JP2009283836A - Multilayer wiring board and its manufacturing method - Google Patents

Multilayer wiring board and its manufacturing method Download PDF

Info

Publication number
JP2009283836A
JP2009283836A JP2008136649A JP2008136649A JP2009283836A JP 2009283836 A JP2009283836 A JP 2009283836A JP 2008136649 A JP2008136649 A JP 2008136649A JP 2008136649 A JP2008136649 A JP 2008136649A JP 2009283836 A JP2009283836 A JP 2009283836A
Authority
JP
Japan
Prior art keywords
thin film
conductor
bottomed hole
plating
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008136649A
Other languages
Japanese (ja)
Inventor
Yutaka Nishimura
裕 西村
Masahiro Nakamura
正廣 中村
Takaaki Uchiyama
高明 内山
Yukitoshi Kino
幸俊 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PWB KK
Original Assignee
PWB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PWB KK filed Critical PWB KK
Priority to JP2008136649A priority Critical patent/JP2009283836A/en
Publication of JP2009283836A publication Critical patent/JP2009283836A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board which allows holes or the like to be made easily and adapts to higher packaging density and other needs, and a manufacturing method thereof. <P>SOLUTION: A multilayer wiring board 10 includes: a multilayer laminate 16 consisting of alternating insulating layers 12 and thin-film conductors 14; bottomed holes 18 provided in the multilayer laminate 16; and conductor plating layers 20 provided on the inner surfaces of the bottomed holes 18. A method of manufacturing the multilayer wiring board 10 includes: a step of alternately laminating the insulating layers 12 and the thin-film conductors 14 to form the multilayer laminate 16; a step of drilling the bottomed holes 18 each of which extends from a surface of the multilayer laminate 16 to the prescribed insulating layer 12; and a step of providing the conductor plating layers 20 on the inner surfaces of the bottomed holes 18. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁層と薄膜導体が交互に積層された多層配線板およびその製造方法に関するものである。   The present invention relates to a multilayer wiring board in which insulating layers and thin film conductors are alternately laminated, and a method for manufacturing the same.

従来、下記の特許文献1を始めとして種々の多層配線板が開示されている。図8に示すように、周知の多層配線板30の製造は、(1)絶縁層12Aの両面に薄膜導体14が積層された基板32を準備し、その上に絶縁層12Bを形成する(図8(a))。(2)各薄膜導体間を電気接続するために、レーザーでビアホール34を形成し(図8(b))、メッキ36を施す(図8(c))。メッキ36は、所望の回路パターンにエッチングされる。   Conventionally, various multilayer wiring boards including the following Patent Document 1 have been disclosed. As shown in FIG. 8, a known multilayer wiring board 30 is manufactured by (1) preparing a substrate 32 having thin film conductors 14 laminated on both surfaces of an insulating layer 12A, and forming an insulating layer 12B on the substrate 32 (see FIG. 8). 8 (a)). (2) In order to electrically connect the thin film conductors, via holes 34 are formed by laser (FIG. 8B), and plating 36 is applied (FIG. 8C). The plating 36 is etched into a desired circuit pattern.

レーザーで穴開け加工をおこなうと、ビアホール34の底に絶縁層12の残渣38が発生する場合がある(図9(a))。特許文献2のように残渣を除去する必要が生じ、製造時の手間となる。図9(b)のように、残渣38の除去時に絶縁層12の一部も除去され、形状が変形したビアホール34bにメッキをおこなわなくてはならない場合が発生する。そのような場合にメッキの形成不良が生じ、層間接続ができないおそれがある。   When drilling is performed with a laser, a residue 38 of the insulating layer 12 may be generated at the bottom of the via hole 34 (FIG. 9A). As in Patent Document 2, it is necessary to remove the residue, which is troublesome during manufacturing. As shown in FIG. 9B, when the residue 38 is removed, a part of the insulating layer 12 is also removed, and the via hole 34b having a deformed shape must be plated. In such a case, poor plating formation may occur and interlayer connection may not be possible.

1回のレーザー照射で穴開けができない場合、複数回レーザーを照射する。その場合に、穴の中で発生したガスによってレーザー照射が不完全になり、図9(c)のような不完全なビアホール34cとなる場合がある。また、レーザー照射装置に起因して、所望のレーザーが照射されずに穴開け完了と判定される場合がある。このような種々の要因によって不完全なレーザー照射となり、所望の穴が形成できない場合、層間接続ができない。   If drilling is not possible with a single laser irradiation, the laser is irradiated multiple times. In that case, laser irradiation may be incomplete due to the gas generated in the hole, resulting in an incomplete via hole 34c as shown in FIG. 9C. Further, due to the laser irradiation apparatus, it may be determined that the drilling is completed without being irradiated with a desired laser. When such various factors cause incomplete laser irradiation and a desired hole cannot be formed, interlayer connection cannot be made.

レーザーのエネルギーは絶縁層12Bに吸収されるため、ビアホール34の側壁はテーパー状になる。ビアホール34は底に行くほど内径が小さくなるため、ビアホール34の底にメッキ液が流れにくい。このことによってもメッキ不良が生じ、層間接続ができない場合が生じる。底面が狭いと、上記の残渣38を取り除くのも難しくなる。底面を広くするとビアホール34の開口はそれ以上に広くなり、回路パターンの微細化が難しくなる。   Since the energy of the laser is absorbed by the insulating layer 12B, the side wall of the via hole 34 is tapered. Since the inner diameter of the via hole 34 decreases toward the bottom, the plating solution hardly flows to the bottom of the via hole 34. This also causes a plating failure and sometimes prevents interlayer connection. If the bottom surface is narrow, it is difficult to remove the residue 38. If the bottom surface is widened, the opening of the via hole 34 becomes wider than that, and it becomes difficult to miniaturize the circuit pattern.

レーザーの出力は絶縁層12Bにビアホール34を開けるだけの出力に調節するため、薄膜導体14を貫通することはできない。図10のいわゆるスタックドビア36bを形成する場合、絶縁層12を積層するたびにレーザー照射をおこない、メッキをおこなう必要がある。積層数が増加すればするほど、大変な手間となる。積層時の材料の温度変化などを考慮すると、位置合わせが難しくなり、製造歩留まりを悪化させるおそれがある。   Since the output of the laser is adjusted to an output sufficient to open the via hole 34 in the insulating layer 12B, it cannot penetrate the thin film conductor 14. In the case of forming the so-called stacked via 36b of FIG. 10, it is necessary to perform laser irradiation and plating each time the insulating layer 12 is laminated. The greater the number of layers, the more labor is required. Considering the temperature change of the material at the time of lamination, it becomes difficult to align, and there is a possibility that the manufacturing yield is deteriorated.

上記のように、レーザーによって薄膜導体14に穴開けできないため、メッキをおこなったときに、ビアホール34の底は薄膜導体14とメッキ36との2層構造になる(図8(c))。回路の高密度化と高速動作化により、2層構造になった箇所によってインピーダンス整合の誤差が生じる場合がある。回路設計時には予想できないノイズが発生し、回路設計と試作を繰り返すこととなる。   As mentioned above, since the thin film conductor 14 cannot be punched by the laser, the bottom of the via hole 34 has a two-layer structure of the thin film conductor 14 and the plating 36 when plating is performed (FIG. 8C). Due to the high density and high speed operation of the circuit, there may be an impedance matching error depending on the location of the two-layer structure. Unexpected noise occurs during circuit design, and circuit design and trial production are repeated.

特開2000−261117号公報JP 2000-261117 A 特開2003−046246号公報JP 2003-046246 A

本発明の目的は、穴開け加工などを容易におこなうことができ、回路の高密度化などに対処できる多層配線板およびその製造方法を提供することにある。   An object of the present invention is to provide a multilayer wiring board that can easily perform drilling and the like, and that can cope with high density of circuits and the like, and a method for manufacturing the same.

多層配線板の製造方法は、複数の絶縁層と薄膜導体とを交互に積層し、多層積層体を形成するステップと、前記多層積層体の表面から所定の絶縁層に達するまで、ドリルによって有底穴を開けるステップと、前記有底穴の内面に導体メッキをおこなうステップとを含む。   A method of manufacturing a multilayer wiring board includes a step of alternately laminating a plurality of insulating layers and thin film conductors to form a multilayer laminate, and bottoming with a drill until reaching a predetermined insulation layer from the surface of the multilayer laminate. Forming a hole and performing conductor plating on the inner surface of the bottomed hole.

ドリルによって穴開け加工をおこなうため、絶縁層を積層するたびに穴開け加工をおこなうことはなく、全ての絶縁層と薄膜導体を積層した段階で穴開け加工をおこなう。また、穴開け加工をおこなった際、薄膜導体が有底穴の底になるのではなく絶縁層が底になる。有底穴に導体メッキを施すと、有底穴の底は導体メッキだけである。   Since the drilling process is performed by a drill, the drilling process is not performed every time the insulating layers are stacked, and the drilling process is performed when all the insulating layers and the thin film conductors are stacked. Further, when drilling is performed, the thin film conductor is not the bottom of the bottomed hole, but the insulating layer is the bottom. When conductor plating is applied to the bottomed hole, the bottom of the bottomed hole is only conductor plating.

したがって、上記の製造方法によって製造された多層配線板は、複数の絶縁層と薄膜導体とが交互に積層された多層積層体と、前記多層積層体の表面から所定の絶縁層に達するまで開けられ、内径を一定にした有底穴と、前記有底穴の内面に形成された導体メッキとを含む。   Therefore, the multilayer wiring board manufactured by the above manufacturing method is opened until a predetermined insulating layer is reached from the multilayer laminated body in which a plurality of insulating layers and thin film conductors are alternately laminated, and from the surface of the multilayer laminated body. , Including a bottomed hole having a constant inner diameter and conductor plating formed on the inner surface of the bottomed hole.

本発明は、機械式のドリルによって穴開け加工をおこなうため、複数層にわたって穴開け加工が必要な場合でも1回の穴開け加工で良い。製造工程が簡略化され、歩留まりの悪化を防ぐことができる。有底穴の底が導体メッキだけであり、従来のような2層構造ではないため、インピーダンス整合を取りやすく、回路設計が容易になる。   In the present invention, since drilling is performed by a mechanical drill, even when drilling is required over a plurality of layers, only one drilling may be performed. The manufacturing process is simplified and the yield can be prevented from deteriorating. Since the bottom of the bottomed hole is only a conductor plating and not a conventional two-layer structure, impedance matching can be easily achieved and circuit design is facilitated.

本発明について図面を用いて説明する。説明において、多層配線板はビルドアップ配線板を始めとして、種々の多層基板を含むものとする。   The present invention will be described with reference to the drawings. In the description, the multilayer wiring board includes various multilayer boards including a build-up wiring board.

図1に示す多層配線板10は、複数の絶縁層12A,12B,12Cと複数の薄膜導体14とが交互に積層された多層積層体16と、多層積層体16に設けられた有底穴18と、有底穴18の内面に形成された導体メッキ20とを含む。   A multilayer wiring board 10 shown in FIG. 1 includes a multilayer laminate 16 in which a plurality of insulating layers 12A, 12B, and 12C and a plurality of thin film conductors 14 are alternately laminated, and a bottomed hole 18 provided in the multilayer laminate 16. And conductor plating 20 formed on the inner surface of the bottomed hole 18.

コアとなる絶縁層12Aはガラス繊維布または紙基材に絶縁性樹脂を含浸させたものである。他の絶縁層12B,12Cは、ガラス繊維布などに絶縁性樹脂を含浸させたものであっても良いし、絶縁性樹脂だけで形成されていても良い。絶縁性樹脂は、エポキシ樹脂、フェノール樹脂、フッ素系樹脂、ポリイミド樹脂などが挙げられる。絶縁層12の一例としては、厚みが約30〜200μmである。   The insulating layer 12A serving as a core is obtained by impregnating a glass fiber cloth or a paper base material with an insulating resin. The other insulating layers 12B and 12C may be made by impregnating a glass fiber cloth or the like with an insulating resin, or may be formed of only an insulating resin. Examples of the insulating resin include an epoxy resin, a phenol resin, a fluorine resin, and a polyimide resin. As an example of the insulating layer 12, the thickness is about 30 to 200 μm.

薄膜導体14は、回路パターンが形成された銅箔である。薄膜導体14は、絶縁層12A,12B,12Cの表面に接着されている。絶縁層12A,12B,12Cと薄膜導体14とは交互に積層されており、積層数は回路設計に合わせて適宜変更される。説明の便宜上、図面において薄膜導体14が絶縁層12A,12B,12Cの全面に積層されているように示されるが、実際は回路パターンになっている。薄膜導体14の一例としては、厚みが約3μm以上である。   The thin film conductor 14 is a copper foil on which a circuit pattern is formed. The thin film conductor 14 is bonded to the surfaces of the insulating layers 12A, 12B, and 12C. The insulating layers 12A, 12B, 12C and the thin film conductors 14 are alternately stacked, and the number of stacked layers is appropriately changed according to the circuit design. For convenience of explanation, the thin film conductor 14 is shown as being laminated on the entire surface of the insulating layers 12A, 12B, and 12C in the drawing, but it is actually a circuit pattern. As an example of the thin film conductor 14, the thickness is about 3 μm or more.

有底穴18は、多層積層体16の表面から所定の絶縁層12Aまたは12Bに達するまで開けられている。有底穴18の底は、薄膜導体14を貫いて所定の絶縁層12Aまたは12Bの表面に達したところにある。有底穴18の側面部分の内径は一定である。これは、後述するようにドリルを使用して開けた穴であるからである。有底穴18の一例としては、直径約50μm以上である。   The bottomed hole 18 is opened from the surface of the multilayer laminate 16 until reaching a predetermined insulating layer 12A or 12B. The bottom of the bottomed hole 18 is located at a point where it penetrates the thin film conductor 14 and reaches the surface of the predetermined insulating layer 12A or 12B. The inner diameter of the side surface portion of the bottomed hole 18 is constant. This is because the holes are drilled using a drill as will be described later. An example of the bottomed hole 18 has a diameter of about 50 μm or more.

なお、説明の便宜上、図1では有底穴18の底は平面になっているが、実際は、ドリル19の先端は切刃19aによって尖っているため、有底穴18の底面はドリル19の先端の切刃19aの形状に合った円錐形状になっている(図2(a))。後述するように、ドリル19がかなり微細であり、かつ、先端角も広いので、L2は0か0に近い。   For convenience of explanation, the bottom of the bottomed hole 18 is flat in FIG. 1, but in fact, the tip of the drill 19 is pointed by the cutting edge 19 a, so the bottom of the bottomed hole 18 is the tip of the drill 19. The conical shape matches the shape of the cutting edge 19a (FIG. 2 (a)). As will be described later, since the drill 19 is quite fine and the tip angle is wide, L2 is 0 or close to 0.

有底穴18の数は回路設計によって決定されるため、1つの場合もあれば複数の場合もある。各有底穴18の深さも、回路設計によって決定される。例えば、上面から2層目の絶縁層12Bまで達する有底穴18と3層目の絶縁層12Aまで達する有底穴18が混在する場合がある。   Since the number of the bottomed holes 18 is determined by the circuit design, there may be one or more holes. The depth of each bottomed hole 18 is also determined by the circuit design. For example, a bottomed hole 18 reaching the second insulating layer 12B from the upper surface and a bottomed hole 18 reaching the third insulating layer 12A may be mixed.

有底穴18の内面には導体メッキ20が施されている。導体メッキ20の厚みは、薄膜導体14と同じかほぼ同じ厚みであるが、説明の便宜上、以下、同じ厚みとする。これは、メッキ処理時の条件などによって微妙にメッキ厚が変化するためである。有底穴18の底が導体メッキ20のみで、薄膜導体14と導体メッキ20の2層構造ではない。これにより、インピーダンス整合が取りやすく、予測できないノイズの発生を防ぐことができる。   Conductor plating 20 is applied to the inner surface of the bottomed hole 18. The thickness of the conductor plating 20 is the same as or substantially the same as that of the thin film conductor 14, but for the sake of convenience of explanation, the thickness is hereinafter assumed to be the same. This is because the plating thickness slightly changes depending on the conditions during the plating process. The bottom of the bottomed hole 18 is only the conductor plating 20, and is not a two-layer structure of the thin film conductor 14 and the conductor plating 20. As a result, impedance matching can be easily performed and generation of unpredictable noise can be prevented.

次に、多層配線板10の製造方法について説明する。多層配線板10の製造方法は以下の通りである。(1)複数の絶縁層12A,12B,12Cと薄膜導体14とを交互に積層し、多層積層体16を形成する(図3(a))。(2)多層積層体16の表面から所定の絶縁層12Aに達するまで、ドリルによって有底穴18を開ける(図3(b))。(3)有底穴18の内面に導体メッキ20をおこなう(図3(c))。   Next, a method for manufacturing the multilayer wiring board 10 will be described. The manufacturing method of the multilayer wiring board 10 is as follows. (1) A plurality of insulating layers 12A, 12B, and 12C and thin film conductors 14 are alternately laminated to form a multilayer laminate 16 (FIG. 3A). (2) The bottomed hole 18 is opened with a drill until reaching the predetermined insulating layer 12A from the surface of the multilayer laminate 16 (FIG. 3B). (3) Conductor plating 20 is performed on the inner surface of the bottomed hole 18 (FIG. 3C).

上記(1)は、複数の絶縁層12と複数の薄膜導体14とを準備し、それらを交互に重ね合わせて接着剤で接着させる。接着させるときは、重ね合わされた絶縁層12と薄膜導体14を加熱しながら加圧する。従来とは異なり、複数の絶縁層12と薄膜導体14を一度に重ね合わせて接着している。従来よりも工程数が少なくなり、温度変化などによる位置合わせの誤差が生じにくくなる。   In the above (1), a plurality of insulating layers 12 and a plurality of thin film conductors 14 are prepared, and they are alternately overlapped and bonded with an adhesive. When bonding, the laminated insulating layer 12 and thin film conductor 14 are pressurized while heating. Unlike the prior art, a plurality of insulating layers 12 and thin film conductors 14 are overlapped and bonded at a time. The number of processes is smaller than in the prior art, and alignment errors due to temperature changes are less likely to occur.

また、絶縁層12と薄膜導体14とを接着させた基板を複数準備し、その基板を重ね合わせて接着させても良い。コアとなる基板は、絶縁層12Aの両面に薄膜導体14を有する両面板であっても良い。基板を準備する場合、薄膜導体14は銅箔以外に、銅メッキであっても良い。   Alternatively, a plurality of substrates on which the insulating layer 12 and the thin film conductor 14 are bonded may be prepared, and the substrates may be stacked and bonded. The substrate serving as the core may be a double-sided board having the thin film conductors 14 on both sides of the insulating layer 12A. When preparing a substrate, the thin film conductor 14 may be copper plated in addition to the copper foil.

上記(2)は、例えば、直径100μm、長さ300μm、先端角120°のドリルを回転軸に取り付け、ドリルのぶれが発生しないようにして穴開け加工をおこなう。求められる有底穴18の形状に応じて適宜ドリルを取り替えるが、本願は例示したような非常に微細なドリルを使用する。従来はレーザーによって穴開け加工をおこなっていたが、本発明は機械的なドリルで穴開け加工をおこなう。したがって、上記(1)で複数の絶縁層12と薄膜導体14を一度に重ね合わせても、途中の薄膜導体14を貫通させることができる。   In the above (2), for example, a drill having a diameter of 100 μm, a length of 300 μm, and a tip angle of 120 ° is attached to the rotating shaft, and drilling is performed so that the drill does not run out. The drill is appropriately replaced according to the required shape of the bottomed hole 18, but this application uses a very fine drill as illustrated. Conventionally, drilling is performed by laser, but the present invention performs drilling by a mechanical drill. Therefore, even if the plurality of insulating layers 12 and the thin film conductors 14 are overlapped at a time in the above (1), the intermediate thin film conductors 14 can be penetrated.

所定の絶縁層12Aの表面に達したときに穴開け加工を終了するために以下の方法を採用する。(A)所定の薄膜導体14bまたはドリルにパルスなどの電気信号を印加する。(B)所定の薄膜導体14bまたはドリルに電気信号の検知機器を取り付ける。(C)所定の薄膜導体14bとドリルとの通電を検知する。(D)通電を検知してからドリルが所定の距離を送られた時点で穴開けを終了する。   In order to end the drilling process when the surface of the predetermined insulating layer 12A is reached, the following method is adopted. (A) An electric signal such as a pulse is applied to a predetermined thin film conductor 14b or a drill. (B) An electric signal detection device is attached to a predetermined thin film conductor 14b or a drill. (C) Energization of the predetermined thin film conductor 14b and the drill is detected. (D) When the energization is detected, the drilling is terminated when the drill is sent a predetermined distance.

図3(b)では符号14bを上記(A)の所定の薄膜導体としている。この所定の薄膜導体14bは、有底穴18の底となる絶縁層12Aの表面にある薄膜導体14bである。上記(B)では、所定の薄膜導体14bまたはドリルに電気信号を検知するための電流計などを取り付けるが、電流計などが取り付けられるのは、上記(A)において電気信号が印加されなかった方である。   In FIG. 3B, reference numeral 14b is the predetermined thin film conductor of (A). The predetermined thin film conductor 14 b is a thin film conductor 14 b on the surface of the insulating layer 12 </ b> A serving as the bottom of the bottomed hole 18. In (B) above, an ammeter or the like for detecting an electrical signal is attached to the predetermined thin film conductor 14b or drill, but the ammeter or the like is attached if the electrical signal is not applied in (A). It is.

穴開け加工が進行するとドリルが所定の薄膜導体14bに到達する。そのとき、所定の薄膜導体14bとドリルとが接触し、通電する。電流計などで上記(C)の通電を検知した後、薄膜導体14bを貫通させれば穴開け加工が完了することとなる。したがって、上記(D)のように、通電を検知した後、ドリルが薄膜導体14bの厚みだけ進んだ時点で穴開け加工を終了し、多層配線板10からドリルを離す。   As the drilling progresses, the drill reaches the predetermined thin film conductor 14b. At that time, the predetermined thin film conductor 14b and the drill come into contact with each other and energize. After detecting the energization of (C) with an ammeter or the like, if the thin film conductor 14b is penetrated, the drilling process is completed. Therefore, as described in (D) above, after the energization is detected, the drilling process is terminated when the drill advances by the thickness of the thin film conductor 14b, and the drill is released from the multilayer wiring board 10.

図2(b)に示すように、ドリル19の切刃19aは尖っている。そのため、上記(D)は、実際は薄膜導体14の膜厚L1にドリル19の切刃19aの長さL2を足し合わせた距離をドリル19が進むこととなる(図2(a))。説明の便宜上、ドリル19が薄膜導体14の膜厚と同じだけ進んだ時点で穴開け加工を終了することとする。これは、実際にはドリル19がかなり微細であり、上記L2が0または0にかなり近くなるからである。   As shown in FIG. 2B, the cutting edge 19a of the drill 19 is sharp. Therefore, in (D) above, the drill 19 actually advances a distance obtained by adding the length L2 of the cutting edge 19a of the drill 19 to the film thickness L1 of the thin film conductor 14 (FIG. 2 (a)). For convenience of explanation, it is assumed that the drilling process is finished when the drill 19 has advanced by the same thickness as the thin film conductor 14. This is because the drill 19 is actually very fine and the L2 is 0 or close to 0.

上記(A)〜(D)のステップであれば、微細な穴開け加工であっても所定の薄膜導体14bを貫通した時点で穴開け加工が終了できる。最初からドリル19の進む距離を設定するよりも穴開け加工の精度を高めることができる。なお、穴開け加工の精度が高ければ、予めドリル19を進める距離を決定しておき、ドリル19がその距離を進んだ時点で穴開け加工が終了することも可能である。   With the steps (A) to (D) described above, the drilling process can be completed when the predetermined thin film conductor 14b is penetrated even if the drilling process is fine. It is possible to increase the accuracy of the drilling process rather than setting the distance traveled by the drill 19 from the beginning. If the accuracy of the drilling process is high, it is possible to determine the distance to advance the drill 19 in advance and finish the drilling process when the drill 19 advances the distance.

上記(3)の導体メッキは、無電解メッキをおこなった後、電解メッキをおこない、所望の導体メッキ20を形成する。必要に応じてメッキレジストを形成し、不必要な箇所にメッキが施されないようにする。メッキが終了した後、メッキレジストを剥離する。   In the conductor plating (3) above, after electroless plating is performed, electrolytic plating is performed to form a desired conductor plating 20. A plating resist is formed as necessary so that unnecessary portions are not plated. After the plating is finished, the plating resist is peeled off.

上記(3)において、薄膜導体14bの厚みと同じ厚みの導体メッキをおこなう。導体メッキ20を薄膜導体14bと同じ厚みになるようにおこなえば、有底穴18の内面は薄膜導体14bと同じ厚みとなる。本願は、上記のように穴開け加工時に薄膜導体14bを貫通しているため、有底穴18の底は2層構造にはならない。薄膜導体14bとほぼ同一平面に有底穴18の底の導体メッキ20が施される。インピーダンス整合に誤差が生じにくく、従来に比べて回路設計が簡単になる。   In the above (3), conductor plating having the same thickness as that of the thin film conductor 14b is performed. If the conductor plating 20 is performed to have the same thickness as the thin film conductor 14b, the inner surface of the bottomed hole 18 has the same thickness as the thin film conductor 14b. Since the present application penetrates the thin film conductor 14b at the time of drilling as described above, the bottom of the bottomed hole 18 does not have a two-layer structure. Conductor plating 20 at the bottom of the bottomed hole 18 is applied to substantially the same plane as the thin film conductor 14b. Errors in impedance matching are less likely to occur, and circuit design is simpler than in the past.

以上のように本発明は従来とは異なり、レーザーではなく機械式ドリルで穴開け加工をおこなっている。そのため、1つの有底穴18を形成して導体メッキをおこなうために、1回の穴開けとメッキをおこなうだけであり、従来と比較して製造が容易である。穴開け加工の際、有底穴18の底部の薄膜導体14bも除去することができるため、導体メッキ20を施しても薄膜導体14bと重なることはない。インピーダンス整合が取りやすく、浮遊容量などの問題が生じにくい。   As described above, the present invention is different from the prior art in that a hole is drilled with a mechanical drill instead of a laser. Therefore, in order to form one bottomed hole 18 and perform conductor plating, only one drilling and plating are performed, and manufacturing is easier than in the prior art. Since the thin film conductor 14b at the bottom of the bottomed hole 18 can also be removed during the drilling process, even if the conductor plating 20 is applied, it does not overlap the thin film conductor 14b. Impedance matching is easy and problems such as stray capacitance are less likely to occur.

以上、本発明の実施形態を説明したが、本発明は上記の実施形態に限定されない。例えば、図4(a)のように、設計によって薄膜導体14の製造時に空間部(クリアランス)22を設ける。本明細書において、空間部22はドリルの断面よりも大きな円形の非導体部分である。図4(b)のように、穴開け加工の際、ドリル19が空間部22の内方を通過するようにする。空間部22を有する薄膜導体14は有底穴18の内面に露出することはない。図4(c)のように、有底穴18の内面に導体メッキ20が施されたとき、有底穴18の内面に露出した薄膜導体14同士が導体メッキ20で接続される。従来であれば、スタックドビアによって複数層を電気接続していたが、本願は1回の穴開け加工と導体メッキによって所望の薄膜導体同士を接続することができ、非常に製造が簡単である。オープンスタブの調節も容易である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. For example, as shown in FIG. 4A, a space portion (clearance) 22 is provided when the thin film conductor 14 is manufactured by design. In the present specification, the space 22 is a circular non-conductive portion larger than the cross section of the drill. As shown in FIG. 4B, the drill 19 passes through the inside of the space 22 during the drilling process. The thin film conductor 14 having the space 22 is not exposed on the inner surface of the bottomed hole 18. As shown in FIG. 4C, when the conductor plating 20 is applied to the inner surface of the bottomed hole 18, the thin film conductors 14 exposed on the inner surface of the bottomed hole 18 are connected by the conductor plating 20. Conventionally, a plurality of layers are electrically connected by stacked vias. However, in the present application, desired thin film conductors can be connected to each other by one drilling process and conductor plating, and the manufacturing is very simple. Easy adjustment of open stubs.

上述した空間部22は、リング状の空間部23に置き換えることも可能である。この場合、リング状の空間部23の内方にある円形状の薄膜導体14をドリルが貫通する。ドリルの貫通後、薄膜導体14の一部がリング状になって残ることとなる。導体メッキ20と残った薄膜導体14とが接続されるが、リング状の空間部23があることによって、導体メッキ20は薄膜導体14の本質的部分である回路パターンとは分離されている。円形状の空間部22ではなく、リング状の空間部23とする理由としては、有底穴18の開口部分にピンを接触させて計測を行う場合などに、導体メッキ20だけでは脆く、薄膜導体14の一部があることによって導体メッキ20の強度を高めるためである。したがって、多層積層体16の表面にリング状の空間部23を設けることが多いが、内層部分にリング状の空間部23を設けても良い。   The space portion 22 described above can be replaced with a ring-shaped space portion 23. In this case, the drill penetrates the circular thin film conductor 14 located inside the ring-shaped space 23. After penetration of the drill, a part of the thin film conductor 14 remains in a ring shape. The conductor plating 20 and the remaining thin film conductor 14 are connected, but the conductor plating 20 is separated from the circuit pattern that is an essential part of the thin film conductor 14 by the presence of the ring-shaped space 23. The reason why the ring-shaped space portion 23 is used instead of the circular space portion 22 is that the conductor plating 20 alone is fragile when the measurement is performed by bringing a pin into contact with the opening portion of the bottomed hole 18, and the thin-film conductor. This is to increase the strength of the conductor plating 20 due to the presence of a portion of 14. Therefore, although the ring-shaped space part 23 is often provided on the surface of the multilayer laminate 16, the ring-shaped space part 23 may be provided in the inner layer part.

また、有底穴18の一部分のみに導体メッキ20を施しても良い。例えば、図5(a)のように、多層積層体16の表層から所定数の薄膜導体14cが空間部22を有している。薄膜導体14cと導体メッキ20は接続されず、その箇所に導体メッキを施すと、その箇所はオープンスタブとなる。すなわち、空間部によってオープンスタブを形成できる。図5(b)であれば、導体メッキに接続される薄膜導体14dより開口側に導体メッキを施すと、その箇所がオープンスタブ21となる。インピーダンス整合をおこなうために、設計時にオープンスタブ21の長さを設計する。この場合、図5(b)のように穴開け加工をおこなった後、オープンスタブ21の長さに合わせて、ドリルで除去する。なお、図5(c)では、オープンスタブの長さは0または0にかなり近い。本願は、有底穴18の底が導体メッキ20だけであるため、設計時のオープンスタブの長さでインピーダンス整合をおこなうことができ、不要なノイズの発生を防止できる。   Further, the conductor plating 20 may be applied only to a part of the bottomed hole 18. For example, as shown in FIG. 5A, a predetermined number of thin film conductors 14 c from the surface layer of the multilayer laminate 16 have space portions 22. The thin film conductor 14c and the conductor plating 20 are not connected. When conductor plating is applied to the portion, the portion becomes an open stub. That is, an open stub can be formed by the space. In the case of FIG. 5B, when the conductor plating is performed on the opening side from the thin film conductor 14d connected to the conductor plating, the portion becomes the open stub 21. In order to perform impedance matching, the length of the open stub 21 is designed at the time of design. In this case, after drilling as shown in FIG. 5 (b), it is removed with a drill in accordance with the length of the open stub 21. In FIG. 5C, the length of the open stub is 0 or quite close to 0. In the present application, since the bottom of the bottomed hole 18 is only the conductor plating 20, impedance matching can be performed with the length of the open stub at the time of design, and generation of unnecessary noise can be prevented.

図6(a)に示すように、有底穴18の底の部分にのみ導体メッキ20を施した場合、図6(b)のように、有底穴18の開口に座繰り24をおこなうことも可能である。   When conductor plating 20 is applied only to the bottom portion of the bottomed hole 18 as shown in FIG. 6A, the counterbore 24 is performed at the opening of the bottomed hole 18 as shown in FIG. 6B. Is also possible.

有底穴18の必要な箇所にのみ導体メッキ20をおこなったが、図7(a)のように有底穴18の内面の全てに導体メッキ20を施した後、図7(b)のようにバックドリルによって有底穴18の開口から不必要な導体メッキ20を除去することも可能である。回路設計時のオープンスタブの長さに合わせて導体メッキ20の長さを調節する。図5の場合は、導体メッキ20を施すときにオープンスタブの長さを調節し、図7の場合は、導体メッキ20を施した後にオープンスタブの長さを調節している。   The conductor plating 20 was performed only on the necessary portion of the bottomed hole 18, but after the conductor plating 20 was applied to the entire inner surface of the bottomed hole 18 as shown in FIG. 7A, as shown in FIG. 7B. It is also possible to remove the unnecessary conductor plating 20 from the opening of the bottomed hole 18 by a back drill. The length of the conductor plating 20 is adjusted according to the length of the open stub at the time of circuit design. In the case of FIG. 5, the length of the open stub is adjusted when the conductor plating 20 is applied. In the case of FIG. 7, the length of the open stub is adjusted after the conductor plating 20 is applied.

その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明の多層配線板の断面図である。It is sectional drawing of the multilayer wiring board of this invention. (a)は有底穴の底部分の拡大図であり、(b)はドリルの拡大図である。(A) is an enlarged view of the bottom part of a bottomed hole, (b) is an enlarged view of a drill. 多層配線板の創造方法を示す図であり、(a)は絶縁層と薄膜導体とを交互に積層した図であり、(b)は有底穴を開けた図であり、(c)は有底穴の内面にメッキを施した図である。It is a figure which shows the creation method of a multilayer wiring board, (a) is the figure which laminated | stacked the insulating layer and the thin film conductor alternately, (b) is the figure which opened the bottomed hole, (c) is an existence. It is the figure which plated the inner surface of the bottom hole. 薄膜導体に空間部を設けた図であり、(a)は空間部を有する薄膜導体と絶縁層とを積層した図であり、(b)空間部の内方を穴開け加工した図であり、(c)は有底穴にメッキを施した図である。It is a diagram in which a space portion is provided in a thin film conductor, (a) is a diagram in which a thin film conductor having a space portion and an insulating layer are laminated, (b) is a diagram in which the inside of the space portion is drilled, (C) is the figure which plated the bottomed hole. 薄膜導体に空間部を設けた図であり、(a)は空間部を有する薄膜導体と絶縁層とを積層した図であり、(b)空間部の内方を穴開け加工した図であり、(c)は有底穴の必要な箇所にメッキを施した図である。It is a diagram in which a space portion is provided in a thin film conductor, (a) is a diagram in which a thin film conductor having a space portion and an insulating layer are laminated, (b) is a diagram in which the inside of the space portion is drilled, (C) is the figure which plated the required part of a bottomed hole. 座繰りを施した図であり、(a)は座繰りをおこなう前の図であり、(b)は座繰りをおこなった後の図である。It is the figure which gave the countersink, (a) is a figure before performing a countersink, (b) is the figure after performing a countersink. バックドリルをおこなう図であり、(a)はバックドリルをおこなう前の図であり、(b)はバックドリルをおこなった後の図である。It is a figure which performs a back drill, (a) is a figure before performing a back drill, (b) is a figure after performing a back drill. 従来の多層配線板の製造方法を示す図であり、(a)は両面板の一面に絶縁層を積層した図であり、(b)はレーザーで穴開けをおこなった図であり、(c)はメッキをおこなった図である。It is a figure which shows the manufacturing method of the conventional multilayer wiring board, (a) is the figure which laminated | stacked the insulating layer on the one surface of a double-sided board, (b) is the figure which drilled with the laser, (c) Is a diagram of plating. 従来の多層配線板の製造途中に発生する不良を示した図であり、(a)は残渣が残ったビアホールを示す図であり、(b)は残渣を除去したときにビアホールが変形した図であり、(c)はレーザー照射が不完全な図である。It is the figure which showed the defect which generate | occur | produces in the middle of manufacture of the conventional multilayer wiring board, (a) is a figure which shows the via hole in which the residue remained, (b) is the figure which the via hole deform | transformed when the residue was removed. Yes, (c) is a diagram showing incomplete laser irradiation. スタックドビアの断面を示す図である。It is a figure which shows the cross section of a stacked via.

符号の説明Explanation of symbols

10,10b,10c,10d,10e,30:多層配線板
12:絶縁層
14:薄膜導体
16:多層積層体
18:有底穴
19:ドリル
20,36:導体メッキ
22,23:空間部(クリアランス)
24:座繰り
34:ビアホール
38:残渣
10, 10b, 10c, 10d, 10e, 30: multilayer wiring board 12: insulating layer 14: thin film conductor 16: multilayer laminate 18: bottomed hole 19: drill 20, 36: conductor plating 22, 23: space (clearance )
24: Counterbore 34: Via hole 38: Residue

Claims (10)

複数の絶縁層と薄膜導体とが交互に積層された多層積層体と、
前記多層積層体の表面から所定の絶縁層に達するまで開けられ、内径を一定にした有底穴と、
前記有底穴の内面に形成された導体メッキと、
を含む多層配線板。
A multilayer laminate in which a plurality of insulating layers and thin film conductors are alternately laminated;
A bottomed hole that is opened from the surface of the multilayer laminate to a predetermined insulating layer and has a constant inner diameter;
Conductor plating formed on the inner surface of the bottomed hole;
Including multilayer wiring board.
前記多層積層体の表面から所定の絶縁層までに積層された薄膜導体において、所定の薄膜導体が有底穴の断面よりも大きな面積の空間部を備え、前記有底穴が空間部の内方を通過し、前記導体メッキが有底穴の内面に露出した薄膜導体同士を接続する請求項1の多層配線板。 In the thin film conductor laminated from the surface of the multilayer laminate to a predetermined insulating layer, the predetermined thin film conductor has a space portion having an area larger than the cross section of the bottomed hole, and the bottomed hole is inward of the space portion. The multilayer wiring board according to claim 1, wherein the thin film conductors that pass through the conductor and exposed to the inner surface of the bottomed hole are connected to each other. 前記多層積層体の表面から所定の絶縁層までに積層された薄膜導体において、所定の薄膜導体が有底穴の直径よりも大きな内径のリング状の空間部を備え、前記有底穴がリング状部分の内方を通過し、前記導体メッキが有底穴の内面に露出した薄膜導体同士を接続する請求項1または2の多層配線板。 In the thin film conductor laminated from the surface of the multilayer laminate to a predetermined insulating layer, the predetermined thin film conductor includes a ring-shaped space portion having an inner diameter larger than the diameter of the bottomed hole, and the bottomed hole is a ring shape 3. The multilayer wiring board according to claim 1, wherein the thin-film conductors that pass through the inside of the portion and have the conductor plating exposed at the inner surface of the bottomed hole are connected to each other. 前記有底穴は、前記所定の絶縁層の表面を底とする請求項1乃至3のいずれかの多層配線板。 The multilayer wiring board according to claim 1, wherein the bottomed hole has a surface of the predetermined insulating layer as a bottom. 前記導体メッキの厚みは、薄膜導体の厚みと同じである請求項1乃至4のいずれかの多層配線板。 The multilayer wiring board according to claim 1, wherein the thickness of the conductor plating is the same as the thickness of the thin film conductor. 絶縁層と薄膜導体とを複数回交互に積層し、多層積層体を形成するステップと、
前記多層積層体の表面から所定の絶縁層に達するまで、ドリルによって有底穴を開けるステップと、
前記有底穴の内面に導体メッキをおこなうステップと、
を含む多層配線板の製造方法。
Alternately stacking insulating layers and thin film conductors multiple times to form a multilayer stack;
Drilling a bottomed hole with a drill until reaching a predetermined insulating layer from the surface of the multilayer stack;
Conducting conductor plating on the inner surface of the bottomed hole;
The manufacturing method of the multilayer wiring board containing this.
前記多層積層体の表面から所定の絶縁層までに積層された薄膜導体において、所定の薄膜導体がドリルの断面よりも大きな面積の空間部を備え、前記有底穴を開けるステップは、ドリルが該所定の薄膜導体とは非接触で空間部を通過する請求項6の製造方法。 In the thin film conductor laminated from the surface of the multilayer laminate to a predetermined insulating layer, the predetermined thin film conductor includes a space portion having an area larger than a cross section of a drill, and the step of drilling the bottomed hole includes: The manufacturing method of Claim 6 which passes a space part without contact with a predetermined thin film conductor. 前記多層積層体の表面から所定の絶縁層までに積層された薄膜導体において、所定の薄膜導体がドリルの直径よりも大きな内径のリング状の空間部を備え、前記有底穴を開けるステップは、ドリルが該所定の薄膜導体のリング状の部分の内方を通過する請求項6または7の製造方法。 In the thin film conductor laminated from the surface of the multilayer laminate to the predetermined insulating layer, the predetermined thin film conductor includes a ring-shaped space portion having an inner diameter larger than the diameter of the drill, and the step of opening the bottomed hole includes: The manufacturing method according to claim 6 or 7, wherein the drill passes through the inside of the ring-shaped portion of the predetermined thin film conductor. 前記導体メッキをおこなうステップが、前記有底穴の内面に露出した薄膜導体同士を導体メッキによって接続する請求項7または8の製造方法。 The manufacturing method according to claim 7 or 8, wherein the conductor plating step connects the thin film conductors exposed on the inner surface of the bottomed hole by conductor plating. 前記導体メッキをおこなうステップが、前記薄膜導体の厚みと同じ厚みの導体メッキをおこなう請求項6乃至9のいずれかの製造方法。 The manufacturing method according to any one of claims 6 to 9, wherein the conductor plating step performs conductor plating having the same thickness as the thin film conductor.
JP2008136649A 2008-05-26 2008-05-26 Multilayer wiring board and its manufacturing method Withdrawn JP2009283836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136649A JP2009283836A (en) 2008-05-26 2008-05-26 Multilayer wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136649A JP2009283836A (en) 2008-05-26 2008-05-26 Multilayer wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009283836A true JP2009283836A (en) 2009-12-03

Family

ID=41453950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136649A Withdrawn JP2009283836A (en) 2008-05-26 2008-05-26 Multilayer wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009283836A (en)

Similar Documents

Publication Publication Date Title
JP6723156B2 (en) Method of forming plated through hole having high aspect ratio and highly accurate method of removing stub in printed circuit board
JP2007129180A (en) Printed wiring board, multilayer printed wiring board, and method of manufacturing same
JP2000101245A (en) Multilayer resin wiring board and its manufacture
JP2011134890A (en) Multilayer wiring board, method of manufacturing multilayer wiring board, and via fill method
US9756732B2 (en) Device embedded substrate and manufacturing method of device embedded substrate
WO2016136222A1 (en) Printed wiring board and method for manufacturing same
US20140166355A1 (en) Method of manufacturing printed circuit board
JP2010016335A (en) Metal laminate plate and manufacturing method thereof
WO2014119520A1 (en) Multilayer wiring plate and method for fabricating same
KR101170764B1 (en) Method for manufacturing Multi-layer circuit board
JP2017084914A (en) Printed wiring board and method of manufacturing the same
JP2009283836A (en) Multilayer wiring board and its manufacturing method
TW201422081A (en) Passive device embedded in substrate and substrate with passive device embedded therein
JP2005166764A (en) Multilayer printed wring board and its manufacturing method
JP2013074270A (en) Manufacturing method of rigid flexible printed wiring board
JP2007335631A (en) Manufacturing method of laminated wiring board
KR101055455B1 (en) Carrier member for substrate manufacturing and method for manufacturing substrate using same
JP2009060151A (en) Production process of laminated wiring board
JP2005183798A (en) Multilayer print-circuit board and its manufacturing method
JP5608262B2 (en) Printed circuit board and printed circuit board manufacturing method
JPH07221460A (en) Manufacture of multilater printed wiring board
KR100745520B1 (en) Multi-layered printed circuit board and the manufacturing method thereof
JP6963726B2 (en) Multi-layer wiring board and its manufacturing method
KR100567088B1 (en) Component inserting hole processing method from printed circuit board
JP2007288102A (en) Printed circuit board, multilayer printed circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802