JP2009287671A - One-way clutch - Google Patents

One-way clutch Download PDF

Info

Publication number
JP2009287671A
JP2009287671A JP2008140808A JP2008140808A JP2009287671A JP 2009287671 A JP2009287671 A JP 2009287671A JP 2008140808 A JP2008140808 A JP 2008140808A JP 2008140808 A JP2008140808 A JP 2008140808A JP 2009287671 A JP2009287671 A JP 2009287671A
Authority
JP
Japan
Prior art keywords
spring
lock
way clutch
rolling element
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008140808A
Other languages
Japanese (ja)
Other versions
JP2009287671A5 (en
JP4968593B2 (en
Inventor
Tomoya Yamatani
知也 山谷
Hideki Fujiwara
英樹 藤原
Yasushi Kadota
康 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008140808A priority Critical patent/JP4968593B2/en
Publication of JP2009287671A publication Critical patent/JP2009287671A/en
Publication of JP2009287671A5 publication Critical patent/JP2009287671A5/ja
Application granted granted Critical
Publication of JP4968593B2 publication Critical patent/JP4968593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pulleys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a one-way clutch reducing friction during idling, even at a high temperature without fail, while improving meshing properties of a lock roller at a low temperature when grease has a high viscosity. <P>SOLUTION: In this one-way clutch 3, a reference compression displacement amount which is a compression displacement amount of a spring member 35 when the lock roller 33 is at a lock position, is adjusted according to a peripheral environmental temperature by a spring displacement adjusting mechanism 40 so that elastic biasing force by the spring member 35 toward the lock position of the lock roller 33 becomes smaller as the peripheral environmental temperature of the one-way clutch 3 becomes higher. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は一方向クラッチに関するものである。   The present invention relates to a one-way clutch.

特開2001−4011号公報JP 2001-4011 A

自動車用エンジンのオルタネータ駆動機構においては、エンジンの駆動力がクランクシャフト、ベルト及びプーリユニット等を介してオルタネータに伝達される。このとき、エンジンが吸入・圧縮・燃焼膨張・排気等の行程を繰り返す際に、脈動的な回転変動がクランクシャフト側に生じることがある(例えば、エンジンの圧縮行程ではクランクシャフトの回転が瞬間的に低下やすくなる)。このようなクランクシャフト側の回転変動が生じた場合、オルタネータ側は大きな慣性を有するためこれに直ちに追従できず、クランクシャフトとオルタネータ回転軸との間には無視できない軸間回転速度差が脈動的に生ずる。その結果、クランクシャフト側のプーリとオルタネータ側のプーリとの間に回しかけられたベルトは、該軸間回転速度差の脈動に対応して撓みと過緊張とを繰り返すことになり、ベルト鳴きやばたつき現象が生じやすくなるほか、ベルト寿命低下にもつながりやすい。そこで、このようなベルト等の過負荷や寿命低下を生じないように、オルタネータ側のプーリとオルタネータ回転軸との間に、上記軸間回転速度差を吸収するための一方向クラッチを設けることが行なわれている(特許文献1)。   In an alternator driving mechanism for an automobile engine, the driving force of the engine is transmitted to the alternator via a crankshaft, a belt, a pulley unit, and the like. At this time, when the engine repeats the strokes of suction, compression, combustion expansion, exhaust, etc., pulsating rotation fluctuations may occur on the crankshaft side (for example, the rotation of the crankshaft is instantaneous in the compression stroke of the engine). ). When such crankshaft rotation fluctuations occur, the alternator side has a large inertia and cannot immediately follow this, and a non-negligible rotational speed difference between the crankshaft and the alternator rotating shaft is pulsating. Occur. As a result, the belt turned between the pulley on the crankshaft side and the pulley on the alternator side repeats bending and over-tension corresponding to the pulsation of the rotational speed difference between the shafts, and the belt squealing and In addition to the fluttering phenomenon, belt life is likely to be shortened. Therefore, a one-way clutch for absorbing the difference in rotational speed between the shafts may be provided between the pulley on the alternator side and the alternator rotating shaft so as not to cause such an overload of the belt or the like and a decrease in service life. (Patent Document 1).

上記のような一方向クラッチは、外周カム面が形成された内輪と、内周側に円筒状軌道面が形成された外輪とを有し、外周カム面と円筒状軌道面との間に形成されるくさび状空間にロック転動体(円筒ころ)を設けるとともに、そのロック転動体をくさび状空間の縮小側に向けて付勢するばね部材を備えた構成を有するものである。該くさび状空間の縮小側にロック転動体が嵌まり込んで外周カム面と円筒状軌道面とがロックされると、内輪と外輪とが一体回転して動力伝達状態となる。他方、クランクシャフトひいてはベルト伝達により追従回転するオルタネータ側プーリの回転速度が低下すると、ロック転動体はばね部材の付勢力に抗してくさび状空間内の拡大側へ移動し、内輪と外輪が切り離されて空転(動力遮断)状態となる。このロックと空転とを繰り返すことにより、クランクシャフト側の回転変動が吸収された形でオルタネータに伝達され、ベルト鳴きやばたつき現象が抑制される。   The one-way clutch as described above has an inner ring having an outer circumferential cam surface and an outer ring having a cylindrical raceway surface formed on the inner circumferential side, and is formed between the outer circumferential cam surface and the cylindrical raceway surface. A lock rolling element (cylindrical roller) is provided in the wedge-shaped space, and a spring member that biases the lock rolling element toward the reduction side of the wedge-shaped space is provided. When the lock rolling element is fitted on the reduction side of the wedge-shaped space and the outer peripheral cam surface and the cylindrical raceway surface are locked, the inner ring and the outer ring rotate together to enter a power transmission state. On the other hand, when the rotational speed of the alternator pulley that rotates following the crankshaft and belt transmission decreases, the lock rolling element moves against the biasing force of the spring member and moves toward the enlarged side in the wedge-shaped space, and the inner ring and the outer ring are separated. Then, it is in the idling (power cut-off) state. By repeating this locking and idling, the rotation fluctuation on the crankshaft side is transmitted to the alternator in a absorbed form, and belt squealing and flapping are suppressed.

ところで、上記のような一方向クラッチの潤滑にはグリースが用いられているが、一般的なグリースの粘性は温度によって大きく変化し、特に、エンジン始動直後等の低温時には高粘性となって、くさび状空間内のロック転動体(円筒ころ)の動きが阻害され、ロック転動体と内輪ないし外輪との噛み合い性が低下しやすくなる問題がある。この問題を解決するために、ばね部材によるロック転動体へのロック位置に向けた弾性付勢力(すなわち、ロック転動体がロック位置に位置する状態でのばね部材の圧縮変位量)を増大させ、高粘性のグリースに抗してロック転動体がロック位置へスムーズに移動できるようにすることが考えられる。ところが、この方法では、ロック転動体と外輪との間に生ずる摩擦力が過大となり、その摩擦熱によってグリースの寿命が低下しやすくなる問題がある。   By the way, grease is used for lubrication of the one-way clutch as described above. However, the viscosity of general grease greatly varies depending on the temperature, and becomes highly viscous at a low temperature such as immediately after starting the engine. There is a problem that the movement of the lock rolling element (cylindrical roller) in the cylindrical space is hindered, and the meshing property between the lock rolling element and the inner ring or the outer ring tends to be lowered. In order to solve this problem, the elastic biasing force toward the locked position to the lock rolling element by the spring member (that is, the amount of compression displacement of the spring member in a state where the lock rolling element is positioned at the lock position) is increased. It can be considered that the lock rolling element can be smoothly moved to the lock position against high-viscosity grease. However, in this method, there is a problem that the frictional force generated between the lock rolling element and the outer ring becomes excessive, and the life of the grease tends to be reduced due to the frictional heat.

本発明の課題は、グリースの粘性が高い低温時のロック転動体の噛み合い性を改善しつつ、高温時における空転時摩擦も問題なく低減できる一方向クラッチを提供することにある。   An object of the present invention is to provide a one-way clutch that can improve the meshing property of a lock rolling element at a low temperature when the viscosity of the grease is high and can reduce friction during idling at a high temperature without any problem.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の一方向クラッチは、
内周側に円筒状軌道面が形成された外輪と、その外輪の内側に同心的に配置されるとともに、自身の外周面に回転半径が周方向に沿って変化する外周カム面が形成された内輪と、円筒状軌道面と外周カム面との間に形成されるラジアル方向空隙に配置されるロック転動体とを備え、ラジアル方向空隙が、外周カム面の周方向中間位置に定められた空転位置にてロック転動体の外径よりも大となり、当該周方向における外周カム面の第一端側に定められたロック位置に向けてロック転動体の外径より小となるよう連続的に縮小するくさび状空間とされるとともに、外周カム面の第二端側において内輪の外周面上に設けられたばね支持体とロック転動体との間に圧縮状態で配置され、該ロック転動体をロック位置に向けて周方向に弾性付勢するばね部材を有した一方向クラッチにおいて、
ばね部材によるロック転動体のロック位置に向けた弾性付勢力が、一方向クラッチの周囲環境温度が高くなるほど小さくなるように、ロック転動体がロック位置に位置するときのばね部材の圧縮変位量である基準圧縮変位量を、周囲環境温度に応じて調整するばね変位調整機構を備えたことを特徴とする。
In order to solve the above problems, the one-way clutch of the present invention is
An outer ring having a cylindrical raceway surface formed on the inner peripheral side, and an outer peripheral cam surface that is concentrically disposed on the inner side of the outer ring and whose rotation radius changes along the circumferential direction is formed on its outer peripheral surface. An inner ring, and a lock rolling element disposed in a radial gap formed between the cylindrical raceway surface and the outer cam surface, and the radial gap is set at an intermediate position in the circumferential direction of the outer cam surface. Continuously reduced to be smaller than the outer diameter of the lock rolling element toward the lock position defined on the first end side of the outer peripheral cam surface in the circumferential direction. A wedge-shaped space, and is disposed in a compressed state between a spring support provided on the outer peripheral surface of the inner ring on the second end side of the outer peripheral cam surface and the lock rolling element, and the lock rolling element is placed in the locked position. If elastically biased in the circumferential direction toward In one-way clutch having a member,
The amount of compressive displacement of the spring member when the lock rolling element is positioned at the lock position so that the elastic biasing force toward the lock position of the lock rolling element by the spring member decreases as the ambient temperature of the one-way clutch increases. A spring displacement adjustment mechanism for adjusting a certain reference compression displacement amount according to the ambient temperature is provided.

上記本発明の一方向クラッチの構成によると、ロック転動体がロック位置に位置するときのばね部材の圧縮変位量である基準圧縮変位量が、ばね変位調整機構により、ばね部材によるロック転動体のロック位置に向けた弾性付勢力が、一方向クラッチの周囲環境温度が高くなるほど小さくなるよう、周囲環境温度に応じて調整される。その結果、エンジン始動直後等の低温時には、潤滑油をなすグリースが高粘性であっても、ばね部材の基準圧縮変位量が増大するので、ばね部材による弾性付勢力が強まり、ロック転動体が高粘性のグリースに抗してロック位置へスムーズに移動できる。一方、エンジンのウォームアップが進んで周囲環境温度が上昇すればばね部材の基準圧縮変位量は減少し、ばね部材による弾性付勢力は弱まる。しかし、このときグリースの粘性も低下しているので、ロック転動体はロック位置へスムーズに移動できる。そして、ばね部材による弾性付勢力が弱まっていることで、空転時においてロック転動体と外輪との間に生ずる摩擦を低減でき、摩擦熱によるグリース寿命低下を防止できる。   According to the configuration of the one-way clutch of the present invention, the reference compression displacement amount, which is the compression displacement amount of the spring member when the lock rolling element is located at the lock position, is obtained by the spring displacement adjusting mechanism. The elastic urging force toward the lock position is adjusted according to the ambient temperature so that it decreases as the ambient temperature of the one-way clutch increases. As a result, at low temperatures such as immediately after the engine is started, even if the grease forming the lubricating oil is highly viscous, the reference compression displacement amount of the spring member increases, so that the elastic biasing force by the spring member increases and the lock rolling element increases. It can move smoothly to the locked position against viscous grease. On the other hand, if the engine warm-up proceeds and the ambient temperature rises, the reference compression displacement of the spring member decreases, and the elastic biasing force of the spring member weakens. However, since the viscosity of the grease is also reduced at this time, the lock rolling element can move smoothly to the lock position. And since the elastic urging | biasing force by a spring member is weakened, the friction which arises between a lock | rock rolling element and an outer ring | wheel at the time of idling can be reduced, and the grease life fall by friction heat can be prevented.

ばね支持体は内輪の外周面上にて該内輪の回転周方向にスライド可能かつ任意の位置を保持可能に設けることができる。ばね変位調整機構は、一方向クラッチの周囲環境温度が高くなるほどロック位置から遠ざかるように、ばね支持体を内輪の外周面上にてスライド移動させるものとして構成できる。ばね支持体の内輪外周面上での位置変更により、ばね部材の基準圧縮変位量を容易に調整することができる。   The spring support can be provided on the outer peripheral surface of the inner ring so as to be slidable in the rotational circumferential direction of the inner ring and to be able to hold an arbitrary position. The spring displacement adjusting mechanism can be configured to slide the spring support on the outer peripheral surface of the inner ring so that the spring environment is moved away from the lock position as the ambient temperature of the one-way clutch increases. By changing the position of the spring support on the outer peripheral surface of the inner ring, the reference compression displacement amount of the spring member can be easily adjusted.

ばね変位調整機構は、内輪への固定部とばね部材の弾性復帰力に抗してばね支持体を回転周方向に受け止めるばね支持体受け部とを有するとともに、固定部から見たばね支持体受け部の回転周方向における変位量を周囲環境温度に応じて変化させる温度変位部材を有するものとして構成できる。このような温度変位部材を用いることで、ばね部材の基準圧縮変位量を温度に応じて調整する機構を、例えば温度センサとアクチュエータとを組み合わせた複雑なばね支持体の位置調整機構を用いずとも安価に構成することができる。このような温度変位部材は、具体的にはバイメタルで構成することができる。   The spring displacement adjustment mechanism has a fixed portion to the inner ring and a spring support receiving portion that receives the spring support in the rotational circumferential direction against the elastic return force of the spring member, and the spring support receiving portion as viewed from the fixed portion. It can comprise as a thing which has the temperature displacement member which changes the displacement amount in the rotation circumferential direction of this according to ambient environment temperature. By using such a temperature displacement member, a mechanism for adjusting the reference compression displacement amount of the spring member according to the temperature can be used without using, for example, a complicated spring support position adjustment mechanism combining a temperature sensor and an actuator. It can be configured at low cost. Such a temperature displacement member can be specifically composed of bimetal.

ばね部材は、周囲環境温度の上昇に応じて基準圧縮変位量が減少するに伴い、ばね定数を段階的又は連続的に減少させる非線形特性ばねにて構成することができる。一方向クラッチの想定される環境温度範囲において、ばね変位調整機構による基準圧縮変位量の調整代(例えば、ばね支持体の回転周方向における移動代)がそれほど大きく見込めない場合にあっても、上記のような非線形特性ばねを用いれば、周囲環境温度の低下に伴い基準圧縮変位量が少し増大するだけで、ばね定数自身の上昇によりロック転動体への弾性付勢力が急速に増大し、高粘性のグリースに抗してロック転動体をロック位置へ確実に移動させることができる。逆に周囲環境温度が上昇すれば、基準圧縮変位量の増大によりばね定数自身の低下と相俟ってロック転動体への弾性付勢力は速やかに減少し、空転時にロック転動体と外輪との間に生ずる摩擦低減効果を高めることができる。   The spring member can be configured by a non-linear characteristic spring that decreases the spring constant stepwise or continuously as the reference compression displacement decreases with an increase in ambient environment temperature. Even if the adjustment allowance of the reference compression displacement amount by the spring displacement adjustment mechanism (for example, the movement allowance in the rotational circumferential direction of the spring support) is not expected to be so large in the assumed environmental temperature range of the one-way clutch, If the non-linear characteristic spring is used, the elastic compression force on the rolling element of the lock rapidly increases due to the increase of the spring constant itself with a slight increase in the reference compression displacement as the ambient temperature decreases. It is possible to reliably move the lock rolling element to the lock position against the grease. On the other hand, if the ambient temperature rises, the elastic biasing force to the lock rolling element decreases rapidly due to the decrease in the spring constant itself due to the increase in the reference compression displacement amount. It is possible to enhance the friction reducing effect that occurs between them.

非線形特性ばねは、基準圧縮変位量が予め定められた基準値を上回る場合にばね定数が予め定められた第一の値となり、圧縮変位量が該基準値を下回る場合にばね定数が第一の値よりも小さい第二の値となるように、ばね定数を段階的に変化させる特性を有するものを使用できる。ばね定数が第二の値となる温度域を、例えば使用するグリースの粘性が十分低くなる温度域に定めておけば、小さな弾性付勢力でもロック転動体をグリースの粘性に打ち勝ってロック位置へスムーズに移動させることができる。   The non-linear characteristic spring has a first spring constant when the reference compression displacement amount exceeds a predetermined reference value, and the first spring constant when the compression displacement amount falls below the reference value. A material having a characteristic of changing the spring constant stepwise so that the second value is smaller than the value can be used. If the temperature range where the spring constant becomes the second value is set to a temperature range where the viscosity of the grease used is sufficiently low, for example, even with a small elastic biasing force, the lock rolling element can overcome the grease viscosity and move smoothly to the lock position. Can be moved to.

次に、本発明の実施形態を、図面を参照しながら説明する。
図1は本発明に係る一方向クラッチを備えたプーリユニットの一例を示す正面半断面図、図2はそのプーリユニットに用いられる一方向クラッチのA−A断面図、図3はその要部拡大図である。図1はオルタネータ(図示せず)に付設されるプーリユニット100を示し、ベルトBが巻掛けられてエンジンのクランクシャフトプーリ(図示せず)から動力伝動されるオルタネータプーリ1(原動体:以下、単にプーリ1ともいう)と、プーリ1と同心状に配置されて一体回転可能な筒状のオルタネータ回転軸2(従動体:以下、単に回転軸2ともいう)とを有する。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front half sectional view showing an example of a pulley unit provided with a one-way clutch according to the present invention, FIG. 2 is a sectional view taken on line AA of a one-way clutch used in the pulley unit, and FIG. FIG. FIG. 1 shows a pulley unit 100 attached to an alternator (not shown), and an alternator pulley 1 (power source: hereinafter referred to as a power source) that is wound around a belt B and is driven by a crankshaft pulley (not shown) of an engine. And a cylindrical alternator rotating shaft 2 (driven body: hereinafter also simply referred to as the rotating shaft 2) arranged concentrically with the pulley 1 and capable of rotating integrally therewith.

プーリ1から回転軸2に至る伝動径路であって両者1,2間に形成される環状空間には、環状空間のアキシャル方向中央部に配設される一方向クラッチ3と、一方向クラッチ3のアキシャル方向両側にそれぞれ配設される深溝玉軸受(以下、単に軸受ともいう)4,4(転がり軸受)とが設けられている。一方向クラッチ3は、プーリ1(原動体)と回転軸2(従動体)との間の動力伝達を接続状態と遮断状態との間で切り替えるものであり、より詳しくは、プーリ1の回転速度が回転軸2の回転速度よりも遅くなった場合に遮断状態となるものである。また、軸受4,4は、一方向クラッチ3に作用する主としてラジアル荷重を支持する機能を有している。   An annular space formed between the pulley 1 and the rotating shaft 2 and formed between the two 1 and 2 includes a one-way clutch 3 disposed in the axial center of the annular space, and a one-way clutch 3. Deep groove ball bearings (hereinafter also simply referred to as bearings) 4 and 4 (rolling bearings) are provided on both sides in the axial direction. The one-way clutch 3 switches the power transmission between the pulley 1 (primary body) and the rotating shaft 2 (driven body) between a connected state and a disconnected state, and more specifically, the rotational speed of the pulley 1. Is cut off when the rotational speed of the rotary shaft 2 becomes slower than the rotational speed. The bearings 4 and 4 have a function of mainly supporting a radial load acting on the one-way clutch 3.

各軸受4は、内輪41、外輪42、複数の玉43(転動体)、および波形の保持器44を含む。図示例の軸受4では、内・外輪41,42間のアキシャル方向外端側のみにシール45を取り付けている。このシール45は、外輪42の一方のシール取付溝42aに対して嵌入装着されており、ゴム製のリップが内輪41に対し摺動する摺動型シールとして構成されている。回転軸2の一端側の外周面には、軸受4のシール45を外側から隠蔽するために、環状板7が例えば圧入により取り付けられている。また、保持器44は、その環状部の円周数カ所にアキシャル方向一方に開放するポケット44aを設けた周知の構造を有する。この保持器44は、例えば冷間圧延鋼板等のプレス成形加工体として構成できる。なお、軸受4,4にはそれぞれ複列玉軸受を用いてもよい。   Each bearing 4 includes an inner ring 41, an outer ring 42, a plurality of balls 43 (rolling elements), and a corrugated cage 44. In the illustrated bearing 4, a seal 45 is attached only to the outer end side in the axial direction between the inner and outer rings 41, 42. The seal 45 is fitted and attached to one seal mounting groove 42 a of the outer ring 42, and is configured as a sliding seal in which a rubber lip slides with respect to the inner ring 41. In order to conceal the seal 45 of the bearing 4 from the outside, an annular plate 7 is attached to the outer peripheral surface on one end side of the rotating shaft 2 by, for example, press-fitting. The retainer 44 has a well-known structure in which pockets 44a that open to one side in the axial direction are provided at several circumferential positions of the annular portion. The cage 44 can be configured as a press-formed processed body such as a cold rolled steel plate. In addition, you may use a double row ball bearing for the bearings 4 and 4, respectively.

次に、図1及び図2に示すように、一方向クラッチ3は、プーリ1の内周面に固定されてこれと一体回転する環状の外輪31と、回転軸2の外周面に固定されて一体回転する環状の内輪32と、外輪31と内輪32との間に形成される環状空間に軸線をアキシャル方向に沿わせて配置された複数(例えば8個)のロック転動体33(円筒ころ)と、各ロック転動体3をロック位置に向けて付勢するばね部材35と、内輪32の外周面上に固定され、各ばね部材35を対応するロック転動体33との間で圧縮状態にて支持するばね支持体34とを有する。ばね支持体34は樹脂製又は金属製であり、各ロック転動体3の周方向間隔を規制する保持器の役割も果たすが、周知の保持器と異なり、各ロック転動体3に対応して内輪32の周方向に分割形成されている。   Next, as shown in FIGS. 1 and 2, the one-way clutch 3 is fixed to the inner peripheral surface of the pulley 1 and fixed to the outer peripheral surface of the rotary shaft 2 and the annular outer ring 31 that rotates integrally therewith. A plurality of (for example, eight) lock rolling elements 33 (cylindrical rollers) arranged in an axial direction in an annular space formed between an annular inner ring 32 that rotates integrally, and an outer ring 31 and an inner ring 32 along the axial direction. And a spring member 35 that urges each lock rolling element 3 toward the lock position, and the outer ring surface of the inner ring 32, and each spring member 35 is compressed between the corresponding lock rolling element 33. And a spring support 34 for supporting. The spring support 34 is made of resin or metal, and also serves as a cage that regulates the circumferential interval of each lock rolling element 3, but unlike a known cage, an inner ring corresponding to each lock rolling element 3. It is divided into 32 circumferential directions.

図2に示すように、内輪32は外輪31と同心的に配置されるとともに、自身の外周面に回転半径が周方向に沿って変化する外周カム面32aが形成されており、回転軸2(図1参照)に固定されてこれと一体回転する。図2において内輪32は正多角柱状(具体的には正八角柱状)の形態を有し、外周カム面32aはその軸断面各辺に対応した個別の矩形状平面に形成されている。   As shown in FIG. 2, the inner ring 32 is arranged concentrically with the outer ring 31, and an outer peripheral cam surface 32 a whose rotational radius changes along the circumferential direction is formed on the outer peripheral surface of the inner ring 32. (See FIG. 1) and rotate integrally therewith. In FIG. 2, the inner ring 32 has a regular polygonal columnar shape (specifically, a regular octagonal columnar shape), and the outer peripheral cam surface 32a is formed in an individual rectangular plane corresponding to each side of the axial cross section.

また、外輪31の内周側には円筒状軌道面31aが形成されている。そして、外輪31の内周面と内輪32の個々の外周カム面32aとの間のラジアル方向空隙は、外周カム面32aの周方向中間位置に定められた空転位置(図3上)にてロック転動体33の外径よりも大となり、周方向における外周カム面32aの第一端側(例えば、時計回りの下手側)に定められたロック位置(図3下)に向けてロック転動体33の外径より小となるよう連続的に縮小するくさび状空間Kが形成されている。また、ばね部材35は、外周カム面32aの第二端側(例えば、時計回りの上手側)において内輪32の外周面上に設けられたばね支持体34とロック転動体33との間に圧縮状態で配置され、該ロック転動体33をロック位置に向けて周方向に弾性付勢する。   A cylindrical raceway surface 31 a is formed on the inner peripheral side of the outer ring 31. And the radial direction space | gap between the inner peripheral surface of the outer ring | wheel 31 and each outer peripheral cam surface 32a of the inner ring | wheel 32 is locked in the idling position (FIG. 3 upper) defined in the circumferential direction intermediate position of the outer peripheral cam surface 32a. The lock rolling element 33 becomes larger than the outer diameter of the rolling element 33 and toward a lock position (lower side in FIG. 3) defined on the first end side (for example, clockwise lower side) of the outer circumferential cam surface 32a in the circumferential direction. A wedge-shaped space K that is continuously reduced so as to be smaller than the outer diameter is formed. Further, the spring member 35 is compressed between the spring support 34 provided on the outer peripheral surface of the inner ring 32 and the lock rolling element 33 on the second end side (for example, the upper side of the clockwise direction) of the outer peripheral cam surface 32a. And is elastically biased in the circumferential direction toward the lock position.

ばね支持体34は内輪32の外周面上にて該内輪32の回転周方向にスライド可能かつ任意の位置を保持可能に設けられている。具体的には、ばね支持体34は、後述の変位調整機構40をなす温度変位部材41を介して内輪32に外嵌固定され、内輪32と一体回転する。また、ばね部材35の基端側(ロック転動体33に接しているのと反対側)は、ばね支持体34のばね支持側端面から周方向に突出する支持突起34aが挿入され、該支持突起34aの周囲をなす着座面34bに当接する形で支持されている。   The spring support 34 is provided on the outer peripheral surface of the inner ring 32 so as to be slidable in the rotational circumferential direction of the inner ring 32 and to be able to hold an arbitrary position. Specifically, the spring support 34 is fitted and fixed to the inner ring 32 via a temperature displacement member 41 that forms a displacement adjustment mechanism 40 described later, and rotates integrally with the inner ring 32. Further, on the base end side of the spring member 35 (the side opposite to the side in contact with the lock rolling element 33), a support protrusion 34a protruding in the circumferential direction from the spring support side end face of the spring support 34 is inserted, and the support protrusion It is supported so as to abut on a seating surface 34b that forms the periphery of 34a.

次に、ばね変位調整機構40は、一方向クラッチ3の周囲環境温度が高くなるほどロック位置から遠ざかるように、ばね支持体34を内輪32の外周面上にてスライド移動させるものとして構成されている。具体的には、ばね変位調整機構40は、内輪32への固定部41bと、ばね部材35の弾性復帰力に抗してばね支持体34を回転周方向に受け止めるばね支持体受け部41sとを有するとともに、固定部から見たばね支持体受け部41sの回転周方向における変位量を周囲環境温度に応じて変化させる温度変位部材41として構成されている。温度変位部材41は、厚さ方向が内輪32の回転周方向と一致するように配置されるバイメタルにて構成されており、基端部が固定部41bとして内輪32の外周面に対し周方向の相対移動が不能となるように埋め込まれる一方、先端側が支持体受け部41sとされ、ばね支持体34の底面に開口する温度変位部材挿通孔34h内に挿入されている。   Next, the spring displacement adjustment mechanism 40 is configured to slide the spring support 34 on the outer peripheral surface of the inner ring 32 so that the spring environment 34 moves away from the lock position as the ambient temperature of the one-way clutch 3 increases. . Specifically, the spring displacement adjusting mechanism 40 includes a fixing portion 41b to the inner ring 32 and a spring support receiving portion 41s that receives the spring support 34 in the rotational circumferential direction against the elastic return force of the spring member 35. The temperature displacement member 41 is configured to change the amount of displacement in the rotational circumferential direction of the spring support receiving portion 41s as viewed from the fixed portion according to the ambient temperature. The temperature displacement member 41 is composed of a bimetal disposed so that the thickness direction thereof coincides with the rotational circumferential direction of the inner ring 32, and the base end portion serves as a fixing portion 41 b in the circumferential direction with respect to the outer circumferential surface of the inner ring 32. While being embedded so that relative movement is impossible, the front end side is a support receiving portion 41 s and is inserted into a temperature displacement member insertion hole 34 h that opens to the bottom surface of the spring support 34.

内輪32の回転周方向において、温度変位部材挿通孔34hのロック位置に近い側の内側面には、ばね受け凸部34dがロック位置から遠ざかる向きに突出形成されている。バイメタルからなる温度変位部材41の支持体受け部41sは、線膨張係数の大きい側の主表面、つまり、図4下に示すように、温度上昇に伴い湾曲変形するバイメタルの湾曲凸側となる主表面にてばね受け凸部34dに当接している。温度変位部材41は、温度上昇によりロック位置から遠ざかる向きに湾曲変形するとともに、自身の湾曲変位に伴なうばね支持体34のスライド変位をなるべく大きく確保するために、ばね受け凸部34dの回転周方向における突出先端位置をロック位置から遠ざかる向きに逃がしつつ、ばね受け凸部34dとの当接位置が支持体受け部41s上にてラジアル方向内側へ移動するようになっている。なお、内輪の回転周方向にて温度変位部材挿通孔34hの、ロック位置空と及川の内側面と温度変位部材41との間には、温度変位部材41の湾曲変位を許容するための一定量の隙間が形成されている。   In the rotational circumferential direction of the inner ring 32, a spring receiving convex portion 34d is formed to protrude in the direction away from the lock position on the inner side surface of the temperature displacement member insertion hole 34h close to the lock position. The support receiving portion 41s of the temperature displacement member 41 made of bimetal is a main surface on the side having a large linear expansion coefficient, that is, the main convex convex side of the bimetal that is curved and deformed as the temperature rises as shown in the lower part of FIG. The surface is in contact with the spring receiving projection 34d. The temperature displacement member 41 is bent and deformed in the direction away from the lock position due to the temperature rise, and the spring receiving projection 34d is rotated in order to ensure as much as possible the sliding displacement of the spring support 34 accompanying the bending displacement of the temperature displacement member 41. The position of contact with the spring receiving convex portion 34d moves radially inward on the support receiving portion 41s while releasing the protruding tip position in the circumferential direction away from the lock position. It should be noted that a certain amount for allowing the bending displacement of the temperature displacement member 41 between the lock position sky, the inner side surface of Oikawa and the temperature displacement member 41 of the temperature displacement member insertion hole 34h in the rotational circumferential direction of the inner ring. The gap is formed.

以下、一方向クラッチ3の動作について説明する。
図1において、外輪31が時計方向に回転する場合、円筒状軌道面31aと外周カム面32aとでロック転動体33がロックされ、プーリ1(原動体)から回転軸2(従動体)へ動力が伝わる接続状態となる。一方、外輪31の回転速度が低下した場合、すなわち、内輪32に対して相対的に反時計回りに外輪31が回転した場合、ロック転動体33のロック状態が解除され、外輪31と内輪32とは動力遮断状態となる。
Hereinafter, the operation of the one-way clutch 3 will be described.
In FIG. 1, when the outer ring 31 rotates in the clockwise direction, the lock rolling element 33 is locked by the cylindrical raceway surface 31a and the outer peripheral cam surface 32a, and the power is transferred from the pulley 1 (primary element) to the rotating shaft 2 (driven element). Will be connected. On the other hand, when the rotational speed of the outer ring 31 decreases, that is, when the outer ring 31 rotates counterclockwise relative to the inner ring 32, the locked state of the lock rolling element 33 is released, and the outer ring 31, the inner ring 32, Is in a power shut-off state.

図4上(及び図3)は、エンジン始動直後など、一方向クラッチ3の周囲環境温度が低い、低温時の動作状態を示すものであり、ばね変位調整機構40の温度変位部材41は湾曲変位が小さくなっている。他方、図4下は、エンジンのウォームアップが進んで一方向クラッチ3の周囲環境温度が上昇した高温時の動作状態を示すものであり、温度変位部材41はロック位置から遠ざかる向きに大き湾曲変位し、圧縮状態のばね部材35からの弾性付勢力を受けてばね支持体34は、ロック位置から遠ざかる向きにスライド移動する。   The upper part of FIG. 4 (and FIG. 3) shows an operating state at a low temperature in which the ambient environment temperature of the one-way clutch 3 is low, such as immediately after the engine is started. The temperature displacement member 41 of the spring displacement adjustment mechanism 40 is a curved displacement. Is getting smaller. On the other hand, the lower part of FIG. 4 shows an operating state at a high temperature when the ambient temperature of the one-way clutch 3 is increased as the engine warms up, and the temperature displacement member 41 is displaced by a large curve in a direction away from the lock position. In response to the elastic biasing force from the compressed spring member 35, the spring support 34 slides in a direction away from the lock position.

ロック転動体33がロック位置に位置するときのばね部材35の圧縮変位量を基準圧縮変位量とすれば、図4上に示す低温時においては、ばね支持体34がロック位置へ近づいてばね部材35の基準圧縮変位量が増大する。その結果、潤滑油をなすグリースが高粘性であっても、ばね部材35による弾性付勢力が強まり、ロック転動体33が高粘性のグリースに抗してロック位置へスムーズに移動できる。他方、図4下に示す高温時においては、ばね支持体34がロック位置から遠ざかり、ばね部材35の基準圧縮変位量が減少するので、ばね部材35による弾性付勢力は弱まる。そして、ばね部材35による弾性付勢力が弱まっていることで、空転時においてロック転動体33と外輪31との間に生ずる摩擦を低減でき、摩擦熱によるグリース寿命低下を防止できる。   If the compression displacement amount of the spring member 35 when the lock rolling element 33 is located at the lock position is the reference compression displacement amount, the spring support 34 approaches the lock position at the low temperature shown in FIG. The reference compression displacement amount of 35 increases. As a result, even when the grease forming the lubricating oil is highly viscous, the elastic biasing force by the spring member 35 is strengthened, and the lock rolling element 33 can smoothly move to the lock position against the highly viscous grease. On the other hand, at the time of high temperature shown in the lower part of FIG. 4, the spring support 34 moves away from the lock position, and the reference compression displacement amount of the spring member 35 decreases, so that the elastic biasing force by the spring member 35 is weakened. And since the elastic biasing force by the spring member 35 is weakened, the friction which arises between the lock | rock rolling element 33 and the outer ring | wheel 31 at the time of idling can be reduced, and the grease lifetime fall by friction heat can be prevented.

なお、図3に示す構造では、温度変位部材41の支持体受け部41sが、ばね支持体34に形成された温度変位部材挿通孔34hに挿入される構造となっていた。しかし、図5に示すように、温度変位部材挿通孔34hを形成せず、支持体受け部41sを、内輪32の回転周方向においてばね支持体34の温度変位部材挿通孔34hのロック位置から遠い側の端面(以下、後端面という)34cに当接させる構成としてもよい。図5下に示すように、該端面34cのラジアル方向内側部分は高温時に湾曲変形した支持体受け部41sを受けるための、ロック位置側に向けて傾斜する湾曲受け面34fとされている。該湾曲受け面34fは端面34cのラジアル方向中間位置よりも外側まで延長された形で形成されており、支持体受け部41sの湾曲に伴なうばね支持体34の移動ストロークは図4よりも拡大されている。   In the structure shown in FIG. 3, the support receiving portion 41 s of the temperature displacement member 41 is inserted into the temperature displacement member insertion hole 34 h formed in the spring support 34. However, as shown in FIG. 5, the temperature displacement member insertion hole 34 h is not formed, and the support receiving portion 41 s is far from the lock position of the temperature displacement member insertion hole 34 h of the spring support 34 in the rotational circumferential direction of the inner ring 32. It is good also as a structure contact | abutted to the side end surface (henceforth a rear-end surface) 34c. As shown in the lower part of FIG. 5, the radially inner portion of the end surface 34c is a curved receiving surface 34f that is inclined toward the lock position to receive the support receiving portion 41s that is curved and deformed at a high temperature. The curved receiving surface 34f is formed to extend outward from the radial intermediate position of the end surface 34c, and the moving stroke of the spring support 34 accompanying the bending of the support receiving portion 41s is greater than that of FIG. It has been expanded.

次に、図6に示すように、ばね部材は、周囲環境温度の上昇に応じて基準圧縮変位量が減少するに伴い、ばね定数を段階的又は連続的に減少させる非線形特性ばね135にて構成することができる。一方向クラッチ3の想定される環境温度範囲において、ばね変位調整機構40による基準圧縮変位量の調整代(例えば、ばね支持体34の回転周方向における移動代)がそれほど大きく見込めない場合にあっても、上記のような非線形特性ばね135を用いれば、図7及び図8に示すように、低温域(T=T)での平均的なばね定数が高温域(T=T)での平均的なばね定数よりも大きくなり、周囲環境温度の低下に伴い基準圧縮変位量が少し増大するだけで、ばね定数自身の上昇によりロック転動体33への弾性付勢力を急速に増大することができる。その結果、低温時にも高粘性のグリースに抗してロック転動体33をロック位置へ確実に移動させることができる。逆に周囲環境温度が上昇すれば、基準圧縮変位量の増大によりばね定数自身の低下と相俟ってロック転動体33への弾性付勢力は速やかに減少し、空転時にロック転動体33と外輪31との間に生ずる摩擦低減効果を高めることができる。 Next, as shown in FIG. 6, the spring member is composed of a non-linear characteristic spring 135 that decreases the spring constant stepwise or continuously as the reference compression displacement amount decreases as the ambient temperature increases. can do. In the assumed environmental temperature range of the one-way clutch 3, the adjustment allowance for the reference compression displacement amount by the spring displacement adjustment mechanism 40 (for example, the movement allowance in the rotational circumferential direction of the spring support 34) cannot be expected to be so large. However, if the non-linear characteristic spring 135 as described above is used, the average spring constant in the low temperature region (T = T L ) is high in the high temperature region (T = T H ), as shown in FIGS. It becomes larger than the average spring constant, and the elastic biasing force to the lock rolling element 33 can be rapidly increased by the increase of the spring constant itself only by slightly increasing the reference compression displacement amount as the ambient temperature decreases. it can. As a result, the lock rolling element 33 can be reliably moved to the locked position against the highly viscous grease even at low temperatures. On the other hand, if the ambient temperature rises, the elastic biasing force to the lock rolling element 33 decreases rapidly due to the increase in the reference compression displacement amount and the decrease in the spring constant itself, and the lock rolling element 33 and the outer ring at the time of idling. The effect of reducing friction generated between the first and second members 31 can be increased.

図6の構成で採用する非線形特性ばね135は、図7に示すごとく、基準圧縮変位量が予め定められた基準値を上回る場合(低温時:図7にてT=Tのとき)にばね定数が予め定められた第一の値Kとなり、圧縮変位量が該基準値を下回る場合(高温時:図7にてT=Tのとき)にばね定数が第一の値Kよりも小さい第二の値Kとなるように、ばね定数を段階的に変化させる特性を有するものが使用されている。ばね定数が第二の値Kとなる温度域を、使用するグリースの粘性が十分低くなる温度域に定めておけば、小さな弾性付勢力でもロック転動体33をグリースの粘性に打ち勝ってロック位置へスムーズに移動させることができる。一般的なグリースの粘性の温度特性を考慮した場合、ばね定数が第一の値Kと第二の値Kとの間で切り替わる温度は、例えば−10℃以上20℃以下の範囲内に設定することが望ましい。 As shown in FIG. 7, the non-linear characteristic spring 135 employed in the configuration of FIG. 6 is a spring when the reference compression displacement exceeds a predetermined reference value (at low temperature: T = TL in FIG. 7). If the first value K 1 becomes the constant predetermined compression displacement is less than the reference value: spring constant (high temperature when T = T H in FIG. 7) than the first value K 1 as also becomes smaller second value K 2, which has the property of the spring constant stepwise changed is used. The temperature range where the spring constant is the second value K 2, if determined to a temperature range in which the viscosity is low enough grease to be used, the locking position by overcoming the locking rolling elements 33 on the viscosity of the grease a small elastic biasing force Can be moved smoothly. Considering the temperature characteristic of a typical grease viscosity, the temperature at which the spring constant is switched between a first value K 1 and the second value K 2, for example in the range of -10 ° C. or higher 20 ° C. or less It is desirable to set.

図6の構成では、非線形特性ばね135は、線径及び巻線周回長が互いに等しく、巻線ピッチが互いに異なる第一部分135Aと第二部分135Bとからなり、ばねの圧縮初期段階では、巻線ピッチの小さい(つまり、弾性定数が小さい)第一部分135Aが先に変形し、非線形特性ばね135全体のばね定数は第一の値K1となる。一方、第一部分135Aの変形が進んで巻線ピッチが小さくなると、第一部分135Aだけでなく第二部分135Bの圧縮変形も顕著となり、非線形特性ばね135全体のばね定数は第二の値K2となる。   In the configuration of FIG. 6, the non-linear characteristic spring 135 is composed of a first portion 135A and a second portion 135B having the same wire diameter and winding circumference and different winding pitches. The first portion 135A having a small pitch (that is, a small elastic constant) is deformed first, and the spring constant of the entire nonlinear characteristic spring 135 becomes the first value K1. On the other hand, when the deformation of the first portion 135A progresses and the winding pitch decreases, not only the first portion 135A but also the second portion 135B compressive deformation becomes significant, and the spring constant of the entire nonlinear characteristic spring 135 becomes the second value K2. .

なお、図6において、非線形特性ばね135は、ばねの全長が2分割され、その一方が第一部分135Aとされ、他方が第二部分135Bとされたものが使用されていたが、図8に示すように、ばねの全長を3以上に分割し、第一部分135Aと二部分135Bとを交互に配列した構成としてもよい。また、第一部分135Aと第二部分135Bとを巻線ピッチが互いに異なる部分として形成する代わりに、図9に示すように、巻線周回長が互いに異なる部分135C,135Dとして形成し、これらを直列に接続した構成としてもよいし、巻線周回長の小さい部分135Fを巻線周回長の大きい部分135Eの内側に収容した構成としてもよい。さらに、図11に示すように、巻線周回長がばね長方向に漸減するテーパコイルばね235としてもよい。   In FIG. 6, the non-linear characteristic spring 135 is used in which the total length of the spring is divided into two parts, one of which is the first part 135 </ b> A and the other is the second part 135 </ b> B. Thus, it is good also as a structure which divided | segmented the full length of a spring into 3 or more, and arranged the 1st part 135A and the 2 part 135B alternately. Further, instead of forming the first portion 135A and the second portion 135B as portions having different winding pitches, as shown in FIG. 9, they are formed as portions 135C and 135D having different winding turn lengths, which are connected in series. The portion 135F having a small winding turn length may be accommodated inside the portion 135E having a large turn turn length. Furthermore, as shown in FIG. 11, it is good also as a taper coil spring 235 which winding winding length reduces gradually in a spring length direction.

なお、上述の実施例では、図1に示すごとく、プーリ1が原動体となり、回転軸2が従動体となるプーリユニット(オルタネータプーリ)を例にとって説明したが、クランクプーリのように、回転軸が原動体となり、プーリが従動体となるプーリユニットに対しても本発明を同様に適用することができる。   In the above-described embodiment, as illustrated in FIG. 1, the pulley unit (alternator pulley) in which the pulley 1 serves as a driving body and the rotating shaft 2 serves as a driven body has been described as an example. The present invention can be similarly applied to a pulley unit in which is a prime mover and a pulley is a follower.

本発明に係る一方向クラッチを組み込んだプーリユニットの一例を示す正面半断面図。The front half sectional view showing an example of the pulley unit incorporating the one-way clutch according to the present invention. 図1に組み込まれた一方向クラッチのA−A断面図。FIG. 2 is a cross-sectional view taken along line AA of the one-way clutch incorporated in FIG. 1. 低温時における図2の一方向クラッチの要部を作用とともに示す拡大断面図。The expanded sectional view which shows the principal part of the one way clutch of FIG. 2 with an effect | action at the time of low temperature. 図2の一方向クラッチの要部を、ロック時において低温時と高温時とで対比して示す拡大断面図。The expanded sectional view which shows the principal part of the one-way clutch of FIG. 2 by contrast at the time of the low temperature at the time of locking. 図2の一方向クラッチの第一変形例を、ロック時において低温時と高温時とで対比して示す拡大断面図。The expanded sectional view which shows the 1st modification of the one-way clutch of FIG. 2 by contrast at the time of a low temperature at the time of a lock | rock. 図2の一方向クラッチの第二変形例を、ロック時において低温時と高温時とで対比して示す拡大断面図。The expanded sectional view which shows the 2nd modification of the one-way clutch of FIG. 非線形特性ばねの動作特性を説明する模式図。The schematic diagram explaining the operating characteristic of a non-linear characteristic spring. 非線形特性ばねの第一変形例を示す模式図。The schematic diagram which shows the 1st modification of a nonlinear characteristic spring. 同じく第二変形例を示す模式図。The schematic diagram which shows a 2nd modification similarly. 同じく第三変形例を示す模式図。The schematic diagram which shows a 3rd modification similarly. 同じく第四変形例を示す模式図。The schematic diagram which shows a 4th modification similarly.

符号の説明Explanation of symbols

1 オルタネータプーリ(プーリ:原動体)
2 回転軸(従動体)
3 一方向クラッチ
31 外輪
31a 円筒状軌道面
32 内輪
32a 外周カム面
33 ロック転動体(円筒ころ)
34 ばね支持体
35 ばね部材
40 ばね変位調整機構
41 温度変位部材
100 プーリユニット
K くさび状空間
1 Alternator pulley (pulley: prime mover)
2 Rotating shaft (driven body)
3 One-way clutch 31 Outer ring 31a Cylindrical raceway surface 32 Inner ring 32a Outer cam surface 33 Locking rolling element (cylindrical roller)
34 Spring support 35 Spring member 40 Spring displacement adjustment mechanism 41 Temperature displacement member 100 Pulley unit K Wedge-shaped space

Claims (5)

内周側に円筒状軌道面が形成された外輪と、その外輪の内側に同心的に配置されるとともに、自身の外周面に回転半径が周方向に沿って変化する外周カム面が形成された内輪と、前記円筒状軌道面と前記外周カム面との間に形成されるラジアル方向空隙に配置されるロック転動体とを備え、前記ラジアル方向空隙が、前記外周カム面の周方向中間位置に定められた空転位置にて前記ロック転動体の外径よりも大となり、当該周方向における前記外周カム面の第一端側に定められたロック位置に向けて前記ロック転動体の外径より小となるよう連続的に縮小するくさび状空間とされるとともに、前記外周カム面の第二端側において前記内輪の外周面上に設けられたばね支持体と前記ロック転動体との間に圧縮状態で配置され、該ロック転動体を前記ロック位置に向けて周方向に弾性付勢するばね部材を有した一方向クラッチにおいて、
前記ばね部材による前記ロック転動体の前記ロック位置に向けた弾性付勢力が、前記一方向クラッチの周囲環境温度が高くなるほど小さくなるように、前記ロック転動体が前記ロック位置に位置するときの前記ばね部材の圧縮変位量である基準圧縮変位量を、前記周囲環境温度に応じて調整するばね変位調整機構を備えたことを特徴とする一方向クラッチ。
An outer ring having a cylindrical raceway surface formed on the inner peripheral side, and an outer peripheral cam surface that is concentrically disposed on the inner side of the outer ring and whose rotation radius changes along the circumferential direction is formed on its outer peripheral surface. An inner ring, and a lock rolling element disposed in a radial gap formed between the cylindrical raceway surface and the outer cam surface, and the radial gap is located at a circumferential intermediate position of the outer cam surface. The outer diameter of the lock rolling element is larger than the outer diameter of the lock rolling element at a predetermined idling position and is smaller than the outer diameter of the lock rolling element toward the lock position defined on the first end side of the outer peripheral cam surface in the circumferential direction. A wedge-shaped space that continuously shrinks so that the second end side of the outer peripheral cam surface is compressed between a spring support provided on the outer peripheral surface of the inner ring and the lock rolling element. Arranged, the locking rolling element In one-way clutch having a spring member elastically biased in the circumferential direction toward the serial locked position,
When the lock rolling element is positioned at the lock position, the elastic biasing force of the spring member toward the lock position of the lock rolling element is reduced as the ambient temperature of the one-way clutch increases. A one-way clutch comprising a spring displacement adjustment mechanism for adjusting a reference compression displacement amount, which is a compression displacement amount of a spring member, according to the ambient environment temperature.
前記ばね支持体は前記内輪の外周面上にて該内輪の回転周方向にスライド可能かつ任意の位置を保持可能に設けられ、前記ばね変位調整機構は、前記一方向クラッチの周囲環境温度が高くなるほど前記ロック位置から遠ざかるように、前記ばね支持体を前記内輪の外周面上にてスライド移動させる請求項1記載の一方向クラッチ。   The spring support is provided on the outer circumferential surface of the inner ring so as to be slidable in the rotational circumferential direction of the inner ring and to be able to hold an arbitrary position. The spring displacement adjusting mechanism has a high ambient environmental temperature of the one-way clutch. The one-way clutch according to claim 1, wherein the spring support is slid on the outer peripheral surface of the inner ring so as to move away from the lock position. 前記ばね変位調整機構がバイメタルにて構成されている請求項2記載の一方向クラッチ。   The one-way clutch according to claim 2, wherein the spring displacement adjusting mechanism is made of bimetal. 前記ばね部材は、前記周囲環境温度の上昇に応じて前記基準圧縮変位量が減少するに伴い、ばね定数を段階的又は連続的に減少させる非線形特性ばねにて構成されてなる請求項1ないし請求項3のいずれか1項に記載の一方向クラッチ。   The said spring member is comprised by the nonlinear characteristic spring which reduces a spring constant in steps or continuously, as the said reference | standard compression displacement amount reduces according to the raise of the said ambient environment temperature. Item 4. The one-way clutch according to any one of items 3. 前記非線形特性ばねは、前記基準圧縮変位量が予め定められた基準値を上回る場合に前記ばね定数が予め定められた第一の値となり、前記圧縮変位量が該基準値を下回る場合に前記ばね定数が前記第一の値よりも小さい第二の値となるように、前記ばね定数を段階的に変化させる特性を有するものが使用される請求項4記載の一方向クラッチ。   The non-linear characteristic spring is configured such that when the reference compression displacement amount exceeds a predetermined reference value, the spring constant becomes a first predetermined value, and when the compression displacement amount falls below the reference value, the spring The one-way clutch having a characteristic of changing the spring constant stepwise so that the constant becomes a second value smaller than the first value.
JP2008140808A 2008-05-29 2008-05-29 One-way clutch Expired - Fee Related JP4968593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140808A JP4968593B2 (en) 2008-05-29 2008-05-29 One-way clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140808A JP4968593B2 (en) 2008-05-29 2008-05-29 One-way clutch

Publications (3)

Publication Number Publication Date
JP2009287671A true JP2009287671A (en) 2009-12-10
JP2009287671A5 JP2009287671A5 (en) 2012-01-19
JP4968593B2 JP4968593B2 (en) 2012-07-04

Family

ID=41457081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140808A Expired - Fee Related JP4968593B2 (en) 2008-05-29 2008-05-29 One-way clutch

Country Status (1)

Country Link
JP (1) JP4968593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180911A (en) * 2011-03-02 2012-09-20 Jtekt Corp One-way clutch and pulley device with one-way clutch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171230U (en) * 1987-10-31 1989-05-12
JPH03112139U (en) * 1990-03-02 1991-11-15
JP2005282757A (en) * 2004-03-30 2005-10-13 Nsk Ltd One-way clutch and its built-in pulley device
JP2008082514A (en) * 2006-09-29 2008-04-10 Jtekt Corp One-way clutch and ribbon spring to be used for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171230U (en) * 1987-10-31 1989-05-12
JPH03112139U (en) * 1990-03-02 1991-11-15
JP2005282757A (en) * 2004-03-30 2005-10-13 Nsk Ltd One-way clutch and its built-in pulley device
JP2008082514A (en) * 2006-09-29 2008-04-10 Jtekt Corp One-way clutch and ribbon spring to be used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180911A (en) * 2011-03-02 2012-09-20 Jtekt Corp One-way clutch and pulley device with one-way clutch

Also Published As

Publication number Publication date
JP4968593B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US8985293B2 (en) Decoupler assembly with sliding interface between hub and pulley
JP5145953B2 (en) Camshaft device
US9140318B2 (en) One way clutch
EP3026298A1 (en) Pulley device with embedded unidirectional clutch
JP2000234638A (en) One-way clutch
US6749050B2 (en) One-way clutch built-in type pulley device
JP4968593B2 (en) One-way clutch
JP4560837B2 (en) Pulley unit
JP2007270969A (en) Rolling bearing
JP2010127370A (en) Pulley unit
WO2010061805A1 (en) Pulley unit
JP2005326000A (en) One-way clutch and clutch built-in type pulley device
JP2005240930A (en) Pulley unit with one-way clutch
JP2021167647A (en) Rolling bearing
JP2006161827A (en) Pulley unit with one-way clutch
JP5057209B2 (en) One-way clutch unit
JP2010185547A (en) One-way clutch built-in type pulley device
JP2006307922A (en) One-way clutch
EP1898112B1 (en) One-way clutch and power transmission apparatus
JP2010127369A (en) Pulley unit
JP2005257021A (en) One-way clutch and pulley unit with one-way clutch
JP2017166599A (en) Oneway clutch
JP2007113787A (en) One-way clutch and power transmission device equipped with it
JP2000283267A (en) One-way clutch built-in type pulley device for alternator
JP2016017593A (en) Pulley device with built-in one-way clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111123

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees