報
For example, the purity level of metal impurities required for silica glass members used in semiconductor manufacturing processes is extremely high. Despite the ppm level of metal impurities contained in natural silica glass, it is not acceptable in recent semiconductor manufacturing processes, and the need for synthetic silica glass with higher purity is increasing. However, silica glass has an extremely high light transmittance from ultraviolet to infrared, and is not suitable for use in semiconductor manufacturing equipment that needs to be shielded from ultraviolet rays or to keep heat by shielding infrared rays. There has been a problem that the yield of is significantly reduced.
JP-A-6-92678

こうした現状を踏まえて、本発明者等は鋭意研究した結果、金属不純物を含有させることなく、紫外域と赤外域の光線透過率を低下させた、合成シリカガラスを作成することに成功した。
本発明は、金属不純物を含有させることなく、紫外域と赤外域の光線透過率を低下させ、且つ可視域の透過率が高い紫外線赤外線吸収合成シリカガラス及びその製造方法を提供することを目的とする。
In light of these circumstances, the present inventors have conducted extensive research and have succeeded in producing a synthetic silica glass in which the light transmittance in the ultraviolet region and the infrared region is reduced without containing metal impurities.
It is an object of the present invention to provide an ultraviolet-infrared-absorbing synthetic silica glass having a low transmittance in the ultraviolet region and an infrared region and having a high transmittance in the visible region and a method for producing the same without containing metal impurities. To do.

上記課題を達成するために、本発明の紫外線赤外線吸収合成シリカガラスは、金属不純物濃度の総和が1ppm以下であり、波長250nmにおける酸素欠損型欠陥量が吸収係数で0.1〜2/cmであり、波長250nm以下の光線の内部透過率が0%/cm以上80%/cm以下であり、波長500nmから1100nmまでの光線の内部透過率が50%/cm以上92%/cm以下であり、波長1500nm以上の光線の内部透過率が0%/cm以上85%/cm以下であることを特徴とする。   In order to achieve the above-mentioned problems, the ultraviolet-infrared-absorbing synthetic silica glass of the present invention has a total metal impurity concentration of 1 ppm or less, and an oxygen-deficient defect amount at a wavelength of 250 nm is 0.1 to 2 / cm as an absorption coefficient. Yes, the internal transmittance of light having a wavelength of 250 nm or less is 0% / cm or more and 80% / cm or less, and the internal transmittance of light having a wavelength of 500 nm to 1100 nm is 50% / cm or more and 92% / cm or less, The internal transmittance of light having a wavelength of 1500 nm or more is 0% / cm or more and 85% / cm or less.

この紫外線赤外線吸収合成シリカガラス中に、常磁性欠陥が、1×1013spins/g以上1×1020spins/g以下存在することが好適である。 It is preferable that paramagnetic defects are present in the ultraviolet-infrared-absorbing synthetic silica glass in an amount of 1 × 10 13 spins / g to 1 × 10 20 spins / g.

本発明の紫外線赤外線吸収合成シリカガラスの製造方法は、本発明の合成シリカガラスの製造方法であって、多孔質合成シリカガラス体を還元性を有する雰囲気中で加熱する還元処理を行った後、水素を含む雰囲気中で加熱処理し、その後焼成して緻密なシリカガラス体とすることを特徴とする。   The method for producing the ultraviolet-infrared-absorbing synthetic silica glass of the present invention is a method for producing the synthetic silica glass of the present invention, and after performing a reduction treatment in which the porous synthetic silica glass body is heated in a reducing atmosphere, The heat treatment is performed in an atmosphere containing hydrogen, followed by firing to form a dense silica glass body.

前記還元性を有する雰囲気が揮発性有機珪素化合物を含む還元性雰囲気であることが好ましい。前記焼成処理を加圧雰囲気で行うことが好適である。   The reducing atmosphere is preferably a reducing atmosphere containing a volatile organosilicon compound. It is preferable to perform the baking treatment in a pressurized atmosphere.

本発明の合成シリカガラスは、紫外域と赤外域の光線透過率が低く、一方で可視域の透過率は高く保持されるので、紫外線を遮蔽しつつ、保熱しながら、可視光線による光透過確認が可能である。また、金属不純物が含有されない合成シリカガラス素材であるため、半導体製造工程で適用されるには、最も適した素材である。   The synthetic silica glass of the present invention has a low light transmittance in the ultraviolet region and the infrared region, while the transmittance in the visible region is kept high, so that light transmission confirmation by visible light is performed while shielding ultraviolet rays and keeping heat. Is possible. Further, since it is a synthetic silica glass material that does not contain metal impurities, it is the most suitable material to be applied in the semiconductor manufacturing process.

以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.

本発明の紫外線赤外線吸収合成シリカガラスは、金属不純物濃度の総和が1ppm以下であり、且つ波長250nmでの酸素欠損型欠陥量が吸収係数で0.1〜2/cmであり、波長250nm以下の光線の内部透過率が0%/cm以上80%/cm以下であり、波長500nmから1100nmまでの光線の内部透過率が50%/cm以上92%/cm以下であり、波長1500nm以上の光線の内部透過率が0%/cm以上85%/cm以下であることを特徴とする。   The ultraviolet-infrared-absorbing synthetic silica glass of the present invention has a total metal impurity concentration of 1 ppm or less, an oxygen-deficient defect amount at a wavelength of 250 nm is an absorption coefficient of 0.1 to 2 / cm, and a wavelength of 250 nm or less. The internal transmittance of light is 0% / cm or more and 80% / cm or less, the internal transmittance of light from a wavelength of 500 nm to 1100 nm is 50% / cm or more and 92% / cm or less, and the light having a wavelength of 1500 nm or more The internal transmittance is 0% / cm or more and 85% / cm or less.

シリカガラス中の金属不純物濃度の総和が1ppmを越えると、シリカガラス表面から含有金属不純物が微量に放出され、放出された金属不純物は、半導体素材あるいは半導体素子上に飛散して、特性劣化の原因となる。この金属不純物としては、特にアルカリ金属元素、アルカリ土類金属元素、遷移元素が挙げられ、具体的には、Li、Na、K、Ca、Mg、Al、Tiなどが挙げられる。   If the total concentration of metal impurities in the silica glass exceeds 1 ppm, a small amount of metal impurities are released from the silica glass surface, and the released metal impurities are scattered on the semiconductor material or semiconductor element, causing deterioration in characteristics. It becomes. Examples of the metal impurities include alkali metal elements, alkaline earth metal elements, and transition elements, and specifically include Li, Na, K, Ca, Mg, Al, Ti, and the like.

本発明の紫外線赤外線吸収合成シリカガラスの製造方法としては、多孔質シリカガラス体を、還元性を有する雰囲気中で加熱する還元処理した後、水素を含む雰囲気中で加熱処理し、その後焼成して緻密なシリカガラス体とする方法が挙げられる。   As a method for producing the ultraviolet-infrared-absorbing synthetic silica glass of the present invention, the porous silica glass body is subjected to a reduction treatment in which the porous silica glass body is heated in a reducing atmosphere, followed by a heat treatment in an atmosphere containing hydrogen, followed by firing. A method for forming a dense silica glass body is exemplified.

前記多孔質シリカガラス体の製造方法は特に制限はなく、スート法やゾルゲル法等の公知の方法により得ることができるが、スート法が好適である。例えば、多重管構造の石英ガラス製バーナーの中心からSiClなどの原料ガスを供給し、その外側の管から水素やメタン及び酸素を供給し、前記原料を火炎加水分解してシリカ粒子を得、それをターゲット上に堆積させて、多孔質合成シリカガラス体(スート体)を得ることが好ましい。 The method for producing the porous silica glass body is not particularly limited and can be obtained by a known method such as a soot method or a sol-gel method, but the soot method is preferable. For example, a raw material gas such as SiCl 4 is supplied from the center of a quartz glass burner having a multi-tube structure, hydrogen, methane and oxygen are supplied from the outer tube, and the raw material is subjected to flame hydrolysis to obtain silica particles. It is preferable to deposit it on the target to obtain a porous synthetic silica glass body (soot body).

前記多孔質合成石英ガラス体は、水酸基を多く含んでいるものが好ましい。水酸基を含むことで還元処理におけるガス反応が促進される。還元反応にはOH基を約50から1000ppm含有することが必要で、好ましくは100から500ppm含有するとよい。これ以下では、反応種の量が少なく、効果が見られず、これ以上では、反応が追いつかず、ゲル化する。   The porous synthetic quartz glass body preferably contains many hydroxyl groups. The gas reaction in the reduction treatment is promoted by including a hydroxyl group. The reduction reaction needs to contain about 50 to 1000 ppm of OH groups, preferably 100 to 500 ppm. Below this, the amount of reactive species is small and no effect is seen, and above this, the reaction cannot catch up and gelation occurs.

多孔質合成シリカガラス体を、還元性を有する雰囲気中、好ましくは揮発性有機珪素化合物を含む還元性雰囲気中で加熱する還元処理を行うことによって、合成シリカガラスの中に、約250nm(5.0eV)の酸素欠損型欠陥量を、その吸収係数で0.1〜2/cmの範囲に作成して、250nm以下の光線の内部透過率が80%/cm以下とする。   The porous synthetic silica glass body is subjected to a reduction treatment by heating in a reducing atmosphere, preferably in a reducing atmosphere containing a volatile organosilicon compound, whereby about 250 nm (5. The oxygen deficiency defect amount of 0 eV) is created in the range of 0.1 to 2 / cm in terms of its absorption coefficient, and the internal transmittance of light having a wavelength of 250 nm or less is 80% / cm or less.

前記還元処理において、還元性を有する雰囲気に含まれる気体としては、ヘキサメチルジシラザン([(CHSi]NH)、トリクロロメチルシラン((CHCl)SiH)、ヘキサメチルジシロキサン[(CHSi]O等の揮発性有機珪素化合物や、アンモニア(NH)、ヒドラジン(N)、エタノール(COH)、一酸化炭素(CO)、塩素(Cl)、四塩化ケイ素(SiCl)が挙げられ、揮発性有機珪素化合物がより好ましい。 In the reduction treatment, the gases contained in the reducing atmosphere include hexamethyldisilazane ([(CH 3 ) 3 Si] 2 NH), trichloromethylsilane ((CH 2 Cl) 3 SiH), hexamethyldi Volatile organic silicon compounds such as siloxane [(CH 3 ) 3 Si] 2 O, ammonia (NH 3 ), hydrazine (N 2 H 4 ), ethanol (C 2 H 5 OH), carbon monoxide (CO), Examples include chlorine (Cl 2 ) and silicon tetrachloride (SiCl 4 ), and volatile organic silicon compounds are more preferable.

前記還元処理における加熱温度は、100〜1300℃が好ましく、より好ましくは400〜1000℃である。処理時間は加熱温度に応じて適宜選択すればよいが、10時間〜100時間が好ましい。   The heating temperature in the reduction treatment is preferably 100 to 1300 ° C, more preferably 400 to 1000 ° C. The treatment time may be appropriately selected according to the heating temperature, but is preferably 10 hours to 100 hours.

本発明で規定する酸素欠損型欠陥は、シリカガラスの構造欠陥の1つである酸素原子の欠損に基づく欠陥であるが、この酸素欠損型欠陥が存在すると、Si−Si結合が増大し、その吸収性により波長250nm以下の光線の透過率が低下する。
前記酸素欠損型欠陥量はその吸収係数で0.1〜2/cmの範囲が良い。吸収係数が0.1/cm未満では、酸素欠損型欠陥による波長250nm以下の光線の透過率の低減効果がなく、また、2/cmを越えると可視光線の透過率が必要以上に低下する。
The oxygen deficiency type defect defined in the present invention is a defect based on the deficiency of an oxygen atom, which is one of the structural defects of silica glass. If this oxygen deficiency type defect exists, the Si-Si bond increases, The transmittance of light having a wavelength of 250 nm or less is reduced due to absorption.
The oxygen deficiency type defect amount is preferably in the range of 0.1 to 2 / cm in terms of its absorption coefficient. When the absorption coefficient is less than 0.1 / cm, there is no effect of reducing the transmittance of light having a wavelength of 250 nm or less due to oxygen deficiency defects, and when it exceeds 2 / cm, the transmittance of visible light is unnecessarily lowered.

酸素欠損型欠陥の吸収係数は、酸素欠損型欠陥が約250nm(5.0eV)の吸収帯としてあらわれる(H. Imai et at. (1988) Two types of oxygen-deficient centers in synthetic silica glass. physical Review B. Vol. 38, No.17, pp12772~12775)。この250nmの吸収係数を測定し、下記式(1)に当て嵌めることにより内部透過率が算出できる。
T=10−kd ・・・(1)
(前記式(1)において、Tは内部透過率(%)、dは測定試料の厚さ(cm)、kは物質固有の吸収係数である。)
The absorption coefficient of oxygen-deficient defects appears as an absorption band of about 250 nm (5.0 eV) (H. Imai et at. (1988) Two types of oxygen-deficient centers in synthetic silica glass. Physical Review B. Vol. 38, No. 17, pp12772-12775). The internal transmittance can be calculated by measuring the absorption coefficient of 250 nm and fitting it to the following formula (1).
T = 10 −kd (1)
(In the above formula (1), T is the internal transmittance (%), d is the thickness of the measurement sample (cm), and k is the absorption coefficient specific to the substance.)

前記還元処理後、さらに、上記水素を含む雰囲気中で加熱処理することによって、合成シリカガラスの中に、赤外線を吸収するSi−O結合を所望量作成して、該波長1500nm以上の光線の内部透過率を85%/cm以下とする。   After the reduction treatment, further heat treatment is performed in an atmosphere containing hydrogen to create a desired amount of Si—O bonds that absorb infrared rays in the synthetic silica glass, and the inside of the light having a wavelength of 1500 nm or more. The transmittance is set to 85% / cm or less.

前記水素を含む雰囲気中での加熱処理の温度条件は、300〜1900℃が好ましく、より好ましくは500〜1500℃である。処理時間は加熱温度に応じて適宜選択すればよいが、1時間〜500時間が好ましく、30時間〜500時間がより好ましい。圧力条件は、0.1Paから加圧雰囲気、好ましくは大気圧又は加圧雰囲気、より好ましくは加圧雰囲気の圧力範囲が好適である。前記水素を含む雰囲気での加熱処理を加圧雰囲気で行うことにより、シリカガラス中のSi−Oの生成量を増大させることができる。上記加圧雰囲気における加圧範囲としては、0を超える圧力以上0.9MPa以下であることが好ましい。   As for the temperature conditions of the heat processing in the atmosphere containing the said hydrogen, 300-1900 degreeC is preferable, More preferably, it is 500-1500 degreeC. The treatment time may be appropriately selected according to the heating temperature, but is preferably 1 hour to 500 hours, more preferably 30 hours to 500 hours. The pressure condition is from 0.1 Pa to a pressurized atmosphere, preferably atmospheric pressure or a pressurized atmosphere, more preferably a pressure range of a pressurized atmosphere. By performing the heat treatment in an atmosphere containing hydrogen in a pressurized atmosphere, the amount of Si—O generated in the silica glass can be increased. The pressurizing range in the pressurizing atmosphere is preferably a pressure exceeding 0 to 0.9 MPa.

Si−O結合は、3300〜3400ガウスの磁場を掛けたときに観察される、常磁性欠陥の一種で、スピン密度の総量が、1×1013spins/g以上1×1020spins/g以下の範囲にあることが好ましく、2×1013spins/g以上1×1019spins/g以下の範囲がより好ましい。常磁性欠陥が1×1013spins/g未満では、赤外線吸収が小さくなりすぎ、効果がなく、1×1020spins/gを超える場合では、余分なSi−O結合が気泡発生原因となって、使用に適さなくなる。 The Si—O bond is a kind of paramagnetic defect observed when a magnetic field of 3300 to 3400 gauss is applied, and the total amount of spin density is 1 × 10 13 spins / g or more and 1 × 10 20 spins / g or less. The range is preferably 2 × 10 13 spins / g or more and 1 × 10 19 spins / g or less. If the paramagnetic defect is less than 1 × 10 13 spins / g, the infrared absorption is too small and has no effect. If the paramagnetic defect exceeds 1 × 10 20 spins / g, excess Si—O bonds cause bubbles. , Not suitable for use.

上記2つの吸収要因によって、波長500nmから1100nmまでの光線の内部透過率は、上記2つの光吸収因子の影響を受けて若干低下するが、50%/cm以上に保持される。   Due to the above two absorption factors, the internal transmittance of light having a wavelength of 500 nm to 1100 nm is slightly reduced by the influence of the two light absorption factors, but is maintained at 50% / cm or more.

前記焼成処理としては特に制限はないが、0.1Paから加圧雰囲気、好ましくは大気圧又は加圧雰囲気、より好ましくは加圧雰囲気の圧力範囲において、1100〜1900℃、好ましくは1200〜1800℃の温度で焼成して緻密化シリカガラス体を作ることが好適である。上記加圧雰囲気における加圧範囲としては、0を超える圧力以上0.9MPa以下であることが好ましい。前記焼成処理を加圧雰囲気で行うことにより、特に赤外線の吸収因子であるSi−Oをガラス体内に保持し、大きな赤外線吸収を発生させることができる。
前記焼成処理の雰囲気としては、不活性ガスが好ましく、N、Ar、Heがより好ましい。処理時間は加熱温度に応じて適宜選択すればよいが、10分〜500時間が好ましく、1時間〜100時間がより好ましい。
Although there is no restriction | limiting in particular as said baking process, It is 1100-1900 degreeC in the pressure range of 0.1 Pa to pressurization atmosphere, Preferably atmospheric pressure or pressurization atmosphere, More preferably, pressurization atmosphere, Preferably it is 1200-1800 degreeC. It is preferable to make a densified silica glass body by firing at the temperature of The pressurizing range in the pressurizing atmosphere is preferably a pressure exceeding 0 to 0.9 MPa. By performing the baking treatment in a pressurized atmosphere, particularly Si—O, which is an infrared absorption factor, can be held in the glass body and large infrared absorption can be generated.
As the atmosphere for the baking treatment, an inert gas is preferable, and N 2 , Ar, and He are more preferable. The treatment time may be appropriately selected according to the heating temperature, but is preferably 10 minutes to 500 hours, and more preferably 1 hour to 100 hours.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.

各物性値の測定方法は下記の通りである。
(1)アルミニウム,アルカリ金属、およびアルカリ土類金属元素各含有量の測定;原子吸光光度法。
(2)吸収係数の測定;紫外線分光光度法。
(3)内部透過率(2面鏡面10t)の測定;紫外線分光光度法。
(4)常時性欠陥の測定:ESR分光測定法。
The measuring method of each physical property value is as follows.
(1) Measurement of each content of aluminum, alkali metal, and alkaline earth metal element; atomic absorption photometry.
(2) Measurement of absorption coefficient; ultraviolet spectrophotometry.
(3) Measurement of internal transmittance (dihedral mirror surface 10t); ultraviolet spectrophotometry.
(4) Measurement of permanent defects: ESR spectroscopy.

(実施例1)
テトラクロロシランの火炎加水分解によって得た、外径100mm×内径60mm×長さ300mmの円筒状で密度が0.7g/cmの多孔質合成シリカガラス体(OH基約300ppm含有)約1kgを電気炉内に装着されたシリカガラス製の炉心管(直径200mm)内にセットし、次いで、炉心管内を排気した後、500℃に加熱し、この温度で約60分間予熱した。
Example 1
About 1 kg of porous synthetic silica glass body (containing about 300 ppm of OH group) obtained by flame hydrolysis of tetrachlorosilane and having a cylindrical shape with an outer diameter of 100 mm, an inner diameter of 60 mm and a length of 300 mm and a density of 0.7 g / cm 3 It was set in a silica glass core tube (diameter 200 mm) mounted in the furnace, and then the inside of the core tube was evacuated and then heated to 500 ° C. and preheated at this temperature for about 60 minutes.

その後、ヘキサメチルジシラザン蒸気を大気圧で、Nガスで希釈しながら供給し、ヘキサメチルジシラザンと多孔質合成シリカガラス体中のOH基とを反応させた。前記ヘキサメチルジシラザンによる還元処理の条件を表1に示す。なお、ヘキサメチルジシラザン蒸気及びNガスの流量はそれぞれ1mol/hrである。
還元処理終了後、多孔質合成シリカガラス体を加熱炉内に移し、炉内温度を800℃に昇温し、Hガスを1mol/hr掛け流しながら、0.1MPa加圧した圧力条件で1時間保持した。
次いで、炉内をN雰囲気中にて0.4MPaとし、1500℃に昇温し、1時間保持した。それを室温まで冷却して緻密化された外径100mm×内径90mm×長さ300mmの透明なシリンダー状シリカガラスを得た。水素処理及び焼成処理の条件を表2に示す。
Thereafter, hexamethyldisilazane vapor was supplied at atmospheric pressure while diluting with N 2 gas to react hexamethyldisilazane with OH groups in the porous synthetic silica glass body. The conditions for the reduction treatment with hexamethyldisilazane are shown in Table 1. The flow rates of hexamethyldisilazane vapor and N 2 gas are 1 mol / hr, respectively.
After completion of the reduction treatment, the porous synthetic silica glass body is transferred into a heating furnace, the furnace temperature is raised to 800 ° C., and H 2 gas is applied at a pressure of 0.1 MPa while flowing 1 mol / hr. Held for hours.
Next, the inside of the furnace was set to 0.4 MPa in an N 2 atmosphere, and the temperature was raised to 1500 ° C. and held for 1 hour. It was cooled to room temperature to obtain a transparent cylindrical silica glass having an outer diameter of 100 mm, an inner diameter of 90 mm, and a length of 300 mm. Table 2 shows the conditions for the hydrogen treatment and the firing treatment.

得られたシリンダー状シリカガラスについてその物性値を測定し、それを表3に示した。また、このシリンダー状シリカガラスについて波長200nmから2500nmの光線の内部透過率を調べた。その結果を図1に示す。
作成されたシリカガラスを用い、半導体製造装置の赤外線保温板を作成し、装置に取り付けて、半導体素子の製造を行った。半導体素子製造エリア各部の保温状況が一定、且つ、安定化し、その結果、半導体素子の製造収率も向上した。結果を表3に示す。なお、半導体製造装置内保温性の測定は、装置内反応エリアの加熱処理中の温度均一性が10%以内の場合をOK、10%を超える場合をN.G.として評価した。
The physical properties of the obtained cylindrical silica glass were measured and are shown in Table 3. Further, the internal transmittance of light having a wavelength of 200 nm to 2500 nm was examined for this cylindrical silica glass. The result is shown in FIG.
Using the prepared silica glass, an infrared heat insulating plate of a semiconductor manufacturing apparatus was prepared and attached to the apparatus to manufacture a semiconductor element. The heat insulation state in each part of the semiconductor element manufacturing area was constant and stabilized, and as a result, the manufacturing yield of the semiconductor element was also improved. The results are shown in Table 3. The measurement of the heat retention in the semiconductor manufacturing apparatus is OK when the temperature uniformity during the heat treatment in the reaction area within the apparatus is within 10%, and when the temperature uniformity exceeds 10%. G. As evaluated.

(実施例2)
表1及び表2に示した如く、ヘキサメチルジシラザンの代わりにトリクロロメチルシラン((CHCl)SiH)を用いた以外、実施例1と同様にしてシリンダー状シリカガラスを得た。得られたシリンダー状シリカガラスについてその物性値を測定し、それを表3に示した。また、このシリカガラスについても波長200nmから2500nmの光線の透過率を調べた。その結果を図1に示す。半導体素子試作結果を表3に示す。
(Example 2)
As shown in Tables 1 and 2, a cylindrical silica glass was obtained in the same manner as in Example 1 except that trichloromethylsilane ((CH 2 Cl) 3 SiH) was used instead of hexamethyldisilazane. The physical properties of the obtained cylindrical silica glass were measured and are shown in Table 3. Further, the transmittance of light having a wavelength of 200 nm to 2500 nm was also examined for this silica glass. The result is shown in FIG. Table 3 shows the results of semiconductor device trial manufacture.

(実施例3)
表1及び表2に示した如く、ヘキサメチルジシラザンの代わりにヘキサメチルジシロキサン[(CHSi]を用いた以外、実施例1と同様にしてシリンダー状シリカガラスを得た。得られたシリンダー状シリカガラスについてその物性値を測定し、それを表2に示した。また、このシリカガラスについて波長200nmから2500nmの光線の透過率を調べた。その結果を図1に示す。半導体素子試作結果を表3に示す。
Example 3
As shown in Tables 1 and 2, a cylindrical silica glass was obtained in the same manner as in Example 1 except that hexamethyldisiloxane [(CH 3 ) 3 Si] 2 was used instead of hexamethyldisilazane. The physical properties of the obtained cylindrical silica glass were measured and are shown in Table 2. Further, the transmittance of light having a wavelength of 200 nm to 2500 nm was examined for this silica glass. The result is shown in FIG. Table 3 shows the results of semiconductor device trial manufacture.

(比較例1)
テトラクロロシランの火炎加水分解によって得た、外径100mm×内径60mm×長さ300mmの円筒状で密度が0.7g/cmの多孔質合成シリカガラス体(OH基約300ppm含有)約1kgを電気炉内に装着されたシリカガラス製の炉心管(直径200mm)内にセットした。次いで、炉心管内を排気した後、500℃に加熱し、この温度で60分間予熱した。その後、Nガスを供給し、表1の条件で加熱処理を行った。
(Comparative Example 1)
About 1 kg of porous synthetic silica glass body (containing about 300 ppm of OH group) obtained by flame hydrolysis of tetrachlorosilane and having a cylindrical shape with an outer diameter of 100 mm, an inner diameter of 60 mm and a length of 300 mm and a density of 0.7 g / cm 3 It was set in a furnace core tube (diameter 200 mm) made of silica glass mounted in the furnace. Next, after exhausting the inside of the furnace tube, it was heated to 500 ° C. and preheated at this temperature for 60 minutes. Then, the N 2 gas is supplied, a heat treatment was performed under the conditions of Table 1.

その後、多孔質合成シリカガラス体を加熱炉内に移し、炉内温度を800℃に昇温し、Nガスを1mol/hr掛け流しながら、1時間保持した。炉内を0.1Paに減圧するとともに、1500℃に昇温し、1時間保持した。室温まで冷却し、緻密化され外径100mm×内径90mm×長さ300mmの透明なシリンダー状シリカガラスを得た。 Thereafter, the porous synthetic silica glass body was transferred into a heating furnace, the furnace temperature was raised to 800 ° C., and maintained for 1 hour while flowing N 2 gas at 1 mol / hr. While reducing the pressure in the furnace to 0.1 Pa, the temperature was raised to 1500 ° C. and held for 1 hour. After cooling to room temperature, a transparent cylindrical silica glass having an outer diameter of 100 mm, an inner diameter of 90 mm, and a length of 300 mm was obtained.

得られたシリンダー状シリカガラスについて物性値を測定し、それを表3に示した。また、このシリンダー状シリカガラスについて波長200nmから2500nmの光線の内部透過率を調べた。その結果を図1に示す。半導体素子試作結果を表3に示す。   The physical properties of the obtained cylindrical silica glass were measured and are shown in Table 3. Further, the internal transmittance of light having a wavelength of 200 nm to 2500 nm was examined for this cylindrical silica glass. The result is shown in FIG. Table 3 shows the results of semiconductor device trial manufacture.

(比較例2)
天然シリカガラスについて物性値を測定し、それを表3に示した。また、天然シリカガラスについて波長200nmから2500nmの光線の内部透過率を調べた。その結果を図1に示す。半導体素子試作結果を表3に示す。
(Comparative Example 2)
The physical properties of natural silica glass were measured and are shown in Table 3. Moreover, the internal transmittance of light having a wavelength of 200 nm to 2500 nm was examined for natural silica glass. The result is shown in FIG. Table 3 shows the results of semiconductor device trial manufacture.

Figure 2010018481
Figure 2010018481

Figure 2010018481
Figure 2010018481

Figure 2010018481
Figure 2010018481

実施例1〜3、比較例1及び2のシリカガラスの内部透過率の結果を示すグラフである。It is a graph which shows the result of the internal transmittance | permeability of the silica glass of Examples 1-3 and Comparative Examples 1 and 2.

Claims (5)

金属不純物濃度の総和が1ppm以下であり、波長250nmにおける酸素欠損型欠陥量が吸収係数で0.1〜2/cmであり、波長250nm以下の光線の内部透過率が0%/cm以上80%/cm以下であり、波長500nmから1100nmまでの光線の内部透過率が50%/cm以上92%/cm以下であり、波長1500nm以上の光線の内部透過率が0%/cm以上85%/cm以下であることを特徴とする紫外線赤外線吸収合成シリカガラス。   The total concentration of metal impurities is 1 ppm or less, the amount of oxygen-deficient defects at a wavelength of 250 nm is an absorption coefficient of 0.1 to 2 / cm, and the internal transmittance of light having a wavelength of 250 nm or less is 0% / cm or more and 80%. / Cm or less, the internal transmittance of light with a wavelength of 500 nm to 1100 nm is 50% / cm or more and 92% / cm or less, and the internal transmittance of light with a wavelength of 1500 nm or more is 0% / cm or more and 85% / cm. An ultraviolet-infrared-absorbing synthetic silica glass characterized by: 前記紫外線赤外線吸収合成シリカガラス中に、常磁性欠陥が、1×1013spins/g以上1×1020spins/g以下存在することを特徴とする請求項1記載の紫外線赤外線吸収合成シリカガラス。 The ultraviolet-infrared-absorbing synthetic silica glass according to claim 1, wherein paramagnetic defects are present in the ultraviolet-infrared-absorbing synthetic silica glass in an amount of 1 x 10 13 spins / g or more and 1 x 10 20 spins / g or less. 請求項1又は2記載の紫外線赤外線吸収合成シリカガラスの製造方法であって、
多孔質合成シリカガラス体を還元性を有する雰囲気中で加熱する還元処理を行った後、水素を含む雰囲気中で加熱処理し、その後焼成して緻密なシリカガラス体とすることを特徴とする紫外線赤外線吸収合成シリカガラスの製造方法。
A method for producing the ultraviolet and infrared absorbing synthetic silica glass according to claim 1 or 2,
An ultraviolet ray characterized by performing a reduction treatment in which a porous synthetic silica glass body is heated in an atmosphere having a reducing property, followed by a heat treatment in an atmosphere containing hydrogen and then firing to form a dense silica glass body. A method for producing infrared-absorbing synthetic silica glass.
前記還元性を有する雰囲気が揮発性有機珪素化合物を含む還元性雰囲気であることを特徴とする請求項3記載の紫外線赤外線吸収合成シリカガラスの製造方法。   4. The method for producing an ultraviolet and infrared ray absorbing synthetic silica glass according to claim 3, wherein the reducing atmosphere is a reducing atmosphere containing a volatile organosilicon compound. 前記焼成処理を加圧雰囲気で行うことを特徴とする請求項3又は4記載の紫外線赤外線吸収合成シリカガラスの製造方法。   The method for producing an ultraviolet-infrared-absorbing synthetic silica glass according to claim 3 or 4, wherein the baking treatment is performed in a pressurized atmosphere.
JP2008180404A 2008-07-10 2008-07-10 Ultraviolet and infrared absorbing synthetic silica glass and method for producing the same Active JP5284702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180404A JP5284702B2 (en) 2008-07-10 2008-07-10 Ultraviolet and infrared absorbing synthetic silica glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180404A JP5284702B2 (en) 2008-07-10 2008-07-10 Ultraviolet and infrared absorbing synthetic silica glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010018481A true JP2010018481A (en) 2010-01-28
JP5284702B2 JP5284702B2 (en) 2013-09-11

Family

ID=41703759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180404A Active JP5284702B2 (en) 2008-07-10 2008-07-10 Ultraviolet and infrared absorbing synthetic silica glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP5284702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138499A (en) * 2017-02-24 2018-09-06 東ソ−・エスジ−エム株式会社 Quartz glass article having ultraviolet absorptivity, and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050570A1 (en) * 2002-11-29 2004-06-17 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
JP2005067914A (en) * 2003-08-26 2005-03-17 Tosoh Corp Quartz glass and manufacturing method therefor
JP2009298686A (en) * 2008-05-12 2009-12-24 Shinetsu Quartz Prod Co Ltd Synthetic silica glass, method for producing the same, and device provided with lamp for electric-discharge lamp or synthetic silica soot firing furnace core tube using the synthetic silica glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050570A1 (en) * 2002-11-29 2004-06-17 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
JP2005067914A (en) * 2003-08-26 2005-03-17 Tosoh Corp Quartz glass and manufacturing method therefor
JP2009298686A (en) * 2008-05-12 2009-12-24 Shinetsu Quartz Prod Co Ltd Synthetic silica glass, method for producing the same, and device provided with lamp for electric-discharge lamp or synthetic silica soot firing furnace core tube using the synthetic silica glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138499A (en) * 2017-02-24 2018-09-06 東ソ−・エスジ−エム株式会社 Quartz glass article having ultraviolet absorptivity, and method for manufacturing the same

Also Published As

Publication number Publication date
JP5284702B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5048445B2 (en) Black synthetic quartz glass with transparent layer
EP1580170B1 (en) Method for producing synthetic quartz glass and synthetic quartz glass article
JP5314429B2 (en) Synthetic opaque quartz glass and method for producing the same
JP5706623B2 (en) Synthetic silica glass and method for producing the same
JP4043003B2 (en) SiC molded body and manufacturing method thereof
EP2495220B1 (en) Optical member for deep ultraviolet and process for producing same
JP2008535764A (en) Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
WO2014020776A1 (en) SiC MOLDED BODY AND METHOD FOR PRODUCING SiC MOLDED BODY
US9051203B2 (en) Black synthetic quartz glass with transparent layer and method for producing the same
TWI471273B (en) Method of producing synthetic quartz glass for excimer laser
JP6423434B2 (en) Method for producing titanium-doped silica glass used in EUV lithography
JP5284702B2 (en) Ultraviolet and infrared absorbing synthetic silica glass and method for producing the same
CN105517965B (en) The method for manufacturing the quartz glass of Fe2O3 doping
JP5583082B2 (en) Method for producing black synthetic quartz glass with transparent layer
JP2005170706A (en) Ultraviolet-absorbing synthetic quartz glass and method for producing the same
JP5312313B2 (en) Black synthetic quartz glass and manufacturing method thereof
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP3932154B2 (en) SiC molded body and manufacturing method thereof
JP5368935B2 (en) Synthetic silica glass for fiber
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JP6769893B2 (en) Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method
JP4392204B2 (en) Quartz glass and method for producing the same
JP2002160930A (en) Porous quartz glass and method of producing the same
JP2006016662A (en) LIGHT NON-TRANSMISSIBLE SiC FORMED BODY AND ITS PRODUCTION METHOD
JP2677293B2 (en) Manufacturing method of preform for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250