JP2009295947A - Method of handling silicon wafer doped with boron - Google Patents

Method of handling silicon wafer doped with boron Download PDF

Info

Publication number
JP2009295947A
JP2009295947A JP2008177353A JP2008177353A JP2009295947A JP 2009295947 A JP2009295947 A JP 2009295947A JP 2008177353 A JP2008177353 A JP 2008177353A JP 2008177353 A JP2008177353 A JP 2008177353A JP 2009295947 A JP2009295947 A JP 2009295947A
Authority
JP
Japan
Prior art keywords
boron
temperature
stress
wafer
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177353A
Other languages
Japanese (ja)
Inventor
Kazumasa Noi
一正 野依
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008177353A priority Critical patent/JP2009295947A/en
Publication of JP2009295947A publication Critical patent/JP2009295947A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PN junction interface that prevents enhanced diffusion caused by an uneven stress during high temperature annealing for recovering from implantation damage after boron ion implantation into a wafer and achieves a superior flatness. <P>SOLUTION: When an n-type impurity is doped at an atmospheric temperature, the wafer doped with boron is annealed after boron is actively boronized by 100% at a temperature of 380°C or higher and is cooled down. It is sufficiently annealed especially at a temperature near 177°C when pair point defects disassociate, namely is cooled down from 270°C to 170°C, and is immobilized while a silicon crystal of the wafer is maintaining a stress-free state. If the n-type impurity is subsequently doped, the stress-caused enhanced diffusion does not take place, and a projection is not formed at a junction interface. Moreover, when the n-type impurity is ion-implanted at a high temperature, a region being ion-implanted is heated to 180°C or higher by substrate heating or laser irradiation, a silicon pair between boron and lattice is sufficiently disassociated and the n-type impurity is ion-implanted under existence of an even stress. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はボロンを添加したシリコンウェーハの半導体製造における取扱いに関する。    The present invention relates to the handling of silicon wafers doped with boron in semiconductor manufacturing.

PN接合界面の平坦性の良いシリコンウェーハを製造する技術に関する。    The present invention relates to a technique for manufacturing a silicon wafer having good flatness at a PN junction interface.

低周波ノイズの抑制されたPN接合を形成する技術に関する。
三原基嗣「β−NMRによる物性研究の展開」pp13−16めそん2007年秋号(通巻26号) 三原基嗣「偏極RIビームを用いた物質科学研究」大阪大学理学部 http://www.rcnp.osaka−u.ac.jp/Divisions/plan/kokusai/ws070219_files/mihara.pdf
The present invention relates to a technique for forming a PN junction in which low frequency noise is suppressed.
Motohiro Mihara “Development of physical properties research by β-NMR” pp13-16 Meson 2007 Autumn issue (Vol.26) Motohiro Mihara “Materials Research Using Polarized RI Beams”, Faculty of Science, Osaka University http: // www. rcnp. osaka-u. ac. jp / Divisions / plan / kokusai / ws070219_files / mihara. pdf

近年のβ−NMR法を用いた核磁気共鳴スペクトルの観測データによれば、シリコン結晶中のボロンは、置換型原子としてシリコンの格子位置に存在しているが、その存在の仕方は、P型不純物として電気的に活性化している活性ボロンと電気的に不活性なボロン・格子間シリコンペアという点欠陥の2種類に分類される。ボロンの原子半径は、82pm(共有結合半径)で、シリコン原子の原子半径111pm(共有結合半径)に比し小さく、活性ボロンが存在する格子点では収縮応力を発生させる。一方、ボロン・格子間シリコンペア点欠陥(以下、ペア点欠陥と記す)の実効的な原子半径は2つの原子の原子半径の和、193pmで表されるから、それが存在する格子点では膨張応力を発生させる。従って、ボロンが添加されたシリコンウェーハの結晶をマクロにみたとき、活性ボロンとペア点欠陥の割合が、添加したボロンの不純物濃度によらず、活性ボロンの比率が87.7%のとき[{82x+193(1−x)}/111=1より、x=0.877(応力フリーのためのボロンの最適活性度)を得る]、結晶内は応力フリーとなる。しかし一般的な半導体製造ではボロンの活性度が87.7%に満たないものが散見され、このようなシリコン結晶内ではペア点欠陥のもたらす膨張応力が優勢となっている。その膨張応力は、それが小さいときは結晶内に一様に分布すると考えられるが、ある程度以上に大きいときは、その一様性が崩れ、応力が集中している領域、およびそれ以外の応力が緩和されている領域に分かれると考えられる。一方、PN接合を形成する格子置換型のN型不純物原子も同様にその原子半径の大きさにより、シリコン結晶中で収縮応力源や膨張応力源としてはたらく。PN接合は、ボロンの添加領域にそれ以上の濃度のN型不純物を浅く添加することで形成されるから、この結晶内応力の存在は接合面を考える上で重要である。例えば、そのボロン添加領域内の膨張応力の集中領域に、リン(原子半径=106pm(共有結合半径))のような収縮応力源が高濃度で添加されると、場に存在する膨張応力を緩和するべく、リンは収縮応力源として他の領域より早く拡散し、いわゆる増速拡散が発生する。その結果、PN接合の界面には、接合の平坦性を乱す突起ができてしまう。このPN接合の突起領域は、BJTではエミッタパイプと呼ばれており、著者の実験ではバンドギャップナロウイングが起こっており、かつ発生・再結合中心の巣窟となっていることが認められている。また、このPN接合界面の突起領域は、単に接合界面の平坦性を乱すばかりではなく、バーストノイズや1/fノイズ(以下、総称して低周波ノイズと記す)を発生させ、PN接合の電気的特性を悪化させている。(電気学会電子回路研究会の論文に投稿予定:2008年10月23日、24日北九州市で学会が開催され、そこでの発表が予定されている)
そこで、本発明はボロンを添加したシリコンウェーハの結晶内応力を最小化し、低周波ノイズの発生を抑制した平坦性の良いPN接合界面を得ることを課題とする。
According to recent observation data of nuclear magnetic resonance spectrum using β-NMR method, boron in silicon crystal is present as a substitutional atom at the lattice position of silicon. There are two types of defects: active boron that is electrically activated as impurities and electrically inactive boron / interstitial silicon pairs. The atomic radius of boron is 82 pm (covalent bond radius), which is smaller than the atomic radius 111 pm (covalent bond radius) of silicon atoms, and contraction stress is generated at lattice points where active boron exists. On the other hand, since the effective atomic radius of a boron / interstitial silicon pair point defect (hereinafter referred to as a pair point defect) is expressed by the sum of the atomic radii of two atoms, 193 pm, it expands at the lattice point where it exists. Generate stress. Therefore, when the crystal of a silicon wafer to which boron is added is viewed macroscopically, the ratio of active boron and pair point defects is 87.7% regardless of the impurity concentration of the added boron [{ From 82 3 x + 193 3 (1-x)} / 111 3 = 1, x = 0.877 (optimum activity of boron for stress free) is obtained], and the crystal is stress free. However, in general semiconductor manufacturing, boron activity is found to be less than 87.7%, and in such silicon crystals, the expansion stress caused by pair point defects is dominant. The expansion stress is considered to be uniformly distributed in the crystal when it is small, but when the expansion stress is larger than a certain level, the uniformity is lost, the stress concentration region, and other stresses It can be divided into areas that have been relaxed. On the other hand, lattice-substituted N-type impurity atoms forming a PN junction also serve as a shrinkage stress source or an expansion stress source in the silicon crystal depending on the size of the atomic radius. Since the PN junction is formed by shallowly adding a higher concentration of N-type impurity to the boron addition region, the presence of this intracrystalline stress is important in considering the bonding surface. For example, if a high concentration of a contraction stress source such as phosphorus (atomic radius = 106 pm (covalent bond radius)) is added to a concentration region of expansion stress in the boron addition region, the expansion stress existing in the field is relieved. Therefore, phosphorus diffuses faster than other regions as a shrinkage stress source, and so-called accelerated diffusion occurs. As a result, a protrusion that disturbs the flatness of the junction is formed at the interface of the PN junction. This protruding region of the PN junction is called an emitter pipe in the BJT, and in the author's experiment, it is recognized that band gap narrowing has occurred and that it is a nest of generation / recombination centers. In addition, the protrusion region of the PN junction interface not only disturbs the flatness of the junction interface, but also generates burst noise and 1 / f noise (hereinafter collectively referred to as low-frequency noise). Worsening the target characteristics. (Scheduled to be submitted to the paper of the Institute of Electrical Engineers of Japan: October 23rd and 24th, 2008, an academic conference will be held in Kitakyushu City, where presentations are scheduled)
Therefore, an object of the present invention is to obtain a PN junction interface with good flatness that minimizes the intracrystalline stress of a silicon wafer to which boron is added and suppresses the generation of low-frequency noise.

結晶内応力集中部での増速拡散という不具合の解決策は、その原因となっている活性ボロンとペア点欠陥の比率が、何故、87.7対12.3からずれ、応力の一様な均一性を喪失してしまったのか、そのズレの成因を考えることの中に見出される。前記したβ−NMR法を用いた核磁気共鳴スペクトルの観測データによれば、ペア点欠陥は450華氏温度(177℃)以上で解離しはじめ、380℃以上の温度では全てのボロンは活性ボロンとなり、ペア点欠陥は存在しない。
一方、近年、ウェーハへのボロン添加はイオン注入により行われるのが一般的であるが、注入後、注入損傷を回復しボロンを電気的に活性化するため工業的には800〜900℃の熱処理が行われている。問題は、800〜900℃の高温から常温へウェーハを冷却する過程で発生する。即ち、現状の製造工程では、ペア点欠陥やその解離温度177℃にこだわらず無頓着に冷却しているため、常温に冷却されたウェーハのボロン活性度はウェーハ面内でかなりばらついており、結果的にウェーハの一部に応力集中領域を内在するウェーハが多数存在している。
対策は、800℃〜900℃の高温から常温への冷却過程において、380℃以下から177℃を含む温度範囲(特に270℃から170℃)を十分徐冷する。また、常温で放置されている熱履歴の明確でないボロンを添加したシリコンウェーハは、ウェーハを一旦180℃以上の高温に加熱し、ペア点欠陥の解離を十分行ったのち徐冷する。著者の実験では十分解離するためには180℃で2時間、220℃で7分30秒の時間が必要である。(物理化学現象の反応時間に関するアレニウス則に乗っている。)ボロンを添加したシリコンウェーハは、以上のように「380℃以上の高温からの冷却において270℃から170℃の温度範囲を徐冷処理する」もしくは「常温放置のウェーハは、180℃で2時間、もしくは熱力学的に等価な条件(例えば220℃で7分30秒)で十分、ペア点欠陥を解離したのち徐冷する」という取り扱いを行うことで、常温に冷ました状態でも結晶内応力フリーの状態を固定化することが出来る。そして、結晶内が応力フリーである限り、ウェーハはその後、N型不純物を添加する工程において応力起因の増速拡散が発生することはなく、平坦性の良いPN接合界面が得られる。
また、高温イオン注入も同様な効果がある。この場合、ボロンを添加したシリコンウェーハは、N型不純物を添加する領域の温度を180℃以上に保つ手段、例えば基板加熱やレーザー照射しながらの高温イオン注入などを用い、ペア点欠陥が解離している状態下でN型不純物を添加する。この場合はペア点欠陥の解離により、ウェーハは格子位置にあるボロンによる収縮応力が一様に分布するから増速拡散は発生しない。高温イオン注入の場合も、N型不純物の添加完了後は、270℃から170℃の温度範囲は徐冷処理し、常温に冷ましたときに応力フリーが固定化されるようにする。
The solution to the problem of accelerated diffusion in the stress concentration part in the crystal is that the ratio of active boron and pair point defect causing the deviation is different from 87.7 to 12.3, and the stress is uniform. It is found in thinking about the origin of the gap, whether the uniformity has been lost. According to the observation data of the nuclear magnetic resonance spectrum using the β-NMR method described above, the pair point defect starts to dissociate at a temperature of 450 degrees Fahrenheit (177 ° C.) or higher, and all boron becomes active boron at a temperature of 380 ° C. or higher. There is no pair point defect.
On the other hand, in recent years, boron is generally added to a wafer by ion implantation. However, in order to recover the implantation damage and electrically activate boron after the implantation, it is industrially heat treated at 800 to 900 ° C. Has been done. The problem occurs in the process of cooling the wafer from a high temperature of 800 to 900 ° C. to room temperature. That is, in the current manufacturing process, since the pair point defect and its dissociation temperature are not limited to 177 ° C., the boron activity of the wafer cooled to room temperature varies considerably within the wafer surface. In addition, there are a large number of wafers in which a stress concentration region is inherent in a part of the wafer.
As a countermeasure, the temperature range from 380 ° C. to 177 ° C. (especially 270 ° C. to 170 ° C.) is sufficiently slowly cooled in the cooling process from a high temperature of 800 ° C. to 900 ° C. to room temperature. In addition, a silicon wafer to which boron having an unclear thermal history that has been left at room temperature is added is heated slowly to a high temperature of 180 ° C. or higher, and then the pair point defects are sufficiently dissociated and then slowly cooled. In the author's experiment, it takes 2 hours at 180 ° C. and 7 minutes 30 seconds at 220 ° C. to sufficiently dissociate. (It is on the Arrhenius rule regarding the reaction time of the physicochemical phenomenon.) As described above, the silicon wafer to which boron is added “slowly cools the temperature range from 270 ° C. to 170 ° C. in cooling from a high temperature of 380 ° C. or higher. Or “slowly cool wafers left at room temperature for 2 hours at 180 ° C. or thermodynamically equivalent conditions (for example, 220 ° C. for 7 minutes 30 seconds) after dissociating the pair point defects” As a result, it is possible to fix the stress-free state in the crystal even in the state cooled to room temperature. Then, as long as the inside of the crystal is free of stress, the wafer does not undergo accelerated diffusion due to stress in the step of adding N-type impurities, and a PN junction interface with good flatness can be obtained.
High temperature ion implantation has the same effect. In this case, the boron-added silicon wafer uses a means for maintaining the temperature of the region to which the N-type impurity is added at 180 ° C. or higher, for example, high-temperature ion implantation while heating the substrate or irradiating laser, and the pair point defects are dissociated. N-type impurities are added under the condition. In this case, due to the dissociation of the pair point defects, the wafer is uniformly distributed with the shrinkage stress due to the boron at the lattice position, so that no accelerated diffusion occurs. Also in the case of high-temperature ion implantation, after the addition of the N-type impurity is completed, the temperature range from 270 ° C. to 170 ° C. is gradually cooled so that the stress-free state is fixed when cooled to room temperature.

低周波ノイズが抑制され、凹凸が無く平坦性の良い界面をもつPN接合が得られる。    Low frequency noise is suppressed, and a PN junction having an uneven surface with good flatness can be obtained.

本発明の効果を最大限に発揮するための理想条件は、シリコンウェーハへの不純物添加処理がウェーハ全面に渡り結晶内応力フリー下で実施されることである。本発明の例のように、ボロンを添加したシリコンウェーハのP型領域に、より高濃度のN型不純物を添加しPN接合を形成する場合は、ボロン添加後のウェーハを一度、380℃以上で熱処理した後、以降徐冷し、特に270℃から170℃の温度範囲を最大限徐冷処理する。その理想条件が実現出来ていれば、ウェーハの面内のボロン活性度は、その不純物濃度によらず、面内一様に87.7%となる。    An ideal condition for maximizing the effect of the present invention is that the impurity addition process to the silicon wafer is performed over the entire surface of the wafer under stress free of intracrystal stress. When a PN junction is formed by adding a higher concentration of N-type impurities to the P-type region of a silicon wafer to which boron is added as in the example of the present invention, the wafer after boron addition is once at 380 ° C. or higher. After the heat treatment, it is then gradually cooled, and in particular, it is gradually cooled in a temperature range of 270 ° C. to 170 ° C. If the ideal condition can be realized, the in-plane boron activity is uniformly 87.7% in the plane regardless of the impurity concentration.

前記したように、ウェーハへのボロン添加は、一般的にはイオン注入により行われ、注入後、注入損傷を回復しボロンを電気的に活性化するため工業的には800〜900℃の熱処理が行われている。本発明の一実施例は、その温度より常温への冷却過程で実施する。即ち、ペア点欠陥の解離が終了し、ペア点欠陥として固定化する177℃近傍、具体的には270℃から170℃の間を最大限、徐冷し結晶内応力が最小になるよう制御する。図1はそのウェーハの温度制御の状態を、温度を縦軸に時間を横軸に取り、温度の変化としてグラフにしたものである。十分ゆっくり冷却することにより得られた応力フリーウェーハは、その後、N型不純物の添加が行われる際、N型不純物の増速拡散を引き起こすことがないので、突起が無く平坦性のよい、かつ低周波ノイズの抑制されたPN接合界面が得られる。    As described above, boron is generally added to the wafer by ion implantation. After the implantation, an industrial heat treatment at 800 to 900 ° C. is performed to recover the implantation damage and electrically activate boron. Has been done. One embodiment of the present invention is implemented in the process of cooling from the temperature to room temperature. That is, the dissociation of the pair point defect is completed, and control is performed so that the stress within the crystal is minimized by maximally cooling around 177 ° C., specifically between 270 ° C. and 170 ° C., which is fixed as a pair point defect . FIG. 1 is a graph showing the temperature control state of the wafer as a change in temperature with the temperature on the vertical axis and the time on the horizontal axis. The stress-free wafer obtained by sufficiently slowly cooling does not cause accelerated diffusion of N-type impurities when N-type impurities are added thereafter, so that there is no protrusion and good flatness and low A PN junction interface with suppressed frequency noise is obtained.

ウェーハの熱履歴が明確でなかったり、ペア点欠陥の生成に無配慮な取扱いが行われた可能性のある常温で保管されているボロン添加済みウェーハは、ペア点欠陥の解離温度177℃以上で十分加熱を行う。理想的な温度380℃以上の温度に加熱することが出来なくても、180℃で2時間、(熱力学的に等価な別条件として220℃で7分30秒:確認済み)以上の加熱が出来ればペア点欠陥は十分解離しウェーハ内の応力集中領域は消失するので、N型不純物の増速拡散は抑制される。図2はそのような加熱処理の一例である。製造工程内に設けられたウェーハの保管ケースや工程間の搬送ボックス内温度を高めることでも対応が可能である。    Boron-added wafers stored at room temperature, where the thermal history of the wafer is not clear or handling that has been neglected in the generation of pair point defects, have a pair point defect dissociation temperature of 177 ° C or higher. Heat enough. Even if it cannot be heated to an ideal temperature of 380 ° C. or higher, it can be heated at 180 ° C. for 2 hours or more (220 ° C. for 7 minutes and 30 seconds: confirmed). If possible, the pair point defects are sufficiently dissociated and the stress concentration region in the wafer disappears, so that the accelerated diffusion of N-type impurities is suppressed. FIG. 2 is an example of such heat treatment. It can also be handled by increasing the temperature of the wafer storage case provided in the manufacturing process and the temperature in the transfer box between the processes.

更に別なもう一つの実施例として、N型不純物を添加する領域の温度を180℃以上に保つ手段、例えば基板加熱やレーザー照射等を併用しながら行う高温イオン注入がある。図3はそのような高温イオン注入の実施例で、この場合は、N型不純物が添加される領域のペア点欠陥は解離し、一様な収縮応力下でその添加が行われるため、増速拡散の発生はない。この場合も、270℃から170℃の温度範囲は徐冷する。    As yet another embodiment, there is means for maintaining the temperature of the region to which the N-type impurity is added at 180 ° C. or higher, for example, high-temperature ion implantation performed in combination with substrate heating or laser irradiation. FIG. 3 shows an example of such high-temperature ion implantation. In this case, the pair point defect in the region to which the N-type impurity is added is dissociated and the addition is performed under a uniform contraction stress. There is no diffusion. Also in this case, the temperature range from 270 ° C. to 170 ° C. is gradually cooled.

ボロンは、半導体産業において最も多く使用されるP型不純物の代表的物質である。近年の微細化集積回路に見られる浅いPN接合では、高濃度でも切れの良い接合の形成技術を必要としており、本発明はそれを実現する必須技術として、微細化の進展と共に今後ますます活用されると考える。    Boron is a representative P-type impurity most frequently used in the semiconductor industry. Shallow PN junctions found in miniaturized integrated circuits in recent years require a technique for forming a high-concentration, high-breakage junction, and the present invention will be increasingly utilized as miniaturization progresses as an indispensable technology for realizing this. I think.

この発明の一実施形態により温度制御を行った場合のウェーハ温度の変化グラフである。|ΔT/Δt(270−170℃)|<|ΔT/Δt(他の100℃の温度範囲)|:但し、T:温度、t:時間が成立する。It is a change graph of wafer temperature at the time of performing temperature control by one embodiment of this invention. | ΔT / Δt (270-170 ° C.) | <| ΔT / Δt (other temperature range of 100 ° C.) |: where T: temperature and t: time are satisfied. 常温で保管されているウェーハは、(170℃で4時間以上)、(180℃で2時間以上)、(190℃で1時間以上)、(200℃で30分以上)、(210℃で15分以上)、(220℃で7分30秒以上)と10℃温度を上げる毎に最低必要加熱時間を半分にする所謂アレニウス曲線以上の熱を印加し、ペア点欠陥の解離を十分行った後、徐冷する。図はその一例で、そのような加熱処理を行う場合のウェーハ温度の変化グラフである。Wafers stored at room temperature are (at 170 ° C. for 4 hours or longer), (180 ° C. for 2 hours or longer), (190 ° C. for 1 hour or longer), (200 ° C. for 30 minutes or longer), (210 ° C. for 15 hours or longer) (More than 7 minutes and 30 seconds at 220 ° C.) and after applying heat above the so-called Arrhenius curve that halves the minimum required heating time every time the temperature is raised to 10 ° C., and after sufficiently dissociating the pair point defects Slowly cool. The figure is an example, and is a graph of changes in wafer temperature when such heat treatment is performed. この発明の別の実施形態により、N型不純物を高温イオン注入する図である。It is a figure which carries out high temperature ion implantation of the N type impurity by another embodiment of this invention.

符合の説明Explanation of sign

1 ボロンを添加したシリコンウェーハ
2 基板(180℃以上に加熱されている)
3 注入N型不純物イオン
1 Boron added silicon wafer 2 Substrate (heated to 180 ° C or higher)
3 Implanted N-type impurity ions

Claims (3)

シリコンウェーハのボロン添加後の加熱処理の冷却過程において、ウェーハの温度が270℃から170℃までの温度範囲で最も温度の下がり方がゆっくりとなるように制御する手段を設け、他の温度範囲に比較し、特にこの温度範囲を徐冷制御することを特徴とする処理方法      In the cooling process of the heat treatment after boron addition of the silicon wafer, a means for controlling the temperature to fall most slowly in the temperature range from 270 ° C. to 170 ° C. is provided. A processing method characterized in that, in particular, this temperature range is gradually cooled. ボロン添加済みのシリコンウェーハに(170℃で4時間以上)、(180℃で2時間以上)、(190℃で1時間以上)、(200℃で30分以上)、(210℃で15分以上)、(220℃で7分30秒以上)と10℃温度を上げる毎に最低必要加熱時間を半分にするいわゆるアレニウス曲線以上の熱を印加する手段を用いて行われる、保管ケース内や搬送ボックス内での熱処理も含む、150℃以上300℃以下の温度で行うシリコンウェーハの加熱処理方法      Boron added silicon wafer (170 ° C for 4 hours or more), (180 ° C for 2 hours or more), (190 ° C for 1 hour or more), (200 ° C for 30 minutes or more), (210 ° C for 15 minutes or more) ), (At 220 ° C for 7 minutes and 30 seconds or more), and every time the temperature is raised to 10 ° C, the minimum required heating time is halved. Heat treatment method of silicon wafer performed at a temperature of 150 ° C. or higher and 300 ° C. or lower, including heat treatment inside ボロン添加済みのシリコンウェーハに更にN型不純物を添加しPN接合を形成するウェーハ加工において、N型不純物を添加する領域の温度を180℃以上の高温にする手段を用いて加熱しながらN型不純物添加を行うことを特徴とする加工方法      In wafer processing in which an N-type impurity is further added to a boron-added silicon wafer to form a PN junction, the N-type impurity is heated while using a means for raising the temperature of the region to which the N-type impurity is added to 180 ° C. or higher. Processing method characterized by adding
JP2008177353A 2008-06-09 2008-06-09 Method of handling silicon wafer doped with boron Pending JP2009295947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177353A JP2009295947A (en) 2008-06-09 2008-06-09 Method of handling silicon wafer doped with boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177353A JP2009295947A (en) 2008-06-09 2008-06-09 Method of handling silicon wafer doped with boron

Publications (1)

Publication Number Publication Date
JP2009295947A true JP2009295947A (en) 2009-12-17

Family

ID=41543837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177353A Pending JP2009295947A (en) 2008-06-09 2008-06-09 Method of handling silicon wafer doped with boron

Country Status (1)

Country Link
JP (1) JP2009295947A (en)

Similar Documents

Publication Publication Date Title
JP5276863B2 (en) Silicon wafer
KR101423367B1 (en) Fabrication method for silicon wafer
KR20210122867A (en) Method of treating silicon wafers to have intrinsic gettering and gate oxide integrity yield
KR20180058713A (en) Method for manufacturing a bonded SOI wafer
JP4832067B2 (en) Silicon member and manufacturing method thereof
JP2006351632A (en) Simox wafer and manufacturing method therefor
JP5099023B2 (en) Epitaxial wafer manufacturing method and solid-state imaging device manufacturing method
KR20160132017A (en) Process for producing bonded soi wafer
JPH10229093A (en) Production of silicon epitaxial wafer
JP2009105314A (en) Method of manufacturing semiconductor substrate
JP5292810B2 (en) Manufacturing method of SOI substrate
JP2009295947A (en) Method of handling silicon wafer doped with boron
JP2008053521A (en) Heat treatment method of silicon wafer
JP5200412B2 (en) Manufacturing method of SOI substrate
JP6881292B2 (en) How to control rejoin lifetime
JP2017220653A (en) Method for manufacturing silicon carbide semiconductor device
JP2010098284A (en) Method for production of silicon wafer for epitaxial substrate, and method for production of epitaxial substrate
JP6848900B2 (en) A method for evaluating the gettering ability of a semiconductor wafer and a method for manufacturing a semiconductor wafer using the evaluation method.
JP6766700B2 (en) Manufacturing method of epitaxial silicon wafer, manufacturing method of epitaxial silicon wafer and solid-state image sensor
JP6598140B2 (en) Epitaxial wafer manufacturing method
JP6472016B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2006032463A (en) Semiconductor device and manufacturing method thereof
JP2011129851A (en) Method of manufacturing microfabricated element with reduced low-frequency noise, and integrated circuit product applied therewith
KR100545990B1 (en) How to remove metal impurities in silicon wafer
JP2009272443A (en) Silicon wafer and its production process