JP2010015058A - レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置 - Google Patents

レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置 Download PDF

Info

Publication number
JP2010015058A
JP2010015058A JP2008176244A JP2008176244A JP2010015058A JP 2010015058 A JP2010015058 A JP 2010015058A JP 2008176244 A JP2008176244 A JP 2008176244A JP 2008176244 A JP2008176244 A JP 2008176244A JP 2010015058 A JP2010015058 A JP 2010015058A
Authority
JP
Japan
Prior art keywords
conversion element
wavelength conversion
laser light
mirror
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008176244A
Other languages
English (en)
Other versions
JP5056629B2 (ja
Inventor
Akira Egawa
明 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008176244A priority Critical patent/JP5056629B2/ja
Priority to US12/496,816 priority patent/US8085823B2/en
Publication of JP2010015058A publication Critical patent/JP2010015058A/ja
Application granted granted Critical
Publication of JP5056629B2 publication Critical patent/JP5056629B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/17Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】高効率なレーザ光源装置を提供する。
【解決手段】本発明のレーザ光源装置200は、レーザ光を射出する発光部211と、発光部211から射出されたレーザ光L1の一部を発光部211と異なる方向に向けて反射させる第1ミラー220と、第1ミラー220で反射したレーザ光が入射し、入射したレーザ光のうちの基本波長のレーザ光を反射させて折り返す第2ミラー230と、第1ミラー220と第2ミラー230との間の光路に配置され、入射した基本波長のレーザ光のうちの第1ミラー220に対するS偏光の少なくとも一部を変換波長のレーザ光に変換する波長変換素子240と、を備えている。第1ミラー220は、基本波長のレーザ光の第1ミラーに対するS偏光を選択的に反射させかつ変換波長のレーザ光を透過させる表面220Aを有しているとともに表面220Aを発光部211に向けて配置されている。
【選択図】図2

Description

本発明は、レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置に関する。
従来からプロジェクタ等の光学装置の分野において、照明光源として高圧水銀ランプが多用されている。高圧水銀ランプには、高出力な光が得られるという利点があるが、色再現性に制約があること、瞬時点灯が難しいこと、寿命が短いこと等の課題もある。このような事情により、高圧水銀ランプに代わる高出力な光源としてレーザ光源装置が期待されている。
高出力なレーザ光源装置として、共振器と波長変換素子とを備えたものが提案されている(例えば、特許文献1)。特許文献1のレーザ(レーザ光源装置)には、入力ミラーと出力カプラとの間に、レーザ材(活性層)、波長変換素子等が設けられている。励起用のダイオードレーザ源からレーザ材にエネルギーが供給されると基本波長のレーザ光が発生し、基本波長のレーザ光が入力ミラーと出力カプラとの間を往復する。入力ミラーと出力カプラとの間が共振器になっており、ここで増幅された基本波長のレーザ光は波長変換素子によって変換波長のレーザ光に変換される。変換波長のレーザ光が出力カプラを通って取り出されることにより、高出力な所望波長のレーザ光が得られる。
また、特許文献1のレーザには、共振器内に偏光手段(ブリュスター板)も設けられている。共振器内のレーザ光の偏光状態が偏光手段により制御され、基本波長のレーザ光が良好に共振するようになる。また、波長変換素子は偏光依存性を有しており、レーザ光の偏光状態を制御することにより波長変換素子が良好に機能するようになる。
特開平5−75196号公報
特許文献1のレーザによれば高出力な所望波長のレーザ光が得られると考えられるが、高効率化や高出力化を図る観点から改善すべき点がある。
特許文献1のレーザは共振器内に偏光手段が設けられており、レーザ光は共振器内を往復する度に偏光手段に入射する。すると、入射したレーザ光の一部が偏光手段表面の凹凸等により不測の方向に反射することや偏光手段に吸収されることにより、レーザ光の利用効率が低下してしまう。
高出力化を図る手法としては、複数の発光部を設けるとともに射出される複数のレーザ光を束ねて射出することが考えられる。しかしながら、複数の発光部の各々に対応させて波長変換素子や偏光手段等の構成要素を配置すると、位置合わせの手間が飛躍的に増加するため、高コスト化してしまう。また、複数の発光部で前記の構成要素を共通にすると、波長変換素子の偏光依存性を考慮して構成要素を配置する必要が生じる。これにより、構成要素の配置自由度が格段に低くなり、レーザを構成すること自体が難しくなる。
本発明は、前記事情に鑑み成されたものであって、高出力化や高効率化が可能なレーザ光源装置を提供することを目的の1つとする。また、配置自由度が格段に高い波長変換素子、及びその製造方法を提供することを目的の1つとする。また、高出力なレーザ光を用いることにより高品質な投射画像が得られるプロジェクタや、鮮明な撮像画像が得られるモニタ装置を提供することを目的の1つとする。
本発明のレーザ光源装置は、光を射出する活性層と該活性層における光の射出面と反対側に設けられた反射層とを有しレーザ光を射出する発光部と、前記発光部から射出されたレーザ光の一部を該発光部と異なる方向に向けて反射させる第1ミラーと、前記第1ミラーで反射したレーザ光が入射し、入射したレーザ光のうちの基本波長のレーザ光を反射させて折り返す第2ミラーと、前記第1ミラーと前記第2ミラーとの間の光路に配置され、入射した基本波長のレーザ光のうちの前記第1ミラーに対するS偏光の少なくとも一部を変換波長のレーザ光に変換する波長変換素子と、を備え、前記第1ミラーは、前記基本波長のレーザ光の該第1ミラーに対するS偏光を選択的に反射させかつ前記変換波長のレーザ光を透過させる表面を有していることを特徴とする。
このようにすれば、発光部から射出されたレーザ光のうちの基本波長のS偏光が、第1ミラーの表面で反射して波長変換素子に入射する。波長変換素子に入射した基本波長のS偏光の一部が変換波長のレーザ光に変換され、変換されなかった基本波長のS偏光が第2ミラーで反射し折り返される。第2ミラーで反射した基本波長のS偏光の一部が波長変換素子により変換波長のレーザ光に変換され、変換されなかった基本波長のS偏光が第1ミラーで反射して発光部に入射する。発光部に入射した基本波長のS偏光は、反射層で反射して発光部から射出される。
すなわち、発光部と第2ミラーとの間が共振器になり、発光部から射出されたレーザ光が共振して増幅されるとともに、増幅された基本波長のレーザ光の一部が波長変換素子を通る度に変換波長のレーザ光に変換される。変換波長のレーザ光は、第1ミラーを透過して取り出されるとともに、第2ミラーの特性を第1ミラーと同様にすることにより第2ミラーを透過して取り出される。このように、本発明によれば高出力な所望波長のレーザ光が得られるようになる。
また、波長変換素子が第1ミラーに対するS偏光の少なくとも一部の波長を変換するとともに、第1ミラーに対するS偏光が選択的に第1ミラーの表面で反射し波長変換素子に入射するので、波長変換素子に入射する偏光が波長変換素子の偏光依存性に合致する。したがって、ブリュスター板等の偏光手段を通すことにより波長変換素子に入射するレーザ光の偏光状態を制御する必要がなくなり、ブリュスター板等の偏光手段を省くことにより共振器内においてレーザ光が通る部品の数を減らすことができる。よって、共振器内を往復するレーザ光がこのような部品の界面で不測の方向に反射することや部品に吸収されることによるレーザ光の損失がなくなり、高効率のレーザ光源装置になる。
ところで、第1ミラーのような光分離手段において、入射光のうちの光分離手段に対するP偏光が選択的に反射するように光分離手段を設計することは困難である。反射光としてP偏光を取り出すことは困難であるから、P偏光を共振させようとすれば光分離手段を透過したP偏光を用いることになる。すると、前記P偏光が共振器内を往復する度に光分離手段を透過し、往路又は復路において光分離手段の界面を2回通ることになる。そのため、界面でP偏光が不測の反射を生じる機会や光分離手段に前記P偏光が吸収される機会が増えることにより、光の利用効率が低下してしまう。
一方、本発明では第1ミラーに対するS偏光を共振させるので、共振器内を往復する基本波長の前記S偏光は、往路又は帰路で第1ミラーの表面(界面)で1回反射するのみになる。したがって、P偏光を用いる場合よりも格段に光の利用効率が高くなり、高効率のレーザ光源装置になる。
また、複数の前記発光部が配列されているとともに、前記第1ミラーと前記第2ミラーと前記波長変換素子とが該複数の発光部で共通して設けられており、前記複数の発光部の各々から射出されるレーザ光の光軸の配列方向が前記表面と平行になっていることが好ましい。
複数の発光部が配列されていれば、レーザ光源装置から取り出されるレーザ光の総出力が高くなる。また、複数の発光部の各々から射出されるレーザ光の光軸の配列方向が表面と平行になっていれば、詳しくは後述するが、第1ミラーと複数の発光部とを近づけることや、第1ミラーと波長変換素子とを近づけることが可能になる。すなわち、複数の発光部の配列方向と第1ミラーとが非平行である場合に比べて、複数の発光部と波長変換素子との間の光路長を、第1ミラーを小型化した分だけ短くすることができる。これにより、共振器内の光路長に占める波長変換素子内の光路長の割合が高くなり、基本波長のレーザ光を変換波長のレーザ光に効率よく変換することが可能になる。
また、前記波長変換素子は、分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する複数の波長変換素子片が前記分極反転軸に沿う方向に貼り合わされて形成されているとともに、前記分極反転軸が前記S偏光の振動方向と平行になるように配置されていることが好ましい。
一般に波長変換素子は、その分極反転軸に平行な方向に振動し、かつ分極部と反転部とが交互に並ぶ前記所定方向に進行する偏光について波長を変換する。前記の構成によれば、波長変換素子片を貼り合わせる数を調整することにより、波長変換素子の分極反転軸方向の長さを容易に調整することができる。これにより、分極反転軸と平行な方向に配置する発光部の数を増やすことが容易になる。
また、前記波長変換素子は、前記複数の波長変換素子片がスペーサを介して貼り合わされ形成されていてもよい。この場合には、前記波長変換素子は、前記複数の波長変換素子片と前記スペーサとで線膨張係数が略均一になっているとともに、前記スペーサの熱伝導率が前記複数の波長変換素子片の熱伝導率以上であることが好ましい。また、前記スペーサは、前記複数の波長変換素子片と同じ形成材料からなっていてもよい。
このように、レーザ光が入射する部分の間にスペーサが配置された波長変換素子は、スペーサが配置されていないものと同様に機能する。スペーサには波長変換機能が不要であるから、スペーサを配置することにより分極反転軸方向において波長変換素子を長くすることが容易になる。
複数の波長変換素子片とスペーサとで線膨張係数が略均一になっていれば、波長変換素子片とスペーサとで熱による収縮が略均一になるので、波長変換素子の熱による歪や波長変換素子片とスペーサとの熱による剥離が防止される。また、スペーサの熱伝導率が複数の波長変換素子片の熱伝導率以上であれば、スペーサが設けられていない場合に比べて複数の波長変換素子片で温度が均一になり、複数の波長変換素子片で波長を変換する特性が均一になる。
スペーサが複数の波長変換素子片と同じ形成材料からなっていれば、波長変換素子片とスペーサとで線膨張係数や熱伝導率等の機械特性が均一になる。また、前記のようにスペーサには分極部や反転部が不要であるから、分極部や反転部が形成されていないことにより波長変換素子片と異なっている結晶構造のスペーサとすることができる。これにより、波長変換素子を、その機械特性を均一にするとともに分極反転軸方向において長くすることが容易になる。
また、波長変換素子には、前記分極反転軸方向において最も外側に配置された前記波長変換素子片の外側に補強部材が設けられており、該波長変換素子において前記複数の波長変換素子片の前記所定方向と直交する面と前記補強部材の前記所定方向と直交する面とが一括して研磨処理されていてもよい。
複数の波長変換素子片において所定方向と直交する面が研磨処理されていれば、この面の表面精度が高くなるので、ここを通る光が不測の方向へ反射あるいは屈折することによる光利用効率の低下が防止される。一般に、研磨処理において被処理面の端側は過剰に研磨されやすい。前記のように分極反転軸方向において最も外側に配置された波長変換素子片の外側に補強部材が設けられていれば、最も外側に配置された波長変換素子片が過剰に研磨されることが防止される。
本発明の波長変換素子は、分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する複数の波長変換素子片が、前記分極反転軸に沿う方向に貼り合わされて形成されていることを特徴とする。
一般に、波長変換素子は、その分極反転軸に平行な方向に振動しかつ前記周期方向に進行する偏光について波長を変換する。本発明の波長変換素子にあっては、波長変換素子片を貼り合わせる数を調整することにより、波長変換素子の分極反転軸方向の長さを容易に調整することができる。これにより、波長変換素子に向けて光を射出する側と波長変換素子との配置自由度が高くなり、多様な配置の光学系に適用可能な波長変換素子になる。
本発明の波長変換素子の製造方法は、厚み方向と平行な分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する母材を用意する工程と、前記母材を、前記周期方向的に沿って前記厚み方向に切断することにより、複数の波長変換素子片を形成する工程と、前記複数の波長変換素子片を前記分極反転軸に沿う方向に貼り合せる工程と、を有し、前記複数の波長変換素子片が貼り合わされてなる波長変換素子を製造することを特徴とする。
このようにすれば、波長変換素子の分極反転軸方向の長さは、貼り合わせる波長変換素子片の数に応じた長さになる。したがって、貼り合わせる波長変換素子片の数を調整することにより、分極反転方向において所望の長さとされた波長変換素子を製造することができる。
本発明の波長変換素子の製造方法は、厚み方向と平行な分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する複数の母材を用意する工程と、前記周期方向を前記複数の母材で揃えるとともに前記複数の母材を前記分極反転軸に沿う方向に貼り合せる工程と、貼り合わされた前記複数の母材を、前記周期方向に沿って前記厚み方向に切断する工程と、を有し、前記複数の母材が切断されることにより、複数の波長変換素子片が貼り合わされてなる波長変換素子を製造することを特徴とする。
このようにすれば、複数の母材が貼り合わされてなる構造体は、分極反転軸方向の長さが貼り合わせた母材の数に応じた長さになる。この構造体を母材の厚み方向に沿って切断すると、分極反転軸方向の長さが貼り合わせた母材の数に応じた長さとされた波長変換素子が得られる。したがって、貼り合わせる母材の数を調整することにより、分極反転方向において所望の長さとされた波長変換素子を製造することができる。
本発明のプロジェクタは、前記の本発明のレーザ光源装置と、該レーザ光源装置から射出されたレーザ光を変調する光変調装置と、前記変調装置によって変調されたレーザ光を投射する投射装置と、を備えていることを特徴とする。
本発明のレーザ光源装置によれば高出力なレーザ光が得られるので、前記の構成によれば高出力なレーザ光が光変調装置によって変調された後に投射装置によって投射される。したがって、高輝度の投射画像を得ることができ、ダイナミックレンジが広く高品質な投射画像が得られるプロジェクタになる。また、本発明のレーザ光源装置は、高効率になっているので、低消費電力のプロジェクタになる。
本発明のモニタ装置は、前記の本発明のレーザ光源装置と、該レーザ光源装置によって照明された被写体を撮像する撮像装置と、を備えていることを特徴とする。
本発明のレーザ光源装置によれば高出力なレーザ光が得られるので、高出力なレーザ光で被写体を照明することができる。したがって、被写体で反射する光の光量が確保され、これを撮像することにより鮮明な撮像画像が得られる良好なモニタ装置になる。また、本発明のレーザ光源装置は、高効率になっているので、低消費電力のモニタ装置になる。
以下、本発明の実施形態を説明する。まず、レーザ光源装置(第1、第2実施形態)を説明した後、波長変換素子(第3実施形態)、波長変換素子の製造方法(第4実施形態、第5実施形態)、プロジェクタ、モニタ装置を順に説明する。本発明の技術範囲は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。以降の説明では図面を用いて各種の構造を例示するが、構造の特徴的な部分を分かりやすく示すために、図面中の構造はその寸法や縮尺を実際の構造に対して異ならせて示す場合がある。
[第1実施形態]
図1は、第1実施形態のレーザ光源装置の概略構成を示す斜視図である。図1に示すように、レーザ光源装置100は、複数のエミッタ(発光部)111が配列されたレーザ素子110、第1ミラー120、第2ミラー130、波長変換素子140を備えている。エミッタ111から射出された光の一部は、第1ミラー120で反射した後、波長変換素子140を経て第2ミラー130に入射する。第2ミラー130に入射した光の一部が第2ミラー130で反射し、波長変換素子140を経て第1ミラー120に入射する。第1ミラー120に入射した光は、その一部が第1ミラー120で反射してエミッタ111に入射し、反射しなかった光が第1ミラー120を通り光軸変換プリズム150に入射して光軸を折り曲げられ射出される。
以下、図1に示したXYZ直交座標系に基づいて部材の位置関係を説明する。このXYZ直交座標系において、第1ミラー120と波長変換素子140と第2ミラー130とが並ぶ方向をX方向、エミッタ111から射出される光の光軸方向をZ方向、X方向に直交しかつZ方向に直交する方向をY方向としている。
レーザ素子110は、基板と基板に設けられた複数(図示は6つ)のエミッタ111とからなっており、本実施形態ではエミッタ111がX方向に沿って配列されている。エミッタ111は、その詳細な構造を図示しないが、基板に設けられたDBR層(反射層)とDBR層上(Z方向側)に設けられた活性層とを有している。本実施形態のエミッタ111は、活性層から発せられた光がエミッタ111内で共振してレーザ発振を生じることにより、基本波長のレーザ光(ここでは波長が1064nmの赤外レーザ光)を射出するようになっている。
第1ミラー120は、偏光分離特性と波長選択特性とを兼ね備えた表面120Aを有しており、表面120Aをレーザ素子110に向けて配置されている。表面120Aの法線方向は、エミッタ111から射出された赤外レーザ光L1の光軸方向(Z方向)と45°の角度をなしており、エミッタ111の配列方向(X方向)と非平行になっている。ここでは、表面120Aがダイクロイックミラー膜を用いて構成されており、変換波長のレーザ光(後述する)を透過させるとともに基本波長のレーザ光(ここでは赤外レーザ光)のうちの表面120Aに対するS偏光を選択的に反射させる特性を有している。これにより、表面120Aで反射した赤外レーザ光のうちのS偏光の光強度が、P偏光の光強度よりも高くなっている。一般に、P偏光はS偏光よりも反射率が低いため、反射した光のうちのS偏光の光強度をP偏光よりも高くすることは容易である。
なお、以下の説明では第1ミラーの表面に対するS偏光を単にS偏光と称する場合があり、第1ミラーの表面に対するP偏光を単にP偏光と称する場合がある。すなわち、本実施形態の構成では、レーザ素子110と第2ミラー130との間の光路においてY方向に振動する偏光成分がS偏光である。
波長変換素子140は、例えば非線形光学結晶であるPPLN(periodically poled lithium niobate)により構成されており、入射するレーザ光のうちの一部を略半分の波長に変換し、2次高調波を発生させるSHGとして機能する。波長変換素子140の分極反転軸方向(結晶方向)は、S偏光の振動方向(Y方向)と平行になっている。波長変換素子140は、分極部141と反転部142とが交互にかつ周期的に並んだ周期構造を有している。ここでは、分極部141と反転部142とが周期的に並ぶ周期方向が、X方向になっている。
なお、図1〜図7において、波長変換素子やその構成要素には、分極方向と反転方向を矢印で模式的に示している。
表面120Aで反射したS偏光L2の進行方向が、周期方向と一致している。波長変換素子140に入射したS偏光L2は、その少なくとも一部が変換波長のレーザ光(ここでは波長が532nmの緑色レーザ光G21)に変換される。波長変換素子140で変換されなかった赤外レーザ光L22と緑色レーザ光G21とが、第2ミラー130に向けて射出される。
第2ミラー130は、波長選択性を備えており、入射光の成分を波長ごとに選択的に透過又は反射させるようになっている。ここでは、体積ホログラフィック回折格子(以下、VHGと称す)からなり、赤外レーザ光L22を反射させるとともに緑色レーザ光G21を透過させるようになっている。第2ミラー130をVHGで構成する他にもダイクロイックミラー膜等を用いて構成してもよく、例えば第2ミラー130において波長変換素子140側の表面がダイクロイックミラー膜で構成されたものでもよい。
第2ミラー130を通った緑色レーザ光G21は外部に取り出され、赤外レーザ光L22は、第2ミラー130で反射して180°折り返され、波長変換素子140に再度入射する。第2ミラー130側から波長変換素子140に入射した赤外レーザ光も、その一部が緑色レーザ光G22に変換されて第1ミラー120に向けて射出される。変換されなかった赤外レーザ光は、表面120Aで反射しエミッタ111に入射する。エミッタ111に入射した赤外レーザ光は、前記DBR層で反射してエミッタ111から第1ミラー120の表面120Aに向けて射出される。
第1ミラー120を通った緑色レーザ光G22は、光軸変換プリズム150に入射する。光軸変換プリズム150は、断面形状が略直角二等辺三角形の三角柱状のプリズムからなっている。光軸変換プリズム150の3つの側面151、152、153のうち、直角二等辺三角形の斜辺を含んだ面151は、第1ミラー120を通る緑色レーザ光G22の光軸と直交している。面151を通った緑色レーザ光G22は、残り2つの側面152、153における光軸変換プリズム150の内面側で順に反射する。そして、反射の度に進行方向が90°変化して面151から射出され、外部に取り出される。
以上の構成により、エミッタ111の各々から射出された赤外レーザ光は、エミッタ111と第2ミラー130との間を何度も往復し、共振して増幅される。増幅された赤外レーザ光は、波長変換素子140を通る度にその一部が緑色レーザ光に変換される。変換された緑色レーザ光は、第1ミラー120、光軸変換プリズム150を経て、あるいは第2ミラー130を経て、外部に取り出される。このように、レーザ光源装置100にあっては、共振により増幅された高出力のレーザ光が得られるようになっている。また、波長変換素子140により変換された変換波長のレーザ光を取り出すので所望波長のレーザ光が得られるようになっている。また、波長変換素子140に入射する基本波長のレーザ光は、その偏光状態(S偏光)が波長変換素子140の偏光依存性と合致しているので、効率よく変換波長のレーザ光に変換される。
また、第1ミラー120でS偏光を選択的に反射させるので、第1ミラー120と第2ミラー130との間を通る赤外レーザ光におけるS偏光の割合がP偏光の割合よりも高くなる。したがって、第1ミラー120と第2ミラー130との間を通る赤外レーザ光が干渉しやすくなり、増幅のゲインが格段に高くなる。よって、格段に高出力の緑色レーザ光が得られるようになる。
また、第1ミラー120でS偏光を選択的に反射させるので、第1ミラー120と第2ミラー130との間を通るレーザ光の偏光状態を制御するブリュスター板等の偏光手段が不要になる。したがって、ブリュスター板に入射するレーザ光の一部が、ブリュスター板表面の微小な凹凸により不測の方向へ反射することや、ブリュスター板に吸収されること等がなくなり、光の利用効率が高くなる。また、S偏光を共振させるのでP偏光を共振させる場合よりも反射光を用いることが容易になり、レーザ光源装置を構成することが容易になる。また、共振器内の光路に光学部品(例えば第1ミラー120)を配置し、その透過光(例えばP偏光)を共振させる場合には、共振器の光路において往路、復路の各々でレーザ光がこの光学部品を通ることになる。すなわち、透過光を共振させる場合に往路又は帰路においてレーザ光の光路にこの光学部品の界面が2つあるのに対して、反射光を共振させる場合には界面の数が1つになる。よって、レーザ光が界面で不測の方向に反射することによる光の利用効率の低下が格段に低減される。
なお、レーザ素子110と第2ミラー130との間の光路、例えばレーザ素子110と第1ミラー120との間の光路や、第1ミラー120と波長変換素子140との間の光路、波長変換素子140と第2ミラー130との間にバンドパスフィルタを設けてもよい。これにより、レーザ素子110と第2ミラー130との間を通るレーザ光を狭帯域化することができ、レーザ光が共振しやすくなる。
また、第1ミラーとしては、偏光ビームスプリッタ膜やワイヤーグリッド等の偏光分離手段を併用したものでもよく、これによりP偏光の反射率やS偏光の反射率を調整することができる。例えば、透明基板上に、透明基板側からダイクロイックミラー膜と偏光ビームスプリッタ膜とが積層された光分離膜で第1ミラーの表面を構成すれば、第1ミラーに対するS偏光のほとんどが表面で反射し、P偏光のほとんどが表面を透過するようになる。これにより、第1ミラーと第2ミラーとの間を通るレーザ光は、その偏光方向が揃うことにより干渉しやすくなるので、共振しやすくなる。
[第2実施形態]
図2は、第2実施形態のレーザ光源装置の概略構成を示す斜視図である。図2に示すように、レーザ光源装置200は第1実施形態と同様のレーザ素子210、第1ミラー220、第2ミラー230、波長変換素子240、光軸変換プリズム250を備えている。レーザ光源装置200が第1実施形態と異なる点は、複数のエミッタ211から射出される赤外レーザ光L1の光軸の配列方向(Y方向)が、第1ミラー220と平行になっている点である。複数の赤外レーザ光L1は、第1ミラー220の表面220Aに対するS偏光L2が表面220Aで反射し、複数のS偏光L2がY方向に並んで波長変換素子240に入射する。
波長変換素子240は、本発明の波長変換素子を適用したものであり、分極反転軸をY方向と平行にして配置されている。詳しくは後述するが、本発明の波長変換素子は分極反転軸方向(Y方向)の長さが任意に設計可能になっている。一般に波長変換素子は、分極反転方向に振動する偏光について波長を変換するものである。本発明の波長変換素子は、分極反転軸方向の長さを任意に設計可能であるから、分極反転軸方向に並ぶ複数のレーザ光を波長変換素子に入射させる場合にレーザ光の本数を増やすことが容易になる。これにより、複数のエミッタ211の配置自由度が高くなり、赤外レーザ光L1の光軸の配列方向を第1ミラー220と平行にすることが容易になる。
第2実施形態のレーザ光源装置200にあっては、複数のエミッタ211の各々から射出される赤外レーザ光L1の光軸の配列方向(Y方向)が第1ミラー220と平行になっているので、複数のエミッタ211と波長変換素子240との間の光路長を短くすることができる。詳しくは、複数の赤外レーザ光L1の各々が第1ミラー220に入射する入射部分は、その光軸の配列方向(Y方向)に沿って分布する。すなわち、複数の赤外レーザ光L1で、入射部分がX方向において重なるとともに、Z方向においても重なるようになる。したがって、X方向及びZ方向における第1ミラー220の寸法としては、1つのエミッタ211から射出されるレーザ光の光束を受けるだけの寸法があればよい。よって、第1ミラー220のX方向の寸法やY方向の寸法を最小限度にすることができ、第1ミラー220と複数のエミッタ211との間隔や第1ミラー220と波長変換素子240との間隔を狭くすることができる。これにより、複数のエミッタ211と第2ミラー230との間の光路長(共振器長)が短くなり、相対的に共振器長に占める波長変換素子240内の光路長の割合が大きくなる。一般に波長変換素子は、その光路長が長くなるほど波長変換効率が高くなるので、基本波長のレーザ光を変換波長のレーザ光に効率よく変換することができる。
なお、レーザ素子において複数のエミッタの各々と第1ミラーとの距離が、複数のエミッタで異なっていてもよい。例えば、段差を有する基板において上段面と下段面とにそれぞれエミッタが配置されていてもよく、複数のエミッタの各々から射出されるレーザ光の光軸が第1ミラーと平行であれば前記の効果を得ることができる。
また、複数のエミッタをX方向とY方向とに2次元的に配列してもよい。例えば、複数のエミッタを第2実施形態のようにY方向に配列するとともに、このような列をX方向に複数並べて行列状にエミッタを配列してもよい。
[第3実施形態]
図3は、本発明の波長変換素子の一実施形態を示す斜視図である。なお、本実施形態は、第2実施形態のレーザ光源装置200の波長変換素子240に基づいて説明する。図3には、説明の便宜上、第2実施形態(図2)と対応したXYZ直交座標系を図示している。このXYZ直交座標系において、波長変換素子240により波長を変換する偏光の進行方向がX方向、変換する偏光の振動方向がY方向になっている。
図3に示すように、波長変換素子240はY方向に並ぶ複数(図示は6つ)の波長変換素子片243を有しており、複数の波長変換素子片243は互いに貼り合わされている。波長変換素子240は、波長変換素子片243ごとに1本又は2本以上のレーザ光について、波長を変換することが可能になっている。
波長変換素子片243は、Y方向に平行な分極反転軸を有しており、分極部241と反転部242とが交互にかつ周期的に並んだ周期構造を有している。分極部241と反転部242とが周期的に並ぶ周期方向は、分極反転軸と直交する一方向(ここではX方向)になっている。
ところで、通常の波長変換素子は、強誘電体材料からなり結晶方向が揃った母材に、部分的(例えばストライプ状)に電界を印加することにより製造されている。電界が印加された部分は結晶構造が変化して反転部になり、電界が印加されなかった部分は結晶構造が変化せずに分極部になる。電界を印加する方向に母材を薄くすることにより、反転させる部分の位置精度を高めることができ、波長変換素子の特性を向上させることができる。一方で、電界を印加する方向が分極反転軸方向になるので、この方向に母材を薄くすると波長変換素子の分極反転軸方向の長さが短くなる。したがって、分極反転軸方向に複数のレーザ光を入射させるためには、レーザ光の間隔すなわちエミッタの間隔を狭くするしかなく、エミッタの数が制約されることやエミッタ配置の高精細化によりコストが高騰すること等の不都合がある。
本実施形態の波長変換素子にあっては、貼り合わせる波長変換素子片243の数を増やすことにより分極反転軸方向の寸法を任意の長さにすることができる。したがって、分極反転軸方向に所望の本数のレーザ光を入射させてその波長を変換することが可能になり、エミッタの間隔や数に対する制約が格段に緩やかになる。よって、エミッタの配置と波長変換素子240との配置自由度が高くなり、例えば第2実施形態のような良好なレーザ光源装置を構成することが可能になる。
なお、第3実施形態では、複数の波長変換素子片243で互いに周期構造の位相、すなわち互いの分極部241の位置が揃っているとともに反転部242の位置が揃っているものを図示しているが、周期構造の位相がずれていてもよい。波長変換素子240における光路長、すなわち周期方向(X方向)の寸法が、複数の波長変換素子片243で揃っていれば、複数の波長変換素子片243で特性が均一になる。
また、波長変換素子240は、複数の波長変換素子片243を主な要素としていたが、この他にスペーサや補強部材を用いた構成も可能であり、以下の変形例1、2で詳しく説明する。
[変形例]
図4(a)、(b)はそれぞれ、波長変換素子の変形例1、2を示す斜視図である。変形例1が第3実施形態と異なる点は、波長変換素子片がスペーサを介して貼り合わされている点であり、変形例2が変形例1と異なる点は、分極反転軸方向において最も外側に配置された波長変換素子片の外側に補強部材が設けられている点である。
図4(a)に示すように、変形例1の波長変換素子240Bは、複数(図示は6つ)の波長変換素子片243がスペーサ244を介して貼り合わされており、波長変換素子片243の各々が波長を変換するレーザ光を入射させる部分になっている。変形例1のスペーサ244は、線膨張係数が波長変換素子片243と同等であり、熱伝導率が波長変換素子片243の値以上の材質のものである。ここでは、波長変換素子片243と同じ材質からなり、反転部242が形成されていないことにより波長変換素子片243と結晶構造が異なるものを用いている。このように同じ材質とすることによっても、波長変換素子片243とスペーサ244とで線膨張係数や熱伝導率が均一になる。
変形例1の波長変換素子240Bにあっては、波長変換素子片243の分極反転軸方向において、スペーサ244の長さの分だけ波長変換素子240Bを長くすることができ、第3実施形態と同様の理由により、エミッタの配置と波長変換素子240との配置自由度が高くなる。また、スペーサ244には、波長変換機能が不要であり、前記した分極部形成時の電界印加による寸法の制約等もない。したがって、波長変換素子240を分極反転軸方向に長くすることが容易になるとともに、スペーサ244を波長変換素子片243よりも低コストにすることが可能であるから、波長変換素子240Bを低コストにすることができる。
また、波長変換素子片243とスペーサ244とで線膨張係数が同等であるから、波長変換素子240Bで熱に対する変形量が均一になる。また、スペーサ244の熱伝導率が波長変換素子片243の熱伝導率の値以上であるから、スペーサ244を用いないものと比べて波長変換素子240Bにおける部分的な温度ばらつきが同等以下になる。
一般に波長変換素子は、その温度により特性が変化するため、温度管理しつつ使用される。前記のように波長変換素子240Bは、熱に対する変形量が均一であるから使用時の熱による不均一な変形が防止され、分極反転軸が歪むことによる波長変換素子240Bの特性変化や波長変換素子片243とスペーサ244との剥離が防止される。
また、波長変換素子片243とスペーサ244とで同じ材質とすることにより、波長変換素子240Bで線膨張係数や熱伝導率を均一にすることが容易になる。なお、反転部242のみならず分極部241も形成されていないことにより、波長変換素子片243と結晶構造が異なるスペーサを用いてもよい。
図4(b)に示すように、変形例2の波長変換素子240Cは、複数(図示は6つ)の波長変換素子片243がスペーサ244を介して貼り合わされており、分極反転軸方向の最も外側に配置された波長変換素子片243の外側に、それぞれ補強部材245が設けられている。補強部材245は、線膨張係数が波長変換素子片243と同程度であり、ここではスペーサ244と同じものを用いている。波長変換素子240Cは、周期方向における両端面が、波長変換素子片243とスペーサ244と補強部材245で一括して研磨処理されており、面一になっている。
変形例2の波長変換素子240Cにあっては、周期方向における両端面が研磨され面一になっているので、この面を通るレーザ光が波長変換素子240Cの表面の凹凸により不測の方向に反射あるいは屈折することが低減される。また、研磨により、複数の波長変換素子片243のX方向の長さを揃えることができ、これにより複数の波長変換素子片243で光路長が均一になるので、複数の波長変換素子片243で波長を変換する特性が均一になる。一般に、研磨処理において被処理面の端側は過剰に研磨されやすいが、最も外側に配置された波長変換素子片243の外側に補強部材245が設けられているので、被処理面の両端側の波長変換素子片243が過剰に研磨されることが防止される。
[第4実施形態]
図5(a)〜(e)、図6(a)〜(c)は、本発明に係る波長変換素子の製造方法の実施形態を示す工程図である。ここでは、第3実施形態の波長変換素子240に基づいてその製造方法を説明する。
本実施形態では、まず、厚み方向と平行な分極反転軸を有し、この分極反転軸と直交する周期方向において周期的な分極反転構造を有する母材を用意する。このような母材としては、製品化されたものを購入して用いてもよいし、形成して用いてもよい。ここでは、母材を形成して波長変換素子の製造に用いる。母材の形成方法としては、例えば以下のような方法が挙げられる。
まず、図5(a)に示すように、例えば引き上げ法等で形成され結晶方向が揃ったウエハ300を用意し、厚み方向に均一な電界を印加可能な厚みまでウエハ300を薄厚化する。
そして、図5(b)に示すように、ウエハ300上に、ストライプ状のレジストパターンRを形成する。レジストパターンRに覆われた部分は後に分極部241になり、覆われていない部分は後に反転部242になる。
そして、図5(c)に示すように、ウエハ300とレジストパターンRとを覆って電極膜310を形成するともに、ウエハ300におけるレジストパターンR形成面の裏面を覆って電極膜320を形成する。
そして、図5(d)に示すように、電極膜310、320の間に所定の電圧を印加する。これにより、レジストパターンRに覆われていない部分のウエハ300は、電界が印加され結晶構造が変化することによって反転部242になる。また、レジストパターンRは誘電率が極めて低いので、レジストパターンRに覆われていない部分のウエハ300は、電界が印加されないことにより結晶構造が変化せずに分極部241になる。電極膜310、320の間に印加する電圧としては、結晶構造を変化させ得る値とする。このような電圧印加において、基板面方向に電界のクロストークを生じると反転部の形状や位置の精度が低くなってしまうが、前記のようにウエハ300を薄厚化しているので良好な反転部242が得られる。
そして、図5(e)に示すように、電極膜310、320やレジストパターンRを除去し、適宜ウエハ300を個片化することにより母材330が得られる。母材330において分極反転軸方向は、ウエハ300に印加された電界の方向、すなわちウエハ300の厚み方向になる。したがって、母材330の分極反転方向の寸法は、反転部242の形状や位置の精度を高くするほど、小さくなる。一方、母材330の面方向の寸法は、ウエハ300の寸法や個片化の程度に応じて大きくすることが可能である。
次いで、図6(a)に示すように、前記周期方向に沿って、母材330を厚み方向に切断することにより、複数の波長変換素子片243を形成する。
そして、図6(b)に示すように、例えば周期方向を回転軸として図6(a)に示した波長変換素子片243を90°回転させ、複数の波長変換素子片243で分極反転軸方向が揃うように位置合わせした後、複数の波長変換素子片243を貼り合わせる。なお、スペーサを介して複数の波長変換素子片243を貼り合わせるようにしてもよいし、最も外側に配置された波長変換素子片の外側に補強部材を貼り付けてもよい。
そして、周期方向の両端面を適宜研磨することにより、両端面の各々を平坦化するとともに複数の波長変換素子片243で周期方向に沿う長さを均一化する。
以上のようにして、図6(c)に示すような波長変換素子240が得られる。
本実施形態の製造方法によれば、複数の波長変換素子片243を分極反転軸方向に貼り合わせるので、分極反転軸方向において波長変換素子240を長くすることができる。また、波長変換素子240の周期方向の長さや、周期方向に直交しかつ分極反転方向と直交する方向の長さとしては、母材330の寸法や母材330を切断する間隔に応じて長くすることができる。このように、互いに直交する3方向のいずれにおいても波長変換素子240を所望の寸法にすることができるので、入射させるレーザ光の数や入射位置に対する制約が格段に緩やかになる。すなわち、配置自由度が高い良好な波長変換素子240を製造することが可能になる。
なお、スペーサや補強部材を有する波長変換素子を製造する場合には、分極部241、反転部242が形成されたウエハ300を個片化する前に、あるいは母材330を切断する前に、後にスペーサになるスペーサ形成部材を貼り付けておいてもよい。
例えば、分極部241及び反転部242が形成されたウエハ300において分極反転軸方向と直交する面に、スペーサ形成部材を貼り付ける。このウエハとしては、分極部241や反転部242を形成する前のウエハ300(図5(a)参照)等でもよい。そして、スペーサ形成部材と、分極部241及び反転部242が形成されたウエハ300とを一括して個片化することにより、スペーサになる集合体が貼り合わされた母材を形成する。そして、この母材を切断することにより、スペーサと波長変換素子片とが貼り合わされた複数の部材を形成する。そして、複数の部材を貼り合わせることにより、複数の波長変換素子片がスペーサを介して貼り合わされた波長変換素子が得られる。このようにすれば、スペーサを形成する工程と波長変換素子片を形成する工程とを一括して行えるので、製造効率が高くなる。また、スペーサ形成部材とウエハ300とを一括して個片化した後に一括して切断するので、スペーサと波長変換素子片とで周期方向における寸法や、周期方向と分極反転軸方向とに直交する方向における寸法が自ずと一致する。したがって、スペーサと波長変換素子片とで寸法を調整する手間を省くことができ、製造効率が高くなる。
母材330を切断する前にスペーサになる集合体を貼り付けて後の工程を行った場合についても、同様の理由により製造効率が高くなる。
[第5実施形態]
図7(a)、(b)は、本発明に係る波長変換素子の製造方法の実施形態を示す工程図である。ここでは、第3実施形態の波長変換素子240に基づいてその製造方法を説明する。本実施形態が第4実施形態と異なる点は、複数の母材を貼り合せて構造体とした後に、この構造体を切断することにより波長変換素子を製造する点である。
まず、図7(a)に示すように複数の母材330を用意し、複数の母材330で分極反転軸方向が一致しかつ周期方向が一致するように、複数の母材330を位置合わせするとともに貼り合わせる。母材330としては、製品化されたものを購入して用いてもよいし形成して用いてもよい。形成して用いる場合には、第4実施形態と同様の形成方法(図5(a)〜(e)参照)を用いればよい。また、母材330としては、個片化前のウエハ、例えば分極部241、反転部242が形成されたウエハ300であってもよい。これにより、複数の母材330からなる構造体340が得られる。なお、前記スペーサ形成部材を介して複数の母材330を貼り合わせてもよいし、最も外側に配置された母材330の外側に、後に補強部材となる部材を貼り合わせてもいてもよい。
次いで、図7(b)に示すように、構造体340における母材330の前記周期方向に沿って、構造体340を厚み方向(分極反転軸方向)に切断する。これにより、図6(c)に示した波長変換素子240が得られる。なお、図6(c)に示した波長変換素子240は、図3に示した波長変換素子240を周期方向(X方向)を回転軸として90°回転させた状態に相当する。
本実施形態の製造方法によれば、複数の母材330を分極反転軸方向に貼り合わせるので、第4実施形態と同様の理由により、互いに直交する3方向のいずれにおいても波長変換素子240を所望の寸法にすることができる。また、構造体340を切断する数に応じて複数の波長変換素子240を一括して製造することができるので、配置自由度が高い良好な波長変換素子240を効率よく製造することが可能になる。
複数の母材330を貼り合わせる際の位置誤差は、第4実施形態において波長変換素子片243を貼り合わせる際の位置誤差と同程度であると考えられる。母材330の寸法が波長変換素子片243の寸法よりも大きいことから、波長変換素子片243間の位置誤差としては、第4実施形態の方が小さくなる。
次に、本発明のプロジェクタの実施形態を説明する。図8は、本実施形態のプロジェクタ400を示す概略構成図である。図8に示すように、プロジェクタ400は、レーザ光源装置410R、410G、410B、透過型の液晶ライトバルブ(光変調装置)430R、430G、430Bと、クロスダイクロイックプリズム440と、投射装置450とを備えている。レーザ光源装置410R、410G、410Bは、それぞれ赤色光、緑色光、青色光を射出し、射出された各色光は、それぞれ液晶ライトバルブ430R、430G、430Bに変調される。変調された各色光は、ダイクロイックプリズム440によって合成され、合成された光は投射装置450によって投射される。
また、本実施形態のプロジェクタ400は、レーザ光源装置410R、410G、410Bから射出されたレーザ光の照度分布を均一化する均一化光学系420R、420G、420Bを備えている。これにより、液晶ライトバルブ430R、430G、430Bが、均一な照度分布の光によって照明される。ここでは、均一化光学系420Rがホログラム421Rとフィールドレンズ422R等により構成されており、均一化光学系420G,420Bも同様の構成になっている。
液晶ライトバルブ430R、430G、430Bの各々により変調された色光は、クロスダイクロイックプリズム440に入射する。クロスダイクロイックプリズム440は4つの直角プリズムを貼り合わせて形成され、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に配置されている。3つの色光は、これらの誘電体多層膜によって合成され、カラー画像を表す光になる。合成された光が投射装置450によりスクリーン460上に拡大投写されることにより、投射画像が表示されるようになっている。
本実施形態のプロジェクタ400にあっては、レーザ光源装置410R、410G、410Bが本発明のレーザ光源装置により構成されているので、ダイナミックレンジが広く高品質な投射画像が得られるプロジェクタになる。また、レーザ光源装置410R、410G、410Bが高効率になっているので、低消費電力のプロジェクタになる。
なお、光変調装置として透過型の液晶ライトバルブを用いたが、反射型のライトバルブを用いても良いし、液晶以外の光変調装置を用いても良い。このようなライトバルブとしては、例えば、反射型液晶ライトバルブやデジタルミラーデバイス(DMD)が挙げられる。投射光学系の構成は、使用されるライトバルブの種類によって適宜変更すればよい。また、色光合成手段として、クロスダイクロイックプリズムを用いることとしたが、これに限るものではない。色光合成手段としては、例えば、ダイクロイックミラーをクロス配置とし色光を合成するもの、ダイクロイックミラーを平行に配置し色光を合成するものを用いることができる。
次に、本発明に係る別形態のプロジェクタについて説明する。本実施形態が前記実施形態と異なる点は、走査型プロジェクタである点である。図9は、本実施形態の走査型プロジェクタを示す概略構成図である。
本実施形態の走査型プロジェクタ500は、レーザ光源装置510と、集光レンズ520と、MEMSミラー(光変調装置、投射装置)530とを備えている。レーザ光源装置510から射出されたレーザ光は、集光レンズ520によってMEMSミラー530に集光される。集光されたレーザ光は、MEMSミラー530によって変調されるとともに、MEMSミラー520の駆動によってスクリーン540上において水平方向、垂直方向に走査される。これにより、スクリーン540に画像が描画されるようになっている。
次に、本発明に係るモニタ装置の一実施形態を説明する。図10は、本実施形態のモニタ装置を示す概略構成図である。本実施形態のモニタ装置600は、装置本体610と光伝送部620とを備えており、装置本体610には、カメラ(撮像装置)611と本発明のレーザ光源装置612とが設けられている。光伝送部620には、照明用のライトガイド621と受光用のライトガイド622が設けられている。ライトガイド621、622は、多数本の光ファイバを束ねたものであり、レーザ光を遠方に送ることができる。照明用のライトガイド621において、射出側になる一方の端(先端)に拡散板623が設けられており、他方の端はレーザ光源装置612と接続されている。レーザ光源装置612から射出されたレーザ光は、ライトガイド621を通じて拡散板623に送られ、拡散板623により拡散されて被写体を照射する。
光伝送部620の先端には結像レンズ624が設けられており、被写体の表面で反射した光は結像レンズ624に入射する。結像レンズ624に入射した光は、受光用のライトガイド622を通じて装置本体610内に設けられたカメラ611に送られる。このように、レーザ光源装置612から射出されたレーザ光が被写体を照射し、被写体表面で反射した光をカメラ611で撮像することが可能になっている。
本実施形態のモニタ装置600にあっては、本発明のレーザ光源装置612を照明に用いているので、高出力なレーザ光で被写体を照明することができる。したがって、被写体表面で反射する光の光量が確保され、鮮明な撮像画像が得られる良好なモニタ装置になる。また、レーザ光源装置が高効率になっているので、低消費電力のモニタ装置になる。
第1実施形態のレーザ光源装置の概略構成を示す斜視図である。 第2実施形態のレーザ光源装置の概略構成を示す斜視図である。 第3実施形態の波長変換素子の概略構成を示す斜視図である。 (a)、(b)はそれぞれ変形例1、2の波長変換素子を示す斜視図である。 (a)〜(e)は、第4実施形態の製造方法を示す工程図である。 (a)〜(c)は、図5(e)から続く工程図である。 (a)、(b)は、第5実施形態の製造方法を示す工程図である。 プロジェクタを示す概略構成図である。 走査型プロジェクタを示す概略構成図である。 モニタ装置を示す概略構成図である。
符号の説明
100、200、410R,410G、410B、510、612・・・レーザ光源装置、111、211・・・エミッタ(発光部)、120、220・・・第1ミラー、120A、220A・・・表面、130、230・・・第2ミラー、140、240、240B、240C・・・・波長変換素子、241・・・分極部、242・・・反転部、243・・・波長変換素子片、244・・・スペーサ、245・・・補強部材、330・・・母材、400・・・プロジェクタ、500・・・走査型プロジェクタ(プロジェクタ)、600・・・モニタ装置

Claims (12)

  1. 光を射出する活性層と該活性層における光の射出面と反対側に設けられた反射層とを有しレーザ光を射出する発光部と、
    前記発光部から射出されたレーザ光の一部を該発光部と異なる方向に向けて反射させる第1ミラーと、
    前記第1ミラーで反射したレーザ光が入射し、入射したレーザ光のうちの基本波長のレーザ光を反射させて折り返す第2ミラーと、
    前記第1ミラーと前記第2ミラーとの間の光路に配置され、入射した基本波長のレーザ光のうちの前記第1ミラーに対するS偏光の少なくとも一部を変換波長のレーザ光に変換する波長変換素子と、を備え、
    前記第1ミラーは、前記基本波長のレーザ光の該第1ミラーに対するS偏光を選択的に反射させかつ前記変換波長のレーザ光を透過させる表面を有していることを特徴とするレーザ光源装置。
  2. 複数の前記発光部が配列されているとともに、前記第1ミラーと前記第2ミラーと前記波長変換素子とが該複数の発光部で共通して設けられており、
    前記複数の発光部の各々から射出されるレーザ光の光軸の配列方向が前記表面と平行になっていることを特徴とする請求項1に記載のレーザ光源装置。
  3. 前記波長変換素子は、分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する複数の波長変換素子片が前記分極反転軸に沿う方向に貼り合わされて形成されているとともに、前記分極反転軸が前記S偏光の振動方向と平行になるように配置されていることを特徴とする請求項1又は2に記載のレーザ光源装置。
  4. 前記波長変換素子は、前記複数の波長変換素子片がスペーサを介して貼り合わされて形成されていることを特徴とする請求項3に記載のレーザ光源装置。
  5. 前記波長変換素子は、前記複数の波長変換素子片と前記スペーサとで線膨張係数が略均一になっているとともに、前記スペーサの熱伝導率が前記複数の波長変換素子片の熱伝導率以上であることを特徴とする請求項4に記載のレーザ光源装置。
  6. 前記スペーサが、前記複数の波長変換素子片と同じ形成材料からなっていることを特徴とする請求項4又は5に記載のレーザ光源装置。
  7. 前記波長変換素子には、前記分極反転軸方向において最も外側に配置された前記波長変換素子片の外側に補強部材が設けられており、前記複数の波長変換素子片における前記周期方向と直交する面と、前記補強部材における前記周期方向と直交する面とが一括して研磨処理されていることを特徴とする請求項3〜6のいずれか一項に記載のレーザ光源装置。
  8. 分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する複数の波長変換素子片が、前記分極反転軸に沿う方向に貼り合わされて形成されていることを特徴とする波長変換素子。
  9. 厚み方向と平行な分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する母材を用意する工程と、
    前記母材を、前記周期方向的に沿って前記厚み方向に切断することにより、複数の波長変換素子片を形成する工程と、
    前記複数の波長変換素子片を前記分極反転軸に沿う方向に貼り合せる工程と、を有し、
    前記複数の波長変換素子片が貼り合わされてなる波長変換素子を製造することを特徴とする波長変換素子の製造方法。
  10. 厚み方向と平行な分極反転軸を有し該分極反転軸と直交する周期方向において周期的な分極反転構造を有する複数の母材を用意する工程と、
    前記周期方向を前記複数の母材で揃えるとともに前記複数の母材を前記分極反転軸に沿う方向に貼り合せる工程と、
    貼り合わされた前記複数の母材を、前記周期方向に沿って前記厚み方向に切断する工程と、を有し、前記複数の母材が切断されることにより、複数の波長変換素子片が貼り合わされてなる波長変換素子を製造することを特徴とする波長変換素子の製造方法。
  11. 請求項1〜7のいずれか1項に記載のレーザ光源装置と、
    該レーザ光源装置から射出されたレーザ光を変調する光変調装置と、
    前記変調装置によって変調されたレーザ光を投射する投射装置と、を備えていることを特徴とするプロジェクタ。
  12. 請求項1〜7のいずれか1項に記載のレーザ光源装置と、
    該レーザ光源装置によって照明された被写体を撮像する撮像装置と、を備えていることを特徴とするモニタ装置。
JP2008176244A 2008-07-04 2008-07-04 レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置 Expired - Fee Related JP5056629B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008176244A JP5056629B2 (ja) 2008-07-04 2008-07-04 レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置
US12/496,816 US8085823B2 (en) 2008-07-04 2009-07-02 Laser source device, wavelength conversion element, method of manufacturing wavelength conversion element, projector, and monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176244A JP5056629B2 (ja) 2008-07-04 2008-07-04 レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置

Publications (2)

Publication Number Publication Date
JP2010015058A true JP2010015058A (ja) 2010-01-21
JP5056629B2 JP5056629B2 (ja) 2012-10-24

Family

ID=41464374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176244A Expired - Fee Related JP5056629B2 (ja) 2008-07-04 2008-07-04 レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置

Country Status (2)

Country Link
US (1) US8085823B2 (ja)
JP (1) JP5056629B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510273A (ja) * 2012-02-13 2015-04-02 リアルディー インコーポレイテッド レーザアーキテクチャ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201237825A (en) * 2011-03-11 2012-09-16 Hon Hai Prec Ind Co Ltd Front light unit and reflective dispay device employing the same
AU2013219966B2 (en) 2012-02-15 2015-04-02 Apple Inc. Scanning depth engine
RU2014144472A (ru) * 2012-04-06 2016-05-27 Реалд Инк. Лазерные архитектуры
DE102012209593B4 (de) * 2012-06-06 2021-08-12 Osram Gmbh Beleuchtungseinrichtung
US11178392B2 (en) * 2018-09-12 2021-11-16 Apple Inc. Integrated optical emitters and applications thereof
US11555982B1 (en) 2020-12-15 2023-01-17 Apple Inc. Detecting positional deviations in an optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575196A (ja) * 1991-02-28 1993-03-26 Amoco Corp 単一周波数の周波数2倍化レーザ及び単一周波数の緑色又は青色光を発生する方法
JPH10506233A (ja) * 1994-09-02 1998-06-16 ライト・ソリユーシヨンズ・コーポレーシヨン 受動安定化空胴内2倍化レーザー
JP2004241773A (ja) * 2003-02-07 2004-08-26 Lpkf Laser & Electronics Ag 共振器内で周波数変換を行うレーザー光学系
JP2005504360A (ja) * 2001-10-03 2005-02-10 キネティック リミテッド 非線形光学スタック
JP2008083482A (ja) * 2006-09-28 2008-04-10 Seiko Epson Corp レーザ光源装置、照明装置、モニタ装置およびプロジェクタ
WO2008070911A1 (en) * 2006-12-15 2008-06-19 Ellex Medical Pty Ltd Laser
US7394841B1 (en) * 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818129A (en) * 1971-06-30 1974-06-18 Hitachi Ltd Laser imaging device
JP2802193B2 (ja) * 1992-04-09 1998-09-24 三菱電機株式会社 アライメントマーク検出方法及びアライメントマーク検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575196A (ja) * 1991-02-28 1993-03-26 Amoco Corp 単一周波数の周波数2倍化レーザ及び単一周波数の緑色又は青色光を発生する方法
JPH10506233A (ja) * 1994-09-02 1998-06-16 ライト・ソリユーシヨンズ・コーポレーシヨン 受動安定化空胴内2倍化レーザー
JP2005504360A (ja) * 2001-10-03 2005-02-10 キネティック リミテッド 非線形光学スタック
JP2004241773A (ja) * 2003-02-07 2004-08-26 Lpkf Laser & Electronics Ag 共振器内で周波数変換を行うレーザー光学系
JP2008083482A (ja) * 2006-09-28 2008-04-10 Seiko Epson Corp レーザ光源装置、照明装置、モニタ装置およびプロジェクタ
WO2008070911A1 (en) * 2006-12-15 2008-06-19 Ellex Medical Pty Ltd Laser
US7394841B1 (en) * 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510273A (ja) * 2012-02-13 2015-04-02 リアルディー インコーポレイテッド レーザアーキテクチャ

Also Published As

Publication number Publication date
US20100002735A1 (en) 2010-01-07
JP5056629B2 (ja) 2012-10-24
US8085823B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
JP5056629B2 (ja) レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置
US8126025B2 (en) Laser light source apparatus, and monitoring apparatus and image display apparatus using the same
US7972034B2 (en) Laser light source, laser light source unit, illumination device, monitor apparatus, and image display apparatus
WO2007108504A1 (ja) 投写型ディスプレイ装置及び光源装置
US20110128505A1 (en) Laser beam source device, laser beam source device manufacturing method, projector, and monitoring device
US8328393B2 (en) Light source device having wavelength conversion and separation means, and projector
JP5024088B2 (ja) レーザ光源装置、照明装置、画像表示装置及びモニタ装置
JP5156015B2 (ja) コンパクトな多色光線源
JP2013117668A (ja) スペックル低減装置、プロジェクタ、およびスペックル低減装置の製造方法
JP2011165786A (ja) 光源装置、画像表示装置及びモニター装置
JP2009200079A (ja) 光源装置、プロジェクタ、及びモニタ装置
JP2009188056A (ja) レーザ光源装置、画像表示装置及びモニタ装置
US7711017B2 (en) Apparatus and method for producing light using laser emission
JP2010010607A (ja) レーザ光源装置、プロジェクタ、モニタ装置
JP2009200284A (ja) レーザ光源装置、画像表示装置及びモニタ装置
JP2012248558A (ja) レーザ光源装置
JP4382503B2 (ja) 投写型表示装置の光源装置と投写型表示装置
JP4382434B2 (ja) 投写型表示装置の偏光光源装置
JP2007171533A (ja) 光源装置、光源装置の製造方法、およびプロジェクタ
JP2011114182A (ja) レーザー光源装置、プロジェクター及びモニター装置
JP2010045273A (ja) 光源装置、プロジェクタ、モニタ装置
JP2008177473A (ja) レーザ光源装置およびそれを用いたモニタ装置ならびに画像表示装置
JP2011142243A (ja) レーザー光源装置、プロジェクター、モニター装置
JP2010062250A (ja) レーザ光源装置、プロジェクタ、モニタ装置
JP2011146498A (ja) レーザー光源装置、プロジェクター、モニター装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees