JP2009293425A - Blower - Google Patents

Blower Download PDF

Info

Publication number
JP2009293425A
JP2009293425A JP2008145713A JP2008145713A JP2009293425A JP 2009293425 A JP2009293425 A JP 2009293425A JP 2008145713 A JP2008145713 A JP 2008145713A JP 2008145713 A JP2008145713 A JP 2008145713A JP 2009293425 A JP2009293425 A JP 2009293425A
Authority
JP
Japan
Prior art keywords
blade
separation
curved
outer peripheral
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008145713A
Other languages
Japanese (ja)
Other versions
JP4867950B2 (en
Inventor
Masaru Nakagawa
優 中川
Shimei Tei
志明 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008145713A priority Critical patent/JP4867950B2/en
Publication of JP2009293425A publication Critical patent/JP2009293425A/en
Application granted granted Critical
Publication of JP4867950B2 publication Critical patent/JP4867950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve air blowing performance in a blower having a curved part to the negative pressure face side in the whole rear edge region of a blade. <P>SOLUTION: The blower has an impeller 1 formed by radially mounting blades 3 to the outer periphery of a hub 2. The whole region of the rear edge 3b of the blade 3 has the curved part 4B curved to the negative pressure face 3f side, and a curve angle α of the curved part 4B is set to be gradually smaller toward an outer peripheral part 3d from an inner peripheral part 3c. By this constitution, the separation of an air current is large at the negative pressure face 3f on the inner peripheral part 3c side of the blade 3, but there is hardly generated any separation of the air current at the negative pressure face 3f on the outer peripheral part 3d side. The curve angle α is thereby set to be large at the negative pressure face 3f on the inner peripheral part 3c side to further effectively suppress the separation of the air current, and a back stream width can be kept small. Furthermore, since the separation of the air current is small at the negative pressure face 3f on the outer peripheral part 3d side, the curve angle α is set to be small to restrain the curved part 4B itself from becoming the resistance of a flow along the negative pressure face 3f to the utmost. Aerodynamic characteristics are improved by the synergistic effect of both to improve air blowing performance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、軸流ファン、斜流ファン等の送風機に関し、さらに詳しくは、該送風機において送風性能の向上を図るための羽根構造に関するものである。   The present invention relates to a blower such as an axial fan or a mixed flow fan, and more particularly to a blade structure for improving the blowing performance in the blower.

従来から、軸流ファン、斜流ファン等の送風機において、送風効率の高効率化を図ることを目的とした羽根構造の改善技術として種々の提案がなされている(特許文献1、2参照)。   Conventionally, various proposals have been made as techniques for improving the blade structure for the purpose of increasing the air blowing efficiency in blowers such as an axial fan and a mixed flow fan (see Patent Documents 1 and 2).

特許文献1に示されるものは、羽根の後縁に沿って所定幅で翼方向へ延びる特定領域を負圧面側へ湾曲させ、これによって羽根後縁から吹出される後流の幅(後流幅)を可及的に減少させて空力特性を改善するものである。   In Patent Document 1, a specific region extending in the blade direction with a predetermined width along the trailing edge of the blade is curved toward the suction surface side, and thereby, the width of the wake (the wake width) blown out from the blade trailing edge. ) Is reduced as much as possible to improve the aerodynamic characteristics.

ここで、図6は、羽根30の翼弦長方向の断面図を示しているが、この羽根30では、前縁30aから後縁30bまでの全域に負圧面30d側に膨出する所定の反りをもたせている。この羽根30においては、負圧面30dに沿って流れる気流の剥離が大きいことから、後縁30b近傍において該気流に渦流れ32が多く発生し、その結果、後流幅S1が大きくなる。   Here, FIG. 6 shows a cross-sectional view of the blade 30 in the chord length direction. In this blade 30, a predetermined warpage bulges toward the suction surface 30d in the entire region from the leading edge 30a to the trailing edge 30b. Is given. In the blade 30, since the separation of the airflow flowing along the suction surface 30d is large, a large amount of vortex flow 32 is generated in the airflow in the vicinity of the trailing edge 30b, and as a result, the wake width S1 is increased.

これに対して、図7に示される羽根30では、前縁30aから後縁30bの直前までの部位に負圧面30d側に膨出する所定の反りをもたせる一方、該直前部分から後縁30bまでの部位は正圧面30c側に膨出する所定の反りをもたせて(換言すれば、負圧面30d側に湾曲させて)これを湾曲部33としている。このように羽根30の後縁30b側に上記湾曲部33を設けると、負圧面30dに沿って流れる気流の剥離が抑制され、後縁30b近傍における渦流れ32の発生が抑制され、後流幅S2が小さくなる。   On the other hand, in the blade 30 shown in FIG. 7, the portion from the front edge 30a to immediately before the rear edge 30b has a predetermined warp bulging toward the negative pressure surface 30d, while the portion from the immediately preceding portion to the rear edge 30b. This portion is provided with a predetermined warp bulging toward the positive pressure surface 30c (in other words, curved toward the negative pressure surface 30d), and this is used as the curved portion 33. When the curved portion 33 is provided on the trailing edge 30b side of the blade 30 as described above, separation of the airflow flowing along the suction surface 30d is suppressed, generation of the vortex flow 32 in the vicinity of the trailing edge 30b is suppressed, and the wake width S2 becomes smaller.

このように、羽根30の後縁30b近傍に負圧面30d側へ湾曲する湾曲部33を設けることで、該後縁30bから吹出される後流幅が小さくなり、該羽根30における空力特性が改善される。この空力特性の改善の結果、送風効率が向上することになる。   Thus, by providing the curved portion 33 that curves toward the suction surface 30d in the vicinity of the trailing edge 30b of the blade 30, the width of the wake blown out from the trailing edge 30b is reduced, and the aerodynamic characteristics of the blade 30 are improved. Is done. As a result of the improvement of the aerodynamic characteristics, the air blowing efficiency is improved.

この送風効率の向上効果は、図5において曲線Aで示す「湾曲部無し(図6参照)」の場合における特性図と、曲線Bで示す「湾曲部有り(図7参照)」の場合における特性図を対比すれば、「湾曲部有り」の場合(曲線B)には、「湾曲部無し」の場合(曲線A)に比して、同一風量を得るに必要なモータ入力が、低風量側ではΔP1だけ、高風量側ではΔP2だけ、それぞれ低減されていることから、容易に理解されるところである。   The effect of improving the air blowing efficiency is shown in a characteristic diagram in the case of “without a curved portion (see FIG. 6)” shown by a curve A in FIG. 5 and a characteristic in the case of “with a curved portion (see FIG. 7)” shown by a curve B. Comparing the figures, in the case of “with curved portion” (curve B), the motor input necessary to obtain the same air volume is lower than that in the case of “without curved portion” (curve A). Then, ΔP1 is reduced, and ΔP2 is reduced on the high air volume side, which is easily understood.

一方、特許文献2に示されるものは、翼の後縁の径方向中央部に吸込側へ膨らむように湾曲した突状部を設け、これによって、翼の径方向における気体の吹出し速度が均一化され、低騒音化及び高効率化を図るものである。   On the other hand, the one shown in Patent Document 2 is provided with a protruding portion that is curved so as to swell toward the suction side at the radial center of the trailing edge of the blade, thereby uniforming the gas blowing speed in the radial direction of the blade. Therefore, it is intended to reduce noise and increase efficiency.

特開2003−13892号公報JP 2003-13892 A 特開2006−378000号公報JP 2006-378000 A

ところが、実際の送風機、特に軸流ファンでは、羽根の負圧面側における気流の剥離状態は該負圧面の全域で一様なものではなく、羽根のハブ近傍付近の負圧面側では気流の剥離が大きいが、羽根の外周部の負圧面側では気流の剥離はほとんど生じない、ということが知見された。係る知見に基づけば、上掲各特許文献に記載のような羽根構造の改善では、外周部の湾曲部ではこれが負圧面に沿う流れの抵抗となるとか、ハブ近傍の湾曲部では気流の剥離抑制効果が十分ではなく後流幅が大きくなる、等の問題が懸念され、この点において改善すべき余地がある。   However, in an actual blower, particularly an axial fan, the airflow separation state on the suction surface side of the blade is not uniform across the suction surface, and the airflow separation occurs on the suction surface side near the blade hub. Although large, it has been found that almost no separation of airflow occurs on the suction surface side of the outer peripheral portion of the blade. Based on such knowledge, the improvement of the blade structure as described in each of the above-mentioned patent documents shows that this becomes resistance to the flow along the suction surface in the curved portion of the outer peripheral portion, or the separation of airflow is suppressed in the curved portion near the hub. There are concerns about problems such as insufficient effect and an increase in wake width, and there is room for improvement in this regard.

そこで本願発明は、羽根の後縁全域に負圧面側への湾曲部を設けた送風機において、該湾曲部の機能とか作用効果を支配する要因、即ち、湾曲部の湾曲角度、湾曲部の翼弦長方向の幅寸法、及び羽根後縁の出口角度を最適化することで、送風性能のさらなる向上を図ることを目的としてなされたものである。   Therefore, the present invention relates to a fan in which a curved portion toward the suction surface side is provided in the entire trailing edge of the blade, the factors governing the function and effect of the curved portion, that is, the curved angle of the curved portion, the chord of the curved portion The purpose is to further improve the blowing performance by optimizing the width dimension in the long direction and the exit angle of the trailing edge of the blade.

本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。   In the present invention, the following configuration is adopted as a specific means for solving such a problem.

本願の第1の発明では、ハブ2の外周に複数枚の羽根3を放射状に取付けてなる羽根車1を備えた送風機において、上記羽根3の後縁3bの翼方向の全域に負圧面3f側へ湾曲する湾曲部4Bを設けるとともに、該湾曲部4Bの湾曲角度αを、上記ハブ2寄りの内周部3cから外周部3dに向けて次第に小さくなるように設定したことを特徴としている。   In the first invention of the present application, in the blower provided with the impeller 1 in which a plurality of blades 3 are radially attached to the outer periphery of the hub 2, the suction surface 3f side of the rear edge 3b of the blade 3 is disposed in the entire region in the blade direction. And a bending angle α of the bending portion 4B is set so as to gradually decrease from the inner peripheral portion 3c near the hub 2 toward the outer peripheral portion 3d.

本願の第2の発明では、上記第1の発明に係る送風機において、上記湾曲部4Bの湾曲角度αを「0<α≦35°」の範囲に設定したことを特徴としている。   The second invention of the present application is characterized in that, in the blower according to the first invention, the bending angle α of the bending portion 4B is set in a range of “0 <α ≦ 35 °”.

本願の第3の発明では、上記第1の発明に係る送風機において、上記羽根3の後縁3bの翼方向の全域に負圧面3f側へ湾曲する湾曲部4Bを設けるとともに、羽根3の翼弦長方向における上記湾曲部4Bの形成範囲を、該羽根3の翼方向における各翼素の翼弦長「L0」に対する上記湾曲部4Bの翼弦長「L1」の比「L1/L0」を「0<L1/L0≦0.2」の範囲に設定したことを特徴としている。   In the third invention of the present application, in the blower according to the first invention, the curved portion 4B that curves toward the suction surface 3f side is provided in the entire blade direction of the trailing edge 3b of the blade 3, and the chord of the blade 3 The formation range of the curved portion 4B in the longitudinal direction is defined as the ratio “L1 / L0” of the chord length “L1” of the curved portion 4B to the chord length “L0” of each blade element in the blade direction of the blade 3. It is characterized by being set in a range of 0 <L1 / L0 ≦ 0.2 ”.

本願の第4の発明では、上記第1の発明に係る送風機において、上記羽根3の後縁3bの翼方向の全域に負圧面3f側へ湾曲する湾曲部4Bを設けるとともに、上記羽根3の後縁3bにおける出口角度βを、上記内周部3c側の翼素で最大、外周部3d側の翼素で最少となるように設定したことを特徴としている。   According to a fourth invention of the present application, in the blower according to the first invention, a curved portion 4B that curves toward the suction surface 3f side is provided in the entire blade direction of the trailing edge 3b of the blade 3, and the rear of the blade 3 The exit angle β at the edge 3b is set so as to be maximum at the blade element on the inner peripheral portion 3c side and minimum at the blade element on the outer peripheral portion 3d side.

本願発明では次のような効果が得られる。   In the present invention, the following effects can be obtained.

(a) 本願の第1の発明によれば、ハブ2の外周に複数枚の羽根3を放射状に取付けてなる羽根車1を備えた送風機において、上記羽根3の後縁3bの翼方向の全域に負圧面3f側へ湾曲する湾曲部4Bを設けるとともに、該湾曲部4Bの湾曲角度αを、上記ハブ2寄りの内周部3cから外周部3dに向けて次第に小さくなるように設定している。   (A) According to the first invention of the present application, in the blower including the impeller 1 in which a plurality of blades 3 are radially attached to the outer periphery of the hub 2, the entire region in the blade direction of the trailing edge 3b of the blade 3 is provided. Is provided with a bending portion 4B that bends toward the suction surface 3f side, and the bending angle α of the bending portion 4B is set so as to gradually decrease from the inner peripheral portion 3c near the hub 2 toward the outer peripheral portion 3d. .

ここで、羽根3の負圧面3f側における気流の剥離状態は一様ではなく、羽根3のハブ2寄りの内周部3c側の負圧面3fでは気流の剥離が大きいが、羽根3の外周部3d側の負圧面3fでは気流の剥離はほとんど生じないことが知られている。   Here, the airflow separation state on the negative pressure surface 3f side of the blade 3 is not uniform, and the airflow separation is large on the negative pressure surface 3f near the hub 2 of the blade 3 but the outer peripheral portion of the blade 3 It is known that air flow separation hardly occurs at the negative pressure surface 3f on the 3d side.

従って、上記湾曲部4Bの湾曲角度αを、上記内周部3c側から外周部に向けて次第に小さくなるように設定することで、
第1に、上記羽根3の内周部3c側の負圧面3fでは気流の剥離が大きい、換言すれば、剥離抑制の必要性が高いことから、この部分の湾曲角度αを大きく設定することで、気流の剥離がより一層効果的に抑制され、後流幅を小さく抑えることができ、
第2に、上記羽根3の外周部3d側の負圧面3fでは気流の剥離が小さい、換言すれば剥離抑制の必要性が低いことから、この部分の湾曲角度αを小さく設定することで、該湾曲部4B自体が負圧面3fに沿う流れの抵抗となるのが可及的に抑制され、
これら両者の相乗効果により、空力特性が改善され送風性能が向上するという効果が得られる。
Therefore, by setting the bending angle α of the bending portion 4B to gradually decrease from the inner peripheral portion 3c side toward the outer peripheral portion,
First, air flow is largely separated at the negative pressure surface 3f on the inner peripheral portion 3c side of the blade 3, in other words, since there is a high necessity for suppressing separation, the curve angle α of this portion is set to be large. , Airflow separation is more effectively suppressed, and the wake width can be reduced,
Second, since the airflow separation is small on the negative pressure surface 3f on the outer peripheral portion 3d side of the blade 3, in other words, the necessity for suppressing the separation is low, by setting the bending angle α of this portion small, It is suppressed as much as possible that the curved portion 4B itself becomes a flow resistance along the suction surface 3f,
Due to the synergistic effect of both, the aerodynamic characteristics are improved and the air blowing performance is improved.

(b) 本願の第2の発明では、上記(a)に記載の効果に加えて以下のような特有の効果が得られる。即ち、この発明では、上記湾曲部の湾曲角度αを「0<α≦35°」の範囲に設定している。   (B) In the second invention of the present application, in addition to the effects described in (a) above, the following specific effects can be obtained. That is, in the present invention, the bending angle α of the bending portion is set in a range of “0 <α ≦ 35 °”.

ここで、上記湾曲部4Bの湾曲角度αは、上記(a)に記載のように、上記羽根3の内周部3cから外周部に向けて次第に小さくなるように設定されていることが前提であることから、湾曲角度「α=35°」は羽根3の内周部3cにおける湾曲角度αの上限値となる。この上限値は、湾曲角度αが「35°」より大きくなると、湾曲部4Bによる気流の剥離抑制によって得られるメリットに対する、湾曲部4Bによって生じる気流抵抗による空力特性の悪化というデメリットの割合が大きくなり、結果として空力特性の改善効果が大きく減殺されるので、湾曲角度αの上限値を「35°」に設定したものである。   Here, it is assumed that the bending angle α of the bending portion 4B is set so as to gradually decrease from the inner peripheral portion 3c of the blade 3 toward the outer peripheral portion, as described in (a) above. Therefore, the bending angle “α = 35 °” is an upper limit value of the bending angle α in the inner peripheral portion 3 c of the blade 3. When the bending angle α is larger than “35 °”, this upper limit value has a higher demerit ratio of deterioration of aerodynamic characteristics due to airflow resistance generated by the bending portion 4B to the advantage obtained by suppressing the separation of the airflow by the bending portion 4B. As a result, the effect of improving the aerodynamic characteristics is greatly diminished, so the upper limit value of the bending angle α is set to “35 °”.

一方、湾曲角度「α>0°」は、羽根3の外周部3dにおける湾曲角度αの下限値となる。この下限値は、羽根3の外周部3dでは、湾曲部4Bによる気流の剥離抑制という要求よりも、湾曲部4Bによる気流抵抗の抑制という要求が上回ることから、この湾曲角度αをできるだけ小さくして気流抵抗の抑制効果を最大限生かす観点から設定したものである。   On the other hand, the bending angle “α> 0 °” is a lower limit value of the bending angle α in the outer peripheral portion 3 d of the blade 3. This lower limit value is set to be as small as possible in the outer peripheral portion 3d of the blade 3 because the requirement for suppressing airflow resistance by the bending portion 4B exceeds the requirement for suppressing airflow separation by the bending portion 4B. It is set from the viewpoint of making the best use of the airflow resistance suppression effect.

以上のことから、上記湾曲部4Bの湾曲角度αを「0<α≦35°」の範囲に設定することで、気流の剥離抑制効果と気流抵抗の抑制効果が両立され、上記(a)に記載の効果がより一層確実となる。   From the above, by setting the bending angle α of the bending portion 4B in the range of “0 <α ≦ 35 °”, the airflow separation suppressing effect and the airflow resistance suppressing effect are compatible, and the above (a) is achieved. The described effect is further ensured.

(c) 本願の第3の発明によれば、上記(a)に記載の効果に加えて以下のような特有の効果が得られる。即ち、この発明では、上記羽根3の後縁3bの翼方向の全域に負圧面3f側へ湾曲する湾曲部4Bを設けるとともに、羽根3の翼弦長方向における上記湾曲部4Bの形成範囲を、該羽根3の翼方向における各翼素の翼弦長「L0」に対する上記湾曲部4Bの翼弦長「L1」の比「L1/L0」が「0<L1/L0≦0.2」の範囲に設定している。   (C) According to the third invention of the present application, the following specific effects can be obtained in addition to the effects described in the above (a). That is, in the present invention, the curved portion 4B that curves toward the suction surface 3f side is provided in the entire blade direction of the trailing edge 3b of the blade 3, and the formation range of the curved portion 4B in the blade chord length direction of the blade 3 is The ratio “L1 / L0” of the chord length “L1” of the curved portion 4B to the chord length “L0” of each blade element in the blade direction of the blade 3 is in the range of “0 <L1 / L0 ≦ 0.2”. Is set.

ここで、送風機の羽根車1においては、羽根3の翼弦長は、該羽根3の必然的形体として、該羽根3の内周部3cから外周部3dに向けて次第に小さくなるように設定されている。従って、羽根3の翼弦長方向における上記湾曲部の形成範囲を、該羽根の翼方向における翼素の翼弦長「L0」に対する上記湾曲部の翼弦長「L1」の比「L1/L0」が「0<L1/L0≦0.2」の範囲に設定した場合、必然的に上記湾曲部4Bの形成範囲、即ち、翼弦長方向における湾曲部4Bの幅寸法は、上記羽根3の内周部3cから外周部3dに向かって次第に小さくなる。   Here, in the impeller 1 of the blower, the chord length of the blade 3 is set as an inevitable shape of the blade 3 so as to gradually decrease from the inner peripheral portion 3c of the blade 3 toward the outer peripheral portion 3d. ing. Therefore, the formation range of the curved portion in the blade chord length direction of the blade 3 is set to the ratio “L1 / L0” of the chord length “L1” of the curved portion to the chord length “L0” of the blade element in the blade direction of the blade. ”Is set in the range of“ 0 <L1 / L0 ≦ 0.2 ”, the formation range of the curved portion 4B, that is, the width dimension of the curved portion 4B in the chord length direction is inevitably set. It gradually decreases from the inner peripheral part 3c toward the outer peripheral part 3d.

このため、上記範囲のうち、「L1/L0=0.2」は、羽根3の内周部3cにおける翼弦長の上限値となる。この上限値は、「L1/L0」が「0.2」より大きくなると、湾曲部4Bによる気流の剥離抑制によって得られるメリットに対する、湾曲部4Bによって生じる気流抵抗による空力特性の悪化というデメリットの割合が大きくなり、結果として空力特性の改善効果大きく減殺されるので、上記湾曲部4Bの翼弦長「L1」の比「L1/L0」の上限値を「0.2」に設定したものである。   For this reason, in the above range, “L1 / L0 = 0.2” is the upper limit value of the chord length in the inner peripheral portion 3 c of the blade 3. This upper limit value is the ratio of the demerit that the aerodynamic characteristics are deteriorated due to the airflow resistance generated by the curved portion 4B to the merit obtained by suppressing the separation of the airflow by the curved portion 4B when “L1 / L0” is larger than “0.2”. As a result, the effect of improving the aerodynamic characteristics is greatly reduced. Therefore, the upper limit value of the ratio “L1 / L0” of the chord length “L1” of the curved portion 4B is set to “0.2”. .

一方、湾曲部4Bの翼弦長「L1」の比「L1/L0>0」は、羽根3の外周部3dにおける翼弦長の下限値となる。この下限値は、羽根3の外周部3dでは、湾曲部4Bによる気流の剥離抑制という要求よりも、湾曲部4Bによる気流抵抗の抑制という要求が上回ることから、上記比「L1/L0」をできるだけ小さくして気流抵抗の抑制効果を最大限生かす観点から設定したものである。   On the other hand, the ratio “L1 / L0> 0” of the chord length “L1” of the curved portion 4B is the lower limit value of the chord length in the outer peripheral portion 3d of the blade 3. This lower limit value exceeds the ratio “L1 / L0” as much as possible at the outer peripheral portion 3d of the blade 3 because the requirement for suppressing airflow resistance by the curved portion 4B exceeds the requirement for suppressing separation of the airflow by the curved portion 4B. It is set from the viewpoint of reducing the airflow resistance and making the best use of the effect of suppressing airflow resistance.

以上のことから、上記湾曲部4Bの形成範囲、即ち、翼弦長方向の幅寸法を、該羽根3の翼方向における翼素の翼弦長「L0」に対する上記湾曲部4Bの翼弦長「L1」の比「L1/L0」を「0<L1/L0≦0.2」の範囲に設定して、上記湾曲部4Bの形成範囲、即ち、翼弦長方向における湾曲部4Bの幅寸法が上記羽根3の内周部3cから外周部3dに向かって次第に小さくなるようにすることで、気流の剥離抑制効果と気流抵抗の抑制効果が両立され、空力特性が改善され送風性能が向上するという効果が得られる。   From the above, the formation range of the curved portion 4B, that is, the width dimension in the chord length direction is set to the chord length “of the curved portion 4B with respect to the chord length“ L0 ”of the blade element in the blade direction of the blade 3”. The ratio “L1 / L0” of L1 is set in a range of “0 <L1 / L0 ≦ 0.2”, and the formation range of the bending portion 4B, that is, the width dimension of the bending portion 4B in the chord length direction is By gradually decreasing from the inner peripheral portion 3c of the blade 3 toward the outer peripheral portion 3d, the airflow separation suppressing effect and the airflow resistance suppressing effect are compatible, the aerodynamic characteristics are improved, and the air blowing performance is improved. An effect is obtained.

(d) 本願の第4の発明では、上記(a)に記載の効果に加えて以下のような特有の効果が得られる。即ち、この発明では、上記羽根3の後縁3dの翼方向の全域に負圧面3f側へ湾曲する湾曲部4Bを設けるとともに、上記羽根2の後縁3bにおける出口角度βを、上記内周部3c側の翼素で最大、外周部側の翼素で最少となるように設定している。   (D) In the fourth invention of the present application, in addition to the effect described in the above (a), the following specific effect can be obtained. That is, in the present invention, a curved portion 4B that curves toward the suction surface 3f side is provided in the entire blade direction of the trailing edge 3d of the blade 3, and the outlet angle β at the trailing edge 3b of the blade 2 is set to the inner peripheral portion. It is set so that the blade element on the 3c side is the maximum and the blade element on the outer peripheral side is the minimum.

ここで、羽根3の後縁3bにおける出口角度βの大きさと上記湾曲部4Bの湾曲角度αの大きさは略対応関係にあり、該湾曲角度αが大きい部位では上記出口角度βも大きくなる。従って、上記湾曲角度αが上記羽根3の負圧面3fを流れる気流に与える影響は、上記羽根3の後縁3bにおける出口角度βについても同様に考えることができる。   Here, the size of the exit angle β at the trailing edge 3b of the blade 3 and the size of the bending angle α of the bending portion 4B are substantially corresponding to each other, and the exit angle β is also increased at a portion where the bending angle α is large. Therefore, the influence of the bending angle α on the airflow flowing through the suction surface 3f of the blade 3 can be considered in the same way for the outlet angle β at the trailing edge 3b of the blade 3.

このことから、この発明のように、上記羽根3の後縁3bにおける出口角度βを、上記ハブ2寄りの内周部3c側の翼素で最大、外周部3d側の翼素で最少となるように設定することで、
第1に、上記羽根3の内周部3c側の負圧面3fでは気流の剥離が大きい、換言すれば、剥離抑制の必要性が高いことから、内周部3c側の翼素における出口角度βを大きく設定することで、気流の剥離がより一層効果的に抑制され、後流幅を小さく抑えることができ、
第2に、上記羽根3の外周部3d側の負圧面3fでは気流の剥離が小さい、換言すれば剥離抑制の必要性が低いことから、該外周部3d側の翼素における出口角度βを小さく設定することで、該湾曲部4B自体が負圧面3fに沿う流れの抵抗となるのが可及的に抑制され、
これら両者の相乗効果により、空力特性が改善され送風性能が向上するという効果が得られる。
Therefore, as in the present invention, the exit angle β at the trailing edge 3b of the blade 3 is the maximum at the blade element on the inner peripheral portion 3c side near the hub 2 and the minimum at the blade element on the outer peripheral portion 3d side. By setting so that
First, since the airflow separation is large at the suction surface 3f on the inner peripheral portion 3c side of the blade 3, in other words, there is a high necessity for suppressing the separation, the exit angle β in the blade element on the inner peripheral portion 3c side is high. By setting the large, the separation of the airflow is more effectively suppressed, the wake width can be suppressed small,
Second, since the airflow separation is small on the negative pressure surface 3f on the outer peripheral portion 3d side of the blade 3, in other words, the necessity for suppressing the separation is low, the outlet angle β in the blade element on the outer peripheral portion 3d side is reduced. By setting, it is suppressed as much as possible that the curved portion 4B itself becomes a resistance of the flow along the suction surface 3f,
Due to the synergistic effect of both, the aerodynamic characteristics are improved and the air blowing performance is improved.

以下、本願発明を好適な実施形態に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on preferred embodiments.

図1及び図2には、本願発明の実施形態に係る送風機(プロペラファン)の羽根車1を示している。この羽根車1は、ハブ2の外周に複数枚(この実施形態では4枚)の羽根3を放射状に取付けて構成される。   1 and 2 show an impeller 1 of a blower (propeller fan) according to an embodiment of the present invention. The impeller 1 is configured by radially attaching a plurality of (four in this embodiment) blades 3 to the outer periphery of a hub 2.

上記羽根3は、その前縁3aが、ハブ2寄りの内周部3cよりも外周部3d寄り部分が回転方向(矢印R方向)の前方側に位置するような湾曲形状とされた所謂「前進翼」であって、この前縁3a側の形状に対応するように、後縁3bの形状もハブ寄り部3cよりも外周部3d寄り部分が回転方向の前方側に位置するような湾曲形状とされている。従って、羽根3の径方向における各翼素間においては、ハブ寄り部3c側の翼素から外周部3d側の翼素に向かうに伴ってその翼弦長が増大することになる。   The blade 3 has a so-called “advance” in which the front edge 3a is curved so that a portion closer to the outer peripheral portion 3d is located on the front side in the rotational direction (arrow R direction) than the inner peripheral portion 3c close to the hub 2. And a curved shape in which the portion of the rear edge 3b is positioned closer to the front side in the rotational direction than the hub side portion 3c so as to correspond to the shape of the front edge 3a side. Has been. Therefore, between each blade element in the radial direction of the blade 3, the chord length increases as the blade element on the hub close portion 3c side moves toward the blade element on the outer peripheral portion 3d side.

そして、上記羽根3においては、図2及び図3に示すように、翼弦長方向における断面形状を、その前縁3aから後縁3bの近傍位置までの部位では、正圧面3eから負圧面3f側へ膨出する湾曲形状として所定の反りをもたせてこれを反り部4Aとする一方、該近傍部分から後縁3bまでの部位は、逆に正圧面3eから負圧面3f側へ膨出する(換言すれば、負圧面3f側へ湾曲する)湾曲形状としてこの部分を湾曲部4Bとしている。従って、上記反り部4Aの後端と上記湾曲部4Bの前端が連続する点Pは変曲点となる。   In the blade 3, as shown in FIGS. 2 and 3, the cross-sectional shape in the chord length direction is changed from the positive pressure surface 3e to the negative pressure surface 3f in the region from the front edge 3a to the vicinity of the rear edge 3b. As a curved shape that bulges to the side, a predetermined warp is provided as a warped portion 4A, while a portion from the vicinity to the rear edge 3b bulges from the pressure surface 3e to the suction surface 3f side ( In other words, this portion is a curved portion 4B as a curved shape (curved to the suction surface 3f side). Therefore, a point P where the rear end of the warped portion 4A and the front end of the curved portion 4B are continuous is an inflection point.

ところで、上掲の特許文献1にも示されるように、羽根の後縁に沿って所定幅で翼方向へ延びる特定領域を負圧面側へ湾曲させることで、羽根後縁から吹出される後流の幅(後流幅)を可及的に減少させて空力特性を改善することができることは知られている。   By the way, as shown also in the above-mentioned patent document 1, the wake flow blown out from the trailing edge of the blade by curving a specific region extending in the blade direction with a predetermined width along the trailing edge of the blade toward the suction surface side. It is known that the aerodynamic characteristics can be improved by reducing the width (wake width) as much as possible.

しかし、実際の送風機の送風特性を検証すると、羽根の負圧面側における気流の剥離状態は該負圧面の全域で一様なものではなく、羽根のハブ寄りに位置する内周部側の負圧面では気流の剥離が大きいが、羽根の外周部側の負圧面では気流の剥離はほとんど生じないということが知見され、係る知見に基づけば、単に後縁側に負圧面側へ湾曲する湾曲部を設ける、という対策のみでは、外周部の湾曲部ではこれが負圧面に沿う流れの抵抗となるとか、ハブ近傍の湾曲部では気流の剥離抑制効果が十分ではなく後流幅が大きくなる、等の問題が懸念される。   However, when verifying the air blowing characteristics of an actual blower, the airflow separation state on the suction surface side of the blade is not uniform over the entire suction surface, and the suction surface on the inner peripheral side located near the hub of the blade In this case, it is known that airflow separation is large, but airflow separation hardly occurs on the suction surface on the outer peripheral portion side of the blade. Based on such knowledge, a curved portion that simply curves to the suction surface side is provided on the trailing edge side. However, there are problems such as the fact that this is the resistance of the flow along the suction surface in the curved part of the outer peripheral part, or that the curving part in the vicinity of the hub does not have a sufficient airflow separation suppressing effect and the wake width becomes large. Concerned.

そこで、羽根の負圧面側における気流の剥離状態及び剥離抑制の要求度等を考慮して上記湾曲部4Bの構成を特定することで、送風機全体としての空力特性を改善して送風効率の向上を図るようにしたものである。そして、上記湾曲部4Bの構成を、以下に述べるように、上記湾曲部4Bの湾曲角度と、該湾曲部4Bの翼弦長方向における形成範囲、及び羽根3の後縁3bにおける出口角度βという要素によって特定したものである。以下、これらについて具体的に説明する。   Therefore, by specifying the configuration of the curved portion 4B in consideration of the separation state of the airflow on the suction surface side of the blade and the degree of demand for suppression of separation, the aerodynamic characteristics of the entire blower are improved and the blowing efficiency is improved. It is intended to be illustrated. The configuration of the bending portion 4B is referred to as a bending angle of the bending portion 4B, a formation range of the bending portion 4B in the chord length direction, and an exit angle β at the trailing edge 3b of the blade 3 as described below. It is specified by the element. Hereinafter, these will be described in detail.

A:第1の実施例
第1の実施例は、上記湾曲部4Bの構成を、該湾曲部4Bの湾曲角度αによって特定するものである。
A: First Example In the first example, the configuration of the bending portion 4B is specified by the bending angle α of the bending portion 4B.

図2は羽根3の外周部3d寄りの翼素における翼弦長方向の断面図を、図3は羽根3の内周部3c寄りの翼素における翼弦長方向の断面図を、それぞれ示している。   2 is a sectional view in the chord length direction of the blade element near the outer peripheral portion 3d of the blade 3, and FIG. 3 is a sectional view in the chord length direction of the blade element near the inner peripheral portion 3c of the blade 3. Yes.

上記湾曲角度αは、上記羽根3の上記変曲点Pにおける接線Lcと後縁3bの端部における接線Laが成す角度として規定され、図2ではこれを「α1」で、図3ではこれを「α2」でそれぞれ示している。   The bending angle α is defined as an angle formed by a tangent line Lc at the inflection point P of the blade 3 and a tangent line La at the end of the trailing edge 3b. In FIG. 2, this is “α1”, and in FIG. Each is indicated by “α2”.

この実施例では、上記湾曲角度α1、α2を、上記羽根3の内周部3c(即ち、上記ハブ2寄り部分)から外周部3dに向けて次第に小さくなるように設定したものである。さらに、この湾曲角度が最小となる上記羽根3の外周部3d側における湾曲角度α1の下限値を「>0°」に、該湾曲角度が最大となる上記羽根3の内周部3c側における湾曲角度α2の上限値を「35°」に、それぞれ設定している。   In this embodiment, the bending angles α1, α2 are set so as to gradually decrease from the inner peripheral portion 3c of the blade 3 (that is, the portion closer to the hub 2) toward the outer peripheral portion 3d. Further, the lower limit value of the bending angle α1 on the outer peripheral portion 3d side of the blade 3 where the bending angle is minimum is set to “> 0 °”, and the bending on the inner peripheral portion 3c side of the blade 3 where the bending angle is maximum. The upper limit value of the angle α2 is set to “35 °”.

従って、上記湾曲角度α1、α2は、「α1<α2」で、且つ「α1>0」及び「α2<35°」という条件を満たす範囲内で、適宜設定できるものである。
以上のように、上記羽根3の後縁3b側に設けられた上記湾曲部4Bの湾曲角度αを設定することで、以下のような作用効果が得られる。
Accordingly, the bending angles α1 and α2 can be set as appropriate within a range where “α1 <α2” and “α1> 0” and “α2 <35 °” are satisfied.
As described above, by setting the bending angle α of the bending portion 4B provided on the trailing edge 3b side of the blade 3, the following operational effects can be obtained.

即ち、この実施例のように、上記湾曲部4Bの湾曲角度αを、上記ハブ2寄りの内周部3cにおける湾曲角度α2から外周部3dにおける湾曲角度α1にかけて次第に小さくなるように設定したことで、
(a)上記羽根3の内周部3c側の負圧面3fでは気流の剥離が大きく、剥離抑制の必要性が高いことから、この部分の湾曲角度α2を大きく設定することで、気流の剥離がより一層効果的に抑制され、後流幅を小さく抑えることができ、
(b)上記羽根3の外周部3d側の負圧面3fでは気流の剥離が小さく、剥離抑制の必要性が低いことから、この部分の湾曲角度α1を小さく設定することで、該湾曲部4Bそのものが負圧面3fに沿う流れの抵抗となるのが可及的に抑制される。
That is, as in this embodiment, the bending angle α of the bending portion 4B is set to gradually decrease from the bending angle α2 at the inner peripheral portion 3c near the hub 2 to the bending angle α1 at the outer peripheral portion 3d. ,
(A) Since the airflow separation is large on the negative pressure surface 3f on the inner peripheral portion 3c side of the blade 3 and the necessity for suppressing the separation is high, the airflow separation is prevented by setting the bending angle α2 of this portion large. It is more effectively suppressed, the wake width can be kept small,
(B) The negative pressure surface 3f on the outer peripheral portion 3d side of the blade 3 has a small air flow separation and low necessity for suppression of the separation. Therefore, by setting the bending angle α1 of this portion small, the bending portion 4B itself Is prevented as much as possible from becoming a flow resistance along the suction surface 3f.

これら(a)と(b)の相乗効果により、羽根3における空力特性が改善され、延いては羽根車1を備えた送風機の送風性能が向上することになる。   As a result of the synergistic effect of (a) and (b), the aerodynamic characteristics of the blades 3 are improved, and as a result, the blowing performance of the blower provided with the impeller 1 is improved.

また、この実施例では、上記湾曲部の湾曲角度αを「0<α≦35°」の範囲に設定しているが、上述のように、上記湾曲部4Bの湾曲角度αは、上記ハブ2寄りの内周部3cにおける湾曲角度α2から外周部3dにおける湾曲角度α1にかけて次第に小さくなるように設定されているので、係る設定を考慮すれば、湾曲角度「α=35°」は上記羽根3の内周部3cにおける湾曲角度α2の上限値となり、また湾曲角度「α>0°」は羽根3の外周部3dにおける湾曲角度α1の下限値となる。   In this embodiment, the bending angle α of the bending portion is set in a range of “0 <α ≦ 35 °”. However, as described above, the bending angle α of the bending portion 4B is set to the hub 2. Since it is set so as to gradually decrease from the bending angle α2 at the inner peripheral portion 3c closer to the bending angle α1 at the outer peripheral portion 3d, the bending angle “α = 35 °” The upper limit value of the bending angle α2 at the inner peripheral portion 3c is set, and the bending angle “α> 0 °” is the lower limit value of the bending angle α1 at the outer peripheral portion 3d of the blade 3.

ここで、上記湾曲角度「α=35°」は、該湾曲角度αが「35°」より大きくなると、上記湾曲部4Bによる気流の剥離抑制によって得られるメリットに対する、該湾曲部4Bによって生じる気流抵抗による空力特性の悪化というデメリットの割合が大きくなり、結果として空力特性の改善効果が大きく減殺されることから、これを湾曲角度α2の上限値として規定したものである。   Here, when the bending angle α is larger than “35 °”, the bending angle “α = 35 °” is the air flow resistance generated by the bending portion 4B against the merit obtained by suppressing the separation of the air flow by the bending portion 4B. Since the ratio of the demerit of the deterioration of the aerodynamic characteristics due to this increases, and as a result, the improvement effect of the aerodynamic characteristics is greatly diminished, this is defined as the upper limit value of the bending angle α2.

また、上記湾曲角度「α>0°」は、上記羽根3の外周部3dでは、湾曲部4Bによる気流の剥離抑制という要求よりも、湾曲部4Bによる気流抵抗の抑制という要求が上回ることから、この湾曲角度αをできるだけ小さくして気流抵抗の抑制効果を最大限生かす観点から設定し、これを湾曲角度α1の下限値として規定したものである。   In addition, the bending angle “α> 0 °” is greater in the outer peripheral portion 3d of the blade 3 than the requirement for suppressing airflow separation by the bending portion 4B than the requirement for suppressing airflow resistance by the bending portion 4B. This is set from the viewpoint of making the bending angle α as small as possible to make the best use of the effect of suppressing the airflow resistance, and is defined as the lower limit value of the bending angle α1.

以上のことから、上記湾曲部4Bの湾曲角度αを「0<α≦35°」の範囲に設定することで、気流の剥離抑制効果と気流抵抗の抑制効果が両立され、羽根3における空力特性の改善、延いては羽根車1を備えた送風機の送風性能の向上効果がより一層確実となるものである。   From the above, by setting the bending angle α of the bending portion 4B within the range of “0 <α ≦ 35 °”, the airflow separation suppressing effect and the airflow resistance suppressing effect are compatible, and the aerodynamic characteristics of the blade 3 are achieved. Thus, the effect of improving the blowing performance of the blower provided with the impeller 1 is further ensured.

B:第2の実施例
第2の実施例は、上記湾曲部4Bの構成を、該湾曲部4Bの翼弦長方向における形成範囲によって特定するものである。
B: Second Example In the second example, the configuration of the bending portion 4B is specified by the formation range of the bending portion 4B in the chord length direction.

即ち、図4には、羽根3の任意の翼素における翼弦長方向の断面図を示しており、ここで、上記羽根3の翼弦長を「L0]とし、上記湾曲部4Bの翼弦長「L1」としたとき、上記羽根3の翼弦長「L0」に対する上記湾曲部4Bの翼弦長「L1」の比「L1/L0」が「0<L1/L0≦0.2」の範囲となるように設定したものである。   That is, FIG. 4 shows a cross-sectional view in the chord length direction of an arbitrary blade element of the blade 3, where the chord length of the blade 3 is “L0” and the chord of the curved portion 4B. When the length “L1” is set, the ratio “L1 / L0” of the chord length “L1” of the curved portion 4B to the chord length “L0” of the blade 3 is “0 <L1 / L0 ≦ 0.2”. It is set to be in the range.

ところで、送風機の羽根車1では、図1に示すように、上記羽根3の翼弦長は、該羽根3の必然的形体として、該羽根3の内周部3cから外周部3dに向けて次第に小さくなるように設定されている。従って、上記羽根3の翼弦長方向における上記湾曲部の形成範囲を上記範囲に設定した場合、範囲に設定した場合、必然的に上記湾曲部4Bの形成範囲、即ち、翼弦長方向における湾曲部4Bの幅寸法は、上記羽根3の内周部3cから外周部3dに向かって次第に小さくなる。   By the way, in the impeller 1 of a blower, as shown in FIG. 1, the chord length of the blade 3 gradually increases from the inner peripheral portion 3 c of the blade 3 toward the outer peripheral portion 3 d as an inevitable shape of the blade 3. It is set to be smaller. Therefore, when the formation range of the curved portion in the chord length direction of the blade 3 is set to the above range, when set to the range, the formation range of the curved portion 4B, that is, the curvature in the chord length direction is necessarily formed. The width dimension of the portion 4B gradually decreases from the inner peripheral portion 3c of the blade 3 toward the outer peripheral portion 3d.

このため、上記範囲のうち、「L1/L0=0.2」は羽根3の内周部3cにおける翼弦長の上限値となる。また、比「L1/L0>0」は、羽根3の外周部3dにおける翼弦長の下限値となる。   Therefore, in the above range, “L1 / L0 = 0.2” is the upper limit value of the chord length in the inner peripheral portion 3 c of the blade 3. Further, the ratio “L1 / L0> 0” is a lower limit value of the chord length in the outer peripheral portion 3 d of the blade 3.

ここで、上記上限値は、比「L1/L0」が「0.2」より大きくなると、湾曲部4Bによる気流の剥離抑制によって得られるメリットに対する、湾曲部4Bによって生じる気流抵抗による空力特性の悪化というデメリットの割合が大きくなり、結果として空力特性の改善効果大きく減殺されるので、上記湾曲部4Bの翼弦長「L1」の比「L1/L0」の上限値を「0.2」に設定したものである。   Here, when the ratio “L1 / L0” is larger than “0.2”, the upper limit value is deteriorated in the aerodynamic characteristic due to the airflow resistance generated by the curved portion 4B with respect to the merit obtained by suppressing the separation of the airflow by the curved portion 4B. As a result, the effect of improving the aerodynamic characteristics is greatly reduced, so the upper limit value of the ratio “L1 / L0” of the chord length “L1” of the curved portion 4B is set to “0.2”. It is a thing.

また、上記下限値は、上記羽根3の外周部3dでは、湾曲部4Bによる気流の剥離抑制という要求よりも、湾曲部4Bによる気流抵抗の抑制という要求が上回ることから、上記比「L1/L0」をできるだけ小さくして気流抵抗の抑制効果を最大限生かす観点から設定したものである。   In addition, the lower limit value exceeds the ratio “L1 / L0” in the outer peripheral portion 3d of the blade 3 because the requirement for suppressing airflow resistance by the curved portion 4B exceeds the requirement for suppressing separation of the airflow by the curved portion 4B. "Is set as small as possible to maximize the effect of suppressing airflow resistance.

以上のことから、上記湾曲部4Bの形成範囲を、該羽根3の翼方向における翼素の翼弦長「L0」に対する上記湾曲部4Bの翼弦長「L1」の比「L1/L0」を「0<L1/L0≦0.2」の範囲に設定して、上記湾曲部4Bの形成範囲、即ち、翼弦長方向における湾曲部4Bの幅寸法が上記羽根3の内周部3cから外周部3dに向かって次第に小さくなるようにすることで、気流の剥離抑制効果と気流抵抗の抑制効果が両立され、空力特性が改善され送風性能が向上するという効果が得られるものである。   From the above, the formation range of the curved portion 4B is set to the ratio “L1 / L0” of the chord length “L1” of the curved portion 4B to the chord length “L0” of the blade element in the blade direction of the blade 3. The range of “0 <L1 / L0 ≦ 0.2” is set, and the formation range of the curved portion 4B, that is, the width dimension of the curved portion 4B in the chord length direction is changed from the inner peripheral portion 3c of the blade 3 to the outer periphery. By gradually decreasing toward the part 3d, the effect of suppressing the separation of the airflow and the effect of suppressing the airflow resistance are compatible, and the aerodynamic characteristics are improved and the air blowing performance is improved.

C:第3の実施例
第3の実施例は、上記湾曲部4Bの構成を、該湾曲部4Bの後端における出口角度βによって特定するものである。
C: Third Example In the third example, the configuration of the bending portion 4B is specified by the exit angle β at the rear end of the bending portion 4B.

図2は羽根3の外周部3d寄りの翼素における翼弦長方向の断面図を、図3は羽根3の内周部3c寄りの翼素における翼弦長方向の断面図を、それぞれ示している。   2 is a sectional view in the chord length direction of the blade element near the outer peripheral portion 3d of the blade 3, and FIG. 3 is a sectional view in the chord length direction of the blade element near the inner peripheral portion 3c of the blade 3. Yes.

上記出口角度βは、羽根車1の軸心と平行な直線Lbと上記羽根3の後縁3bの端部における接線Laが成す角度として規定され、図2ではこれを「β1」で、図3ではこれを「β2」でそれぞれ示している。そして、この実施例では、上記出口角度β1、β2を、上記内周部3c側の翼素で最大、外周部側の翼素で最少となるように設定している。   The exit angle β is defined as an angle formed by a straight line Lb parallel to the axis of the impeller 1 and a tangent line La at the end of the rear edge 3b of the blade 3, which is denoted by “β1” in FIG. This is indicated by “β2”. In this embodiment, the exit angles β1 and β2 are set so as to be the maximum for the blade element on the inner peripheral part 3c side and the minimum for the blade element on the outer peripheral part side.

ここで、上記羽根3の後縁3bにおける出口角度βの大きさと上述の湾曲部4Bの湾曲角度αの大きさは略対応関係にあり、該湾曲角度αが大きい部位では上記出口角度βも大きくなる。従って、上記湾曲角度αが上記羽根3の負圧面3fを流れる気流に与える影響は、上記羽根3の後縁3bにおける出口角度βについても同様に考えることができる。   Here, the size of the exit angle β at the trailing edge 3b of the blade 3 and the size of the bending angle α of the bending portion 4B are substantially corresponding to each other, and the exit angle β is large at a portion where the bending angle α is large. Become. Therefore, the influence of the bending angle α on the airflow flowing through the suction surface 3f of the blade 3 can be considered in the same manner for the outlet angle β at the trailing edge 3b of the blade 3.

このことから、この実施例のように、上記羽根3の後縁3bにおける出口角度βを、上記ハブ2寄りの内周部3c側の翼素で最大の出口角度β2、外周部3d側の翼素で最少の出口角度β1となるように設定することで、
第1に、上記羽根3の内周部3c側の負圧面3fでは気流の剥離が大きい、換言すれば、剥離抑制の必要性が高いことから、内周部3c側の翼素における出口角度β2を大きく設定することで、気流の剥離がより一層効果的に抑制され、後流幅を小さく抑えることができ、
第2に、上記羽根3の外周部3d側の負圧面3fでは気流の剥離が小さい、換言すれば剥離抑制の必要性が低いことから、該外周部3d側の翼素における出口角度β1を小さく設定することで、該湾曲部4B自体が負圧面3fに沿う流れの抵抗となるのが可及的に抑制され、
これら両者の相乗効果により、空力特性が改善され送風性能が向上するという効果が得られる。
Therefore, as in this embodiment, the outlet angle β at the trailing edge 3b of the blade 3 is the maximum outlet angle β2 at the blade on the inner peripheral portion 3c side near the hub 2, and the blade at the outer peripheral portion 3d side. By setting it to be the smallest and the smallest exit angle β1,
First, since the airflow separation is large at the suction surface 3f on the inner peripheral portion 3c side of the blade 3, in other words, there is a high necessity for suppressing the separation, the exit angle β2 in the blade element on the inner peripheral portion 3c side is high. By setting the large, the separation of the airflow is more effectively suppressed, the wake width can be suppressed small,
Second, since the airflow separation is small on the suction surface 3f on the outer peripheral portion 3d side of the blade 3, in other words, the necessity for suppressing the separation is low, the outlet angle β1 in the blade element on the outer peripheral portion 3d side is reduced. By setting, it is suppressed as much as possible that the curved portion 4B itself becomes a resistance of the flow along the suction surface 3f,
Due to the synergistic effect of both, the aerodynamic characteristics are improved and the air blowing performance is improved.

本願発明の実施の形態に係る送風機に備えられる羽根車の要部正面図である。It is a principal part front view of the impeller with which the air blower which concerns on embodiment of this invention is equipped. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 図1のIII−III断面図である。It is III-III sectional drawing of FIG. 図1のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 湾曲部の影響を示す「風量−モータ入力」特性図である。It is a "air volume-motor input" characteristic view which shows the influence of a curved part. 湾曲部を備えない羽根における空気流れ説明図である。It is airflow explanatory drawing in the blade | wing which is not provided with a curved part. 湾曲部を備えた羽根における空気流れ説明図である。It is airflow explanatory drawing in the blade | wing provided with the curved part.

符号の説明Explanation of symbols

1 ・・羽根車
2 ・・ハブ
3 ・・接続管
3a ・・前縁
3b ・・後縁
3c ・・羽根内周部
3d ・・外周部
3e ・・正圧面
3f ・・負圧面
4A ・・反り部
4B ・・湾曲部
30 ・・羽根
31 ・・気流
32 ・・渦流れ
33 ・・湾曲部
P ・・変曲点
α ・・湾曲角度
β ・・出口角度
1 ·· Impeller 2 ·· Hub 3 ·· Connection pipe 3a · · Lead edge 3b · · Rear edge 3c · · Blade inner periphery 3d · · Outer periphery 3e · · Pressure surface 3f · · Pressure surface 4A · · Warp Part 4B ・ ・ Bending part 30 ・ ・ Vane 31 ・ ・ Airflow 32 ・ ・ Vortex 33 ・ ・ Bending part P ・ ・ Inflection point α

Claims (4)

ハブ(2)の外周に複数枚の羽根(3)を放射状に取付けてなる羽根車(1)を備えた送風機であって、
上記羽根(3)の後縁(3b)の翼方向の全域に負圧面(3f)側へ湾曲する湾曲部(4B)を設けるとともに、該湾曲部(4B)の湾曲角度(α)を、上記ハブ(2)寄りの内周部(3c)から外周部(3d)に向けて次第に小さくなるように設定したことを特徴とする送風機。
A blower provided with an impeller (1) in which a plurality of blades (3) are radially attached to the outer periphery of a hub (2),
A curved portion (4B) that curves toward the suction surface (3f) is provided over the entire region in the blade direction of the trailing edge (3b) of the blade (3), and the curved angle (α) of the curved portion (4B) is A blower characterized by being set so as to gradually become smaller from the inner peripheral part (3c) closer to the hub (2) toward the outer peripheral part (3d).
請求項1において、
上記湾曲部(4B)の湾曲角度(α)を、「0<α≦35°」の範囲に設定したことを特徴とする送風機。
In claim 1,
A blower characterized in that the bending angle (α) of the bending portion (4B) is set in a range of “0 <α ≦ 35 °”.
請求項1において、
上記羽根(3)の翼弦長方向における上記湾曲部(4B)の形成範囲を、該羽根(3)の翼方向における各翼素の翼弦長「L0」に対する上記湾曲部(4B)の翼弦長「L1」の比「L1/L0」を「0<L1/L0≦0.2」の範囲に設定したことを特徴とする送風機。
In claim 1,
The formation range of the curved portion (4B) in the blade chord length direction of the blade (3) is the blade of the curved portion (4B) with respect to the chord length “L0” of each blade element in the blade direction of the blade (3). A blower characterized in that the ratio “L1 / L0” of the string length “L1” is set in a range of “0 <L1 / L0 ≦ 0.2”.
請求項1において、
上記羽根(3)の後縁(3b)における出口角度(β)を、上記内周部(3c)側の翼素で最大、外周部(3d)側の翼素で最少となるように設定したことを特徴とする送風機。
In claim 1,
The exit angle (β) at the trailing edge (3b) of the blade (3) was set to be maximum at the inner peripheral portion (3c) side blade element and minimum at the outer peripheral portion (3d) side blade element. A blower characterized by that.
JP2008145713A 2008-06-03 2008-06-03 Blower Expired - Fee Related JP4867950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145713A JP4867950B2 (en) 2008-06-03 2008-06-03 Blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145713A JP4867950B2 (en) 2008-06-03 2008-06-03 Blower

Publications (2)

Publication Number Publication Date
JP2009293425A true JP2009293425A (en) 2009-12-17
JP4867950B2 JP4867950B2 (en) 2012-02-01

Family

ID=41541831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145713A Expired - Fee Related JP4867950B2 (en) 2008-06-03 2008-06-03 Blower

Country Status (1)

Country Link
JP (1) JP4867950B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185036A (en) * 2011-12-28 2013-07-03 珠海格力电器股份有限公司 Axial fan and air conditioner with same
CN103185037A (en) * 2011-12-28 2013-07-03 珠海格力电器股份有限公司 Axial fan and air conditioner with same
WO2014050146A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Propeller fan and air conditioner equipped with same
WO2016117413A1 (en) * 2015-01-20 2016-07-28 シャープ株式会社 Propeller fan, fluid feeder, and molding die
JP2017044129A (en) * 2015-08-26 2017-03-02 三菱電機株式会社 Axial flow blower
CN106895027A (en) * 2017-03-06 2017-06-27 东莞市敏欣实业有限公司 A kind of axial flow fan vane wheel
JP2022143206A (en) * 2021-03-17 2022-10-03 シロカ株式会社 Propeller fan, electric fan and circulator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031238A (en) * 2013-08-06 2015-02-16 株式会社デンソー Propeller fan-type blower/generator
CN104832456B (en) * 2014-02-10 2017-02-22 珠海格力电器股份有限公司 Fan

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144698A (en) * 1982-02-22 1983-08-29 Hitachi Ltd Propeller fan type blower
JP2003013892A (en) * 2001-04-26 2003-01-15 Daikin Ind Ltd Blower and air conditioner with blower
JP2005076501A (en) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd Blower impeller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144698A (en) * 1982-02-22 1983-08-29 Hitachi Ltd Propeller fan type blower
JP2003013892A (en) * 2001-04-26 2003-01-15 Daikin Ind Ltd Blower and air conditioner with blower
JP2005076501A (en) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd Blower impeller

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103185036A (en) * 2011-12-28 2013-07-03 珠海格力电器股份有限公司 Axial fan and air conditioner with same
CN103185037A (en) * 2011-12-28 2013-07-03 珠海格力电器股份有限公司 Axial fan and air conditioner with same
WO2014050146A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Propeller fan and air conditioner equipped with same
WO2016117413A1 (en) * 2015-01-20 2016-07-28 シャープ株式会社 Propeller fan, fluid feeder, and molding die
JPWO2016117413A1 (en) * 2015-01-20 2017-05-25 シャープ株式会社 Propeller fan, fluid feeder and mold
JP2017044129A (en) * 2015-08-26 2017-03-02 三菱電機株式会社 Axial flow blower
CN106895027A (en) * 2017-03-06 2017-06-27 东莞市敏欣实业有限公司 A kind of axial flow fan vane wheel
JP2022143206A (en) * 2021-03-17 2022-10-03 シロカ株式会社 Propeller fan, electric fan and circulator
JP7165433B2 (en) 2021-03-17 2022-11-04 シロカ株式会社 Propeller Fans, Fans, and Circulators

Also Published As

Publication number Publication date
JP4867950B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867950B2 (en) Blower
AU2006270875B2 (en) Axial flow fan
US8011891B2 (en) Centrifugal multiblade fan
CN104641121A (en) Propeller fan and air conditioner equipped with same
JP3912418B2 (en) Axial fan
JP5562566B2 (en) Wing body for fluid machinery
JP2007113474A (en) Blower
JP5425192B2 (en) Propeller fan
JP3801162B2 (en) Propeller fan
JPH10141286A (en) Axial fan
JP5448874B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP4818310B2 (en) Axial blower
JP2014231747A (en) Axial flow or mixed flow fan and air conditioner including the same
CN104791301B (en) One kind is curved to plunder aluminium alloy axial blade
JP5825339B2 (en) Cross flow fan wings
JP5114845B2 (en) Blower impeller
JP5147784B2 (en) Fan and axial blower
JP2007182768A (en) Centrifugal impeller and clean system equipped with same
JP2005307788A (en) Axial fan
JP2002339897A (en) Impeller for blower
JP4209362B2 (en) Centrifugal compressor
JP3346179B2 (en) Impeller for blower
JP4243105B2 (en) Impeller
JP2005155579A (en) Multiblade blower fan
KR200497415Y1 (en) Airfoil blades for centrifugal impeller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees