JP2009280908A - Method for molding iron powder mixture for powder metallurgy - Google Patents

Method for molding iron powder mixture for powder metallurgy Download PDF

Info

Publication number
JP2009280908A
JP2009280908A JP2009103331A JP2009103331A JP2009280908A JP 2009280908 A JP2009280908 A JP 2009280908A JP 2009103331 A JP2009103331 A JP 2009103331A JP 2009103331 A JP2009103331 A JP 2009103331A JP 2009280908 A JP2009280908 A JP 2009280908A
Authority
JP
Japan
Prior art keywords
powder
carbon
iron
mold
based mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009103331A
Other languages
Japanese (ja)
Inventor
Takashi Kono
貴史 河野
Tomoshige Ono
友重 尾野
Yukiko Ozaki
由紀子 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009103331A priority Critical patent/JP2009280908A/en
Publication of JP2009280908A publication Critical patent/JP2009280908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for molding an iron powder mixture for powder metallurgy, capable of increasing density of a compact and reducing pressing force for taking out the compact from a die by improving lubricity between the die and the powder at molding of the compact, so as to improve product quality and reduce production cost. <P>SOLUTION: When molding the compact, a carbon molecule complex comprising ball-shaped carbon molecules and flat carbon molecules, which serves as a lubricant, is deposited onto an inner surface of the mold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉末冶金用鉄基混合粉末の成形方法に関し、特に該鉄基混合粉末を金型に装入して圧粉体を成形する際における金型と粉末との潤滑性の有利な向上を図ろうとするものである。   The present invention relates to a method for forming an iron-based mixed powder for powder metallurgy, and in particular, advantageously improves the lubricity between the mold and the powder when forming the green compact by inserting the iron-based mixed powder into a mold. It is going to plan.

粉末冶金プロセスでは、原料粉末を混合したのち、混合粉を移送して金型に充填し、加圧成形して製造した成形体(圧粉体)を金型から取り出し、必要に応じて焼結等の後処理を施す。
かかる粉末冶金プロセスにおいて、製品品質の向上と製造コストの低減を実現するためには、移送工程における粉末の高い流動性、加圧成形工程における高い圧縮性、さらには圧粉体を金型から抜き出す工程における低い抜出力、を同時に達成することが求められる。
In the powder metallurgy process, after mixing the raw material powder, the mixed powder is transferred and filled into the mold, and the molded product (green compact) produced by pressure molding is taken out of the mold and sintered as necessary. After-treatment is performed.
In such a powder metallurgy process, in order to improve product quality and reduce manufacturing costs, high powder flowability in the transfer process, high compressibility in the pressure molding process, and further, the green compact is extracted from the mold. It is required to simultaneously achieve a low output in the process.

たとえば、鉄基混合粉末の合金成分の一つである炭素の供給源として多用されるグラファイトは、層状の分子構造を有しているため、固体潤滑剤としての機能も発揮し、上記要件の実現に寄与する。従って、炭素系物質の潤滑機能については様々な検討がなされている。   For example, graphite, which is frequently used as a source of carbon, which is one of the alloy components of iron-based mixed powders, has a layered molecular structure, so it also functions as a solid lubricant and fulfills the above requirements. Contribute to. Accordingly, various studies have been made on the lubrication function of carbon-based materials.

たとえば、特許文献1には、粉末冶金用混合粉末がフラーレンを含有する場合に、粉末の高い流動性が達成されることが開示されている。
しかしながら、特許文献1には、フラーレンが、圧粉体の高密度化や圧粉体の抜出力低減に及ぼす効果については何ら言及されていない。
For example, Patent Document 1 discloses that when the mixed powder for powder metallurgy contains fullerene, high fluidity of the powder is achieved.
However, Patent Document 1 does not mention anything about the effect of fullerene on the densification of the green compact and the reduction of the output of the green compact.

特開2007−31744号公報JP 2007-31744 A

「三浦、津田、佐々木:トライポロジスト 第50巻 第7号 (2005) 第553〜556頁」“Miura, Tsuda, and Sasaki: Triplogist Vol. 50, No. 7 (2005), pp. 553-556”

本発明は、上記した現状に鑑み開発されたもので、圧粉体の成形に際し、金型と粉末との潤滑性を効果的に向上させることにより、圧粉体の高密度化と圧粉体の低抜出力を同時に実現し、製品品質の向上と製造コスト低減とを併せて達成することができる粉末冶金用鉄基混合粉末の成形方法を提案することを目的とする。   The present invention has been developed in view of the above-described situation, and in forming a green compact, by effectively improving the lubricity between the mold and the powder, the density of the green compact and the green compact are increased. An object of the present invention is to propose a method for forming an iron-based mixed powder for powder metallurgy, which can simultaneously achieve low output of power and improve product quality and reduce manufacturing costs.

さて、発明者らは、上記の目的を達成するためには、金型の内面に付着させる潤滑剤が重要である考え、種々の炭素系潤滑剤について検討を重ねた。
その結果、最近注目を浴びているナノ炭素のうち、ボール状炭素分子と板状炭素分子を組み合わせて炭素分子複合体として使用することにより、所期した目的が有利に達成されることの知見を得た。
The inventors considered that the lubricant attached to the inner surface of the mold is important in order to achieve the above object, and have studied various carbon-based lubricants.
As a result, among the nanocarbons that have recently been attracting attention, we have found that the intended purpose can be advantageously achieved by using a combination of ball-like carbon and plate-like carbon molecules as a carbon molecule complex. Obtained.

また、上記したように、ボール状炭素分子と板状炭素分子を組み合わせた炭素分子複合体を、鉄基混合粉末中にも適量配合することによって、上記の効果が一層向上することも併せて知見した。
本発明は上記の知見に立脚するものである。
In addition, as described above, it is also found that the above effect can be further improved by blending an appropriate amount of a carbon molecule composite in which ball-like carbon molecules and plate-like carbon molecules are combined in an iron-based mixed powder. did.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.粉末冶金用の鉄基混合粉末を、金型に装入し、加圧して圧粉体に成形するに際し、金型の内面に、潤滑剤として、ボール状炭素分子および板状炭素分子からなる炭素分子複合体を付着させることを特徴とする粉末冶金用鉄基混合粉末の成形方法。
That is, the gist configuration of the present invention is as follows.
1. When an iron-based mixed powder for powder metallurgy is charged into a mold and pressed into a green compact, carbon consisting of ball-shaped carbon molecules and plate-shaped carbon molecules is used as a lubricant on the inner surface of the mold. A method for forming an iron-based mixed powder for powder metallurgy, comprising attaching a molecular complex.

2.前記鉄基混合粉末中に、潤滑剤として、ボール状炭素分子および板状炭素分子からなる炭素分子複合体を配合したことを特徴とする上記1記載の粉末冶金用鉄基混合粉末の成形方法。 2. 2. The method for forming an iron-based mixed powder for powder metallurgy according to claim 1, wherein a carbon molecular complex composed of ball-like carbon molecules and plate-like carbon molecules is blended in the iron-based mixed powder as a lubricant.

3.前記炭素分子複合体の鉄基混合粉末全体に対する配合量が0.001〜3.0質量%であることを特徴とする上記2記載の粉末冶金用鉄基混合粉末の成形方法。 3. 3. The method for forming an iron-based mixed powder for powder metallurgy according to 2 above, wherein the blending amount of the carbon molecular composite with respect to the entire iron-based mixed powder is 0.001 to 3.0% by mass.

本発明に従い、圧粉体成形用の金型の内面に付着させる潤滑剤として、ボール状炭素分子と板状炭素分子を組み合わせた炭素分子複合体を用いることにより、圧粉体の高密度化と圧粉体の低抜出力化を同時に達成することができ、ひいては生産性の向上および製造コストの低減を実現することができる。   In accordance with the present invention, the use of a carbon molecule composite that combines ball-shaped carbon molecules and plate-like carbon molecules as a lubricant to be adhered to the inner surface of a mold for compacting makes it possible to increase the density of the compact. It is possible to simultaneously achieve a reduction in the output of the green compact, which in turn can improve productivity and reduce manufacturing costs.

以下、本発明を具体的に説明する。
まず、本発明で用いる各種炭素分子について説明する。
本発明において、ボール状炭素分子とは、主に炭素原子で構成されるクラスター類を指し、代表的なものとしてはC60,C70などのフラーレンが挙げられる。
また、板状炭素分子とは、炭素のネットワークが二次元平面的に配列した物質を指し、代表的なものとしてはグラフェン(単層)やグラファイト(多層)が挙げられる。
なお、これらの炭素分子にチューブ状炭素分子を追加して、ボール状炭素分子、チューブ状炭素分子および板状炭素分子のうちから選んだいずれか2種または3種からなる炭素分子複合体を付着させてもよい。ここに、チューブ状炭素分子とは、炭素のネットワークが単層管または多層管になった物質を指し、代表的なものとしてはカーボンナノチューブやカーボンナノホーンなどが挙げられる。
The present invention will be specifically described below.
First, various carbon molecules used in the present invention will be described.
In the present invention, the ball-like carbon molecule refers to clusters mainly composed of carbon atoms, and typical examples include fullerenes such as C 60 and C 70 .
The plate-like carbon molecule refers to a substance in which a carbon network is arranged two-dimensionally, and representative examples include graphene (single layer) and graphite (multilayer).
In addition, tube-like carbon molecules are added to these carbon molecules, and a carbon molecule complex composed of any two or three kinds selected from ball-like carbon molecules, tube-like carbon molecules and plate-like carbon molecules is attached. You may let them. Here, the tube-like carbon molecule refers to a substance in which a carbon network is a single-layer tube or a multi-layer tube, and representative examples include carbon nanotubes and carbon nanohorns.

本発明では、金型内面の潤滑剤として、上述した2種類の炭素分子を用いるが、かような炭素分子をただ単に付着させればいいというわけではなく、これらを複合させた炭素分子複合体として使用することが重要である。   In the present invention, the above-mentioned two types of carbon molecules are used as the lubricant on the inner surface of the mold. However, it is not necessary to simply attach such carbon molecules, but a carbon molecule composite obtained by combining these carbon molecules. It is important to use as

また、本発明では、鉄基粉末の流動性および圧縮性の一層の向上ならびに圧粉体の抜出力の一層の低減を目的として、上記した炭素分子複合体を鉄基粉末中に添加することもできる。
その際、炭素分子複合体の鉄基混合粉末全体に対する配合量は0.001〜3.0質量%程度とすることが好ましい。
というのは、炭素分子複合体の配合量が0.001質量%に満たないと、十分に満足いくほどの潤滑性が得られず、その結果、本願発明で所期したほど良好な高い流動性、高い粉末圧縮性および低い圧粉体の抜出力が望めず、一方3.0質量%を超えると、粉末圧縮性が劣化するからである。なお、成形体を焼結して得られる最終製品の強度や脆性を考慮すると、配合量は0.01〜2.0質量%とすることが好ましい。
In the present invention, for the purpose of further improving the fluidity and compressibility of the iron-based powder and further reducing the extraction force of the green compact, the above-described carbon molecular complex may be added to the iron-based powder. it can.
In that case, it is preferable that the compounding quantity with respect to the whole iron-base mixed powder of a carbon molecule composite shall be about 0.001-3.0 mass%.
This is because if the amount of the carbon molecular composite is less than 0.001% by mass, sufficient satisfactory lubricity cannot be obtained, and as a result, high fluidity, high as expected in the present invention, and high This is because powder compressibility and low green compact output cannot be expected, while if it exceeds 3.0% by mass, powder compressibility deteriorates. In consideration of the strength and brittleness of the final product obtained by sintering the compact, the blending amount is preferably 0.01 to 2.0% by mass.

上記したボール状炭素分子と板状炭素分子からなる炭素分子複合体は、例えば非特許文献1に記載されたC60分子封入グラファイトフィルムの製造技術を利用して製造することができる。すなわち、適正比率に調整したグラファイトとC60粉末を石英管に入れて真空密封したのち、適切な温度で熱処理を施してC60分子封入グラファイトフィルムを作製する。ついで、このフィルムを粉砕して粉末とするのである。
なお、上記したC60粉末に替えて、またはC60粉末と共に前記したチューブ状炭素分子を用いることもできる。
The carbon molecule composite composed of the above-mentioned ball-like carbon molecules and plate-like carbon molecules can be produced, for example, using the C 60 molecule-encapsulated graphite film production technique described in Non-Patent Document 1. That is, graphite and C 60 powder adjusted to an appropriate ratio are put in a quartz tube and vacuum-sealed, followed by heat treatment at an appropriate temperature to produce a C 60 molecule encapsulated graphite film. The film is then pulverized into a powder.
In addition, it replaces with above-mentioned C60 powder, or the above-mentioned tubular carbon molecule can also be used with C60 powder.

ここに、上記した炭素分子複合体を、離型剤として金型の内面に付着させる場合、粒径:0.01〜40μm 程度に粉砕した粉末を内壁にそのまま付着させることもできるが、アルコールや油脂等の溶媒中に分散させて付着させることがより好ましい。この際の付着量は、0.1〜5.0 mg/cm2程度とするのが好適である。
また、炭素分子複合体を、潤滑剤として鉄基粉末中に添加する場合、炭素分子複合体粉末の粒径は0.01〜40μm 程度とするのが好ましい。
というのは、炭素分子複合体粉末の粒径が0.01μm に満たないと、粉砕コストがかさむだけでなく、粉体のハンドリング(輸送、貯蔵)に支障をきたすおそれが大きく、一方40μm を超えると、鉄基混合粉末中において均一な分散ができなくなって、所望の粉体特性や成形性が得られなくなるおそれがあるからである。より好ましくは0.1〜20μm の範囲である。
Here, when the above-described carbon molecular complex is attached to the inner surface of the mold as a release agent, the powder pulverized to a particle size of about 0.01 to 40 μm can be directly attached to the inner wall. It is more preferable to disperse and adhere in the solvent. The amount of adhesion at this time is preferably about 0.1 to 5.0 mg / cm 2 .
When the carbon molecular composite is added as a lubricant to the iron-based powder, the carbon molecular composite powder preferably has a particle size of about 0.01 to 40 μm.
This is because if the particle size of the carbon molecular composite powder is less than 0.01 μm, not only the grinding cost will be increased, but also the handling of the powder (transportation, storage) is likely to be hindered, while if it exceeds 40 μm. This is because uniform dispersion in the iron-based mixed powder cannot be achieved, and desired powder characteristics and moldability may not be obtained. More preferably, it is in the range of 0.1 to 20 μm.

なお、上記した炭素分子複合体におけるボール状炭素分子と板状炭素分子の配合比については、例えば原料であるグラファイトとC60粉末の配合割合を調整することによって、適宜変更することができるが、本発明ではこれらの配合比をボール状炭素分子:板状炭素分子=10:90〜90:10程度とすることが好ましい。
というのは、ボール状炭素分子の配合比が0.1に満たないと、炭素分子複合体の生成量が十分でないため抜出力が上昇し、一方板状炭素分子の配合比が0.1に満たないと、同様の理由によりやはり抜出力が上昇するからである。
In addition, the blending ratio of the ball-like carbon molecule and the plate-like carbon molecule in the above-described carbon molecule composite can be appropriately changed by adjusting the blending ratio of graphite and C 60 powder as raw materials, In the present invention, these compounding ratios are preferably about ball-shaped carbon molecules: plate-like carbon molecules = 10: 90 to 90:10.
This is because if the compounding ratio of the ball-shaped carbon molecules is less than 0.1, the output is increased because the amount of the carbon molecule composite is not sufficient, while the compounding ratio of the plate-like carbon molecules is less than 0.1, This is because for the same reason, the output is also increased.

本発明において、鉄基粉末としては、アトマイズ鉄粉や還元鉄粉などの純鉄粉、または部分拡散合金化鋼粉および完全合金化鋼粉、さらには完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉などが例示される。   In the present invention, as iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, or partially diffused alloyed steel powder and fully alloyed steel powder, and further partially diffused alloy components in fully alloyed steel powder. The hybrid steel powder etc. which were made to be illustrated are illustrated.

また、合金用粉末としては、黒鉛粉末、Cu,Mo,Niなどの金属粉末、ボロン粉末および亜酸化銅粉末などが例示される。これらの合金用粉末を鉄基粉末に混合させることにより焼結体の強度を上昇させることができる。
上記した合金用粉末の配合量は、鉄基混合粉末中0.1〜10質量%程度とすることが好ましい。というのは、合金用粉末を0.1質量%以上配合することにより、得られる焼結体の強度が有利に向上し、一方10質量%を超えると焼結体の寸法精度が低下するからである。
Examples of the alloy powder include graphite powder, metal powder such as Cu, Mo, and Ni, boron powder, and cuprous oxide powder. The strength of the sintered body can be increased by mixing these alloy powders with the iron-based powder.
The amount of the alloy powder described above is preferably about 0.1 to 10% by mass in the iron-based mixed powder. This is because the strength of the obtained sintered body is advantageously improved by blending the alloy powder in an amount of 0.1% by mass or more, while the dimensional accuracy of the sintered body is lowered when the amount exceeds 10% by mass.

なお、本発明では、上記した添加材の他、常法に従って、脂肪酸アミドや金属石鹸のような結合剤(バインダー)や潤滑剤、さらにはMnS等の切削性改善粉末などを添加できることはいうまでもない。   In the present invention, in addition to the above-mentioned additives, it is needless to say that a binder (binder) such as fatty acid amide or metal soap, a lubricant, and a machinability improving powder such as MnS can be added according to a conventional method. Nor.

次に、本発明に従う鉄基混合粉末の成形方法について説明する。
本発明では、圧粉体の成形に先立ち、金型の内面に所定量の炭素分子複合体を付着させておく。この付着に際しては、刷毛などにより炭素分子複合体を金型内面に直接付着させることができる。また、炭素分子複合体をアルコールや油脂等の媒体に分散させた分散液を、金型内面に噴霧等により付着させることもできる。なお、ここで付着とは、鉄基混合粉末と金型との間に炭素分子複合体を配置させることを指し、金型に強固に結合させる必要はない。
Next, a method for forming the iron-based mixed powder according to the present invention will be described.
In the present invention, a predetermined amount of a carbon molecular complex is adhered to the inner surface of the mold prior to molding the green compact. In this attachment, the carbon molecular complex can be directly attached to the inner surface of the mold by a brush or the like. Moreover, the dispersion liquid which disperse | distributed carbon molecule composites to media, such as alcohol and fats, can also be made to adhere to a metal mold | die inner surface by spraying etc. Here, the adhesion means that a carbon molecular complex is disposed between the iron-based mixed powder and the mold, and does not need to be firmly bonded to the mold.

ついで、上記した金型内に鉄基混合粉末を装入し、加圧して成形体とする。なお、成形に際しては、常温で成形することができる。とはいえ、鉄基混合粉末や金型を加熱しておくことは有利である。加熱雰囲気で成形を行う場合、鉄基混合粉末や金型の温度は100℃未満とすることが好ましい。というのは、本発明に従う鉄基混合粉末は圧縮性に富むので100℃未満の温度でも優れた成形性を示し、また100℃以上になると酸化による劣化が懸念されるからである。   Next, the iron-based mixed powder is charged into the above-described mold and pressed to obtain a molded body. In addition, it can shape | mold at normal temperature in the case of shaping | molding. However, it is advantageous to heat the iron-based mixed powder and the mold. When molding in a heated atmosphere, the temperature of the iron-based mixed powder and the mold is preferably less than 100 ° C. This is because the iron-based mixed powder according to the present invention is excellent in compressibility and exhibits excellent moldability even at a temperature of less than 100 ° C., and when it exceeds 100 ° C., there is a concern about deterioration due to oxidation.

また、炭素分子複合体を鉄基粉末中に配合する場合には、鉄基粉末に、予め所定量の炭素分子複合体を、結合剤、潤滑剤などの添加材や、さらに必要に応じて合金用粉末と共に混合しておく。なお、上記した炭素分子複合体や結合剤、潤滑剤などの添加材は、必ずしも全量を一度に添加する必要はなく、一部のみを添加して1次混合を行ったのち、残部を添加して2次混合することもできる。
また、混合手段としては、特に制限はなく従来から公知の混合機いずれもが使用できるが、加熱が容易な、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機などは特に有利に適合する。
In addition, when the carbon molecular composite is blended in the iron-based powder, a predetermined amount of the carbon molecular composite is added to the iron-based powder in advance, an additive such as a binder and a lubricant, and an alloy if necessary. Mix with powder for use. In addition, it is not always necessary to add all of the above-described additives such as carbon molecular composites, binders, and lubricants at the same time. After adding only a part and performing primary mixing, the remainder is added. And secondary mixing.
The mixing means is not particularly limited and any conventionally known mixer can be used. However, a high-speed bottom stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, and a cone that can be easily heated can be used. A planetary screw type mixer or the like is particularly advantageously adapted.

次に、本発明に従い成形した圧粉体に、焼結処理を施して、高密度の焼結体とする。焼結処理については、特に限定されることはなく、従来公知の焼結処理方法いずれもが好適に使用できる。また、焼結処理後に、ガス浸炭熱処理や浸炭窒化処理等の熱処理を適用することも可能である。   Next, the green compact molded according to the present invention is subjected to a sintering treatment to obtain a high-density sintered body. The sintering treatment is not particularly limited, and any conventionally known sintering treatment method can be suitably used. It is also possible to apply a heat treatment such as a gas carburizing heat treatment or a carbonitriding treatment after the sintering treatment.

鉄基粉末として、純鉄粉(平均粒径:約80μmのアトマイズ鉄粉)と、この純鉄粉の表面に有機結合剤を介して合金用粉末を付着させた合金成分外装鉄粉との2種類を用意した。合金用粉末は、銅粉末(平均粒径:25μm):2mass%と黒鉛粉末(平均粒径:5μm):0.8mass%の2種類とした。また、有機結合剤としては、ステアリン酸モノアミド:0.05mass%およびエチレンビスステアリン酸アミド:0.05mass%を用いた。なお、これらの添加比率はいずれも、鉄基粉末全体に占める比率である。
別途、前掲非特許文献1に記載の技術を用いて製造したボール状炭素分子と板状炭素分子からなる炭素分子複合体粉末(以下、粉末Aという)を準備した。この粉末Aの粒径は5μm 、またボール状炭素分子と板状炭素分子の配合比は70:30であった。
As iron-based powder, pure iron powder (atomized iron powder having an average particle size of about 80 μm) and alloy component-coated iron powder in which alloy powder is attached to the surface of this pure iron powder via an organic binder Kinds were prepared. Two types of alloy powders were used: copper powder (average particle size: 25 μm): 2 mass% and graphite powder (average particle size: 5 μm): 0.8 mass%. As organic binders, stearic acid monoamide: 0.05 mass% and ethylenebisstearic acid amide: 0.05 mass% were used. In addition, all of these addition ratios are ratios which occupy for the whole iron-based powder.
Separately, a carbon molecule composite powder (hereinafter referred to as powder A) composed of ball-like carbon molecules and plate-like carbon molecules produced using the technique described in Non-Patent Document 1 described above was prepared. The particle size of this powder A was 5 μm, and the blending ratio of ball-like carbon molecules to plate-like carbon molecules was 70:30.

上記の鉄基粉末に、表1に示す遊離潤滑剤を添加し、さらに添加材として必要に応じて上記の炭素分子複合体粉末(粉末A)を種々の比率で添加し、混合して、粉末冶金用鉄基混合粉末とした。遊離潤滑剤としては、ステアリン酸亜鉛またはエチレンビスステアリン酸アミドを使用した。
これらの混合粉末の配合比率を表1に示す。この配合比率は、粉末冶金用鉄基混合粉末全体に占める比率である。
The free lubricant shown in Table 1 is added to the iron-based powder, and the carbon molecular composite powder (powder A) is added in various proportions as necessary as an additive, and mixed to obtain a powder. An iron-based mixed powder for metallurgy was used. As the free lubricant, zinc stearate or ethylene bis stearamide was used.
Table 1 shows the blending ratio of these mixed powders. This blending ratio is the ratio of the entire iron-based mixed powder for powder metallurgy.

次に、得られた各鉄基粉末混合物を、金型に充填し、室温で圧力:980 MPaで加圧成形し、円柱状の圧粉体(外径:11mm、高さ:11mm)とした。その際、金型の内面に何も塗布しない場合と、エタノール中に上記粉末Aを分散した濃度:5mass%の分散液を塗布した場合とで、成形性を比較した。なお、粉末Aの付着量は1.0 mg/cm2とした。
かくして得られた圧粉体の圧粉密度と圧粉体を金型から抜き出す時の抜出力について調べた結果を、表1に併記する。
Next, each iron-based powder mixture obtained was filled in a mold and pressure-molded at room temperature with a pressure of 980 MPa to obtain a cylindrical green compact (outer diameter: 11 mm, height: 11 mm). . At that time, the moldability was compared between the case where nothing was applied to the inner surface of the mold and the case where a dispersion having a concentration of 5 mass% in which the powder A was dispersed in ethanol was applied. The amount of powder A attached is 1.0. mg / cm 2 .
Table 1 also shows the results of examining the green compact density of the green compact thus obtained and the extraction force when the green compact is extracted from the mold.

Figure 2009280908
Figure 2009280908

表1から明らかなように、潤滑剤が同じ発明例1と比較例1、発明例2と比較例2、発明例3と比較例3を比較すると、本発明に従い、金型の内面に予め炭素分子複合体粉末(粉末A)を付着させた場合には、何も付着させない場合に比べて、圧粉体密度が上昇し、また抜出力が大幅に低下することが分かる。また、炭素分子複合体粉末(粉末A)を金型の内面に付着させるだけでなく、鉄基混合粉末中に潤滑剤としてさらに上記炭素分子複合体粉末(粉末A)を添加した場合(発明例4〜7)には、抜出性が一層向上することが分かる。
なお、比較例4に示したとおり、鉄基混合粉末中に潤滑剤として添加する炭素分子複合体粉末(粉末A)が多すぎた場合には、かえって圧粉体密度や抜出性は劣化した。
As is apparent from Table 1, when Example 1 and Comparative Example 1, Invention Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 having the same lubricant are compared, according to the present invention, carbon is previously applied to the inner surface of the mold. It can be seen that when the molecular complex powder (powder A) is adhered, the green compact density is increased and the unloading power is significantly decreased as compared with the case where nothing is adhered. Further, not only the carbon molecular composite powder (powder A) is attached to the inner surface of the mold, but also the carbon molecular composite powder (powder A) is added as a lubricant to the iron-based mixed powder (invention example) 4 to 7), it can be seen that the extractability is further improved.
As shown in Comparative Example 4, when too much carbon molecular composite powder (powder A) was added as a lubricant in the iron-based mixed powder, the green compact density and the extractability deteriorated. .

本発明に従い、鉄基混合粉末の成形に先立ち、金型の内面に、ボール状炭素分子と板状炭素分子からなる炭素分子複合体粉末を付着させることにより、圧粉体の高密度化と圧粉体の低抜出力化とを同時に達成することができ、その結果、生産性の向上および製造コストの低減に大きく貢献する。   In accordance with the present invention, prior to forming the iron-based mixed powder, a carbon molecular composite powder composed of ball-like carbon molecules and plate-like carbon molecules is attached to the inner surface of the mold, thereby increasing the density and pressure of the green compact. It is possible to simultaneously achieve low output of powder and, as a result, greatly contribute to improvement of productivity and reduction of manufacturing cost.

Claims (3)

粉末冶金用の鉄基混合粉末を、金型に装入し、加圧して圧粉体に成形するに際し、金型の内面に、潤滑剤として、ボール状炭素分子および板状炭素分子からなる炭素分子複合体を付着させることを特徴とする粉末冶金用鉄基混合粉末の成形方法。   When an iron-based mixed powder for powder metallurgy is charged into a mold and pressed into a green compact, carbon consisting of ball-shaped carbon molecules and plate-shaped carbon molecules is used as a lubricant on the inner surface of the mold. A method for forming an iron-based mixed powder for powder metallurgy, comprising attaching a molecular complex. 前記鉄基混合粉末中に、潤滑剤として、ボール状炭素分子および板状炭素分子からなる炭素分子複合体を配合したことを特徴とする請求項1記載の粉末冶金用鉄基混合粉末の成形方法。   2. The method for forming an iron-based mixed powder for powder metallurgy according to claim 1, wherein a carbon molecular complex composed of ball-like carbon molecules and plate-like carbon molecules is blended in the iron-based mixed powder as a lubricant. . 前記炭素分子複合体の鉄基混合粉末全体に対する配合量が0.001〜3.0質量%であることを特徴とする請求項2記載の粉末冶金用鉄基混合粉末の成形方法。   3. The method for forming an iron-based mixed powder for powder metallurgy according to claim 2, wherein a blending amount of the carbon molecular composite with respect to the entire iron-based mixed powder is 0.001 to 3.0 mass%.
JP2009103331A 2008-04-22 2009-04-21 Method for molding iron powder mixture for powder metallurgy Pending JP2009280908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103331A JP2009280908A (en) 2008-04-22 2009-04-21 Method for molding iron powder mixture for powder metallurgy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008111551 2008-04-22
JP2009103331A JP2009280908A (en) 2008-04-22 2009-04-21 Method for molding iron powder mixture for powder metallurgy

Publications (1)

Publication Number Publication Date
JP2009280908A true JP2009280908A (en) 2009-12-03

Family

ID=41451654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103331A Pending JP2009280908A (en) 2008-04-22 2009-04-21 Method for molding iron powder mixture for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2009280908A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060452A1 (en) 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
WO2013154145A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013154146A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013161745A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161747A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
WO2013161746A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161744A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207202A (en) * 1993-01-06 1994-07-26 Honda Motor Co Ltd Production of molded article
JP2001342478A (en) * 2000-03-28 2001-12-14 Kawasaki Steel Corp Lubricating agent for lubrication of mold and method for manufacturing high density molded article of iron based powder
JP2003509581A (en) * 1999-09-10 2003-03-11 ホガナス アクチボラゲット Lubricant composite material and method for producing the same
JP2005240167A (en) * 2004-02-27 2005-09-08 Mitsubishi Materials Corp Molding method for powder molding and molding apparatus for powder molding
JP2006131952A (en) * 2004-11-05 2006-05-25 Hitachi Powdered Metals Co Ltd METHOD FOR PRODUCING Fe-Ti SINTERED ALLOY
JP2006306010A (en) * 2004-08-16 2006-11-09 Frontier Carbon Corp Article for film formation, method for film formation, and release agent
JP2007031744A (en) * 2005-07-22 2007-02-08 Kobe Steel Ltd Powdery mixture for powder metallurgy
WO2007078228A1 (en) * 2005-12-30 2007-07-12 Höganäs Ab Lubricant for powder metallurgical compositions
JP2009166093A (en) * 2008-01-16 2009-07-30 Yushiro Chem Ind Co Ltd Parting agent and casting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207202A (en) * 1993-01-06 1994-07-26 Honda Motor Co Ltd Production of molded article
JP2003509581A (en) * 1999-09-10 2003-03-11 ホガナス アクチボラゲット Lubricant composite material and method for producing the same
JP2001342478A (en) * 2000-03-28 2001-12-14 Kawasaki Steel Corp Lubricating agent for lubrication of mold and method for manufacturing high density molded article of iron based powder
JP2005240167A (en) * 2004-02-27 2005-09-08 Mitsubishi Materials Corp Molding method for powder molding and molding apparatus for powder molding
JP2006306010A (en) * 2004-08-16 2006-11-09 Frontier Carbon Corp Article for film formation, method for film formation, and release agent
JP2006131952A (en) * 2004-11-05 2006-05-25 Hitachi Powdered Metals Co Ltd METHOD FOR PRODUCING Fe-Ti SINTERED ALLOY
JP2007031744A (en) * 2005-07-22 2007-02-08 Kobe Steel Ltd Powdery mixture for powder metallurgy
WO2007078228A1 (en) * 2005-12-30 2007-07-12 Höganäs Ab Lubricant for powder metallurgical compositions
JP2009522446A (en) * 2005-12-30 2009-06-11 ホガナス アクチボラゲット Lubricants for powder metallurgy compositions
JP2009166093A (en) * 2008-01-16 2009-07-30 Yushiro Chem Ind Co Ltd Parting agent and casting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060452A1 (en) 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
WO2013154145A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013154146A1 (en) 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 High-density molding device and high-density molding method for mixed powder
WO2013161745A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161747A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder, and high-density three-layer-structured powder compact
WO2013161746A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder
WO2013161744A1 (en) 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 Device for high-density molding and method for high-density molding of mixed powder

Similar Documents

Publication Publication Date Title
JP2009280908A (en) Method for molding iron powder mixture for powder metallurgy
JP5604981B2 (en) Iron-based mixed powder for powder metallurgy
TWI285140B (en) Sintered metal parts and method for the manufacturing thereof
JP2009280907A (en) Iron powder mixture for powder metallurgy
JP2010285633A (en) Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JP5663974B2 (en) Iron-based mixed powder for powder metallurgy
CN1299859C (en) Composition and process for warm compaction of stainless steel powders
JP5617529B2 (en) Iron-based mixed powder for powder metallurgy
JP2008507623A (en) A method for preparing a feedstock of nano-sized metal powder and a method for producing a sintered body using the feedstock.
Kim et al. Fabrication and evaluation of powder injection molded Fe–Ni sintered bodies using nano Fe–50% Ni powder
CN1946501A (en) Method for making compacted products and iron-based powder comprising lubricant
CN105081309A (en) Method for preparing iron-based powder metallurgy material containing molybdenum
CN1662329A (en) Metal powder composition including a bonding lubricant and a bonding lubricant comprising glyceryl stearate
WO2016190038A1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, sintered body produced using same, and method for producing sintered body
CN112166001B (en) Powder mixture for powder metallurgy and method for producing same
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP4752749B2 (en) Method for producing iron powder for powder metallurgy
JP5439926B2 (en) Iron-based mixed powder for powder metallurgy
JP7216842B2 (en) Method for producing Cu-Ni-Al based sintered alloy
WO2018230568A1 (en) Powder mixture for powder metallurgy and method of manufacturing same
CN1700367A (en) Soft-magnetic composite material for magnetic conduction component and process for preparing magnetic conduction component
KR20090104140A (en) Powder metallurgical composition comprising carbon black as flow enhancing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624