JP2009295361A - Method for manufacturing photoelectric conversion element and photoelectric conversion element - Google Patents

Method for manufacturing photoelectric conversion element and photoelectric conversion element Download PDF

Info

Publication number
JP2009295361A
JP2009295361A JP2008146415A JP2008146415A JP2009295361A JP 2009295361 A JP2009295361 A JP 2009295361A JP 2008146415 A JP2008146415 A JP 2008146415A JP 2008146415 A JP2008146415 A JP 2008146415A JP 2009295361 A JP2009295361 A JP 2009295361A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
electrode
photoelectric conversion
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146415A
Other languages
Japanese (ja)
Other versions
JP5376837B2 (en
Inventor
Takeshi Sugio
剛 杉生
Tetsuya Inoue
鉄也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2008146415A priority Critical patent/JP5376837B2/en
Publication of JP2009295361A publication Critical patent/JP2009295361A/en
Application granted granted Critical
Publication of JP5376837B2 publication Critical patent/JP5376837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element, and its manufacturing method, for being manufactured at low cost under ordinary pressure, without need of large-scale devices. <P>SOLUTION: An electrode 2 includes a transparent substrate 11, a transparent conductive film 12, and a collector electrode 13 formed between the transparent substrate 11 and the transparent conductive film 12. The conductive film 12 is formed so as to protect an electrolyte contact part of the collector electrode 13 fitted to the transparent substrate 11. It 12 is made up by forming a transparent conductive film material on the transparent substrate 11 under ordinary pressure, and then, oxidizing the transparent conductive film material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池のような光電変換素子の製造方法および光電変換素子に関するものである。   The present invention relates to a method for producing a photoelectric conversion element such as a solar cell, and a photoelectric conversion element.

一般に、色素増感型太陽電池などの光電変換素子は、ガラス板などの透明基板上に透明導電膜を形成した上に金属酸化物(TiOなど)を形成し、さらに光増感色素(ルテニウムなど)で染色してなる電極と、対極用基板上に透明導電膜を形成してなる対極とを形成して、両電極間に電解質層(ヨウ素系など)を介在させたものが知られている。 In general, a photoelectric conversion element such as a dye-sensitized solar cell has a transparent conductive film formed on a transparent substrate such as a glass plate, a metal oxide (TiO 2 or the like), and a photosensitizing dye (ruthenium). Etc.) and a counter electrode formed by forming a transparent conductive film on a counter electrode substrate, and an electrolyte layer (iodine-based) is interposed between the electrodes. Yes.

また、前記電極の透明基板を可撓性材料(熱可塑性樹脂など)とするとともに、真空スパッタリング法などにより、前記基板上に透明導電膜層(ITOなど)をパターンニングすることで形成し、光増感色素を染色させた金属酸化物および電解質層を対極とで挟んだ状態で電極の透明基板周縁部をシール層により接着させること、さらにはこれを連続的に行うことが知られている(特許文献1)。
特開2005−347003
The transparent substrate of the electrode is made of a flexible material (thermoplastic resin, etc.), and is formed by patterning a transparent conductive film layer (ITO, etc.) on the substrate by vacuum sputtering or the like. It is known that the transparent substrate peripheral edge of the electrode is adhered by a seal layer in a state where the metal oxide dyed with the sensitizing dye and the electrolyte layer are sandwiched between the counter electrodes, and this is continuously performed ( Patent Document 1).
JP-A-2005-347003

前記の方法で色素増感型太陽電池を製造するにあたり、透明基板への透明導電膜の形成は、導電性を高くするため、真空蒸着法など、真空下で行うことが望ましい。この場合、真空チャンバなどの真空下の環境で行わなければならず、装置が大掛かりとなり、コスト向上の要因となっていた。また、前記のように連続的に製造を行う場合には、真空下の環境を伴う工程が存在することで、すべての工程を連続的に行うことは困難であった。   In producing the dye-sensitized solar cell by the above method, it is desirable to form the transparent conductive film on the transparent substrate under vacuum such as a vacuum deposition method in order to increase the conductivity. In this case, it has to be performed in a vacuum environment such as a vacuum chamber, and the apparatus becomes large, resulting in a cost improvement. Moreover, when manufacturing continuously as mentioned above, it was difficult to perform all processes continuously by the process accompanied by the environment under a vacuum.

そこで、本発明では、大掛かりな装置を必要とせず、常圧中において低コストで製造が可能な光電変換素子の製造方法および光電変換素子を提供する。   Therefore, the present invention provides a photoelectric conversion element manufacturing method and a photoelectric conversion element that can be manufactured at low cost under normal pressure without requiring a large-scale apparatus.

本発明による光電変換素子の製造方法は、透明な電極と、これに対向する対極と、両極間に配される電解質層および光触媒膜とを有する光電変換素子を製造する方法であって、電極を作成する工程は、常圧中で透明基板上に透明導電膜素材を形成する工程と、透明導電膜素材を酸化させる工程と含んでいることを特徴とする。   A method for producing a photoelectric conversion element according to the present invention is a method for producing a photoelectric conversion element having a transparent electrode, a counter electrode facing the transparent electrode, an electrolyte layer and a photocatalyst film disposed between the two electrodes, The step of creating includes a step of forming a transparent conductive film material on a transparent substrate under normal pressure and a step of oxidizing the transparent conductive film material.

透明基板としては、合成樹脂板、ガラス板などが適宜使用されるが、PENフィルムなどの熱可塑性樹脂が好ましい。PEN(ポリエチレン・ナフタレート)の他に、ポリエチレン・テレフタレート、ポリエステル、ポリカーボネート、ポリオレフィンなどを使用することもできる。   As the transparent substrate, a synthetic resin plate, a glass plate or the like is used as appropriate, but a thermoplastic resin such as a PEN film is preferable. In addition to PEN (polyethylene naphthalate), polyethylene terephthalate, polyester, polycarbonate, polyolefin and the like can also be used.

透明導電膜としては、スズ添加酸化インジウム(ITO)が好適に使用され、この他に、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物を含む薄膜を使用することができる。 As the transparent conductive film, tin-added indium oxide (ITO) is preferably used. Besides this, fluorine-added tin oxide (FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO) A thin film containing a conductive metal oxide such as) can be used.

透明基板上に透明導電膜を形成する工程は、従来、真空下で行われており、これにより、透明導電膜の透明性が確保されている。しかしながら、真空下での透明導電膜の形成は、装置の大型化および透明導電膜の形成を含む全工程を連続的に行うことの困難性の問題を生じることから、本発明では、透明基板上に透明導電膜を形成する工程が常圧中で行われる。常圧中で透明導電膜を形成すると、透明基板上に形成される透明導電膜素材は、常圧中で酸素が失われることによって変色(茶色または黒色化)し、「透明導電膜」ではない(透明性が不十分なもの)となっている。このように変色した透明導電膜素材は、酸化することによって、透明性を有するものとすることができ、常圧中での透明導電膜素材形成後にこれを酸化させることで、従来と同様の透明導電膜を得ることができる。   The process of forming a transparent conductive film on a transparent substrate is conventionally performed under vacuum, and thereby the transparency of the transparent conductive film is ensured. However, since the formation of the transparent conductive film under vacuum causes the problem of difficulty in continuously performing all the processes including the enlargement of the apparatus and the formation of the transparent conductive film, The step of forming a transparent conductive film is performed under normal pressure. When a transparent conductive film is formed under normal pressure, the transparent conductive film material formed on the transparent substrate is discolored (brown or blackened) due to loss of oxygen under normal pressure, and is not a “transparent conductive film”. (Insufficient transparency). The discolored transparent conductive film material can be made transparent by being oxidized, and by oxidizing the transparent conductive film material after forming the transparent conductive film under normal pressure, A conductive film can be obtained.

透明導電膜素材を酸化させる工程は、例えば、常圧中で透明導電膜素材が形成された透明基板を加工液(電解液)に浸漬して、透明導電膜素材自身を正極とし、別途加工液に浸漬した補助電極を負極として、両極間に直流電圧を印加することで行われる。これにより、透明導電膜素材は、酸化して、完成品としての透明導電膜となる。   The step of oxidizing the transparent conductive film material is performed by, for example, immersing a transparent substrate on which the transparent conductive film material is formed in normal pressure in a processing solution (electrolyte), and using the transparent conductive film material itself as a positive electrode. The auxiliary electrode immersed in is used as a negative electrode, and a DC voltage is applied between both electrodes. Thereby, the transparent conductive film material is oxidized to become a transparent conductive film as a finished product.

本発明の光電変換素子の製造方法において、透明導電膜素材を形成する工程は、例えば、透明基板と対向して設けられたターゲット材に常圧中でエネルギービームを照射して透明導電膜素材を透明基板上に蒸着するものとされる。   In the method for producing a photoelectric conversion element of the present invention, the step of forming the transparent conductive film material is performed, for example, by irradiating the target material provided opposite to the transparent substrate with an energy beam under normal pressure to form the transparent conductive film material. Vapor deposition is performed on a transparent substrate.

透明導電膜は、透明基板に対向する位置にターゲット材(透明導電膜の素材:ITOなど)を設置し、常圧中において透明基板の背後からターゲット材にエネルギービーム(レーザ光)を照射しターゲット材を蒸発させ、透明基板に蒸着させることで得ることができる。ターゲット材と透明基板の間または透明基板にはマスクが設置され、これにより、透明基板の所定の部分(シールに必要な部分および光電変換素子同士の接続に使用される部分などを除いた部分)にのみ透明導電膜を形成することができる。透明基板の背後からターゲット材に照射するエネルギービームとしては、透明基板を透過する波長のもの例えばグリーンレーザなどが用いられる。   The transparent conductive film has a target material (transparent conductive film material: ITO) placed at a position facing the transparent substrate, and the target material is irradiated with an energy beam (laser light) from behind the transparent substrate under normal pressure. It can be obtained by evaporating the material and depositing it on a transparent substrate. A mask is placed between the target material and the transparent substrate, or a predetermined portion of the transparent substrate (a portion excluding a portion necessary for sealing and a portion used for connecting photoelectric conversion elements). A transparent conductive film can be formed only on the substrate. As the energy beam applied to the target material from behind the transparent substrate, a beam having a wavelength that transmits the transparent substrate, such as a green laser, is used.

常圧中でのエネルギービームの照射に代えて、常圧中におけるスパッタリング法により透明導電膜素材を形成することもできる。   Instead of irradiating the energy beam under normal pressure, the transparent conductive film material can also be formed by sputtering under normal pressure.

本発明の光電変換素子の製造方法において、電極を作成する工程は、透明基板上に透明導電膜を形成する前に集電電極を形成する工程をさらに含んでおり、透明導電膜素材を形成する工程において、集電電極の電解質接触部を保護するように透明導電膜素材を形成することがより好ましい。   In the method for producing a photoelectric conversion element of the present invention, the step of creating an electrode further includes a step of forming a current collecting electrode before forming the transparent conductive film on the transparent substrate, thereby forming a transparent conductive film material. In the step, it is more preferable to form the transparent conductive film material so as to protect the electrolyte contact portion of the current collecting electrode.

集電電極は、光電変換素子同士の接続に使用されるもので、アルミニウム箔などによって形成される。集電電極のうち、光電変換素子同士の接続に使用されない部分は電解質に接触し、集電電極が金属であるため、電解質層を形成しているヨウ素溶液と接触することにより、腐食の恐れがある。従来、集電電極は、透明導電膜上に配置されて、その電解質に接触する部分が保護膜で被われていたが、この発明のものでは、透明基板にその表面を露出させて埋め込まれ、そして、その電解質に接触する部分が透明導電膜で被われる。この結果、集電電極に直接電解液が触れることによる腐食がなくなり、また、保護膜が不要になるので、電池の薄型化が可能となる。しかも、集電電極による透明基板表面の凹凸をなくすことができ、また、余分な絶縁層も不要となる。   The current collecting electrode is used for connection between photoelectric conversion elements, and is formed of an aluminum foil or the like. Of the current collecting electrodes, the portion not used for connecting the photoelectric conversion elements is in contact with the electrolyte, and since the current collecting electrode is a metal, there is a risk of corrosion due to contact with the iodine solution forming the electrolyte layer. is there. Conventionally, the collector electrode is disposed on the transparent conductive film, and the portion that contacts the electrolyte is covered with a protective film, but in the present invention, the surface is exposed and embedded in the transparent substrate, And the part which contacts the electrolyte is covered with a transparent conductive film. As a result, corrosion due to direct contact of the electrolytic solution with the collecting electrode is eliminated, and a protective film is not required, so that the battery can be thinned. In addition, the unevenness of the surface of the transparent substrate due to the collecting electrode can be eliminated, and an extra insulating layer is not required.

集電電極となるアルミニウム箔は、例えば、溶融状態とされた透明基板に埋め込まれ、透明導電膜は、集電電極が埋め込まれた後の透明基板上に形成される。集電電極の形成と透明導電膜の形成とは、常圧中で連続的に行うことができる。   The aluminum foil serving as the current collecting electrode is embedded in, for example, a molten transparent substrate, and the transparent conductive film is formed on the transparent substrate after the current collecting electrode is embedded. The formation of the collecting electrode and the formation of the transparent conductive film can be performed continuously under normal pressure.

電解質層としては、例えば、ヨウ素系電解液が使用され、具体的には、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものとされる。電解質層は、電解液に限られるものではなく、固体電解質であってもよい。固体電解質としては、例えば、DMPImI(ジメチルプロピルイミダゾリウムヨウ化物)が例示され、このほか、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、およびテトラアルキルアンモニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物とIとを組み合わせたもの;LiBr、NaBr、KBr、CsBr、CaBrなどの金属臭化物、およびテトラアルキルアンモニウムブロマイドなど4級アンモニウム化合物の臭素塩などの臭化物とBrとを組み合わせたものなどを適宜使用することができる。 As the electrolyte layer, for example, an iodine-based electrolytic solution is used. Specifically, an electrolyte component such as iodine, iodide ion, or tertiary butyl pyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile. It is supposed to be. The electrolyte layer is not limited to the electrolytic solution, and may be a solid electrolyte. The solid electrolyte, for example, is illustrated DMPImI (dimethylpropyl imidazolium iodide) is, in addition, LiI, NaI, KI, CsI, metal iodide such as CaI 2, and tetraalkylammonium iodide and quaternary ammonium compounds A combination of iodides such as the iodine salts of I 2 and I 2 ; bromides such as bromides of metal bromides such as LiBr, NaBr, KBr, CsBr, CaBr 2 and quaternary ammonium compounds such as tetraalkylammonium bromide and Br 2. And the like can be used as appropriate.

光増感色素で染色された光触媒膜を形成するには、例えば、光増感色素と光触媒粒子とを含むペーストを塗布し、乾燥により、色素で染色された光触媒粒子を担持するようにすればよい。前記ペーストはさらにカーボンナノチューブ粒子などの微粒子を含むことが好ましい。   In order to form a photocatalyst film dyed with a photosensitizing dye, for example, a paste containing a photosensitizing dye and photocatalyst particles is applied and dried to support the photocatalyst particles dyed with the dye. Good. The paste preferably further contains fine particles such as carbon nanotube particles.

光触媒粒子は、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb) などの金属酸化物とされ、光増感色素は、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、さらにはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などとされる。 The photocatalytic particles are metal oxides such as titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and are photosensitized. Examples of the dye include ruthenium complexes and iron complexes having a ligand including a bipyridine structure, a terpyridine structure, and the like, porphyrin-based and phthalocyanine-based metal complexes, and organic dyes such as eosin, rhodamine, merocyanine, and coumarin.

対極の構成としては、例えば、透明基板上に透明導電膜が形成されたものとすればよく、アルミニウム、銅、スズなどの金属のシートとしてもよい。このほか、金属(アルミニウム、銅、スズなど)またはカーボン製などのメッシュ状電極にゲル状固体電解質を保持させることで対極を構成してもよく、また、対極用基板の片面上に導電性接着剤層を同基板を覆うように形成し、同接着剤層を介して、別途形成のブラシ状カーボンナノチューブ群を基板に転写することで、対極を構成してもよい。   As a configuration of the counter electrode, for example, a transparent conductive film may be formed on a transparent substrate, and a metal sheet such as aluminum, copper, or tin may be used. In addition, the counter electrode may be configured by holding a gel solid electrolyte on a mesh electrode made of metal (aluminum, copper, tin, etc.) or carbon, and conductive adhesion is performed on one side of the counter electrode substrate. The counter electrode may be configured by forming an agent layer so as to cover the substrate and transferring a separately formed group of brush-like carbon nanotubes to the substrate via the adhesive layer.

光電変換素子を組み立てるには、例えば、電極と対極とが位置合わせされて、両極間が熱融着フィルムや封止材などで密封され、対極または電極などに予め設けておいた孔や隙間から電解質が注入される。また、固体電解質を用いる場合は、両極間に光触媒膜および電解質層が挟まれるように重ね合わせられて、その周縁部同士が加熱接着されるようにしてもよい。加熱は、金型によってもよく、プラズマ(波長の長いもの)、マイクロ波、可視光(600nm以上)や赤外線などのエネルギービームを照射することによってもよい。   To assemble the photoelectric conversion element, for example, the electrode and the counter electrode are aligned, the gap between the electrodes is sealed with a heat-sealing film or a sealing material, and the like, through holes or gaps provided in advance in the counter electrode or the electrode, etc. An electrolyte is injected. When a solid electrolyte is used, the photocatalyst film and the electrolyte layer may be stacked so as to be sandwiched between the two electrodes, and the peripheral portions thereof may be heat bonded. Heating may be performed by a mold, or may be performed by irradiation with an energy beam such as plasma (having a long wavelength), microwave, visible light (600 nm or more), or infrared light.

光電変換素子は、例えば、方形の電極用透明基板と方形の対極用透明基板との間に、電極用透明導電膜、対極用透明導電膜、集電電極、電解質層および光触媒膜が所定間隔で配置されることにより形成され、この際の電極と対極との接続は、直列とされることがあり、並列とされることもある。いずれの場合でも、電解質層および光触媒膜はシール材によって隣り合うもの同士の間が仕切られる。直列接続の場合、電極用透明導電膜、対極用透明導電膜および集電電極は、隣り合うもの同士の間に間隙が形成され、隣り合う電極用透明導電膜と対極用透明導電膜とが導体によって接続される。並列接続の場合、電極用透明導電膜、対極用透明導電膜および集電電極は、隣り合うもの同士の間に隙間がない形状とされる。並列接続で使用される集電電極は、メッシュ状とされていることが好ましい。   In the photoelectric conversion element, for example, a transparent conductive film for electrodes, a transparent conductive film for counter electrodes, a collector electrode, an electrolyte layer, and a photocatalyst film are arranged at a predetermined interval between a transparent electrode substrate and a transparent substrate for a counter electrode. The connection between the electrode and the counter electrode at this time may be in series or in parallel. In either case, the electrolyte layer and the photocatalyst film are separated from each other by the sealing material. In the case of series connection, the transparent electrode conductive film, the transparent electrode conductive film for the counter electrode, and the collecting electrode have a gap formed between adjacent ones, and the transparent conductive film for the adjacent electrode and the transparent conductive film for the counter electrode are conductors. Connected by. In the case of parallel connection, the transparent conductive film for electrode, the transparent conductive film for counter electrode, and the current collecting electrode are formed such that there is no gap between adjacent ones. The current collecting electrodes used in parallel connection are preferably mesh-shaped.

本発明によれば、透明導電膜を常圧中で形成することができるので、真空チャンバのような大掛かりな装置が不要となり、光電変換素子の製造コストを低減することができる。   According to the present invention, since the transparent conductive film can be formed under normal pressure, a large-scale device such as a vacuum chamber is not necessary, and the manufacturing cost of the photoelectric conversion element can be reduced.

本発明の実施例を図面に基づいて具体的に説明する。以下の説明において、図の左右を左右というものとする。   Embodiments of the present invention will be specifically described with reference to the drawings. In the following description, the left and right sides of the figure are referred to as the left and right.

図1は、複数の光電変換素子が直列接続された例を、図2は、複数の光電変換素子が並列接続された例をそれぞれ示している。   FIG. 1 shows an example in which a plurality of photoelectric conversion elements are connected in series, and FIG. 2 shows an example in which a plurality of photoelectric conversion elements are connected in parallel.

図1および図2に示すように、光電変換素子(1)は、負極となる電極(2)と、正極となる対極(3)と、両極(2)(3)間に介在させられた光触媒膜(4)および電解質層(5)とからなる。   As shown in FIGS. 1 and 2, the photoelectric conversion element (1) includes a photocatalyst interposed between an electrode (2) serving as a negative electrode, a counter electrode (3) serving as a positive electrode, and both electrodes (2) and (3). It consists of a membrane (4) and an electrolyte layer (5).

電極(2)は、透明基板(11)と、透明導電膜(12)と、透明基板(11)と透明導電膜(12)との間に形成された集電電極(13)とを有している。   The electrode (2) has a transparent substrate (11), a transparent conductive film (12), and a collecting electrode (13) formed between the transparent substrate (11) and the transparent conductive film (12). ing.

対極(3)は、対極用透明基板(31)上に、導電性金属酸化物を含む透明導電膜(32)を形成したものとされている。なお、対極(3)は、アルミニウム、銅、スズなどの金属のシートとしてもよく、金属(アルミニウム、銅、スズなど)またはカーボン製などのメッシュ状電極にゲル状固体電解質を保持させたものでもよく、導電性接着剤層を介してカーボンナノチューブを転写したものであってもよい。   In the counter electrode (3), a transparent conductive film (32) containing a conductive metal oxide is formed on a counter electrode transparent substrate (31). The counter electrode (3) may be a sheet of metal such as aluminum, copper or tin, or may be a metal (aluminum, copper, tin, etc.) or a mesh electrode made of carbon and holding a gel solid electrolyte. Alternatively, carbon nanotubes may be transferred via a conductive adhesive layer.

図1において、電極(2)と対極(3)との間に所定間隔でシール材(22)が配置されることで、複数(図示は3つ)の光電変換素子(1)が形成されており、隣り合う光電変換素子(1)の対極(3)の透明導電膜(32)同士、電極(2)の透明導電膜(12)同士および集電電極(13)同士の間には、これらが電気的に接続されないようにするための間隙が形成されている。対極(3)の透明導電膜(32)は、電極(2)の透明導電膜(12)よりも右方に突出させられており、対極(3)の透明導電膜(32)の右端部とこれの右方に隣り合う電極(2)の透明導電膜(12)の左端部とが導体(23)で接続されることで、直列接続の光電変換素子が形成されている。   In FIG. 1, a plurality of (three in the drawing) photoelectric conversion elements (1) are formed by disposing a sealing material (22) at a predetermined interval between an electrode (2) and a counter electrode (3). Between the transparent conductive film (32) of the counter electrode (3) of the adjacent photoelectric conversion element (1), between the transparent conductive film (12) of the electrode (2) and between the collector electrodes (13). A gap is formed so that the two are not electrically connected. The transparent conductive film (32) of the counter electrode (3) protrudes to the right of the transparent conductive film (12) of the electrode (2), and the right end of the transparent conductive film (32) of the counter electrode (3) A series-connected photoelectric conversion element is formed by connecting the left end portion of the transparent conductive film (12) of the electrode (2) adjacent to the right side of the electrode with a conductor (23).

図2において、電極(2)の透明導電膜(12)および集電電極(13)は、透明基板(11)よりも一回り小さい方形状で、集電電極(13)はメッシュ(網目)状とされており、電極(2)と対極(3)との間に所定間隔でシール材(22)が配置されることで、並列接続の光電変換素子が形成されている。   In FIG. 2, the transparent conductive film (12) and the collecting electrode (13) of the electrode (2) have a slightly smaller square shape than the transparent substrate (11), and the collecting electrode (13) has a mesh shape. A parallel-connected photoelectric conversion element is formed by disposing the sealing material (22) at a predetermined interval between the electrode (2) and the counter electrode (3).

図3は、透明導電膜(12)を形成する装置を示している。   FIG. 3 shows an apparatus for forming the transparent conductive film (12).

同図において、集電電極(13)が埋め込まれたPENフィルム(透明基板)(11)は、図の左部において、透明導電膜素材(17)が形成された後に、中央部の電解液槽(18)に浸漬されて、図の右部から送り出されるようになされている。透明導電膜素材(17)の形成は、常圧中で行われ、PENフィルム(11)に対向する位置にターゲット材(透明導電膜の材料:ITOなど)(14)を設置し、常圧中においてPENフィルム(11)の背後(図の下側)からターゲット材(14)にレーザ発振器(15)からのレーザ光(15a)を照射しITOを蒸発させ、PENフィルム(11)に蒸着させる。PENフィルム(11)にはマスク(16)が貼り付けられており、PENフィルム(11)の所定の部分(マスク(16)のない部分)にITO膜(「透明導電膜素材」と称す)(17)が形成される。   In the figure, the PEN film (transparent substrate) (11) in which the collector electrode (13) is embedded is shown in the left part of the figure, after the transparent conductive film material (17) is formed, It is immersed in (18) and sent out from the right part of the figure. The transparent conductive film material (17) is formed under normal pressure, and a target material (transparent conductive film material: ITO, etc.) (14) is placed at a position facing the PEN film (11). , The target material (14) is irradiated with the laser beam (15a) from the laser oscillator (15) from behind the PEN film (11) (the lower side in the figure) to evaporate the ITO and deposit it on the PEN film (11). A mask (16) is affixed to the PEN film (11), and an ITO film (referred to as “transparent conductive film material”) is applied to a predetermined portion (the portion without the mask (16)) of the PEN film (11) ( 17) is formed.

PENフィルム(11)の背後からターゲット材(14)へ照射するレーザとしては、PENフィルム(11)等を透過する波長のもの例えばグリーンレーザなどが用いられる。   As a laser for irradiating the target material (14) from behind the PEN film (11), a laser having a wavelength that transmits the PEN film (11) or the like, for example, a green laser is used.

常圧中で得られる透明導電膜素材(17)は、完成品としての透明導電膜(12)ではなく、酸素を失って変色している。この変色した透明導電膜素材(17)を透明にするための酸化処理が電解液槽(18)で行われる。   The transparent conductive film material (17) obtained under normal pressure is not a transparent conductive film (12) as a finished product, but is discolored by losing oxygen. An oxidation treatment for making the discolored transparent conductive film material (17) transparent is performed in the electrolytic solution tank (18).

電解液槽(18)内には、加工液(19)が満たされており、酸化処理は、透明導電膜素材(17)が形成されているPENフィルム(11)を加工液(電解液)に浸漬して、透明導電膜素材(17)自身を正極とし、別途設けた補助電極(20)を負極として、両極(17)(20)間に直流電圧(21)を印加することで行われる。このようにすると、透明導電膜素材(17)すなわち変色しているITO膜が+に印加されることでOを呼び込み、これによって、透明導電膜素材(17)が電解によって酸化し、完成品としての透明導電膜(12)が得られる。 The electrolytic solution tank (18) is filled with the processing solution (19), and the oxidation treatment uses the PEN film (11) on which the transparent conductive film material (17) is formed as the processing solution (electrolytic solution). The immersion is performed by applying a DC voltage (21) between the electrodes (17) and (20) with the transparent conductive film material (17) itself as the positive electrode and the separately provided auxiliary electrode (20) as the negative electrode. In this way, the transparent conductive film material (17), that is, the discolored ITO film, is applied to + to attract O 2 , whereby the transparent conductive film material (17) is oxidized by electrolysis and finished product. As a result, a transparent conductive film (12) is obtained.

光触媒膜(4)は、光増感色素(33)で染色された光触媒粒子(34)からなる。光触媒膜(4)は、光増感色素(33)と光触媒粒子(34)とを含むペーストを塗布した後、乾燥させることにより形成される。ペーストは、光増感色素(33)と光触媒粒子(34)の混合物に例えばアルコールと水を加えて調製することができる。光増感色素(33)と光触媒粒子(34)とを含むペーストは、さらにカーボンナノチューブ粒子を含むことが好ましい。この場合、光触媒粒子(34)は平均粒子径が約20nmであることが好ましく、カーボンナノチューブ粒子は、マルチウオールナノチューブ群(MWNT)の長さ1μmの粒子(MWNTをアルコールに分散し、超音波洗浄器で微粉化し、濾過器で1μm以下のMWNTを取り出したもの)とされる。MWNT以外に、シングルウオールナノチューブ群(SWNT)やダブルウオールナノチューブ群(DWNT)を用いても良い。このようにすると、カーボンナノチューブ粒子により、電子の移動がよりスムーズになり、発電効率の向上につながる。   The photocatalyst film (4) is composed of photocatalyst particles (34) dyed with a photosensitizing dye (33). The photocatalyst film (4) is formed by applying a paste containing a photosensitizing dye (33) and photocatalyst particles (34) and then drying. The paste can be prepared by adding, for example, alcohol and water to a mixture of the photosensitizing dye (33) and the photocatalyst particles (34). The paste containing the photosensitizing dye (33) and the photocatalyst particles (34) preferably further contains carbon nanotube particles. In this case, the photocatalyst particles (34) preferably have an average particle diameter of about 20 nm, and the carbon nanotube particles are 1 μm long particles of a multiwall nanotube group (MWNT) (MWNTs are dispersed in alcohol and subjected to ultrasonic cleaning. Pulverized with a filter and MWNT of 1 μm or less was taken out with a filter). In addition to MWNT, a single wall nanotube group (SWNT) or a double wall nanotube group (DWNT) may be used. If it does in this way, movement of an electron will become smoother by carbon nanotube particles, and it will lead to improvement in power generation efficiency.

光電変換素子の組立てに際しては、図3に示す装置によって透明導電膜(12)が形成された電極(2)に光触媒膜(4)が形成され、次いで、電極(2)と対極(3)とが位置合わせされて、両極(2)(3)間が熱融着フィルムなどのシール材(22)で密封される。次いで、対極(3)または電極(2)などに予め設けておいた孔や隙間から電解質層(5)を構成する電解液が注入され、これにより、光触媒膜(4)および電解質層(5)が透明電極(2)と対極(3)との間に封入されるとともに、光電変換素子 (1)同士の接続などの外部への取出しに使用される集電電極(13)を内蔵した光電変換素子(1)が得られる。   When the photoelectric conversion element is assembled, the photocatalyst film (4) is formed on the electrode (2) on which the transparent conductive film (12) is formed by the apparatus shown in FIG. 3, and then the electrode (2) and the counter electrode (3) Are aligned, and the electrodes (2) and (3) are sealed with a sealing material (22) such as a heat-sealing film. Next, the electrolyte solution constituting the electrolyte layer (5) is injected from the holes or gaps provided in advance in the counter electrode (3) or the electrode (2), etc., whereby the photocatalyst film (4) and the electrolyte layer (5) Is enclosed between the transparent electrode (2) and the counter electrode (3), and has a built-in current collecting electrode (13) that is used for external connection such as connection between the photoelectric conversion elements (1). Element (1) is obtained.

このようにして、膜厚が数μm程度の100mm角の色素増感太陽電池を作製して、AM1.5、100mW/cmの標準光源照射により電力変換効率を計測した結果、変換効率は4%程度であった。 In this way, a 100 mm square dye-sensitized solar cell having a film thickness of about several μm was prepared, and the power conversion efficiency was measured by irradiation with a standard light source of AM 1.5 and 100 mW / cm 2. As a result, the conversion efficiency was 4 %.

なお、ITOの結晶度を上げて透明化すると、若干導電率が低下するが従来の真空下で形成するものとほぼ同等程度のITOが得られ、膜厚を大きくとる(例えば前記のように数μm程度とする)ことで、十分な導電性を確保することができる。   In addition, when the crystallinity of ITO is increased to make it transparent, the conductivity is slightly reduced, but an ITO of almost the same degree as that formed under a conventional vacuum is obtained, and the film thickness is increased (for example, several as described above) Sufficient conductivity can be ensured by setting it to about μm.

図1は、この発明による光電変換素子の直列接続を示す断面図である。FIG. 1 is a cross-sectional view showing a series connection of photoelectric conversion elements according to the present invention. 図2は、この発明による光電変換素子の並列接続を示す断面図である。FIG. 2 is a sectional view showing parallel connection of photoelectric conversion elements according to the present invention. 図3は、この発明による光電変換素子の製造方法を示す図である。FIG. 3 is a diagram showing a method for manufacturing a photoelectric conversion element according to the present invention.

符号の説明Explanation of symbols

(1) 光電変換素子
(2) 電極
(3) 対極
(4) 光触媒膜
(5) 電解質層
(11) 透明基板
(12) 透明導電膜
(13) 集電電極
(14) ターゲット材
(17) 透明導電膜素材
(1) Photoelectric conversion element
(2) Electrode
(3) Counter electrode
(4) Photocatalytic film
(5) Electrolyte layer
(11) Transparent substrate
(12) Transparent conductive film
(13) Current collecting electrode
(14) Target material
(17) Transparent conductive film material

Claims (4)

透明な電極と、これに対向する対極と、両極間に配される電解質層および光触媒膜とを有する光電変換素子を製造する方法であって、電極を作成する工程は、常圧中で透明基板上に透明導電膜素材を形成する工程と、透明導電膜素材を酸化させる工程と含んでいることを特徴とする、光電変換素子の製造方法。   A method of manufacturing a photoelectric conversion element having a transparent electrode, a counter electrode facing the electrode, an electrolyte layer and a photocatalyst film disposed between the two electrodes, and the step of creating the electrode is a transparent substrate under normal pressure The manufacturing method of the photoelectric conversion element characterized by including the process of forming a transparent conductive film material on the top, and the process of oxidizing a transparent conductive film material. 透明導電膜素材を形成する工程は、透明基板と対向して設けられたターゲット材を常圧中でエネルギービームを照射して透明導電膜素材を透明基板上に蒸着するものかまたは常圧中でのスパッタリング法により行うものである、請求項1の光電変換素子の製造方法。   The step of forming the transparent conductive film material is to deposit the transparent conductive film material on the transparent substrate by irradiating an energy beam on the target material provided facing the transparent substrate at normal pressure, or under normal pressure. The manufacturing method of the photoelectric conversion element of Claim 1 performed by the sputtering method of this. 電極を作成する工程は、透明基板上に透明導電膜を形成する前に集電電極を形成する工程をさらに含んでおり、透明導電膜素材を形成する工程において、集電電極の電解質接触部を保護するように透明導電膜素材を形成することを特徴とする、請求項1または2の光電変換素子の製造方法。   The step of creating an electrode further includes the step of forming a current collecting electrode before forming the transparent conductive film on the transparent substrate. In the step of forming the transparent conductive film material, the electrolyte contact portion of the current collecting electrode is formed. The method for producing a photoelectric conversion element according to claim 1, wherein a transparent conductive film material is formed so as to protect. 透明な電極とこれに対向する対極とを有する光電変換素子であって、請求項1から3のいずれかに記載された方法で製造されたことを特徴とする、光電変換素子。   A photoelectric conversion element having a transparent electrode and a counter electrode facing the transparent electrode, wherein the photoelectric conversion element is manufactured by the method according to claim 1.
JP2008146415A 2008-06-04 2008-06-04 Method for manufacturing photoelectric conversion element Expired - Fee Related JP5376837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146415A JP5376837B2 (en) 2008-06-04 2008-06-04 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146415A JP5376837B2 (en) 2008-06-04 2008-06-04 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2009295361A true JP2009295361A (en) 2009-12-17
JP5376837B2 JP5376837B2 (en) 2013-12-25

Family

ID=41543372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146415A Expired - Fee Related JP5376837B2 (en) 2008-06-04 2008-06-04 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5376837B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170813A (en) * 1987-01-09 1988-07-14 旭硝子株式会社 Formation of transparent conductive film
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170813A (en) * 1987-01-09 1988-07-14 旭硝子株式会社 Formation of transparent conductive film
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell

Also Published As

Publication number Publication date
JP5376837B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5171810B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2005235725A (en) Dye-sensitized solar cell module
JP2006024574A (en) Dye-sensitized solar cell module
JP2006134870A (en) Dye-sensitized solar cell, its manufacturing method and dye-sensitized solar cell module
JP2012059599A (en) Carbon based electrode and electrochemical device
JP5162346B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5125860B2 (en) Method for forming titanium oxide film
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP2006086056A (en) Dye-sensitized solar cell
JP5376837B2 (en) Method for manufacturing photoelectric conversion element
RU2552597C1 (en) Flexible solar element
JP5303207B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP5376815B2 (en) Method for manufacturing photoelectric conversion element
JP5438953B2 (en) Method for producing transparent conductive film
JP2015191984A (en) Dye-sensitized solar battery and manufacturing method thereof
JP5485793B2 (en) Solar cell module connection electrode and solar cell module
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element
KR101600786B1 (en) Manufacturing method for the dye-sensitized solar cell sub-module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees