JP2009506104A - 界面活性剤用アルコールの製造方法 - Google Patents

界面活性剤用アルコールの製造方法 Download PDF

Info

Publication number
JP2009506104A
JP2009506104A JP2008528591A JP2008528591A JP2009506104A JP 2009506104 A JP2009506104 A JP 2009506104A JP 2008528591 A JP2008528591 A JP 2008528591A JP 2008528591 A JP2008528591 A JP 2008528591A JP 2009506104 A JP2009506104 A JP 2009506104A
Authority
JP
Japan
Prior art keywords
feed stream
azeotropic distillation
hydrocarbon feed
distillation column
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008528591A
Other languages
English (en)
Inventor
ジェームズ クリストフェル クルーセ
Original Assignee
サソル テクノロジー (プロプリエタリ) リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サソル テクノロジー (プロプリエタリ) リミテッド filed Critical サソル テクノロジー (プロプリエタリ) リミテッド
Publication of JP2009506104A publication Critical patent/JP2009506104A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • C07C45/84Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation by azeotropic distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】アルコール、具体的には界面活性剤前駆体として使用するアルコールを製造するための改良された製造方法を提供すること。
【解決手段】パラフィン及びオレフィンを含有する炭化水素供給流がヒドロホルミル化反応に供され、典型的には、当該炭化水素供給流に対して5体積%以上のオレフィン分子が、当該炭化水素流中に最も多く含まれる2(好ましくは3)の炭素原子数(炭素数)のオレフィンと異なる総炭素原子数を有し、当該オレフィンがアルコール及び/又はアルデヒドに変換され、当該ヒドロホルミル化反応の生成物中に含まれるパラフィンが、共沸蒸留カラムを用いた共沸蒸留によってアルコール及び/又はアルデヒドから分離されることを特徴とする方法。
【選択図】図1

Description

本発明は広義にはアルコールの製造方法、具体的には界面活性剤用アルコールの製造方法に関する。
界面活性剤用アルコールは通常C〜C20の範囲(すなわち分子中に8〜20個の炭素原子)のアルコールであり、それは洗剤及び界面活性剤の製造において有用である。
界面活性剤用アルコールは商業的には、オレフィンリッチなフィード原料を蒸留して適宜オレフィンとパラフィンとに分離して調製している。オレフィンは更にヒドロホルミル化を受けてアルコールに変化する。パラフィンはヒドロホルミル化反応を受けず、それが生成物の一部として形成される。アルコールとパラフィンの沸点が近接するか若しくは重複する場合にはアルコールを生成物中に含まれるパラフィンから分離することが困難となるため、2以下の炭素数のオレフィン及びその関連するパラフィンを高濃度で含有するオレフィンを狭い範囲でカットする蒸留方法が一般に行われている。オレフィンのアルコールへの転換により、パラフィンに対するオレフィンの沸点が相対的に高くなり、アルコールと関連するパラフィンとの分離がより簡便になる。
界面活性剤用アルコールは、高温又は低温におけるFischer−Tropsch反応による縮合生成物中に含まれるオレフィンから、触媒(好ましくは鉄ベース)を使用して製造できる。通常、かかるFischer−Tropsch反応からの供給流はオレフィンを主成分として含有する。Sasol社は、Fischer−Tropsch反応からの供給流を、主に2C範囲のオレフィンを含有する供給流として分画し、それをヒドロホルミル化反応器に供給し、オレフィンをアルコール及び/又はアルデヒドに変換させる方法を工業的に採用している。当該アルコール及び/又はアルデヒドは更に、供給流中に含まれるパラフィンから分離される。得られるアルコール及び/又はアルデヒドは主に2C範囲である。
かかるヒドロホルミル化反応プラントのスケールアップの際、より大きな炭素数のオレフィン、例えば3Cオレフィン、更には4Cオレフィンをカットすることは有益である。しかしながら、ヒドロホルミル化反応の生成物であるアルコール及び/又はアルデヒドの沸点が未反応パラフィンの沸点と重複し、それがアルコール及び/又はアルデヒド生成物をパラフィンから分離する際に妨げとなりうることが知られている。
本発明は、アルコール、具体的には界面活性剤前駆体として使用するアルコールを製造するための改良された製造方法を提供することを目的とする。
本発明の第1の態様は、アルコール及び/又はアルデヒドの製造方法の提供に関し、当該方法では、パラフィン及びオレフィンを含有する炭化水素供給流(典型的には、当該炭化水素供給流に対して5体積%以上のオレフィン分子が、当該炭化水素流中に最も多く含まれる2(好ましくは3)の炭素原子数(炭素数)のオレフィンと異なる総炭素原子数を有する)がヒドロホルミル化反応に供され、当該オレフィンがアルコール及び/又はアルデヒドに転換され、当該ヒドロホルミル化反応の生成物中に含まれるパラフィンが、共沸蒸留カラムを用いた共沸蒸留によってアルコール及び/又はアルデヒドから分離される。
好ましくは、炭化水素供給流はオレフィンを含有し、当該供給流中に含まれる10体積%以上(好ましくは20体積%以上)のオレフィン分子が、炭化水素供給流中に最も多く含まれる2(炭素数)オレフィンの総炭素原子数と異なる総炭素原子数を有する。
具体的には、当該炭化水素供給流は分子あたり10〜18の平均炭素原子数を有する。
好ましくは、当該炭化水素供給流はFischer−Tropsch縮合生成物に由来する。
具体的には、供給流をヒドロホルミル化反応に供する前に、酸素含有成分を当該炭化水素供給流から除去する。
本発明はまた、アルコール/アルデヒドを共沸蒸留カラムにおいて炭化水素供給流のパラフィンから分離する方法に関し、当該方法では当該カラム中の溶媒は中沸点極性添加溶剤である。
中沸点極性添加溶剤は、インドール、2−ピロリドン、1,6−ヘキサンジオール、N−アミノエチル−エタノールアミン、1,2−ベンゼンジオール、N−メチルピロリドン(NMP)、エチレンカーボネート、プロピレンカーボネート、ジエタノールアミン(DEA)又はジエチレングリコール(DEG)(好ましくはDEG)であってもよい。
上記添加溶剤:供給流の比率は通常1:05〜1:3、好ましくは1:1〜1:2、最も好ましくは1:1.8である。
共沸蒸留カラムからの塔頂流(パラフィン及び中沸点極性添加溶剤を含有する)はデカンタに供給することができ、そこで更に水で洗浄することにより、パラフィン生成物が中沸点極性添加溶剤から分離される。中沸点極性添加溶剤を共沸蒸留カラム中で再利用してもよい。
共沸蒸留カラムからの底部流は洗浄カラムに簡便に供給され、そこで更に水で洗浄することにより、アルコール/アルデヒド生成物が中沸点添加溶剤から分離される。
本発明は、炭化水素供給流を原料とする界面活性剤用アルコール/アルデヒドの製造方法に関する。Fischer−Tropsch反応に由来する供給流が本願明細書に記載されているが、それ以外のいかなる適切な炭化水素供給流を使用してもよい。
典型的なFischer−Tropsch法は、VIII族の金属(Fe、Co、Mo、W、Rh、Pt、Pd、Os、Ir及びRuなどが挙げられるがこれらに限定されない)の存在下でのCOの水素化処理を含んでなる。基本的に、商業的規模においては、鉄ベース、コバルトベース若しくは鉄/コバルトベースのFischer−Tropsch触媒を用いてFischer−Tropsch反応工程を行うことができる。特に鉄ベースの触媒が本発明において好適であるが、なぜならそれらはオレフィン炭化水素縮合生成物を産生する傾向を有するからである。幾つかの実施形態では、鉄ベースのFischer−Tropsch触媒は、沈殿若しくは溶解した鉄及び/若しくは酸化鉄を含有してもよい。しかしながら、適切な支持体上へ焼結、結合又は含浸された鉄及び/又は酸化鉄を用いてもよい。場合によっては、鉄ベースの触媒に適当な濃度のプロモーターを含有させてもよく、それにより、最終的な触媒の活性、安定性及び選択性のうちの1つ以上を改変することが可能となる。好ましいプロモーターは還元鉄(「構造的プロモーター」)の表面積に影響を与えるものであり、かかる物質としてはMn、Ti、Mg、Cr、Ca、Si、Al若しくはCuの酸化物若しくは金属、又はそれらの組み合わせが挙げられる。生成物の選択性に影響を与える好ましいプロモーターは、K及びNaのアルカリ酸化物である。Fischer−Tropsch法による炭化水素分子種の製造に用いる触媒は、従来技術において公知である。
Fischer−Tropsch反応は固定ベッドにおいて、好ましくは低温Fischer−Tropsch用のスラリー相反応器において、又は高温Fischer−Tropsch用の流動床反応器中で実施してもよい。Fischer−Tropsch反応条件として、190℃〜340℃の反応温度を使用してもよいが、実際の反応温度は主に所望の生成物スペクトルにより規定される。この反応により形成される生成物はガス、液体及びワックス状の炭化水素であり、特にオレフィン及びパラフィン、並びに酸素含有成分が含まれる。これらの生成物の炭素数分布は通常、Anderson−Schulz−Flory分布により表される。
低温Fischer−Tropsch(LTFT)工程は周知の方法であり、当該方法では合成ガス(一酸化炭素及び水素を含有する混合ガス)を適切な触媒上で反応させ、メタンから1400超の分子量を有するワックスにわたる、直鎖状及び分岐状の炭化水素、及び(高温Fischer−Tropschの場合よりも)少ない量の酸素含有成分の混合物を生産する。LTFT触媒は鉄、コバルト、ニッケル又はルテニウムなどの活性金属を含有してもよく、当該触媒は通常沈殿型触媒か若しくは担持触媒である。LTFT工程に用いる合成ガスは、いかなる炭素含有フィードストック(例えば石炭、天然ガス、バイオマス又は重油流)に由来してもよい。LTFT工程を使用する重質炭化水素生産用の反応器としてスラリー相又は管状固定ベッド反応器が用いられる場合もあり、一方、処理条件は通常、180℃〜280℃、若干のケースでは210℃〜260℃の範囲で、10〜50bar、若干のケースでは20〜30barの範囲である。合成ガス中の水素の一酸化炭素に対するモル比は0.4〜3.0であってもよく、通常1.0〜2.0である。
LTFT工程と同様に、より高い工程温度においても、High Temperature Fischer−Tropsch(HTFT)工程としてFT反応を実施できる。HTFT工程に用いる典型的な触媒は、鉄ベースの触媒である。融合鉄触媒は、高温Fischer−Tropsch合成で使用されるものとしては最も公知のものである。HTFT工程を使用した重質炭化水素生産用の周知の反応器は循環ベッドシステム又は固定流動ベッドシステムであり、文献においてSynthol工程としてしばしば参照される。このシステムは290℃〜360℃、若干のケースでは320℃〜350℃の温度範囲で、20〜50bar、若干のケースでは20〜30barの圧力範囲で実施する。合成ガス中の水素の一酸化炭素に対するモル比は1.0〜3.0であってもよく、通常1.5〜2.5である。通常、再循環流を適用し、HTFT反応器の供給口における、供給ガス中の水素含有量を、水素の二酸化炭素に対するモル比が、供給ガス中の二酸化炭素の量に応じて3.0〜6.0となるまで増加させる。通常、化学量論的比率(Ribblett比率:H/[2(CO)+3(CO)]=1.03として公知)を、供給ガスの組成の目標として用いる。HTFT工程に由来する生成物の全ては、反応器の排出口では気相であり、それらはLTFT工程に由来するものよりも若干軽く、また更なる相違点としては、高い含量で不飽和の分子種及び酸素含有成分が含有されることが挙げられる。HTFT工程は様々な工程を経て完了し、その工程には、あらゆる炭素含有フィードストック(例えば天然ガスの再形成、又は石炭若しくは他の適切な炭化水素系のフィードストック(例えば石油ベースの重油又はバイオマスガス化)からの合成ガス(H及びCO)の調製工程が含まれる。これらはSasol Synthol又はSasol Advanced Synthol反応器などの反応システム中で、合成ガスをHTFT転換することによって実施される。この合成反応により得られる生成物の1つとして、別名Synthol Light Oil、SLOとして知られているオレフィン蒸留物が存在する。
これらの2つのFT工程(LTFT及びHTFT)に関する特に詳細な説明は、「Fischer−Tropsch Technology」,Surface Science及びCatalysis、第152巻、Eds.A.P.Steynberg及びM.E.DryのStudies、エルゼビア、2004中に記載されている。
図面を参照する。鉄ベースの触媒を使用してHTFischer−Tropsch反応を行わせ、炭化水素縮合生成物10が調製され、それを分画して、炭化水素流中にオレフィン分子を5%超、好適には10%超、より好適には20%(いずれも体積ベース)超で含有するオレフィン含有炭化水素流を得る。その総炭素原子数は、当該炭化水素中に最も多く含まれる炭素数2(好ましくは3)のオレフィンの総炭素原子数と異なる総炭素原子数を有する。分画された炭化水素流は3C範囲(好適には4C範囲)又はそれ以上のオレフィンを含有する。例えばC11〜C14オレフィン(供給流中のオレフィンの全体積に対して例えば約37%のC11、約30%のC12、約18%のC13及び約11%のC14オレフィンを含有)が含有され、それを酸素含有成分除去工程12に供給し、酸素含有成分が供給流中から除去される。酸素含有成分除去工程は、液体−液体抽出(例えばアセトニトリル/水又はメタノール/水)、脱水又は水素化処理により実施してもよい。酸素含有成分除去工程12から、パラフィン及び直鎖状オレフィンを含有する供給流14をヒドロホルミル化反応器16に供給される。ヒドロホルミル化反応器16において、供給流中のオレフィンが「オキソ」工程に供される。高温及び高圧下、ヒドロホルミル化触媒の存在下で、オレフィンフィードストックを、一酸化炭素及び水素と反応させることによって酸化生成物、特にアルデヒド及び/又はアルコールを調製するヒドロホルミル化(オキソ)工程は周知である。ヒドロホルミル化反応において、オレフィン結合飽和と並行させながらカルボニル基又はカルビノール基をフィードストック中のオレフィン中の不飽和炭素原子に付加することにより、得られる出発化合物に一般に適合させたこれらの方法においてアルコール及び/又はアルデヒドが生産される。ヒドロホルミル化触媒は、特定のオレフィンフィードストックからの特定の酸化生成物に従い適宜選択される。すなわち、ヒドロホルミル化触媒は典型的には例えばVIII族金属を含有してもよく、コバルト、ロジウム、プラチナ及びパラジウムなどが挙げられるがそれらに限定されない。幾つかの実施形態では、当該金属は例えばリガンドと結合されていてもよく、ホスフィン及び/又は亜リン酸系のリガンドが挙げられるがそれらに限定されない。かかる触媒の例としては、ロジウムと併用するトリフェニルホスフィンリガンド、及びコバルトと併用するアルキルホスフィンリガンドである。当該オキソ工程では、オレフィンの炭素数は1増加し、水酸基が添加されてアルコール/アルデヒドが形成される。
ヒドロホルミル化は、バッチ工程、連続工程又は半連続的工程で実施してもよい。リガンド修飾されたコバルト触媒の場合、典型的なヒドロホルミル化温度は140℃〜210℃、好ましくは160℃〜200℃である。合成ガス組成物中のH:CO比率は1:2〜3:1、好ましくは2:1付近であってもよく、合成ガス圧は通常は20〜110bar、好ましくは50〜90barであってもよく、リガンド対金属のモル比は通常は10:1〜1:1、好ましくは1:1〜3:1であってもよく、金属のオレフィンに対する質量%は通常は0.1〜1、好ましくは0.2〜0.7である。
リガンド修飾されたロジウム触媒の場合、典型的なヒドロホルミル化温度は50℃〜150℃、好ましくは80℃〜130℃である。合成ガス組成物中のH:CO比率は1:2〜3:1、好ましくは1.1〜1.2付近であってもよく、合成ガス圧は通常は2〜60bar、好ましくは5〜30barであってもよく、金属のオレフィンに対する質量%は通常は0.001〜0.1、好ましくは0.01〜0.05である。
供給流14のパラフィンはオキソ工程において影響を受けず、そのままヒドロホルミル化反応器16を通過する。C11〜C14供給流14の場合、C12〜C15範囲の直鎖状アルコールがヒドロホルミル化反応器16において形成され、C12〜C15範囲のアルコール及びC11〜C14範囲のパラフィンを含有する供給流18がヒドロホルミル化反応器16から排出される。
供給流18のかかる広範囲にわたるパラフィンからのアルコールの分離は、重いパラフィンと軽いアルコール沸点が重複するため、困難である。かかる供給流中の典型的なパラフィン及びアルコールの沸点を以下に示す。
パラフィン
・n−ウンデカン(nC11):196℃
・n−ドデカン(nC12):216℃
・n−トリデカン(nC13):235℃
・n−テトラデカン(nC14):253℃
アルコール
・ドデカノール(C12OH):264℃
・トリデカノール(C13OH):280℃
・テトラデカノール(C14OH):296℃
・ペンタデカノール(C15OH):310℃
重いパラフィン及び軽いアルコールの沸点に10℃の差があるにもかかわらず、混合物が大変低い相対揮発度を有するか、又は共沸混合物を形成するものと考えられるため、nC14とC12OHを完全に分離するのが困難若しくは不可能となる。
しかしながら本発明では、供給流18を共沸蒸留カラム20において共沸蒸留に供することによって、かかる分離の遂行が可能となることを見出している。共沸蒸留とは、蒸留カラムに供給した1つ以上の成分と共沸混合物を形成する追加成分を使用した方法であって、それにより相対揮発度が高まり、所望の分離が可能となる。
本発明では、共沸蒸留カラム20において、カラム20の最上部に中沸点極性添加溶剤22を供給し、カラム20の中間部を通して炭化水素流18をカラム20に供給する。中沸点極性添加溶剤とは、分離しようとする原材料中の、沸点の最も低い成分と、沸点の最も高い成分との間の沸点を有する溶媒である。中沸点極性添加溶剤を選択して共沸蒸留カラム20の底流24から塔頂流26まで分配させることにより、カラム20全体を通じて相対揮発度の上昇が生じたため、中沸点添加溶剤の使用が低沸点添加溶剤又は高沸点添加溶剤と比較して効果的であることが明らかとなった。
候補となる添加溶剤としては以下のものが挙げられる。
・インドール
・2−ピロリドン
・1,6−ヘキサンジオール
・N−アミノエチル−エタノールアミン
・1,2−ベンゼンジオール
・Nメチルピロリドン(NMP)
・エチレンカーボネート
・プロピレンカーボネート
・ジエタノールアミン(DEA)
・ジエチレングリコール(DEG)
列挙した添加溶剤の中でもDEGが特に好ましいが、それは比較的低いコスト、低い毒性、低い凝固点及び水抽出による炭化水素及びアルコール流からの分離工程の簡便化にとり好適だからである。
DEGの添加により各々C14とC12OHとの共沸混合物の形成がなされるが、約13℃という大きい沸点差がこれらの新規な共沸混合物の間に生じるため、C14とC12OHとの間の相対揮発度が上昇する。DEGの沸点は約245℃である。C14とC12OHとの間の相対揮発度の同様の強化が、上に列挙した他の添加溶剤においても観察される。典型的には、添加溶剤22対供給流18の比率は1:05〜1:3、好ましくは1:1〜1:2、最も好ましくは1:1.8である。本発明の方法によれば、蒸留カラム20からの塔頂流26(オレフィン及び中沸点極性添加溶剤を含有)はコンデンサ28、更にデカンタ30に供給され、そこにおいてパラフィン生成物32が、中沸点の極性添加溶剤34から水洗浄により分離される。分離された中沸点添加溶剤は更に、ライン36を経て溶媒乾燥機38に供給される。溶媒乾燥機38に由来する乾燥した極性添加溶剤40は共沸蒸留カラム20にて再利用される。溶媒乾燥機38に由来する水42を、デカンタ30で再利用するのが好適である。共沸蒸留カラム20からの底流24(中沸点添加溶剤の一部及びアルコールを含有)を洗浄カラム44において水洗し、その際の水は水再循環流42から簡便に供給することができる。添加溶剤を含有する水相46は、ライン36を経て溶媒乾燥機38に供給される。C12〜C15アルコールを含有するアルコール生成物流48が洗浄カラム44から得られる。流れ48を更にスプリッターカラム50に供給し、C12〜C13範囲の第1アルコール生成物52を得、またC14〜C15範囲の第2のアルコール生成物54を得る。
本発明の方法により、オレフィン及びパラフィンを含有する供給流をヒドロホルミル化してアルコール生成物を調製することが可能となり(当該生成物中では、炭化水素流中の5%超、典型的には10%超、好ましくは20%超(いずれも体積ベース)のオレフィン分子が、当該炭化水素流中に最も多く含まれる炭素数2のオレフィンの総炭素原子数と異なる総炭素原子数を有する)、更に、パラフィンをアルコールから分離して、有用な純粋なアルコール生成物を得ることが可能となる。従来技術(炭化水素流中のヒドロホルミル化が2C範囲において行われる方法)と比較した本発明の方法による効果としては、1つのヒドロホルミル化反応器を用いて3C範囲においてアルコールの形成が可能であるということであり、従来技術において別々の2つの反応器及び反応が必要とされていたのとは一線を画するものである。
前記の説明はパラフィンからのアルコールの分離に関するものであったが、当該方法はパラフィンからのアルデヒドの分離にも同様に使用できる。
本発明を以下に記載する非限定的な実施例により説明する。
11〜C14パラフィン及びC12〜C15アルコールを含有する供給流を共沸蒸留カラム20に供給した。ジエチレングリコール(DEG)の形の中沸点添加溶剤22を共沸蒸留カラム20に供給し、約15〜30キロパスカル(abs)で操作した。カラムは典型的には真空下で操作して底部の温度を約200℃に制限し、好ましい圧力範囲は約15〜30キロパスカル(abs)である。このカラムの理論上の最適工程数は約30〜35である。共沸混合物カラムへのDEGの流速は、リボイラーの能力、DEG及び炭化水素相の還流速度及び供給を行う場所と共に変化させ、底部流24におけるC14パラフィン及び塔頂流26におけるC12アルコールの量が1kg/時間となるように制限した。DEGはカラムの上部トレイに供給されなければならないことが判明したが、一方供給流は共沸混合物カラムの中央から供給した。DEG:供給流の比率が1:1.8であることが、所望の分離には必要であった。
デカンタ30に対して水:供給流=1:1とすることにより、2段階による抽出カラムの使用によっても燃料流中のDEG濃度を100ppm以下に低下させることが十分可能となった。生成物洗浄カラム44に対して水:供給流の比率を6:1とした場合では、アルコール流48中のDEG濃度を100ppm以下に下げるには5段階で抽出器を使用することが必要であった。必要な水流を減少させるために、生成物洗浄カラムにおいてより多くの工程が用いられる。
下記の表1は、本発明の実施例における流れ18、22、26及び24の組成を示す。
Figure 2009506104
下記の表2は、本実施例におけるそれぞれのカラムの条件を示す。
Figure 2009506104
本発明に係る方法のブロック図である。
符号の説明
10 炭化水素縮合生成物
12 酸素含有成分除去工程
14 供給流
16 ヒドロホルミル化反応器
18 供給流
20 共沸蒸留カラム
22 中沸点極性添加溶剤
24 底部流
26 塔頂流
28 コンデンサ
30 デカンタ
32 パラフィン生成物
34 極性添加溶剤
36 ライン
38 溶媒乾燥機
40 極性添加溶剤
42 水再循環流
44 洗浄カラム
46 水相
48 アルコール生成物流
50 スプリッターカラム
52 第1のアルコール生成物
54 第2のアルコール生成物

Claims (23)

  1. アルコール及び/又はアルデヒドの製造方法であって、パラフィン及びオレフィンを含有する炭化水素供給流がヒドロホルミル化反応に供されてオレフィンがアルコール及び/又はアルデヒドに変換され、ヒドロホルミル化反応の生成物中のパラフィンが、共沸蒸留カラムにおける共沸蒸留によってヒドロホルミル化反応の生成物中のアルコール及び/又はアルデヒドから分離される方法。
  2. 前記炭化水素供給流中の5体積%以上のオレフィン分子が、当該炭化水素供給流中に最も多く含まれる炭素数2のオレフィンの総炭素原子数と異なる総炭素原子数を有する、請求項1記載の方法。
  3. 前記炭化水素供給流中の10体積%以上のオレフィン分子が、当該炭化水素供給流中に最も多く含まれる炭素数2のオレフィンの総炭素原子数と異なる総炭素原子数を有する、請求項2記載の方法。
  4. 前記炭化水素供給流中の20体積%以上のオレフィン分子が、当該炭化水素供給流中に最も多く含まれる炭素数2のオレフィンの総炭素原子数と異なる総炭素原子数を有する、請求項3記載の方法。
  5. 前記炭化水素供給流が分子あたり10〜18の平均炭素原子数を有する、請求項1から4のいずれか1項記載の方法。
  6. 前記炭化水素供給流がFischer−Tropsch縮合生成物に由来する、請求項1から5のいずれか1項記載の方法。
  7. 前記炭化水素供給流をヒドロホルミル化反応に供する前に、酸素含有成分を当該炭化水素供給流から除去する、請求項1から6のいずれか1項記載の方法。
  8. 前記共沸蒸留カラム中の溶媒が中沸点極性添加溶剤である、請求項1から7のいずれか1項記載の方法。
  9. 前記中沸点極性添加溶剤がインドール、2−ピロリドン、1,6−ヘキサンジオール、N−アミノエチル−エタノールアミン、1,2−ベンゼンジオール、N−メチルピロリドン(NMP)、エチレンカーボネート、プロピレンカーボネート、ジエタノールアミン(DEA)又はジエチレングリコール(DEG)である、請求項8記載の方法。
  10. 前記中沸点極性添加溶剤がDEGである、請求項9記載の方法。
  11. 前記共沸蒸留カラムにおける、添加溶剤対供給流の比率が1:05〜1:3である、請求項8から10のいずれか1項記載の方法。
  12. 前記共沸蒸留カラムにおける、添加溶剤対供給流の比率が1:1〜1:2である、請求項11記載の方法。
  13. 前記共沸蒸留カラムにおける、添加溶剤対供給流の比率が1:1.8である、請求項12記載の方法。
  14. 前記共沸蒸留カラムからの、パラフィン及び中沸点極性添加溶剤を含有する塔頂流がデカンタに供給され、そこで更に水洗に供することによりパラフィン生成物が中沸点極性添加溶剤から分離される、請求項8から13のいずれか1項記載の方法。
  15. 前記デカンタからの中沸点極性添加溶剤が前記共沸蒸留カラムに再利用される、請求項14記載の方法。
  16. 前記共沸蒸留カラムからの底部流が洗浄カラムに供給され、そこで更に水洗に供されることにより、アルコール/アルデヒド生成物が中沸点添加溶剤から分離される請求項1から15のいずれか1項記載の方法。
  17. アルコール/アルデヒドを共沸蒸留カラムにおいて炭化水素供給流中のパラフィンから分離する方法であって、前記カラム中の溶媒が中沸点極性添加溶剤である方法。
  18. 前記中沸点極性添加溶剤がインドール、2−ピロリドン、1,6−ヘキサンジオール、N−アミノエチル−エタノールアミン、1,2−ベンゼンジオール、N−メチルピロリドン(NMP)、エチレンカーボネート、プロピレンカーボネート、ジエタノールアミン(DEA)又はジエチレングリコール(DEG)である、請求項17記載の方法。
  19. 前記中沸点極性添加溶剤がDEGである、請求項18記載の方法。
  20. 前記共沸蒸留カラムにおける、添加溶剤対供給流の比率が1:05〜1:3である、請求項17から19のいずれか1項記載の方法。
  21. 前記共沸蒸留カラムにおける、添加溶剤対供給流の比率が1:1〜1:2である、請求項20記載の方法。
  22. 前記共沸蒸留カラムにおける、添加溶剤対供給流の比率が1:1.8である、請求項21記載の方法。
  23. 前記炭化水素供給流中の5体積%以上のオレフィン分子が、当該炭化水素供給流中に最も多く含まれる炭素数3のオレフィンの総炭素原子数と異なる総炭素原子数を有する、請求項2記載の方法。
JP2008528591A 2005-08-31 2006-08-31 界面活性剤用アルコールの製造方法 Pending JP2009506104A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA200506978 2005-08-31
PCT/IB2006/002379 WO2007029079A2 (en) 2005-08-31 2006-08-31 Production of detergent range alcohols

Publications (1)

Publication Number Publication Date
JP2009506104A true JP2009506104A (ja) 2009-02-12

Family

ID=37836200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528591A Pending JP2009506104A (ja) 2005-08-31 2006-08-31 界面活性剤用アルコールの製造方法

Country Status (7)

Country Link
US (1) US7652173B2 (ja)
JP (1) JP2009506104A (ja)
CN (1) CN101208285B (ja)
AU (1) AU2006288819B2 (ja)
RU (1) RU2008111993A (ja)
WO (1) WO2007029079A2 (ja)
ZA (1) ZA200711122B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011003023A (es) * 2008-09-22 2011-04-12 Procter & Gamble Polialdehidos, polialcoholes y surfactantes poliramificados especificos y productos de consumo a base de estos.
CN105566067A (zh) * 2014-10-17 2016-05-11 中国石油化工股份有限公司 防老剂生产废液中2-辛醇与2-辛酮的分离方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134034A (ja) * 1982-02-02 1983-08-10 ヘミツシエ・ヴエルケ・ヒユ−ルス・アクチエンゲゼルシヤフト C原子6〜14個を有するパラフインとc原子4〜8個を有するアルコ−ルとからの均一共沸混合物の分離法
WO2005037751A2 (en) * 2003-10-15 2005-04-28 Shell Internationale Research Maatschappij B.V. Preparation of branched aliphatic alcohols using a process stream from an isomerization unit with recycle to a dehydrogenation unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2763693A (en) * 1951-10-13 1956-09-18 Eastman Kodak Co Oxo process-separation and recovery of products and reaction vehicle
US3087866A (en) * 1960-12-09 1963-04-30 Union Carbide Corp Recovery of olefins from c7 to c9 corresponding olefin-paraffin mixtures
US7737312B2 (en) * 2003-03-10 2010-06-15 Sasol Technology (Proprietary) Limited Production of linear alkyl benzene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134034A (ja) * 1982-02-02 1983-08-10 ヘミツシエ・ヴエルケ・ヒユ−ルス・アクチエンゲゼルシヤフト C原子6〜14個を有するパラフインとc原子4〜8個を有するアルコ−ルとからの均一共沸混合物の分離法
WO2005037751A2 (en) * 2003-10-15 2005-04-28 Shell Internationale Research Maatschappij B.V. Preparation of branched aliphatic alcohols using a process stream from an isomerization unit with recycle to a dehydrogenation unit

Also Published As

Publication number Publication date
CN101208285B (zh) 2012-03-21
ZA200711122B (en) 2009-03-25
AU2006288819B2 (en) 2011-12-15
RU2008111993A (ru) 2009-10-10
CN101208285A (zh) 2008-06-25
US7652173B2 (en) 2010-01-26
WO2007029079A3 (en) 2007-07-12
AU2006288819A1 (en) 2007-03-15
US20090054696A1 (en) 2009-02-26
WO2007029079A2 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4102436B2 (ja) 酸素化された生成物の製造方法
RU2282608C2 (ru) Способ получения линейных олефинов и их использование для получения линейных спиртов
US20050282916A1 (en) Process for producing oxygenated products
AU2006264683A1 (en) Process for the conversion of hydrocarbons to C2-oxygenates
AU2002316973B2 (en) Process for the preparation of a highly linear alcohol composition
AU2002316973A1 (en) Process for the preparation of a highly linear alcohol composition
ZA200309121B (en) Hydroformylation process
JP2009506105A (ja) 界面活性剤用アルコールの製造方法
CN101353290A (zh) 洗涤剂用醇的制备
JP4874501B2 (ja) 含酸素製品の製造
JP2009506104A (ja) 界面活性剤用アルコールの製造方法
CN101208286B (zh) 洗涤剂用醇的生产
WO2013144735A1 (en) Conversion of a mixture of c2 - and c3 -olefins to butanol
MXPA98000256A (en) Procedure to produce oxygen products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821