JP2010015262A - Electrostatic detection device and electrostatic detection method - Google Patents

Electrostatic detection device and electrostatic detection method Download PDF

Info

Publication number
JP2010015262A
JP2010015262A JP2008172685A JP2008172685A JP2010015262A JP 2010015262 A JP2010015262 A JP 2010015262A JP 2008172685 A JP2008172685 A JP 2008172685A JP 2008172685 A JP2008172685 A JP 2008172685A JP 2010015262 A JP2010015262 A JP 2010015262A
Authority
JP
Japan
Prior art keywords
charge
noise
charging
discharging
discharge characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008172685A
Other languages
Japanese (ja)
Other versions
JP2010015262A5 (en
Inventor
Kenichi Matsushima
健一 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008172685A priority Critical patent/JP2010015262A/en
Publication of JP2010015262A publication Critical patent/JP2010015262A/en
Publication of JP2010015262A5 publication Critical patent/JP2010015262A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an effect that a frequency of noise and a frequency of charge/discharge coincide with each other to be largely affected by the noise, in an electrostatic detection device repeatedly performing the charge/discharge to an electrode operated by a human finger or the like. <P>SOLUTION: Prior to the detection of the approach of an object, the affection of the noise at a plurality of frequencies is detected in advance to select a frequency having the small affection of the noise, and the approach of the object is detected at the selected frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、単数あるいは複数の検出電極により人の指などの物体の接近や位置を静電結合の変化として捉える、静電結合方式のタッチセンサ等に応用することのできる静電検出装置および静電検出方法に関する。   The present invention relates to an electrostatic detection device and a static detection device that can be applied to an electrostatic coupling type touch sensor that captures the approach and position of an object such as a human finger as a change in electrostatic coupling by using one or a plurality of detection electrodes. The present invention relates to a method for detecting electricity.

人の指など浮遊容量を持つ物体が電極に接近すると、電極自体の見かけの静電容量や電極間の静電容量が変化することが知られている。これらの原理を応用して、物体の接近や位置などを検出する静電検出装置が実用化されている。   It is known that when an object having a stray capacitance such as a human finger approaches an electrode, the apparent capacitance of the electrode itself or the capacitance between the electrodes changes. Applying these principles, electrostatic detection devices that detect the approach and position of an object have been put into practical use.

これらの静電検出装置では、図2に示すように、検出電極を有する電極パネル11の各電極に充放電手段12が繰り返し充電あるいは放電あるいは充放電を行い、特性抽出手段13で前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出し、得られた特性を累積アナログデジタル変換手段14で累積してアナログデジタル変換し、後処理手段15で前記累積アナログデジタル変換手段14の出力から前記物体の接近や位置を求めていた。ここで、検出制御手段17は、全体の状態およびシーケンスを管理するためのものである。   In these electrostatic detection devices, as shown in FIG. 2, the charging / discharging means 12 repeatedly charges, discharges or charges / discharges each electrode of the electrode panel 11 having detection electrodes, and the characteristic extraction means 13 approaches the object. The characteristics of the charging or discharging or charging / discharging that change according to the above are repeatedly extracted, and the obtained characteristics are accumulated by the accumulated analog-to-digital converting means 14 for analog-to-digital conversion, and the post-processing means 15 of the accumulated analog-to-digital converting means 14 The approach and position of the object were obtained from the output. Here, the detection control means 17 is for managing the whole state and sequence.

なお、繰り返される特性を累積して検出するのは、ノイズの影響を減衰させるためである。更に、例えば充電時の特性と放電時の特性を合成してノイズの影響を軽減する方法や、充放電における電流や電圧の特性を同一の周波数の三角波などで畳み込んで充放電と同一の周波数の成分のみを抽出する方法が例えば特許文献1において開示されている。
米国公開特許US2007/0257890 A1号
The reason why the repeated characteristics are detected is to attenuate the influence of noise. Furthermore, for example, a method for reducing the influence of noise by combining characteristics during charging and characteristics during discharging, or convolution of current and voltage characteristics during charging / discharging with a triangular wave of the same frequency, etc., the same frequency as charging / discharging. For example, Patent Document 1 discloses a method for extracting only the above components.
US Published Patent US2007 / 0257890 A1

しかし、このように特定の周波数成分を抽出しながら複数回の特性を累積しても、例えば、ノイズの周波数が充電あるいは放電あるいは充放電の周波数に非常に接近している場合には、ノイズはほとんど減衰しない。   However, even if characteristics are accumulated multiple times while extracting a specific frequency component in this way, for example, if the noise frequency is very close to the charge, discharge, or charge / discharge frequency, the noise is Almost no attenuation.

この課題を回避するために、3つの異なる周波数で検出を行い、値の近い2つの周波数に対応した検出値を平均する方法も、特許文献1にて開示されている。   In order to avoid this problem, Patent Document 1 discloses a method of performing detection at three different frequencies and averaging the detection values corresponding to two frequencies having similar values.

しかし、この方法では、値の近い検出をする2つの周波数の方がノイズの影響を大きく受けている可能性もあり、必ずしも、ノイズの小さい周波数で検出するとは限らないという課題があった。   However, in this method, there is a possibility that two frequencies that are detected with close values are more influenced by noise, and there is a problem that detection is not always performed at a frequency with low noise.

そこで、本発明による静電検出装置及びその方法では、可能な範囲で最もノイズの影響の小さい周波数で検出することを可能にする静電検出装置およびその方法を実現することである。   Therefore, the electrostatic detection apparatus and method according to the present invention are to realize an electrostatic detection apparatus and method that enable detection at a frequency with the least noise influence in a possible range.

本発明による静電検出装置は、検出電極を有する電極パネルと、前記電極パネルの各電極に繰り返し充電あるいは放電あるいは充放電を行う充放電手段と、前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出する特性抽出手段と、前記特性抽出手段で繰り返し抽出した特性を累積してアナログデジタル変換する累積アナログデジタル変換手段と、前記累積アナログデジタル変換手段の出力から前記物体の接近や位置を求める後処理手段と、前記特性抽出手段の出力からノイズの影響の強さを検出するノイズ検出手段と、全体の状態とシーケンスを管理する検出制御手段とにより構成した。   The electrostatic detection device according to the present invention includes an electrode panel having detection electrodes, charging / discharging means for repeatedly charging, discharging, or charging / discharging each electrode of the electrode panel, and the charging or discharging that changes due to the approach of the object. Characteristic extraction means for repeatedly extracting charge / discharge characteristics, cumulative analog-to-digital conversion means for accumulating the characteristics repeatedly extracted by the characteristic extraction means for analog-to-digital conversion, and approach of the object from the output of the accumulated analog-digital conversion means And post-processing means for obtaining the position, noise detection means for detecting the influence of noise from the output of the characteristic extraction means, and detection control means for managing the overall state and sequence.

また、本発明による静電検出方法は、検出電極を有する電極パネルの各電極に繰り返し充電あるいは放電あるいは充放電を行う充放電工程と、前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出する特性抽出工程と、前記特性抽出工程で繰り返し抽出した特性を累積してアナログデジタル変換する累積アナログデジタル変換工程と、前記累積アナログデジタル変換工程の出力から前記物体の接近や位置を求める後処理工程と、前記特性抽出工程の出力からノイズの影響の強さを検出するノイズ検出工程と、全体の状態とシーケンスを管理する検出制御工程とにより実現した。   The electrostatic detection method according to the present invention includes a charge / discharge step of repeatedly charging, discharging, or charging / discharging each electrode of an electrode panel having a detection electrode, and the charging, discharging, or charging / discharging that changes depending on the approach of the object. A characteristic extraction step for repeatedly extracting characteristics, a cumulative analog-to-digital conversion step for accumulating the characteristics repeatedly extracted in the characteristic extraction step for analog-to-digital conversion, and an approach and position of the object from the output of the cumulative analog-to-digital conversion step This is realized by a post-processing step to be obtained, a noise detection step for detecting the influence of noise from the output of the characteristic extraction step, and a detection control step for managing the overall state and sequence.

本発明によれば、可能な範囲で最もノイズの影響の小さい周波数で検出することを可能にする静電検出装置およびその方法を実現することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the electrostatic detection apparatus and method which enable it to detect with the frequency with the least noise influence in the possible range are realizable.

本発明の好適な実施例を、図1を基に説明する。   A preferred embodiment of the present invention will be described with reference to FIG.

本発明による静電検出装置は、検出電極を有する電極パネル1と、前記電極パネルの各電極に繰り返し充電あるいは放電あるいは充放電を行う充放電手段2と、前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出する特性抽出手段3と、前記特性抽出手段で繰り返し抽出した特性を累積してアナログデジタル変換する累積アナログデジタル変換手段4と、前記累積アナログデジタル変換手段の出力から前記物体の接近や位置を求める後処理手段5と、前記特性抽出手段の出力からノイズの影響の強さを検出するノイズ検出手段6と、全体の状態とシーケンスを管理する検出制御手段7とにより構成した。   The electrostatic detection device according to the present invention includes an electrode panel 1 having detection electrodes, charging / discharging means 2 for repeatedly charging or discharging or charging / discharging each electrode of the electrode panel, and the charging or discharging that changes depending on the approach of the object. Characteristic extraction means 3 that repeatedly extracts the characteristics of discharge or charge / discharge, cumulative analog-to-digital conversion means 4 that accumulates the characteristics repeatedly extracted by the characteristic extraction means and performs analog-to-digital conversion, and output from the accumulated analog-to-digital conversion means A post-processing means 5 for determining the approach and position of the object, a noise detection means 6 for detecting the intensity of the influence of noise from the output of the characteristic extraction means, and a detection control means 7 for managing the overall state and sequence Configured.

また、本発明による静電検出方法は、検出電極を有する電極パネルの各電極に繰り返し充電あるいは放電あるいは充放電を行う充放電工程と、前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出する特性抽出工程と、前記特性抽出工程で繰り返し抽出した特性を累積してアナログデジタル変換する累積アナログデジタル変換工程と、前記累積アナログデジタル変換工程の出力から前記物体の接近や位置を求める後処理工程と、前記特性抽出工程の出力からノイズの影響の強さを検出するノイズ検出工程と、全体の状態とシーケンスを管理する検出制御工程とにより実現した。   The electrostatic detection method according to the present invention includes a charge / discharge step of repeatedly charging, discharging, or charging / discharging each electrode of an electrode panel having a detection electrode, and the charging, discharging, or charging / discharging that changes depending on the approach of the object. A characteristic extraction step for repeatedly extracting characteristics, a cumulative analog-to-digital conversion step for accumulating the characteristics repeatedly extracted in the characteristic extraction step for analog-to-digital conversion, and an approach and position of the object from the output of the cumulative analog-to-digital conversion step This is realized by a post-processing step to be obtained, a noise detection step for detecting the influence of noise from the output of the characteristic extraction step, and a detection control step for managing the overall state and sequence.

これより、各手段について、詳細に説明する。   Hereafter, each means will be described in detail.

ここで、電極パネルは、図5に例を示すように、指示基板上41に相互に絶縁されて配置された検出電極でもある電極42により物体の接近を検出する。物体が接近すると電極自体あるいは電極間の静電容量が変化する。充放電手段2では、電極に繰り返し充電あるいは放電あるいは充放電を行う。特性抽出手段3は、充放電に同期して充放電の特性を抽出して、物体の接近の影響を抽出する。   Here, as shown in the example of FIG. 5, the electrode panel detects the approach of an object by an electrode 42 which is also a detection electrode disposed on the instruction board 41 so as to be insulated from each other. When the object approaches, the capacitance of the electrode itself or the electrode changes. In the charge / discharge means 2, the electrodes are repeatedly charged, discharged or charged / discharged. The characteristic extracting unit 3 extracts the charge / discharge characteristic in synchronization with the charge / discharge and extracts the influence of the approach of the object.

これらの電極パネル1と充放電手段2と特性抽出手段3の具体的な構成には、様々なものが考えられ、以下に代表的なものについて説明する。   Various specific configurations of the electrode panel 1, the charge / discharge unit 2, and the characteristic extraction unit 3 can be considered, and typical ones will be described below.

まず、ロード方式と呼ばれる電極パネルの電極自体の静電容量の変化を用いる手段について説明する。この場合では、単数または複数の電極が電極パネルに配置されており、個々の電極をスイッチとして用いたり、整然と配置してスライダーとして用いたり、あるいは2次元的に配置して接近物体の座標検出として用いたりすることができる。   First, a means using a change in capacitance of the electrode itself of the electrode panel, which is called a load method, will be described. In this case, one or more electrodes are arranged on the electrode panel, and each electrode is used as a switch, arranged neatly as a slider, or arranged two-dimensionally to detect the coordinates of an approaching object. Can be used.

この場合、充放電手段と特性抽出手段では、初期化した後に例えば一定時間定電流で充電するなど所定の電荷を充電して電極の電圧を測定したり、あるいは初期化した後に一定の電圧に到達するまでの低電流充電時間を測定したり、逆に一定の電圧を電極に印加した後に放電させて放電時に流れる電荷量を直接あるいは間接的に測定する手段を用いることが出来る。   In this case, the charging / discharging means and the characteristic extracting means measure the electrode voltage by charging a predetermined charge, for example, charging with a constant current for a certain time after initialization, or reaching a certain voltage after initialization. It is possible to use a means for measuring the low current charging time until the charging is performed, or on the contrary, directly or indirectly measuring the amount of charge flowing during discharging by applying a constant voltage to the electrode and then discharging.

次に、シャント方式と呼ばれる電極バネルの電極間の静電容量が物体の接近により変化する手段について説明する。この場合には、通常2次元的に配列された電極の一方の次元の電極を送信電極として所定の振幅の電圧変化を印加して、もう一方の電極を低インピーダンスにした受信電極として流れ込む電流を測定する。   Next, a means for changing the capacitance between the electrodes of the electrode panel called the shunt method by the approach of an object will be described. In this case, the current flowing in as a receiving electrode having a low impedance is applied by applying a voltage change of a predetermined amplitude with the one-dimensional electrode of the two-dimensionally arranged electrodes as a transmitting electrode. taking measurement.

さらに、本発明では、サーフェス方式と呼ばれる検出面全体にわたる長方形の電極の4隅から同一の交流電圧を印加して、各々の電流値を測定する手段も用いることが出来る。   Furthermore, in the present invention, it is also possible to use means for measuring each current value by applying the same AC voltage from four corners of a rectangular electrode over the entire detection surface, which is called a surface method.

このように特性抽出手段3で抽出された静電容量に対応する特性は、累積アナログデジタル変換手段4で、複数回の充放電に対応する特性を累積して、デシタル値に変換する。このため、累積アナログデジタル変換手段4は、累積手段8とアナログデジタル変換手段9とにより実現した。累積手段8は、ノイズを除去するために複数回の充放電に対応する特性を累積するためのもので、通常コンデンサに蓄積する。ここで演算増幅器などを用いて累積精度を向上させることが出来ることは言うまでもない。   Thus, the characteristics corresponding to the electrostatic capacitance extracted by the characteristic extraction means 3 are accumulated by the cumulative analog-digital conversion means 4 and the characteristics corresponding to a plurality of times of charge / discharge are accumulated and converted into a digital value. For this reason, the cumulative analog-to-digital conversion means 4 is realized by the cumulative means 8 and the analog-digital conversion means 9. The accumulating means 8 is for accumulating characteristics corresponding to a plurality of times of charge / discharge in order to remove noise, and is normally accumulated in a capacitor. Needless to say, the accumulating accuracy can be improved by using an operational amplifier or the like.

累積されたコンデンサの電圧は、アナログデジタル変換手段であるアナログデジタル変換器によりデジタル値に変換される。   The accumulated capacitor voltage is converted into a digital value by an analog-to-digital converter which is an analog-to-digital converter.

ただし、例えばシグマデルタ型のアナログデジタル変換器などにより累積しながらデシタル値に変換することにより、累積手段とアナログデジタル変換手段あるいは累積工程とアナログデジタル変換工程をまとめて実現することもできる。   However, for example, the accumulating means and the analog-digital converting means or the accumulating process and the analog-digital converting process can be realized together by converting to a digital value while accumulating with a sigma delta type analog-digital converter.

後処理手段5では、累積アナログデジタル変換手段4からのデジタル値により電極バネルへの物体の接近や位置を求める。   The post-processing means 5 obtains the approach and position of the object to the electrode panel based on the digital value from the accumulated analog-digital conversion means 4.

例えば、後処理手段5では、まず必要に応じて、フィルタ処理等による更なるノイズの除去や、物体が接近していない場合の値をオフセットとして差し引くことにより物体の接近による静電容量の変化に対応した値に変換する。次に、この変化がある値より大きい場合に物体の接近として判定して、接近物体の位置を求める。   For example, in the post-processing means 5, first, if necessary, the capacitance is changed due to the approach of the object by further removing noise by filtering or subtracting the value when the object is not approaching as an offset. Convert to the corresponding value. Next, when this change is larger than a certain value, it is determined that the object is approaching, and the position of the approaching object is obtained.

接近物体の位置を求めるために、前述のロード方式やシャント方式の場合には、例えば変化の最も大きい電極あるいは変化の最も大きい交点の電極間の近くに物体が接近しているものとした。また、周囲の電極あるいは周囲の交点の電極間の静電容量の変化を用いて加重平均により位置精度を向上させることができる。   In order to determine the position of the approaching object, in the case of the above-described load method or shunt method, for example, the object is assumed to be close to the electrode having the largest change or between the electrodes having the largest change. Further, the positional accuracy can be improved by weighted averaging using the change in capacitance between the surrounding electrodes or the surrounding intersection electrodes.

サーフェス方式の場合には、4隅に印加する電流値の変化のバランスから物体の接近位置を求めるようにすれば良い。   In the case of the surface method, the approach position of the object may be obtained from the balance of changes in the current value applied to the four corners.

検出制御手段7は、全体の状態とシーケンスを管理する。このため、前述の各手段の同期をとって整然と動作するように制御する。   The detection control means 7 manages the entire state and sequence. For this reason, control is performed so that the above-described units are synchronized and operate in an orderly manner.

以上に説明した電極パネルと充放電手段と特性抽出手段と累積アナログデジタル変換手段と後処理手段と検出制御手段は、従来の静電検出装置とほぼ同様のものである。本発明による静電検出装置では、さらに、特性抽出手段の出力によりノイズの影響の強さを検出するノイズ検出手段6を設け、ノイズの影響の小さい周波数で充電あるいは放電あるいは充放電を行えるようにした。   The electrode panel, charge / discharge means, characteristic extraction means, accumulated analog-digital conversion means, post-processing means, and detection control means described above are substantially the same as those of a conventional electrostatic detection device. The electrostatic detection device according to the present invention further includes noise detection means 6 for detecting the strength of the influence of noise based on the output of the characteristic extraction means so that charging, discharging or charging / discharging can be performed at a frequency where the influence of noise is small. did.

ノイズ検出手段6は、例えば図3に示すように、集約手段21と前回保持手段22と変化抽出手段23とフィルタ手段24とにより構成し、ノイズの強度を検出するようにした。   For example, as shown in FIG. 3, the noise detection means 6 includes an aggregation means 21, a previous holding means 22, a change extraction means 23, and a filter means 24, and detects noise intensity.

ここで、集約手段21では、外部からのノイズは全ての電極に同様に印加されることが多いため、複数の電極に対応する特性抽出手段13からの特性を集約するためのもので、必要に応じて設ければよい。例えば、抵抗を介して1つの信号にまとめて平均化したり、演算増幅器や演算等などにより合計したりするなどして集約することができる。   Here, in the aggregating means 21, noise from the outside is often applied to all the electrodes in the same manner, so that the characteristics from the characteristic extracting means 13 corresponding to a plurality of electrodes are aggregated. It may be provided accordingly. For example, the signals can be aggregated by averaging them together into one signal via a resistor, or summing them by an operational amplifier or a calculation.

前回保持手段22は、繰り返される充放電の例えば1回前の充放電に対応して集約された特性値を、サンプルホールド回路や記憶手段などにより保持する。   The previous holding means 22 holds the characteristic values aggregated corresponding to, for example, charge / discharge before the repeated charge / discharge, by a sample hold circuit, a storage means, or the like.

変化抽出手段23は、今回の充放電に対応する特性値が前回保持手段22で保持された特性値からどれだけ変化したかを抽出して変化量を出力する。このため、変化抽出手段23は、減算手段25と絶対値演算手段26とにより実現して、変化の絶対値を変化量として抽出するようにしたが、この限りでなく、特性値の変化の程度がわかる値を変化量として抽出するようなものであればどのような手段を用いても良い。   The change extracting unit 23 extracts how much the characteristic value corresponding to the current charging / discharging has changed from the characteristic value held by the previous holding unit 22 and outputs the amount of change. For this reason, the change extracting unit 23 is realized by the subtracting unit 25 and the absolute value calculating unit 26, and extracts the absolute value of the change as the amount of change. Any means may be used as long as it can extract a value that understands as a change amount.

フィルタ手段24では、変化抽出手段または変化抽出工程で繰り返される充放電に対応して繰り返し抽出した値を、例えばフィルタリングするなどして、平均的なノイズの強度を得る。   The filter unit 24 obtains an average noise intensity by, for example, filtering the value repeatedly extracted corresponding to charge / discharge repeated in the change extraction unit or the change extraction process.

また、次回の充放電での変化を抽出するために今回の充放電に対応した特性値を前回保持手段22で保持しておくように更新する。   In addition, the characteristic value corresponding to the current charging / discharging is updated so as to be held by the previous holding means 22 in order to extract the change at the next charging / discharging.

以上に説明した手段により、本発明による静電検出装置では、例えば図4に示すように、検出対象の物体の接近検出に先立って、前記充電あるいは放電あるいは充放電および特性抽出およびノイズ検出を複数の周波数で行い、各周波数における前記ノイズ検出手段の検出するノイズの強さにより、接近対象の物体を検出するための充電あるいは放電あるいは充放電の周波数を予め決定する。但し、検出対象の物体の接近検出ごとに必ずしも周波数の選択を行う必要はなく、各々適当なタイミングで行えばよいことは、言うまでもない。   By the means described above, in the electrostatic detection device according to the present invention, for example, as shown in FIG. 4, a plurality of charging or discharging or charging / discharging, characteristic extraction, and noise detection are performed prior to the detection of the approach of the object to be detected. The frequency of charging or discharging or charging / discharging for detecting an object to be approached is determined in advance according to the intensity of noise detected by the noise detecting means at each frequency. However, it goes without saying that it is not always necessary to select a frequency for each approach detection of an object to be detected, and it may be performed at an appropriate timing.

ここで、充電あるいは放電あるいは充放電の周波数は、充分早い高速の源発振を分周する比率を変えたり、充分早い高速の源発振によるステートマシンに挿入するウエイトの時間を変えたりすることにより実現したが、充放電の周波数を変えることのできる方法であれば、どのような方法を用いても良い。   Here, the frequency of charging or discharging or charging / discharging is realized by changing the ratio of dividing the sufficiently fast high-speed source oscillation or changing the time of the wait inserted into the state machine by the sufficiently fast high-speed source oscillation. However, any method may be used as long as the charge / discharge frequency can be changed.

また、ノイズの強さが同じでもノイズと充放電との位相関係によりノイズの影響の受け方が変わるため、ノイズの強さの検出は数回行って、例えばそれらの合計値により実際に物体の検出に用いる充放電の周波数を決定するようにした。   In addition, even if the noise intensity is the same, the influence of noise changes depending on the phase relationship between noise and charge / discharge, so the noise intensity is detected several times. The frequency of charging / discharging used for was determined.

接近物体を検出するための周波数の決定方法を、図6を例に説明する。図6はノイズのスペクトルを模式的に示しており、縦軸はノイズレベル、横軸は周波数である。例えば予め測定した各周波数の中で最もノイズの強さが小さい周波数に設定しても良い。例えば、1MHzのノイズ源が近くにあって、充放電の周波数が1MHzでのノイズの強さが10で、1.1MHzでのノイズの強さが3で、0.9MHzでのノイズの強さが2の場合には、0.9MHzを選択する。あるいは、ノイズの強さが許容上限値を超えないある許容範囲に収まる周波数の中で、最も高い周波数を選択して、検出速度を早くするように設定しても良い。このように、接近物体を検出するための周波数の決定方法は、各周波数におけるノイズの強さを用いて望ましい周波数を選択するものであれば、どのような方法を用いても良い。   A frequency determination method for detecting an approaching object will be described with reference to FIG. FIG. 6 schematically shows a noise spectrum, where the vertical axis represents the noise level and the horizontal axis represents the frequency. For example, you may set to the frequency with the smallest noise intensity in each frequency measured beforehand. For example, when a noise source of 1 MHz is nearby, the noise intensity at a charge / discharge frequency of 1 MHz is 10, the noise intensity at 1.1 MHz is 3, and the noise intensity at 0.9 MHz. When is 2, 0.9 MHz is selected. Alternatively, the highest frequency may be selected from frequencies within a certain allowable range where the noise intensity does not exceed the allowable upper limit value, and the detection speed may be set to be fast. As described above, any method for determining a frequency for detecting an approaching object may be used as long as a desired frequency is selected using noise intensity at each frequency.

検出対象の物体の接近を検出する場合は、前述の方法で予め定められた周波数で行う。特性抽出手段では、ノイズの影響を回避するために、例えば充電時の特性と放電時の特性を合成してノイズの影響を軽減したり、充放電における電流や電圧の特性を同一の周波数の三角波などで畳み込んで充放電と同一の周波数の成分のみを抽出したりする方法などにより、充放電の周波数以外のノイズの影響を抑えることが出来るため、複数の周波数の中からノイズの小さい周波数として選択された周波数を用いれば、ほぼノイズの影響のない安定した検出が可能になる。   When detecting the approach of an object to be detected, it is performed at a frequency predetermined by the above-described method. In order to avoid the effects of noise, the characteristic extraction means, for example, combines the characteristics during charging and the characteristics during discharging to reduce the effects of noise, or the current and voltage characteristics during charging and discharging are triangular waves of the same frequency. It is possible to suppress the influence of noise other than the charge / discharge frequency by using a method such as convolution to extract only the same frequency component as the charge / discharge, etc. If the selected frequency is used, stable detection almost free from noise is possible.

充放電周波数を選択するための全体の動作のステータスやシーケンスは、検出制御手段で行うようにしたが、この限りではなく、個々の手段においてできるものは、個々の手段でおこなっても良いことは言うまでもない。   The status and sequence of the entire operation for selecting the charge / discharge frequency is performed by the detection control means. However, the present invention is not limited to this, and what can be performed by the individual means may be performed by the individual means. Needless to say.

以上に示したように、本発明による静電検出装置およびその方法では、ノイズの影響の小さい周波数を選んで充放電を行うことにより、ほとんどの場合にノイズの影響を受けずに検出することが出来る。   As described above, in the electrostatic detection device and method according to the present invention, it is possible to detect without being influenced by noise in most cases by performing charge / discharge by selecting a frequency having a low noise effect. I can do it.

本発明に係る静電検出装置の第1の実施例を示すブロック図The block diagram which shows the 1st Example of the electrostatic detection apparatus which concerns on this invention 従来の静電検出装置のブロック図Block diagram of a conventional electrostatic detection device 本発明に係るノイズ検出手段のブロック図Block diagram of noise detection means according to the present invention 本発明に係る検出フロー図Detection flow diagram according to the present invention 本発明に係る検出パネルの構成図Configuration diagram of detection panel according to the present invention 本発明の動作を示す概念図Conceptual diagram showing the operation of the present invention

符号の説明Explanation of symbols

1 電極パネル、 2 充放電手段、 3 特性抽出手段、
4 累積アナログデジタル変換手段、 5 後処理手段、 6 ノイズ検出手段、
7 検出制御手段、 8 累積手段、 9 アナログデジタル変換手段、
21 集約手段、22 前回保持手段、 23 変化抽出手段、24 フィルタ手段、
25 減算手段、 26 絶対値演算手段、 41 支持基板、 42 電極
1 electrode panel, 2 charge / discharge means, 3 characteristic extraction means,
4 cumulative analog-digital conversion means, 5 post-processing means, 6 noise detection means,
7 detection control means 8 accumulation means 9 analog-digital conversion means
21 aggregation means, 22 previous holding means, 23 change extraction means, 24 filter means,
25 subtracting means, 26 absolute value calculating means, 41 support substrate, 42 electrodes

Claims (10)

人の指など物体の接近や位置を静電結合の変化により検出する静電検出装置であり、
単数または複数の検出電極を有する電極パネルと、
前記電極パネルの各電極に繰り返し充電あるいは放電あるいは充放電を行う充放電手段と、
前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出する特性抽出手段と、
前記特性抽出手段で繰り返し抽出した特性を累積してアナログデジタル変換する累積アナログデジタル変換手段と、
前記累積アナログデジタル変換手段の出力から前記物体の接近や位置を求める後処理手段と、
前記特性抽出手段の出力に含まれるノイズの強さを検出するノイズ検出手段と、
全体の状態及びシーケンスを管理する検出制御手段と、
を有することを特徴とする静電検出装置。
It is an electrostatic detection device that detects the approach and position of objects such as human fingers by changes in electrostatic coupling,
An electrode panel having one or more detection electrodes;
Charging / discharging means for repeatedly charging or discharging or charging / discharging each electrode of the electrode panel;
Characteristic extraction means for repeatedly extracting the charge or discharge or charge / discharge characteristics that change as the object approaches,
Accumulated analog-to-digital conversion means for accumulating the characteristics repeatedly extracted by the characteristic extraction means and performing analog-to-digital conversion;
Post-processing means for determining the approach and position of the object from the output of the cumulative analog-digital conversion means;
Noise detection means for detecting the strength of noise included in the output of the characteristic extraction means;
Detection control means for managing the overall state and sequence;
An electrostatic detection device comprising:
前記ノイズ検出手段が、
前記特性抽出手段の出力する充放電の特性を保持する前回保持手段と、
前記充放電の特性と前記前回保持手段の出力から前記充放電特性の変化を抽出する変化抽出手段と、
前記変化抽出手段からの複数サイクルに対応する充放電特性の変化からノイズの強さを検出するフィルタ手段と、
を有することを特徴とする請求項1に記載の静電検出装置。
The noise detecting means is
Previous holding means for holding charge / discharge characteristics output by the characteristic extraction means;
Change extracting means for extracting changes in the charge / discharge characteristics from the charge / discharge characteristics and the output of the previous holding means;
Filter means for detecting the strength of noise from a change in charge / discharge characteristics corresponding to a plurality of cycles from the change extraction means;
The electrostatic detection device according to claim 1, comprising:
前記変化抽出手段が、
前記充放電の特性と前記前回保持手段の差を演算する減算手段と、
前記減算手段の出力の絶対値を演算する絶対値演算手段と、
を有することを特徴とする請求項2に記載の静電検出装置。
The change extracting means;
Subtracting means for calculating a difference between the charge / discharge characteristics and the previous holding means;
Absolute value calculating means for calculating the absolute value of the output of the subtracting means;
The electrostatic detection device according to claim 2, further comprising:
前記異常検出手段が、前記特性抽出手段の出力する前記複数の電極に対応した充放電の特性を集約する集約手段を有することを特徴とする請求項1に記載の静電検出装置。 The electrostatic detection apparatus according to claim 1, wherein the abnormality detection unit includes an aggregation unit that aggregates charge / discharge characteristics corresponding to the plurality of electrodes output from the characteristic extraction unit. 検出対象の物体の接近検出に先立って、前記充電あるいは放電あるいは充放電を複数の周波数で行い、前記ノイズ検出手段の検出するノイズの強さにより、接近対象の物体を検出するための充電あるいは放電あるいは充放電の周波数を決定することを特徴とする請求項1に記載の静電検出装置。 Prior to detecting the approach of an object to be detected, charging or discharging or charging / discharging is performed at a plurality of frequencies, and charging or discharging for detecting the object to be approached is performed based on the intensity of noise detected by the noise detecting means. Or the frequency of charging / discharging is determined, The electrostatic detection apparatus of Claim 1 characterized by the above-mentioned. 人の指など物体の接近や位置を静電結合の変化により検出する静電検出方法であり、
単数または複数の検出電極を有する電極パネルの各電極に繰り返し充電あるいは放電あるいは充放電を行う充放電工程と、
前記物体の接近により変化する前記充電あるいは放電あるいは充放電の特性を繰り返し抽出する特性抽出工程と、
前記特性抽出手段で繰り返し抽出した特性を累積してアナログデジタル変換する累積アナログデジタル変換工程と、
前記累積アナログデジタル変換手段の出力から前記物体の接近や位置を求める後処理工程と、
前記特性抽出手段の出力に含まれるノイズの強さを検出するノイズ検出工程と、
を有することを特徴とする静電検出方法。
It is an electrostatic detection method that detects the approach and position of an object such as a human finger by changing the electrostatic coupling,
A charge / discharge step of repeatedly charging or discharging or charging / discharging each electrode of an electrode panel having one or a plurality of detection electrodes;
A characteristic extraction step of repeatedly extracting the charge or discharge or charge / discharge characteristics that change due to the approach of the object;
A cumulative analog-to-digital conversion step of accumulating the characteristics repeatedly extracted by the characteristic extraction means and performing analog-to-digital conversion;
A post-processing step of determining the approach and position of the object from the output of the cumulative analog-digital conversion means;
A noise detection step of detecting the intensity of noise included in the output of the characteristic extraction means;
An electrostatic detection method characterized by comprising:
前記ノイズ検出工程が、
前記特性抽出手段の出力する充放電の特性を保持する前回保持工程と、
前記充放電の特性と前記前回保持手段の出力から前記充放電特性の変化を抽出する変化抽出工程と、
前記変化抽出手段からの複数サイクルに対応する充放電特性の変化からノイズの強さを検出するフィルタ工程と、
を有することを特徴とする請求項6に記載の静電検出方法。
The noise detection step includes
A previous holding step of holding the charge / discharge characteristics output by the characteristic extraction means;
A change extraction step for extracting changes in the charge / discharge characteristics from the charge / discharge characteristics and the output of the previous holding means;
A filter step for detecting noise intensity from a change in charge / discharge characteristics corresponding to a plurality of cycles from the change extraction means;
The electrostatic detection method according to claim 6, further comprising:
前記変化抽出工程が、
前記充放電の特性と前記前回保持手段の差を演算する減算工程と、
前記減算手段の出力の絶対値を演算する絶対値演算工程と、
を有することを特徴とする請求項7に記載の静電検出方法。
The change extraction step includes:
A subtraction step of calculating a difference between the charge / discharge characteristics and the previous holding means;
An absolute value calculating step of calculating the absolute value of the output of the subtracting means;
The electrostatic detection method according to claim 7, further comprising:
前記異常検出手段が、
前記特性抽出手段の出力する前記複数の電極に対応した充放電の特性を集約する集約工程を有することを特徴とする請求項6に記載の静電検出装置。
The abnormality detection means is
The electrostatic detection device according to claim 6, further comprising an aggregation step of aggregating charge / discharge characteristics corresponding to the plurality of electrodes output by the characteristic extraction unit.
検出対象の物体の接近検出に先立って、前記充電あるいは放電あるいは充放電を複数の周波数で行い、前記ノイズ検出工程の検出するノイズの強さにより、接近対象の物体を検出するための充電あるいは放電あるいは充放電の周波数を決定することを特徴とする請求項6に記載の静電検出方法。 Prior to detecting the approach of an object to be detected, charging or discharging or charging / discharging is performed at a plurality of frequencies, and charging or discharging for detecting an object to be approached is performed according to the intensity of noise detected by the noise detection step. Or the frequency of charging / discharging is determined, The electrostatic detection method of Claim 6 characterized by the above-mentioned.
JP2008172685A 2008-07-01 2008-07-01 Electrostatic detection device and electrostatic detection method Withdrawn JP2010015262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172685A JP2010015262A (en) 2008-07-01 2008-07-01 Electrostatic detection device and electrostatic detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172685A JP2010015262A (en) 2008-07-01 2008-07-01 Electrostatic detection device and electrostatic detection method

Publications (2)

Publication Number Publication Date
JP2010015262A true JP2010015262A (en) 2010-01-21
JP2010015262A5 JP2010015262A5 (en) 2011-06-23

Family

ID=41701343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172685A Withdrawn JP2010015262A (en) 2008-07-01 2008-07-01 Electrostatic detection device and electrostatic detection method

Country Status (1)

Country Link
JP (1) JP2010015262A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108037A1 (en) * 2010-03-04 2011-09-09 Smk株式会社 Capacitive touch panel
WO2011108036A1 (en) * 2010-03-04 2011-09-09 Smk株式会社 Capacitive touch panel
CN102262470A (en) * 2010-05-28 2011-11-30 安国国际科技股份有限公司 Method and system for judging touch-control point on touch-control panel
JP2011243181A (en) * 2010-05-14 2011-12-01 Alcor Micro Corp Method for determining touch point in touch panel and its system
JP2012034058A (en) * 2010-07-28 2012-02-16 Pentel Corp Capacitive coupling type touch switch device
WO2012096259A1 (en) * 2011-01-14 2012-07-19 シャープ株式会社 Liquid crystal display device and drive method therefor
JP2012248180A (en) * 2011-05-28 2012-12-13 Tpk Touch Solutions (Xiamen) Inc Touch point detection device and touch point detection method for the same
JP2013029950A (en) * 2011-07-28 2013-02-07 Japan Display East Co Ltd Touch panel
JP2013058045A (en) * 2011-09-07 2013-03-28 Rohm Co Ltd Capacity detection circuit and capacity detection method for touch panel and touch panel input device and electronic equipment using the same
JP2013114326A (en) * 2011-11-25 2013-06-10 Kyocera Display Corp Touch panel device
KR20150043353A (en) * 2012-08-16 2015-04-22 마이크로칩 테크놀로지 저머니 Ⅱ 게엠베하 운트 콤파니 카게 Signal processing for a capacitive sensor system with robustness to noise
JP2015141557A (en) * 2014-01-29 2015-08-03 アルプス電気株式会社 input device
JP2015528616A (en) * 2012-09-13 2015-09-28 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Noise detection and correction routines
TWI505162B (en) * 2011-06-22 2015-10-21 Smk Kk Capacitive touch panel
TWI507951B (en) * 2011-06-22 2015-11-11 Smk Kk Capacitive touch panel
US9195342B2 (en) 2011-09-09 2015-11-24 Samsung Electronics Co., Ltd. Touch screen sensor integrated circuits, methods of operating the same, and systems having the touch screen sensor integrated circuits
WO2016002300A1 (en) * 2014-06-30 2016-01-07 シャープ株式会社 Touch panel system and electronic device
US9442611B2 (en) 2012-12-14 2016-09-13 Japan Display Inc. Display device with touch detection function and electronic apparatus including same
JP2017027611A (en) * 2010-07-16 2017-02-02 パーセプティブ ピクセル インコーポレイテッド Techniques for locally improving signal-to-noise ratio in capacitive touch sensor
JP2017505488A (en) * 2014-01-26 2017-02-16 ▲華▼▲為▼▲終▼端有限公司 Touch screen interference suppressing method and apparatus, and terminal device
CN107562258A (en) * 2016-06-30 2018-01-09 乐金显示有限公司 For drive touch sensor method and circuit and use its display device
JP2018518899A (en) * 2016-02-23 2018-07-12 北京集創北方科技股▲ふん▼有限公司Chipone Technology (Beijing) Co.,Ltd Signal processing circuit and method for fingerprint sensor
CN113256885A (en) * 2021-04-15 2021-08-13 陈进妹 New energy automobile assistance-localization real-time parking charging system based on thing networking
WO2022201599A1 (en) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 Detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325852A (en) * 1996-06-04 1997-12-16 Alps Electric Co Ltd Coordinate input device
JPH10233670A (en) * 1997-02-20 1998-09-02 Alps Electric Co Ltd Coordinate input device
WO2007032305A1 (en) * 2005-09-14 2007-03-22 Sharp Kabushiki Kaisha Coordinate position detecting device
US20070257890A1 (en) * 2006-05-02 2007-11-08 Apple Computer, Inc. Multipoint touch surface controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325852A (en) * 1996-06-04 1997-12-16 Alps Electric Co Ltd Coordinate input device
JPH10233670A (en) * 1997-02-20 1998-09-02 Alps Electric Co Ltd Coordinate input device
WO2007032305A1 (en) * 2005-09-14 2007-03-22 Sharp Kabushiki Kaisha Coordinate position detecting device
US20070257890A1 (en) * 2006-05-02 2007-11-08 Apple Computer, Inc. Multipoint touch surface controller
JP2009535742A (en) * 2006-05-02 2009-10-01 アップル インコーポレイテッド Multipoint touch surface controller

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108037A1 (en) * 2010-03-04 2011-09-09 Smk株式会社 Capacitive touch panel
KR101527438B1 (en) * 2010-03-04 2015-06-16 에스에무케이 가부시키가이샤 Capacitive touch panel
JP2011186508A (en) * 2010-03-04 2011-09-22 Smk Corp Capacitive touch panel
JP2011186509A (en) * 2010-03-04 2011-09-22 Smk Corp Capacitive touch panel
WO2011108036A1 (en) * 2010-03-04 2011-09-09 Smk株式会社 Capacitive touch panel
CN102576271A (en) * 2010-03-04 2012-07-11 Smk株式会社 Capacitive touch panel
KR101527440B1 (en) * 2010-03-04 2015-06-09 에스에무케이 가부시키가이샤 Capacitive touch panel
JP2011243181A (en) * 2010-05-14 2011-12-01 Alcor Micro Corp Method for determining touch point in touch panel and its system
CN102262470A (en) * 2010-05-28 2011-11-30 安国国际科技股份有限公司 Method and system for judging touch-control point on touch-control panel
US10126889B2 (en) 2010-07-16 2018-11-13 Microsoft Technology Licensing, Llc Techniques for locally improving signal to noise in a capacitive touch sensor
JP2017027611A (en) * 2010-07-16 2017-02-02 パーセプティブ ピクセル インコーポレイテッド Techniques for locally improving signal-to-noise ratio in capacitive touch sensor
JP2012034058A (en) * 2010-07-28 2012-02-16 Pentel Corp Capacitive coupling type touch switch device
WO2012096259A1 (en) * 2011-01-14 2012-07-19 シャープ株式会社 Liquid crystal display device and drive method therefor
CN103299258A (en) * 2011-01-14 2013-09-11 夏普株式会社 Liquid crystal display device and drive method therefor
US9256313B2 (en) 2011-05-28 2016-02-09 Tpk Touch Solutions (Xiamen) Inc. Touch point detecting device and the touch point detecting method thereof
EP2546727A3 (en) * 2011-05-28 2014-06-18 TPK Touch Solutions (Xiamen) Inc. Touch point detecting device and the touch point detecting method thereof
JP2012248180A (en) * 2011-05-28 2012-12-13 Tpk Touch Solutions (Xiamen) Inc Touch point detection device and touch point detection method for the same
TWI507951B (en) * 2011-06-22 2015-11-11 Smk Kk Capacitive touch panel
TWI505162B (en) * 2011-06-22 2015-10-21 Smk Kk Capacitive touch panel
JP2013029950A (en) * 2011-07-28 2013-02-07 Japan Display East Co Ltd Touch panel
JP2013058045A (en) * 2011-09-07 2013-03-28 Rohm Co Ltd Capacity detection circuit and capacity detection method for touch panel and touch panel input device and electronic equipment using the same
US9195342B2 (en) 2011-09-09 2015-11-24 Samsung Electronics Co., Ltd. Touch screen sensor integrated circuits, methods of operating the same, and systems having the touch screen sensor integrated circuits
JP2013114326A (en) * 2011-11-25 2013-06-10 Kyocera Display Corp Touch panel device
JP2015527005A (en) * 2012-08-16 2015-09-10 マイクロチップ テクノロジー ジャーマニー ツー ゲーエムベーハー ウント コンパニー カーゲー Signal processing for capacitive sensor systems with robustness against noise
KR102056428B1 (en) * 2012-08-16 2020-01-22 마이크로칩 테크놀로지 저머니 게엠베하 Signal processing for a capacitive sensor system with robustness to noise
KR20150043353A (en) * 2012-08-16 2015-04-22 마이크로칩 테크놀로지 저머니 Ⅱ 게엠베하 운트 콤파니 카게 Signal processing for a capacitive sensor system with robustness to noise
JP2015528616A (en) * 2012-09-13 2015-09-28 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Noise detection and correction routines
US9442611B2 (en) 2012-12-14 2016-09-13 Japan Display Inc. Display device with touch detection function and electronic apparatus including same
JP2017505488A (en) * 2014-01-26 2017-02-16 ▲華▼▲為▼▲終▼端有限公司 Touch screen interference suppressing method and apparatus, and terminal device
US10459572B2 (en) 2014-01-26 2019-10-29 Huawei Device Co., Ltd. Touchscreen interference suppression method and apparatus, and terminal device
JP2015141557A (en) * 2014-01-29 2015-08-03 アルプス電気株式会社 input device
WO2016002300A1 (en) * 2014-06-30 2016-01-07 シャープ株式会社 Touch panel system and electronic device
JPWO2016002300A1 (en) * 2014-06-30 2017-04-27 シャープ株式会社 Touch panel system and electronic device
JP2018518899A (en) * 2016-02-23 2018-07-12 北京集創北方科技股▲ふん▼有限公司Chipone Technology (Beijing) Co.,Ltd Signal processing circuit and method for fingerprint sensor
JP2018005916A (en) * 2016-06-30 2018-01-11 エルジー ディスプレイ カンパニー リミテッド Method and circuit for driving touch sensor, and display device
US10444901B2 (en) 2016-06-30 2019-10-15 Lg Display Co., Ltd. Method and circuit for driving touch sensor and display device using the same
CN107562258A (en) * 2016-06-30 2018-01-09 乐金显示有限公司 For drive touch sensor method and circuit and use its display device
CN107562258B (en) * 2016-06-30 2020-11-24 乐金显示有限公司 Method and circuit for driving touch sensor and display device using the same
WO2022201599A1 (en) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 Detection device
CN113256885A (en) * 2021-04-15 2021-08-13 陈进妹 New energy automobile assistance-localization real-time parking charging system based on thing networking
CN113256885B (en) * 2021-04-15 2022-12-27 深圳市鸿嘉利新能源有限公司 New energy automobile assistance-localization real-time parking charging system based on thing networking

Similar Documents

Publication Publication Date Title
JP2010015262A (en) Electrostatic detection device and electrostatic detection method
US10698550B2 (en) Capacitance detection circuit, touch detection device and terminal device
US9727118B2 (en) Measuring circuit and measuring method for a capacitive touch-sensitive panel
CN102193033B (en) Self-capacitance change measuring circuit with quick response
TWI405111B (en) Digital controller for a true multi-point touch surface useable in a computer system
JP6871923B2 (en) Analog sampling systems and methods for noise suppression in capacitive fingerprint detectors
US20150180493A1 (en) Capacitor Sensor Circuit with Rectifier and Integrator
TWI431520B (en) Front - end signal detectors and methods for improving the anti - noise capability of capacitive touch panels
US20130120309A1 (en) Touch detection method for capacitive touch screens and touch detection device
TWI531949B (en) Capacitive voltage information sensing circuit and related anti-noise touch circuit
CN109496273B (en) Capacitance detection circuit, touch detection device and terminal equipment
US20110169768A1 (en) Electrostatic detection device, information apparatus, and electrostatic detection method
US20120043972A1 (en) Method and circuit for reducing noise in a capacitive sensing device
KR20140106586A (en) Capacitive sensor interface and method
CN211375581U (en) Capacitance detection circuit, touch device and terminal equipment
JP2019510194A (en) System and method for reducing noise in a sensor system
CN102749525B (en) Capacitor detection method and capacitor detection circuit
CN103487662A (en) Capacitance detection circuit
CN105391449A (en) Sampling circuitry and sampling method for a plurality of electrodes
WO2019137991A1 (en) Sensor switch with spread spectrum sensing signal and synchronous rectifier
TW201602877A (en) Sampling device and sampling method
CN203535119U (en) Capacitance detection circuit
CN113287027B (en) Capacitance detection circuit, touch device, terminal equipment and capacitance detection method
CN109196315B (en) Capacitive limit switch
CN102955626B (en) For method for sensing and the circuit of capacitive sensing equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120327