JP2009280649A - Ionic water-soluble polymer comprising powder, process for producing it, and its usage - Google Patents

Ionic water-soluble polymer comprising powder, process for producing it, and its usage Download PDF

Info

Publication number
JP2009280649A
JP2009280649A JP2008131705A JP2008131705A JP2009280649A JP 2009280649 A JP2009280649 A JP 2009280649A JP 2008131705 A JP2008131705 A JP 2008131705A JP 2008131705 A JP2008131705 A JP 2008131705A JP 2009280649 A JP2009280649 A JP 2009280649A
Authority
JP
Japan
Prior art keywords
water
soluble polymer
ionic water
ionic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131705A
Other languages
Japanese (ja)
Other versions
JP5557366B2 (en
Inventor
Shogo Wakatsuki
将吾 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2008131705A priority Critical patent/JP5557366B2/en
Publication of JP2009280649A publication Critical patent/JP2009280649A/en
Application granted granted Critical
Publication of JP5557366B2 publication Critical patent/JP5557366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ionic water-soluble polymer requiring less transportation cost and imposing less environmental burden, a process for producing it, and its usage as a coagulating agent, more particularly, to provide an ionic water-soluble polymer exhibiting excellent performance in dehydration of polluted sludge, in dehydration of papermaking sludge, and in a papermaking process by adding it to a paper stock. <P>SOLUTION: The problem is solved by providing an ionic water-soluble polymer which comprises powder exhibiting a particular ionic characteristic. The ionic water-soluble polymer is produced by emulsification and polymerization wherein a water-immiscible organic liquid becomes a continuous phase and an aqueous solution of monomer mixture essentially containing a cationic monomer and a polyfunctional monomer with plural unsaturated double bonds becomes a disperse phase by means of a surfactant, followed by granulation of the resulting water-in-oil emulsion after a drying step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉末からなるイオン性水溶性高分子とその製造方法および用途に関するものである。さらに詳しくは、特定のイオン性を発現する粉末からなるイオン性水溶性高分子とその製造方法および用途に関するものである。 The present invention relates to an ionic water-soluble polymer comprising a powder, a method for producing the same, and a use thereof. More specifically, the present invention relates to an ionic water-soluble polymer composed of a powder that expresses a specific ionicity, a production method thereof, and an application.

従来、イオン性の水溶性高分子は水分散性スラリーや水溶液の増粘剤、分散剤、紙力増強剤、汚泥脱水剤、製紙原料の歩留向上剤、抄紙時の濾水性向上剤などさまざまな分野で使用されており、その形態は、粉末、ペースト状水溶液、油中水型エマルジョンあるいは水性分散液など様々である。 Conventionally, ionic water-soluble polymers are various such as water-dispersible slurry, aqueous solution thickener, dispersant, paper strength enhancer, sludge dewatering agent, yield improver for papermaking raw materials, and drainage improver for papermaking. There are various forms such as powders, pasty aqueous solutions, water-in-oil emulsions or aqueous dispersions.

汚泥の脱水処理の分野においては、汚泥の発生量の増加、汚泥性状の悪化による難脱水化が進んでおり、汚泥脱水性の改善、脱水ケーキの含水率の低下が強く求められており、製紙工業の分野では、古紙配合量の増加による原料事情の悪化、抄紙速度の増大による生産性の向上などが求められている。 In the field of sludge dewatering treatment, the amount of sludge generated is increasing and the difficulty of dewatering is advancing due to the deterioration of sludge properties, and there is a strong demand for improved sludge dewaterability and reduced moisture content of dewatered cakes. In the industrial field, there are demands for deterioration of raw material conditions due to an increase in the amount of used paper, and improvement in productivity due to an increase in papermaking speed.

このような要望に対し、イオン性の水溶性高分子は様々な改良が進められてきた。特許文献1には、架橋されたカチオン性の油中重合性分散体の汚泥への適用が例示されている。特許文献2には、電荷内包率35%以上のビニル重合系架橋性水溶性イオン性高分子と、電荷内包率5以上、35%未満のビニル重合系架橋性水溶性イオン性高分子を組み合わせた汚泥脱水剤としての適用が例示されている。 In response to such demands, various improvements have been made to ionic water-soluble polymers. Patent Document 1 exemplifies application of a crosslinked cationic polymerizable dispersion in oil to sludge. Patent Document 2 is a combination of a vinyl polymerization crosslinkable water-soluble ionic polymer having a charge inclusion rate of 35% or more and a vinyl polymerization crosslinkable water soluble ionic polymer having a charge inclusion rate of 5 or more and less than 35%. The application as a sludge dewatering agent is illustrated.

また、特許文献3には、架橋された水溶性カチオン性の単量体重合物の油中水型エマルジョンを歩留向上剤および濾水性向上剤として抄紙工程に適用する方法が例示されている。 Patent Document 3 exemplifies a method in which a water-in-oil emulsion of a crosslinked water-soluble cationic monomer polymer is applied to a papermaking process as a yield improver and a drainage improver.

一方で、粉末状のイオン性水溶性高分子は、その他の形態のものと比較し疎水性溶媒、水あるいは分散剤といった不純物が少ない特徴があり、輸送コストや環境負荷の面で優位性があるが、改良の柔軟性が小さいといった欠点がある。 On the other hand, powdered ionic water-soluble polymers are characterized by fewer impurities such as hydrophobic solvents, water, and dispersants compared to other forms, and are superior in terms of transportation costs and environmental impact. However, there is a drawback that the flexibility of improvement is small.

特許文献4には、カチオン性水溶性高分子の噴霧乾燥物について記載されており、特許文献5には、噴霧乾燥により得られた架橋されたカチオン性水溶性高分子と凝集剤としての適用が例示されている。 Patent Document 4 describes a spray-dried product of a cationic water-soluble polymer, and Patent Document 5 discloses a crosslinked cationic water-soluble polymer obtained by spray drying and application as a flocculant. Illustrated.

これらの噴霧乾燥で得られる粉末状のイオン性水溶性高分子について電荷内包率についての記載は無く、考慮の範疇外であることが明白である。また、一般的に油中水型エマルジョン状のイオン性水溶性高分子は水に溶解して使うことが多く、含まれる疎水性溶媒を都合よく分散させるためにHLB10以上の界面活性剤を含有することが多いが、イオン性水溶性高分子の機能とは無関係であり、環境への負荷を高める一因である。
特公平08−164号公報 特開2005−144346号公報 特開平10−140496号公報 米国特許 第4035317号 特表2001−516773号公報
There is no description about the charge inclusion rate of the powdered ionic water-soluble polymer obtained by spray drying, and it is apparent that it is out of the scope of consideration. In general, an ionic water-soluble polymer in the form of a water-in-oil emulsion is often used after being dissolved in water, and contains a surfactant of HLB 10 or more in order to conveniently disperse the contained hydrophobic solvent. In many cases, it is irrelevant to the function of the ionic water-soluble polymer, and contributes to increasing the environmental load.
Japanese Patent Publication No. 08-164 JP 2005-144346 A Japanese Patent Laid-Open No. 10-140696 U.S. Pat. No. 4,035,317 JP-T-2001-516773

本発明の目的は、輸送コストや環境負荷の小さいイオン性水溶性高分子とその製造法を提供することであり、凝集剤用途さらに詳しくは汚泥の脱水処理用途、製紙スラッジの脱水処理用途と製紙原料に添加して抄紙する方法に対して優れた機能を発揮する粉末からなるイオン性水溶性高分子を提供することにある。 An object of the present invention is to provide an ionic water-soluble polymer having a low transportation cost and low environmental load and a method for producing the same, and a flocculant application. More specifically, sludge dewatering treatment, paper sludge dewatering treatment and papermaking. An object of the present invention is to provide an ionic water-soluble polymer comprising a powder that exhibits an excellent function with respect to a method of making paper by adding to a raw material.

本発明者らは鋭意検討の結果、驚くべきことに特定のイオン性を発現する水溶性高分子が汚泥の脱水処理用途、製紙スラッジの脱水処理用途と製紙原料に添加して抄紙する方法に対して特に優れた機能を発揮し、界面活性剤により水に非混和性有機液体を連続相、カチオン性単量体および複数の不飽和二重結合を有する多官能性単量体を必須として含む単量体混合物水溶液を分散相となるよう乳化し重合した後、得られる油中水滴型エマルジョン状液体を噴霧乾燥し造粒した粉末からなるイオン性の水溶性高分子が上記課題を解決するものであることを見出した。 As a result of intensive studies, the present inventors have surprisingly found that a water-soluble polymer that expresses specific ionicity is used for sludge dewatering treatment, paper sludge dewatering treatment, and a method of making paper by adding it to a papermaking raw material. In particular, it is a simple substance that contains a water-immiscible organic liquid in a continuous phase, a cationic monomer, and a polyfunctional monomer having a plurality of unsaturated double bonds. An ionic water-soluble polymer consisting of a powder obtained by emulsifying and polymerizing an aqueous solution of a monomer mixture into a dispersed phase and polymerizing it, and then spray-drying and granulating the resulting water-in-oil type emulsion liquid solves the above problems. I found out.

すなわち請求項1の発明は、界面活性剤により水に非混和性有機液体を連続相、カチオン性単量体および複数の不飽和二重結合を有する多官能性単量体を必須として含む単量体混合物水溶液を分散相となるよう乳化し重合した後、得られる油中水滴型エマルジョン状液体を、乾燥工程を経ることによって造粒し製造したイオン性水溶性高分子であって、イオン性水溶性高分子の電荷内包率が35%以上90%以下であることを特徴とする粉末からなるイオン性水溶性高分子である。 That is, the invention of claim 1 is a monomer comprising, as an essential component, an immiscible organic liquid immiscible in water with a surfactant, a continuous phase, a cationic monomer, and a polyfunctional monomer having a plurality of unsaturated double bonds. A water-in-oil emulsion liquid obtained by emulsifying and polymerizing an aqueous body mixture solution into a disperse phase, and then granulating the resulting liquid by a drying process to produce an ionic water-soluble polymer. It is an ionic water-soluble polymer made of powder, characterized in that the charge encapsulation rate of the conductive polymer is 35% or more and 90% or less.

請求項2の発明は、前記乾燥工程が、噴霧乾燥であることを特徴とする請求項1に記載の粉末からなるイオン性水溶性高分子である。 The invention according to claim 2 is the ionic water-soluble polymer comprising the powder according to claim 1, wherein the drying step is spray drying.

請求項3の発明は、前記乾燥工程が、前記油中水滴型エマルジョン状液体を液状のまま直接乾燥することを特徴とする請求項1に記載の粉末からなるイオン性水溶性高分子である。 The invention according to claim 3 is the ionic water-soluble polymer comprising the powder according to claim 1, wherein the drying step directly dries the water-in-oil emulsion liquid in a liquid state.

請求項4の発明は、前記イオン性水溶性高分子が、下記一般式(1)及び/または(2)で表わされる単量体5〜100mol%、下記一般式(3)で表わされる単量体0〜50mol%および水溶性の非イオン性単量体0〜95mol%および複数の不飽和二重結合を有する多官能性単量体を共重合して得られることを特徴とする、請求項1〜3のいずれかに記載の粉末からなるイオン性水溶性高分子である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。AはOまたはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表す。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Yは水素または陽イオンをそれぞれ表す。
The invention of claim 4 is characterized in that the ionic water-soluble polymer is a monomer represented by the following general formula (1) and / or (2): 5 to 100 mol%, and represented by the following general formula (3): It is obtained by copolymerizing 0 to 50 mol% of a body, 0 to 95 mol% of a water-soluble nonionic monomer and a polyfunctional monomer having a plurality of unsaturated double bonds. An ionic water-soluble polymer comprising the powder according to any one of 1 to 3.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A is O or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group, or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO - or COO - and is, Y 1 represents respectively hydrogen or a cation.

請求項5の発明は、HLB値が10以上の界面活性剤を含まないことを特徴とする、請求項1〜3のいずれかに記載の粉末からなるイオン性水溶性高分子である。 Invention of Claim 5 is an ionic water-soluble polymer which consists of a powder in any one of Claims 1-3 characterized by not containing surfactant with an HLB value of 10 or more.

請求項の発明は、6請求項1〜5に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、汚泥に添加し凝集させ脱水機により脱水することを特徴とした汚泥の脱水方法である。 The invention of claim 6 is characterized in that the ionic water-soluble polymer comprising the powder according to claims 1 to 5 is dissolved in water, and then added to the sludge and agglomerated and dehydrated by a dehydrator. Is the method.

請求項7の発明は、請求項1〜5に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、製紙スラッジに添加し凝集させ脱水機により脱水することを特徴とした製紙スラッジの脱水方法である。 The invention according to claim 7 is characterized in that the ionic water-soluble polymer comprising the powder according to any one of claims 1 to 5 is dissolved in water, then added to the paper sludge, agglomerated and dewatered by a dehydrator. This is a dehydration method.

請求項8の発明は、請求項1〜5に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、抄紙前の製紙原料中に添加し使用することを特徴とした製紙方法である。 The invention of claim 8 is a papermaking method characterized in that the ionic water-soluble polymer comprising the powder of claims 1-5 is dissolved in water and then added to the papermaking raw material before papermaking. is there.

請求項9の発明は、無機及び/または有機のアニオン性物質と組み合わせて使うことを特徴とした、請求項8記載の製紙方法である。 The invention according to claim 9 is the paper manufacturing method according to claim 8, which is used in combination with inorganic and / or organic anionic substances.

請求項10の発明は、前記アニオン性物質がコロイダルシリカあるいはベントナイトであることを特徴とする、請求項9記載の製紙方法である。 The invention according to claim 10 is the paper manufacturing method according to claim 9, wherein the anionic substance is colloidal silica or bentonite.

請求項11の発明は、前記アニオン性物質が、下記一般式(3)で表わされる単量体3〜100mol%と水溶性の非イオン性単量体の重合物であることを特徴とする、請求項9記載の製紙方法である。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Yは水素または陽イオンをそれぞれ表す。
前記乾燥工程が、前記油中水滴型エマルジョン状液体を液状のまま直接乾燥することを特徴とする請求項1に記載の粉末からなるイオン性水溶性高分子。
The invention of claim 11 is characterized in that the anionic substance is a polymer of 3 to 100 mol% of a monomer represented by the following general formula (3) and a water-soluble nonionic monomer. The paper manufacturing method according to claim 9.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO - or COO - and is, Y 1 represents respectively hydrogen or a cation.
The ionic water-soluble polymer comprising a powder according to claim 1, wherein the drying step directly dries the water-in-oil emulsion liquid in a liquid state.

本発明の粉末からなるイオン性水溶性高分子は、不純物の少ない粉末状の水溶性高分子であるため、輸送コストを低減することが可能であり、さらには輸送で生じる二酸化炭素の排出を低減することも可能である。また、油中水型エマルジョン状のイオン性水溶性高分子と比較し疎水性分散媒や界面活性剤の環境への排出量を削減できる。さらには、電荷内包率35%以上の粉末からなるイオン性水溶性高分子であることから、凝集剤用途、詳しくは汚泥の脱水処理用途、製紙スラッジの脱水処理用途と製紙原料に添加して抄紙する方法に対して特に優れた機能を発揮することが可能となる。 Since the ionic water-soluble polymer comprising the powder of the present invention is a powdery water-soluble polymer with few impurities, it is possible to reduce the transportation cost and further reduce the emission of carbon dioxide generated by transportation. It is also possible to do. In addition, the amount of hydrophobic dispersion medium and surfactant discharged into the environment can be reduced compared to an ionic water-soluble polymer in the form of a water-in-oil emulsion. Furthermore, since it is an ionic water-soluble polymer composed of powder with a charge inclusion rate of 35% or more, it is added to flocculants, specifically sludge dewatering, paper sludge dewatering, and papermaking raw materials. It is possible to exhibit a particularly excellent function with respect to the method.

本発明の粉末からなるイオン性水溶性高分子は、電荷内包率が35%以上90%以下であるイオン性の水溶性高分子である。ここで、カチオン性水溶性高分子および両性でかつカチオン性単量体とアニオン性単量体のモル濃度の差が正である水溶性イオン性高分子の電荷内包率とは以下のように計算される。
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整したイオン性水溶性高分子0.01%水溶液をミューテック社製PCD滴定装置(Meutek PCD 03、Meutek PCD−Two Titrator Version2)により、滴下液:1/1000N ポリビニルスルホン酸カリウム水溶液、滴下速度:0.05ml/10秒、終点判定:0mvにて滴定し、求めた滴定量である。βは酢酸にてpH4.0に調整したイオン性水溶性高分子0.01%水溶液に1/400N ポリビニルスルホン酸カリウム水溶液を電荷の中和を行うに十分な量加え、十分に攪拌し、同様にPCD滴定装置により、滴下液:1/1000N ジアリルジメチルアンモニウムクロライド水溶液、滴下速度:0.05ml/10秒、終点判定:0mvにて滴定し、ブランク値とこの滴定量との差である。ブランク値とは酢酸にてpH4.0に調整した前記1/400N ポリビニルスルホン酸カリウム水溶液と同量のポリビニルスルホン酸カリウム水溶液を、同様にPCD滴定装置により滴下液:1/1000N ジアリルジメチルアンモニウムクロライド水溶液、滴下速度:0.05ml/10秒、終点判定:0mvにて滴定し、求めた滴定量である。
The ionic water-soluble polymer comprising the powder of the present invention is an ionic water-soluble polymer having a charge encapsulation rate of 35% or more and 90% or less. Here, the charge inclusion rate of the cationic water-soluble polymer and the amphoteric and water-soluble ionic polymer in which the difference in molar concentration between the cationic monomer and the anionic monomer is positive is calculated as follows: Is done.
Charge inclusion rate [%] = (1−α / β) × 100
α is a 0.01% aqueous solution of an ionic water-soluble polymer adjusted to pH 4.0 with acetic acid using a Mutec PCD titrator (Meutek PCD 03, Meutek PCD-Two Titortor Version 2). The titration amount was determined by titration with an aqueous potassium polyvinyl sulfonate solution, dropping rate: 0.05 ml / 10 seconds, end point determination: 0 mV. β is added to a 0.01% aqueous solution of an ionic water-soluble polymer adjusted to pH 4.0 with acetic acid in an amount sufficient to neutralize the charge with a 1 / 400N potassium polyvinyl sulfonate aqueous solution, and is stirred sufficiently. It is a difference between a blank value and this titration amount by titrating with a PCD titration apparatus at a dropping solution: 1 / 1000N diallyldimethylammonium chloride aqueous solution, dropping rate: 0.05 ml / 10 seconds, end point determination: 0 mV. The blank value is the same amount as the 1 / 400N potassium polyvinylsulfonate aqueous solution adjusted to pH 4.0 with acetic acid, and the same amount of dripping liquid: 1 / 1000N diallyldimethylammonium chloride aqueous solution using a PCD titrator. The titration rate was determined by titration at a dropping rate of 0.05 ml / 10 seconds and end point determination: 0 mv.

本発明において、両性でかつカチオン性単量体とアニオン性単量体のモル濃度の差が負である水溶性イオン性高分子では、電荷内包率とは以下のように計算される。
電荷内包率[%]=(1−α/β)×100
αはアンモニアにてpH10.0に調整した水溶性イオン性高分子0.01%水溶液をミューテック社製PCD滴定装置(Meutek PCD 03、Meutek PCD−Two Titrator Version2)により、滴下液:1/1000N ジアリルジメチルアンモニウムクロライド水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて
滴定し、求めた滴定量である。βはアンモニアにてpH10.0に調整したイオン性水溶性高分子0.01%水溶液に1/400N ジアリルジメチルアンモニウムクロライド水溶液を電荷の中和を行うに十分な量加え、十分に攪拌し、同様にPCD滴定装置により、滴下液:1/1000N ポリビニルスルホン酸カリウム水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて滴定し、この滴定量をブランク値から差し引いた値とする。ブランク値とはアンモニアにてpH10.0に調整した前記サンプルと同濃度のジアリルジメチルアンモニウムクロライド水溶液を同様にPCD滴定装置により、滴下液:1/1000N ポリビニルスルホン酸カリウム水溶液、滴下速度:0.05ml/10sec、終点判定:0mvにて滴定し、求めた滴定量である。
In the present invention, for a water-soluble ionic polymer that is amphoteric and has a negative difference in molar concentration between a cationic monomer and an anionic monomer, the charge inclusion rate is calculated as follows.
Charge inclusion rate [%] = (1−α / β) × 100
α is a 0.01% aqueous solution of a water-soluble ionic polymer adjusted to pH 10.0 with ammonia by using a PCD titration apparatus (Metek PCD 03, Metek PCD-Two Titortor Version 2) manufactured by Mutech. This is the titration amount obtained by titration with diallyldimethylammonium chloride aqueous solution, dropping rate: 0.05 ml / 10 sec, end point determination: 0 mV. β is added to a 0.01% aqueous solution of an ionic water-soluble polymer adjusted to pH 10.0 with ammonia in an amount sufficient to neutralize the charge of a 1 / 400N diallyldimethylammonium chloride aqueous solution, and is stirred sufficiently. Using a PCD titrator, titration is performed with a drop solution: 1 / 1000N potassium polyvinyl sulfonate aqueous solution, drop rate: 0.05 ml / 10 sec, end point determination: 0 mV, and this titration value is subtracted from the blank value. The blank value is a diallyldimethylammonium chloride aqueous solution having the same concentration as that of the above sample adjusted to pH 10.0 with ammonia in the same manner by using a PCD titration apparatus. Dropping solution: 1/1000 N aqueous potassium polyvinylsulfonate solution, dropping rate: 0.05 ml / 10 sec, end point determination: titration obtained by titration at 0 mv.

本発明におけるイオン性水溶性高分子の電荷内包率は、イオン性の発現効率に関するパラメーターであり、イオン性物質のポリビニルスルホン酸カリウムによる正滴定と逆滴定との間に大きな差が生じることが汚泥、製紙スラッジおよび製紙原料に添加した場合、効果との間に明確な相関が生じるものである。 The charge inclusion rate of the ionic water-soluble polymer in the present invention is a parameter related to the ionic expression efficiency, and sludge may cause a large difference between the forward titration and the back titration with the ionic substance potassium polyvinyl sulfonate. When added to papermaking sludge and papermaking raw material, there is a clear correlation between the effects.

電荷内包率35%より小さいイオン性水溶性高分子を汚泥あるいは製紙スラッジに添加した場合、比較的低い添加量で凝集し含水率は低下するが、添加量の増大とともに汚泥あるいは製紙スラッジが再分散し、粘性を帯び、汚泥含水率が増大する。電荷内包率35%以上のものを添加した場合、幅広い添加量範囲で添加の増大とともに巨大で強固なフロックを形成し、著しく汚泥あるいは製紙スラッジの含水率を低下させる。また、90%より大きいものを添加した場合は、それ以外のものの数倍以上の薬品を添加せねば汚泥あるいは製紙スラッジの凝集挙動に全く寄与しない。 When an ionic water-soluble polymer with a charge inclusion rate of less than 35% is added to sludge or papermaking sludge, it aggregates with a relatively low addition amount and the water content decreases, but the sludge or papermaking sludge is redispersed as the addition amount increases. However, it becomes viscous and the water content of sludge increases. When a substance having a charge inclusion rate of 35% or more is added, a large and strong floc is formed with an increase in addition over a wide range of addition amount, and the water content of sludge or papermaking sludge is remarkably lowered. In addition, when a substance larger than 90% is added, it does not contribute at all to the coagulation behavior of sludge or papermaking sludge unless chemicals more than several times the others are added.

電荷内包率35%より小さいイオン性水溶性高分子を製紙原料に添加し抄紙した場合、比較的低い添加量で緩やかに凝集し製紙原料の歩留率、濾水性は向上する。電荷内包率35%以上のものを添加し抄紙した場合、より高シェアの混合条件で強固で緻密なフロックを形成し、特に製紙原料中の填料歩留率を向上させる。90%より大きいものを添加した場合は、数倍以上の薬品を添加しても凝集挙動はそれ以外のものに大きく劣る。すなわち、好適な電荷内包率の範囲は35%以上90%以下の範囲である。 When an ionic water-soluble polymer having a charge inclusion rate of less than 35% is added to a papermaking raw material, the papermaking raw material is gradually agglomerated with a relatively low addition amount to improve the yield and drainage of the papermaking raw material. When paper with a charge inclusion rate of 35% or more is added, a strong and dense floc is formed under a higher shear mixing condition, and in particular, the filler yield in the papermaking raw material is improved. In the case of adding more than 90%, the aggregation behavior is greatly inferior to the others even if several times or more chemicals are added. That is, a preferable range of the charge inclusion rate is in the range of 35% to 90%.

本発明の粉末からなるイオン性水溶性高分子は、界面活性剤により水に非混和性有機液体を連続相、カチオン性単量体および複数の不飽和二重結合を有する多官能性単量体を必須として含む単量体混合物水溶液を分散相となるよう乳化し重合した後、得られる油中水滴型エマルジョン状液体を噴霧乾燥し造粒し得ることが出来る。一般式(1)で表されるカチオン性単量体の例としては、例えばジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドやこれらのハロゲン化水素、硫酸、硝酸、有機酸等による中和塩、ハロゲン化アルキル、ベンジルハライド、ジメチル硫酸、ジエチル硫酸等による四級化物、一般式(2)で表されるカチオン性単量体の例としては、ジメチルジ(メタ)アリルアンモニウム塩化物、ジ(メタ)アリルメチルベンジルアンモニウム塩化物等が挙げられ、単独で使用することも複数を同時に使用することも可能である。カチオン性単量体の量としては、重合後の水溶性高分子がカチオン性を有する範囲であれば特に制限は無いが、前記多官能性単量体を除く全単量体に対してカチオン性単量体の量が5〜95mol%の範囲であることが好ましい。 The ionic water-soluble polymer comprising the powder of the present invention is a polyfunctional monomer having a water-immiscible organic liquid in a continuous phase, a cationic monomer, and a plurality of unsaturated double bonds. After emulsifying and polymerizing an aqueous monomer mixture solution containing essentially as a dispersed phase, the resulting water-in-oil emulsion liquid can be spray-dried and granulated. Examples of the cationic monomer represented by the general formula (1) include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, and the like. These neutralized salts with hydrogen halide, sulfuric acid, nitric acid, organic acid, etc., quaternized products with alkyl halide, benzyl halide, dimethyl sulfuric acid, diethyl sulfuric acid, etc., cationic monomers represented by the general formula (2) Examples of these include dimethyldi (meth) allyl ammonium chloride, di (meth) allylmethylbenzylammonium chloride, and the like, which can be used alone or in combination. The amount of the cationic monomer is not particularly limited as long as the water-soluble polymer after polymerization has a cationic property, but is cationic with respect to all monomers except the polyfunctional monomer. The amount of the monomer is preferably in the range of 5 to 95 mol%.

前記多官能性単量体は複数の不飽和二重結合を複数有していれば特に制限はないが、N,N’−メチレンビス(メタ)アクリルアミド、トリアリルアミン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、N−ビニル(メタ)アクリルアミド等が挙げられる。多官能性単量体の量としては、多官能性単量体を除く全単量体重量に対して0.1〜100ppmの範囲であることが好ましく、さらに好ましくは、0.2〜50ppmの範囲である。 The polyfunctional monomer is not particularly limited as long as it has a plurality of unsaturated double bonds, but N, N′-methylenebis (meth) acrylamide, triallylamine, ethylene glycol di (meth) acrylate, Examples include polyethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and N-vinyl (meth) acrylamide. The amount of the polyfunctional monomer is preferably in the range of 0.1 to 100 ppm, more preferably 0.2 to 50 ppm with respect to the total monomer weight excluding the polyfunctional monomer. It is a range.

本発明における単量体混合物水溶液は、上記単量体のほかに共重合可能なアニオン性単量体および/または水溶性の非イオン性単量体を含むことが出来る。一般式(3)で表されるアニオン性単量体の例としては、ビニルスルホン酸、ビニルベンゼンスルホン酸、2−アクリルアミド2−メチルプロパンスルホン酸、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどが挙げられる。アニオン性単量体の量としては、前記多官能性単量体を除く全単量体に対して0〜50mol%の範囲であることが好ましい。 The monomer mixture aqueous solution in the present invention may contain a copolymerizable anionic monomer and / or a water-soluble nonionic monomer in addition to the above monomer. Examples of the anionic monomer represented by the general formula (3) include vinyl sulfonic acid, vinyl benzene sulfonic acid, 2-acrylamido 2-methylpropane sulfonic acid, methacrylic acid, acrylic acid, itaconic acid, maleic acid or p-carboxystyrene etc. are mentioned. The amount of the anionic monomer is preferably in the range of 0 to 50 mol% with respect to all monomers excluding the polyfunctional monomer.

水溶性の非イオン性単量体の例としては、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリン、アクリロイルピペラジンなどが挙げられ、その量としては前記多官能性単量体を除く全単量体に対して0〜95mol%の範囲であることが好ましい。 Examples of water-soluble nonionic monomers include (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N -Vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, acryloylmorpholine, acryloylpiperazine, etc. are mentioned, and the amount thereof is in the range of 0 to 95 mol% with respect to all monomers except the polyfunctional monomer. It is preferable that

単量体水溶液混合物には前記単量体の他に、連鎖移動性を有する化合物を含むことが出来る。連鎖移動性を有する化合物の例としては、2−プパノール、2−メルカプトエタノール、メタリルスルホン酸ナトリウム、ギ酸ナトリウムなどが上げられ、目的とする重合物の組成、重合速度および分子量に応じて適宜添加する。 The monomer aqueous solution mixture may contain a compound having chain transferability in addition to the monomer. Examples of compounds having chain transferability include 2-ppanol, 2-mercaptoethanol, sodium methallyl sulfonate, sodium formate and the like, which are appropriately added depending on the composition, polymerization rate and molecular weight of the target polymer. To do.

連続相を形成する水に非混和性有機液体としては、水と混合した際相分離を生じ、界面活性剤により乳化可能な有機液体であれば特に制限はないが、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。含有量としては、油中水型エマルジョン全量に対して20重量%〜50重量%の範囲であることが好ましい。 The water-immiscible organic liquid that forms a continuous phase is not particularly limited as long as it is an organic liquid that causes phase separation when mixed with water and can be emulsified with a surfactant, but paraffins, kerosene, light oil, Examples thereof include mineral oils such as medium oils, hydrocarbon synthetic oils having characteristics such as boiling point and viscosity in substantially the same range as these, and mixtures thereof. The content is preferably in the range of 20% to 50% by weight with respect to the total amount of the water-in-oil emulsion.

乳化に必要な界面活性剤の例としては、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB3〜10のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンジオレ−ト、ソルビタントリオレート、ソルビタンモノステアレ−ト、ソルビタンジステアレ−ト、ソルビタンモノラウレ−ト、ソルビタンジラウレ−ト、ソルビタンモノパルミテ−ト、ソルビタンジパルミテ−ト、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンステアリルエ−テル、ポリオキシエチレンラウリルエ−テル、ポリオキシエチレンセチルエ−テル、ポリオキシエチレントリデシルエ−テル、ポリオキシエチレンオレイルエ−テル、高分子非イオン性界面活性剤類などがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10重量%であり、好ましくは1〜5重量%の範囲である。 Examples of surfactants required for emulsification include non-ionic surfactants of HLB 3-10 as examples of at least one surfactant having an amount effective to form a water-in-oil emulsion and HLB. Specific examples thereof include sorbitan monooleate, sorbitan dioleate, sorbitan trioleate, sorbitan monostearate, sorbitan distearate, sorbitan monolaurate, sorbitan dilaurate, Sorbitan monopalmitate, sorbitan dipalmitate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan monostearate, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether Tellurium, polyoxyethylene cetyl ether, poly Polyoxyethylene tridecyl et - ether, polyoxyethylene oleyl et - ether, and high molecular nonionic surfactants and the like. The addition amount of these surfactants is 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total amount of the water-in-oil emulsion.

重合条件は通常、使用する単量体や共重合モル%によって適宜決めていき、温度としては0〜100℃の範囲で行う。特に油中水型エマルジョン重合法を適用する場合は、20〜80℃、好ましくは20〜60℃の範囲で行う。重合開始はラジカル重合開始剤を使用する。これら開始剤は油溶性あるいは水溶性のどちらでも良く、アゾ系、過酸化物系、レドックス系いずれでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1’−アゾビス(シクロヘキサンカルボニトリル)、2、2’−アゾビス(2−メチルブチロニトリル)、2、2’−アゾビス(2−メチルプロピオネ−ト)、4、4−アゾビス(4−メトキシ−2、4ジメチル)バレロニトリルなどがあげられる。 The polymerization conditions are usually appropriately determined according to the monomer used and the copolymerization mol%, and the temperature is in the range of 0 to 100 ° C. In particular, when the water-in-oil emulsion polymerization method is applied, it is carried out in the range of 20 to 80 ° C, preferably 20 to 60 ° C. For the initiation of polymerization, a radical polymerization initiator is used. These initiators may be either oil-soluble or water-soluble, and can be polymerized by any of azo, peroxide, and redox systems. Examples of oil-soluble azo initiators include 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2'-azobis (2-methylpropionate), 4,4-azobis (4-methoxy-2,4dimethyl) valeronitrile and the like.

水溶性アゾ系開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)などがあげられる。またレドックス系の例としては、ペルオクソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミンなどとの組み合わせがあげられる。さらに過酸化物の例としては、ペルオクソ二硫酸アンモニウムあるいはカリウム、過酸化水素,ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t-ブチルペルオキシ2−エチルヘキサノエ−トなどをあげることができる。 Examples of water-soluble azo initiators include 2,2′-azobis (amidinopropane) dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] And dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of redox systems include a combination of ammonium peroxodisulfate and sodium sulfite, sodium hydrogen sulfite, trimethylamine, tetramethylethylenediamine, and the like. Examples of peroxides include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy 2-ethylhexanoate, etc. I can give you.

単量体の重合濃度は、乳化液重量に対して、20〜50重量%の範囲であり、好ましくは25〜40重量%の範囲であり、単量体の組成、重合法、開始剤の選択によって適宜重合の濃度と温度を設定する。これらの単量体を重合して得られるイオン性水溶性高分子の分子量は、好ましくは300万〜2000万の範囲である。 The monomer polymerization concentration is in the range of 20 to 50% by weight, preferably in the range of 25 to 40% by weight, based on the weight of the emulsion, and the monomer composition, polymerization method, and selection of initiator The polymerization concentration and temperature are set as appropriate. The molecular weight of the ionic water-soluble polymer obtained by polymerizing these monomers is preferably in the range of 3 million to 20 million.

一般的な、イオン性水溶性高分子の油中水滴型エマルジョンを、凝集剤用途として水に溶解して使用する場合、親水性の強い両親媒性共重合物や親水性界面活性剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中のイオン性水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。本発明における、油中水滴型エマルジョンにおいても、両親媒性共重合物および親水性界面活性剤を含有することも可能であるが、噴霧乾燥して得られる粉末を製造する場合、不純物が含まれることおよび、噴霧乾燥して得られる粉末を水に溶解して使用する場合、特にHLB値が10以上の親水性界面活性剤を含有する場合、理由は明らかではないがおそらくは界面活性剤とカチオン性高分子が複合体を形成するために溶解速度が遅くなるので、含まない物のほうが好ましい。また油中水滴型エマルジョン状液体を液状のまま直接乾燥する場合、乾燥工程中に粒子同士が結着しやすくなり、粗大化し、後の粉砕工程において余分のエネルギーを費やし好ましくない。乾燥方法としては、通常の箱型乾燥機に一定時間保持し乾燥することも可能である。あるいはベルトコンベア上に油中水滴型エマルジョンを載せ、乾燥機の中を一定の滞留時間通し、乾燥することも可能である。乾燥温度は、低温で長時間乾燥するよりも、比較的高温で
短時間乾燥するほうが、不溶化などが起きにくい。すなわち120〜70℃で
数分から数十分程度である。
When using a general water-in-oil emulsion of an ionic water-soluble polymer dissolved in water for use as a flocculant, a highly hydrophilic amphiphilic copolymer or hydrophilic surfactant is added. Then, the emulsion particles covered with the oil film are made easy to adjust to water and the ionic water-soluble polymer therein is easily dissolved, diluted with water and used for each application. The water-in-oil emulsion in the present invention can also contain an amphiphilic copolymer and a hydrophilic surfactant, but impurities are included when producing a powder obtained by spray drying. When the powder obtained by spray drying is dissolved in water and used, particularly when a hydrophilic surfactant having an HLB value of 10 or more is contained, the reason is not clear, but probably the surfactant and the cationic Since the polymer forms a complex, the dissolution rate is slow, and therefore the one not containing is preferable. Further, when the water-in-oil emulsion liquid is directly dried in a liquid state, the particles are likely to be bound to each other during the drying process and become coarse, and excessive energy is consumed in the subsequent pulverization process. As a drying method, it is also possible to hold in a normal box dryer for a certain period of time and dry. Alternatively, it is possible to place a water-in-oil emulsion on a belt conveyor and dry it through a drier for a fixed residence time. The drying temperature is less likely to cause insolubilization when drying at a relatively high temperature for a short time than drying at a low temperature for a long time. That is, it is about several minutes to several tens of minutes at 120 to 70 ° C.

本発明の汚泥の脱水方法は、請求項1〜3に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、汚泥に添加し凝集させ脱水機により脱水する方法である。汚泥の種類としては特に制限はなく、製紙排水、化学工業排水、食品工業排水などの生物処理したときに発生する余剰汚泥、あるいは都市下水の生汚泥、混合生汚泥、余剰汚泥、消化汚泥などの有機汚泥に使用することができる。 The sludge dewatering method of the present invention is a method in which the ionic water-soluble polymer comprising the powder according to any one of claims 1 to 3 is dissolved in water, and then added to the sludge to be agglomerated and dehydrated by a dehydrator. There are no particular restrictions on the type of sludge, such as surplus sludge generated during biological treatment such as papermaking wastewater, chemical industrial wastewater, and food industry wastewater, or raw sludge, mixed raw sludge, surplus sludge, digested sludge, etc. Can be used for organic sludge.

本発明の粉末からなるイオン性水溶性高分子は、水に溶解した後、汚泥脱水および製紙スラッジに添加し凝集させ脱水機により脱水する方法である。汚泥脱水および製紙スラッジの脱水に用いる脱水機の種類としては特に制限はなく、ベルトプレス、スクリュープレス、ロータリープレス、フィルタープレスなどの圧搾脱水装置、または遠心分離機、真空濾過機などの圧力脱水装置が例として挙げられる。 The ionic water-soluble polymer comprising the powder of the present invention is a method in which it is dissolved in water and then added to sludge dewatering and paper sludge to be agglomerated and dehydrated by a dehydrator. There are no particular restrictions on the type of dehydrator used for sludge dewatering and paper sludge dewatering. Pressure dehydration devices such as belt presses, screw presses, rotary presses, filter presses, etc., or centrifugal separators, vacuum filters, etc. Is given as an example.

本発明の汚泥の脱水方法および製紙スラッジの脱水方法において、特に好適に使用できる脱水機としては、請求項1〜3に記載の粉末からなるイオン性水溶性高分子の電荷内包率と脱水効果の挙動を考慮すると、電荷内包率が35%以上90%以下の範囲では、添加量の増大とともに巨大で強固なフロックを形成する特徴があり、それに伴って脱水の初期濾水量が増大することから、強固なフロックや初期脱水性能が要求されるスクリュープレス脱水機およびロータリープレス脱水機が挙げられる。 In the sludge dewatering method and paper sludge dewatering method of the present invention, as a dehydrator that can be used particularly preferably, the charge inclusion rate and dewatering effect of the ionic water-soluble polymer comprising the powder according to any one of claims 1 to 3 can be used. Considering the behavior, when the charge inclusion rate is in the range of 35% or more and 90% or less, there is a feature of forming a huge and strong floc as the amount of addition increases, and accordingly, the initial drainage amount of dehydration increases. Examples thereof include screw press dehydrators and rotary press dehydrators that require strong flock and initial dewatering performance.

本発明の汚泥の脱水方法および製紙スラッジの脱水方法は、請求項1〜3に記載の粉末からなるイオン性水溶性高分子の他に有機もしくは無機の凝結剤を併用することが可能である。有機凝結剤の例としてはとしてはカチオン性を有する高分子が挙げられ(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロリドといった、(メタ)アクリロイルオキシアルキルトリアルキルアンモニウムハライド類やジアリルジメチルアンモニウムクロリドといったジアリルアミン化合物などが挙げられ、無機凝結剤の例としては、ポリ塩化アルミニウムや塩化第二鉄、硫酸第二鉄といった金属塩が挙げられる。 The sludge dewatering method and paper sludge dewatering method of the present invention can use an organic or inorganic coagulant in addition to the ionic water-soluble polymer comprising the powder according to claims 1 to 3. Examples of organic coagulants include cationic polymers, such as (meth) acryloyloxyethyltrimethylammonium chloride, diallylamine compounds such as (meth) acryloyloxyalkyltrialkylammonium halides and diallyldimethylammonium chloride. Examples of inorganic coagulants include metal salts such as polyaluminum chloride, ferric chloride, and ferric sulfate.

本発明の製紙方法は、請求項1〜3に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、抄紙前の製紙原料中に添加し使用する方法である。製紙原料の種類に特に制限はなく、クラフトパルプ、BKP、TMP、DIPなどのパルプを用いることができ、電荷内包率が35%以上90%以下のイオン性水溶性高分子に対して、DIPなどの短繊維分を多いパルプ、TMPなどのアニオン性物質を多く含有するパルプ、あるいはパルプの他に填料を多く含む原料を用いる場合、特に好適である。 The papermaking method of the present invention is a method in which the ionic water-soluble polymer comprising the powder according to any one of claims 1 to 3 is dissolved in water and then added to a papermaking raw material before papermaking. There are no particular restrictions on the type of papermaking raw material, and pulp such as kraft pulp, BKP, TMP, and DIP can be used. For ionic water-soluble polymers having a charge inclusion rate of 35% to 90%, DIP and the like It is particularly suitable when using a pulp containing a large amount of short fibers, a pulp containing a large amount of an anionic substance such as TMP, or a raw material containing a large amount of filler in addition to the pulp.

填料の種類は特に制限は無く、炭酸カルシウム、タルク、カオリン、酸化チタンなどが挙げられる。また、抄紙時のpHにも制限はなく酸性、中性条件での抄紙も可能である。本発明のイオン性水溶性高分子を用いる場合、特に炭酸カルシウムを多く使用する中性抄紙条件での填料歩留率の向上に用いることが好適である。 The type of filler is not particularly limited, and examples include calcium carbonate, talc, kaolin, and titanium oxide. Moreover, there is no restriction | limiting also in pH at the time of papermaking, and papermaking on acidic and neutral conditions is also possible. When the ionic water-soluble polymer of the present invention is used, it is preferably used for improving the filler yield rate under neutral papermaking conditions in which a large amount of calcium carbonate is used.

本発明の粉末からなるイオン性水溶性高分子の水溶液をパルプスラリーに添加して抄造し、紙を製造することができるが、添加場所は特に制限されないが、種箱、マシンチェスト、スクリーンの入り口あるいは出口等が想定される。イオン性水溶性高分子をパルプ重量に対し10〜500ppm添加して使用することが好ましい。 Paper can be produced by adding an aqueous solution of the ionic water-soluble polymer comprising the powder of the present invention to a pulp slurry to produce paper, but the addition location is not particularly limited, but the seed box, machine chest, screen entrance Or an exit etc. are assumed. It is preferable to use 10 to 500 ppm of ionic water-soluble polymer added to the pulp weight.

本発明の粉末からなるイオン性水溶性高分子の水溶液を用いた製紙方法は、無機及び/または有機のアニオン性物質と組み合わせて使うことが可能である。無機のアニオン性物質の例としては、コロイダルシリカあるいはベントナイトが例示され、有機のアニオン性物質としては、一般式(3)で表せるアニオン性単量体3〜100mol%と水溶性の非イオン性単量体の共重合物が例示できる。 The papermaking method using the aqueous solution of the ionic water-soluble polymer comprising the powder of the present invention can be used in combination with inorganic and / or organic anionic substances. Examples of inorganic anionic substances include colloidal silica or bentonite, and examples of organic anionic substances include 3 to 100 mol% of an anionic monomer represented by the general formula (3) and a water-soluble nonionic substance. A copolymer of a monomer can be exemplified.

一般式(3)で表されるアニオン性単量体3〜100mol%と水溶性の非イオン性単量体の共重合物の形態に特に制限は無く、ペースト状水溶液、油中水滴型エマルジョン、水性分散液等が挙げられ、いずれも水に溶解した水溶液として添加できる。添加場所については特に制限はなく、イオン性水溶性高分子の添加前あるいは添加後あるいは同時に添加することが可能であるし、両者の水溶液もしくは分散液を混合して用いることも可能である。 There is no particular limitation on the form of a copolymer of 3 to 100 mol% of an anionic monomer represented by the general formula (3) and a water-soluble nonionic monomer, a paste-like aqueous solution, a water-in-oil emulsion, An aqueous dispersion liquid etc. are mentioned, All can be added as aqueous solution melt | dissolved in water. There are no particular restrictions on the location of the addition, and it can be added before, after or simultaneously with the addition of the ionic water-soluble polymer, or both aqueous solutions or dispersions can be mixed and used.

(実施例)以下、実施例および比較例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。 (Examples) Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(イオン性水溶性高分子粉末の製造例1)イオン交換水45.85g、50重量%アクリルアミド水溶液220.06g、80重量%アクリロイルオキシエチルトリメチルアンモニウムクロリド水溶液93.71g、0.2重量%メチレンビスアクリルアミド水溶液0.19gおよび2−プロパノール0.19gを仕込んだ水溶液混合物に、ソルビタンモノオレート5.00gおよび沸点190℃ないし230℃のイソパラフィン135.00gからなる混合物を加え、モノジナイザーにて1000rpmの回転数のもとで15分間強攪拌しモノマー乳化液を得た。このものを、十字攪拌ペラを取り付けた攪拌機、還流冷却管、温度計、窒素導入管および冷却装置を備えた四つ口セパラブルフラスコに仕込み、十字攪拌ペラで400prmの攪拌条件下内温30℃で30分間窒素置換を行った。窒素置換が完了した後、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を0.148g加え窒素雰囲気下30℃で20時間保持し重合を行い、イオン性水溶性高分子の油中水型エマルジョンを得た。この油中水型エマルジョンを造粒乾燥装置内に噴霧し、造粒した粉末の水分が5重量%以下になるまで乾燥造粒し、イオン性水溶性高分子の粉末を得た。このものを製造例1とし物性を表1に示す。 (Production Example 1 of Ionic Water-soluble Polymer Powder) Ion-exchanged water 45.85 g, 50 wt% acrylamide aqueous solution 220.06 g, 80 wt% acryloyloxyethyltrimethylammonium chloride aqueous solution 93.71 g, 0.2 wt% methylenebis A mixture of 5.00 g of sorbitan monooleate and 135.00 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. is added to an aqueous solution mixture prepared by adding 0.19 g of acrylamide aqueous solution and 0.19 g of 2-propanol, and the number of revolutions at 1000 rpm with a monogenizer The mixture was vigorously stirred for 15 minutes to obtain a monomer emulsion. This was charged into a four-necked separable flask equipped with a stirrer equipped with a cross stirrer, a reflux condenser, a thermometer, a nitrogen introduction pipe and a cooling device, and the internal temperature was 30 ° C. under a stirring condition of 400 prm with the cross stirrer. For 30 minutes. After completion of the nitrogen substitution, 0.148 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added and polymerization was carried out by maintaining at 30 ° C. for 20 hours in a nitrogen atmosphere. A molecular water-in-oil emulsion was obtained. This water-in-oil emulsion was sprayed into a granulating / drying apparatus, and dried and granulated until the moisture of the granulated powder was 5% by weight or less to obtain an ionic water-soluble polymer powder. This was designated as Production Example 1 and the physical properties are shown in Table 1.

(イオン性水溶性高分子粉末の製造例2)イオン交換水99.90g、50重量%アクリルアミド水溶液72.72g、80重量%アクリロイルオキシエチルトリメチルアンモニウムクロリド水溶液185.80g、0.2重量%メチレンビスアクリルアミド水溶液1.39gおよび2−プロパノール0.19gを仕込んだ水溶液混合物に、ソルビタンモノオレート5.00gおよび沸点190℃ないし230℃のイソパラフィン135.00gからなる混合物を加え、モノジナイザーにて1000rpmの回転数のもとで15分間強攪拌しモノマー乳化液を得た。このものを、十字攪拌ペラを取り付けた攪拌機、還流冷却管、温度計、窒素導入管および冷却装置を備えた四つ口セパラブルフラスコに仕込み、十字攪拌ペラで400prmの攪拌条件下内温50℃で30分間窒素置換を行った。窒素置換が完了した後、ジメチル−2,2’−アゾビス(イソブチレート)を0.148g加え窒素雰囲気下50℃で20時間保持し重合を行い、イオン性水溶性高分子の油中水型エマルジョンを得た。この油中水型エマルジョンを造粒乾燥装置内に噴霧し、造粒した粉末の水分が5重量%以下になるまで乾燥造粒し、イオン性水溶性高分子の粉末を得た。このものを製造例2とし物性を表1に、このものを0.2重量%濃度となるよう水に溶解した場合の粘度の変化を図1に示す。 (Production example 2 of ionic water-soluble polymer powder) 99.90 g of ion-exchanged water, 72.72 g of 50% by weight acrylamide aqueous solution, 185.80 g of 80% by weight acryloyloxyethyltrimethylammonium chloride aqueous solution, 0.2% by weight methylenebis A mixture of 5.00 g of sorbitan monooleate and 135.00 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. was added to an aqueous mixture prepared by adding 1.39 g of an acrylamide aqueous solution and 0.19 g of 2-propanol, and the number of revolutions at 1000 rpm with a monogenizer. The mixture was vigorously stirred for 15 minutes to obtain a monomer emulsion. This was charged into a four-necked separable flask equipped with a stirrer equipped with a cross stirrer, a reflux condenser, a thermometer, a nitrogen introduction pipe and a cooling device, and the internal temperature was 50 ° C. under a stirring condition of 400 prm with the cross stirrer. For 30 minutes. After completion of the nitrogen substitution, 0.148 g of dimethyl-2,2′-azobis (isobutyrate) was added and the polymerization was carried out under a nitrogen atmosphere at 50 ° C. for 20 hours to obtain a water-in-oil emulsion of an ionic water-soluble polymer. Obtained. This water-in-oil emulsion was sprayed into a granulating / drying apparatus, and dried and granulated until the moisture of the granulated powder was 5% by weight or less to obtain an ionic water-soluble polymer powder. This is referred to as Production Example 2, the physical properties are shown in Table 1, and the viscosity change when this is dissolved in water to a concentration of 0.2% by weight is shown in FIG.

(イオン性水溶性高分子粉末の製造例3)イオン交換水を114.12g、50重量%アクリルアミド水溶液を31.09g、80重量%アクリロイルオキシエチルトリメチルアンモニウムクロリド水溶液を211.82g、0.2重量%メチレンビスアクリルアミド水溶液を2.78gに変えたこと以外は、イオン性水溶性高分子粉末の製造例2と同様な方法でイオン性水溶性高分子の粉末を得た。このものを製造例3とし物性を表1に示す。 (Production Example 3 of Ionic Water-soluble Polymer Powder) 114.12 g of ion-exchanged water, 31.09 g of 50 wt% acrylamide aqueous solution, 211.82 g of 0.2 wt% aqueous solution of 80 wt% acryloyloxyethyltrimethylammonium chloride, 0.2 wt% An ionic water-soluble polymer powder was obtained in the same manner as in Production Example 2 of the ionic water-soluble polymer powder except that the% methylenebisacrylamide aqueous solution was changed to 2.78 g. This was designated as Production Example 3 and the physical properties are shown in Table 1.

(イオン性水溶性高分子粉末の製造例4)イオン性水溶性高分子粉末の製造例3と同様な方法でイオン性水溶性高分子の油中水型エマルジョンを得た。その後、前記油中水型エマルジョンをステンレス製の浅い容器に深さ3mmに注ぎ込み、乾燥機中において100℃で1時間乾燥した。生成した乾燥物を粉砕機により粉砕し、イオン性水溶性高分子の粉末を得た。このものを製造例4とし物性を表1に示す。 (Production Example 4 of Ionic Water-soluble Polymer Powder) A water-in-oil emulsion of an ionic water-soluble polymer was obtained in the same manner as in Production Example 3 of the ionic water-soluble polymer powder. Thereafter, the water-in-oil emulsion was poured into a shallow stainless steel container to a depth of 3 mm and dried in a dryer at 100 ° C. for 1 hour. The resulting dried product was pulverized by a pulverizer to obtain an ionic water-soluble polymer powder. This was designated as Production Example 4 and the physical properties are shown in Table 1.

(イオン性水溶性高分子粉末の比較製造例1)イオン交換水を45.99g、0.2重量%メチレンビスアクリルアミド水溶液を0.05gに変えたこと以外は、イオン性水溶性高分子粉末の製造例1と同様な方法でイオン性水溶性高分子の粉末を得た。このものを比較製造例1とし物性を表1に示す。 (Comparative Production Example 1 of Ionic Water-soluble Polymer Powder) Except that the ion-exchanged water was changed to 45.99 g and the 0.2 wt% methylenebisacrylamide aqueous solution was changed to 0.05 g, An ionic water-soluble polymer powder was obtained in the same manner as in Production Example 1. This was designated as Comparative Production Example 1 and the physical properties are shown in Table 1.

(イオン性水溶性高分子粉末の比較製造例2)イオン交換水を101.10g、0.2重量%メチレンビスアクリルアミド水溶液を0.19gに変えたこと以外は、イオン性水溶性高分子粉末の製造例2と同様な方法でイオン性水溶性高分子の粉末を得た。このものを比較製造例2とし物性を表1に示す。 (Comparative Production Example 2 of Ionic Water-soluble Polymer Powder) Except for changing the ion-exchanged water to 101.10 g and the 0.2 wt% methylenebisacrylamide aqueous solution to 0.19 g, An ionic water-soluble polymer powder was obtained in the same manner as in Production Example 2. This is referred to as Comparative Production Example 2, and the physical properties are shown in Table 1.

(イオン性水溶性高分子粉末の比較製造例3)イオン交換水を116.71g、0.2重量%メチレンビスアクリルアミド水溶液を0.19gに変えたこと以外は、イオン性水溶性高分子粉末の製造例2と同様な方法でイオン性水溶性高分子の粉末を得た。このものを比較製造例3とし物性を表1に示す。 (Comparative Production Example 3 of Ionic Water-soluble Polymer Powder) Except for changing 116.71 g of ion-exchanged water and 0.19 g of 0.2 wt% methylenebisacrylamide aqueous solution, An ionic water-soluble polymer powder was obtained in the same manner as in Production Example 2. This was designated as Comparative Production Example 3, and the physical properties are shown in Table 1.

(イオン性水溶性高分子粉末の比較製造例4)イオン性水溶性高分子粉末の製造例2で示したイオン性水溶性高分子の油中水型エマルジョンにHLB13.3のポリオキシアルキレンアルキルエーテルを添加混合した後、このものを造粒乾燥装置内に噴霧し、造粒した粉末の水分が5重量%以下になるまで乾燥造粒し、イオン性水溶性高分子の粉末を得た。このものを比較製造例4とし物性を表1に、このものを0.2重量%濃度となるよう水に溶解した場合の粘度の変化を図1に示す。 (Comparative Production Example 4 of Ionic Water-soluble Polymer Powder) Polyoxyalkylene alkyl ether of HLB13.3 in the water-in-oil emulsion of the ionic water-soluble polymer shown in Production Example 2 of the ionic water-soluble polymer powder Then, this was sprayed into a granulating / drying apparatus, and dried and granulated until the moisture of the granulated powder became 5% by weight or less to obtain a powder of an ionic water-soluble polymer. This is Comparative Production Example 4, the physical properties are shown in Table 1, and the viscosity change when this is dissolved in water to a concentration of 0.2% by weight is shown in FIG.

(表1)








(Table 1)








(図1)
(Figure 1)

表1および図1で示した通り、製造例2と比較製造例4を比較すると製造例2のイオン性水溶性高分子粉末の方が、溶解開始後の0.2重量%水溶液粘度が速く上昇し、溶解速度が速いことが明白である。 As shown in Table 1 and FIG. 1, when Production Example 2 and Comparative Production Example 4 are compared, the ionic water-soluble polymer powder of Production Example 2 has a faster increase in viscosity of a 0.2 wt% aqueous solution after the start of dissolution. It is clear that the dissolution rate is fast.

製造例2で合成した粉末からなるイオン性水溶性高分子を水で溶解し0.2重量%の水溶液を調製し汚泥の脱水試験を行った。し尿余剰汚泥(pH7.06、全ss分46,250mg/L)を200mLポリビーカーに採取し、前記製造例2のイオン性水溶性高分子粉末の溶解液を汚泥に対する高分子の重量で370ppm、400ppmおよび430ppm添加し、それぞれビーカー移し変え攪拌20回行った後、T−1178Lのナイロン濾布で濾過し、45秒後の濾液量を測定した。また濾過した汚泥のケーキ支持性(脱水ケーキの硬さ)を観察した後、プレス圧2kg/mで1分間脱水し濾布剥離性を確認し、ケーキ含水率(105℃、20時間乾燥)を測定した。結果を表2に示す。 The ionic water-soluble polymer composed of the powder synthesized in Production Example 2 was dissolved in water to prepare a 0.2 wt% aqueous solution, and a sludge dehydration test was performed. Human waste surplus sludge (pH 7.06, total ss content 46,250 mg / L) was collected in a 200 mL poly beaker, and the ionic water-soluble polymer powder solution of Production Example 2 was 370 ppm by weight of the polymer with respect to sludge. 400 ppm and 430 ppm were added, each was transferred to a beaker and stirred 20 times, then filtered through a T-1178 L nylon filter cloth, and the amount of filtrate after 45 seconds was measured. Moreover, after observing the cake supportability (hardness of the dehydrated cake) of the filtered sludge, it was dehydrated at a press pressure of 2 kg / m 2 for 1 minute to confirm the filter cloth peelability, and the moisture content of the cake (105 ° C., dried for 20 hours) Was measured. The results are shown in Table 2.

(比較例2) イオン性水溶性高分子粉末を比較製造例2としたこと以外は、実施例2と同様な方法で汚泥の脱水試験を行った。結果を表2に示す。 Comparative Example 2 A sludge dewatering test was performed in the same manner as in Example 2 except that the ionic water-soluble polymer powder was changed to Comparative Production Example 2. The results are shown in Table 2.

(表2)
(Table 2)

表2で示した通り製造例2と比較製造例2のイオン性水溶性高分子粉末を比較すると、電荷内包率の高い製造例2イオン性水溶性高分子粉末の方が45秒後の濾液量は多く、ケーキ支持性、濾布剥離性に優れ、脱水ケーキの含水率が大きく低減することが出来ることが明白である。 As shown in Table 2, when the ionic water-soluble polymer powders of Production Example 2 and Comparative Production Example 2 are compared, Production Example 2 with higher charge inclusion rate The amount of filtrate after 45 seconds is higher with the ionic water-soluble polymer powder. It is clear that the cake supportability and filter cloth peelability are excellent, and the moisture content of the dehydrated cake can be greatly reduced.

製造例3および製造例4で合成した粉末からなるイオン性水溶性高分子を水で溶解し0.2重量%の水溶液を調製し汚泥の脱水試験を行った。食肉余剰汚泥(pH6.64、全ss分24,000mg/L)を200mLポリビーカーに採取し、前記製造例3のイオン性水溶性高分子粉末の溶解液を汚泥に対する高分子の重量で400ppm、500ppmおよび600ppm添加し、それぞれCST1000rpmで30秒間攪拌混合を行った後#202のナイロン濾布で濾過し、45秒後の濾液量を測定した。また濾過した汚泥のケーキ支持性(脱水ケーキの硬さ)を観察した後、プレス圧3kg/mで30秒間脱水し濾布剥離性を確認し、ケーキ含水率(105℃、20時間乾燥)を測定した。結果を表3に示す。 The ionic water-soluble polymer composed of the powder synthesized in Production Example 3 and Production Example 4 was dissolved in water to prepare a 0.2% by weight aqueous solution, and a sludge dehydration test was performed. Meat surplus sludge (pH 6.64, total ss content 24,000 mg / L) was collected in a 200 mL poly beaker, and the ionic water-soluble polymer powder solution of Production Example 3 was 400 ppm by weight of the polymer with respect to sludge. 500 ppm and 600 ppm were added, each was stirred and mixed at CST 1000 rpm for 30 seconds, filtered through a nylon filter cloth of # 202, and the amount of filtrate after 45 seconds was measured. Moreover, after observing the cake supportability (hardness of the dehydrated cake) of the filtered sludge, it was dehydrated at a press pressure of 3 kg / m 2 for 30 seconds to confirm the filter cloth peelability, and the moisture content of the cake (105 ° C, dried for 20 hours) Was measured. The results are shown in Table 3.

(比較例3) イオン性水溶性高分子粉末を比較製造例3としたこと以外は、実施例3と同様な方法で汚泥の脱水試験を行った。結果を表3に示す。
Comparative Example 3 A sludge dewatering test was performed in the same manner as in Example 3 except that the ionic water-soluble polymer powder was changed to Comparative Production Example 3. The results are shown in Table 3.

(表3)
(Table 3)

表3で示した通り製造例3と比較製造例3のイオン性水溶性高分子粉末を比較すると、電荷内包率の高い製造例3のイオン性水溶性高分子粉末の方が特に高添加量範囲での45秒後濾液量が極度に多く、ケーキ支持性、濾布剥離性に優れ、脱水ケーキの含水率が大きく低減することが出来ることが明白である。 When the ionic water-soluble polymer powders of Production Example 3 and Comparative Production Example 3 are compared as shown in Table 3, the ionic water-soluble polymer powder of Production Example 3 having a higher charge encapsulation rate is particularly high in the addition amount range. After 45 seconds, the amount of filtrate is extremely large, the cake supportability and the filter cloth peelability are excellent, and it is clear that the moisture content of the dehydrated cake can be greatly reduced.

製造例1で合成したイオン性水溶性高分子粉末を水で溶解し0.2重量%の水溶液を調製し製紙スラッジの脱水試験を行った。製紙スラッジ(pH6.90、全ss分11,750mg/L)を200mLポリビーカーに採取し、アニオン性高分子凝集剤(ハイモロックV−320)の0.1重量%水溶液を汚泥に対して高分子の重量で5ppm、10ppmおよび20ppm添加した後、前記製造例1のイオン性水溶性高分子粉末の溶解液を汚泥に対する高分子の重量でそれぞれ10ppm、20ppm、40ppm添加し、それぞれスパチュラで50回攪拌しさらにビーカー移し変え6回行った後#202のナイロン濾布で濾過し、45秒後の濾液量を測定した。また濾過した汚泥のケーキ支持性(脱水ケーキの硬さ)を観察した後、プレス圧4kg/mで60秒間脱水し濾布剥離性を確認し、ケーキ含水率(105℃、20時間乾燥)を測定した。結果を表4に示す。 The ionic water-soluble polymer powder synthesized in Production Example 1 was dissolved in water to prepare a 0.2 wt% aqueous solution, and a paper sludge dehydration test was performed. Paper sludge (pH 6.90, total ss content 11,750 mg / L) was collected in a 200 mL poly beaker, and 0.1 wt% aqueous solution of anionic polymer flocculant (Himoloc V-320) was polymerized with respect to sludge. 5 ppm, 10 ppm and 20 ppm were added, and then the ionic water-soluble polymer powder solution of Production Example 1 was added at 10 ppm, 20 ppm and 40 ppm by weight of the polymer with respect to sludge, respectively, and each was stirred 50 times with a spatula. Further, the beaker was transferred six times and then filtered through # 202 nylon filter cloth, and the filtrate amount after 45 seconds was measured. Moreover, after observing the cake supportability (the hardness of the dewatered cake) of the filtered sludge, it was dehydrated at a press pressure of 4 kg / m 2 for 60 seconds to confirm the filter cloth peelability, and the cake moisture content (105 ° C., dried for 20 hours) Was measured. The results are shown in Table 4.

(比較例4) 製造例1のイオン性水溶性高分子粉末を比較製造例1としたこと以外は、実施例4と同様な方法で製紙スラッジの脱水試験を行った。結果を表4に示す。 Comparative Example 4 A paper sludge dehydration test was conducted in the same manner as in Example 4 except that the ionic water-soluble polymer powder of Production Example 1 was changed to Comparative Production Example 1. The results are shown in Table 4.

(表4)
(Table 4)

表4で示した通り製造例1と比較製造例1のイオン性水溶性高分子粉末を比較すると、電荷内包率の高い製造例1のイオン性水溶性高分子粉末の方は45秒後濾液量に大きな差は無いものの、ケーキ支持性、濾布剥離性に優れ、脱水ケーキの含水率が大きく低減することが出来る、カチオン性高分子の添加量を低減することが可能であることが明白である。 As shown in Table 4, when the ionic water-soluble polymer powders of Production Example 1 and Comparative Production Example 1 are compared, the ionic water-soluble polymer powder of Production Example 1 having a higher charge encapsulation rate is 45 seconds later. Although there is no significant difference, it is clear that the cake supportability and filter cloth peelability are excellent, the water content of the dehydrated cake can be greatly reduced, and the addition amount of the cationic polymer can be reduced. is there.

製造例1で合成した粉末からなるイオン性水溶性高分子を水で溶解し0.2重量%の水溶液を調製し、カナディアンスタンダードフリーネス400mlに叩解したLBKPを用いて抄紙試験およびブリット式ダイナミックジャーテスターによる歩留試験を行った。LBKPを1.0%濃度とした後、市販の炭酸カルシウムをパルプ重量に対して20%、硫酸アルミニウム(Al分として8.0%)を対パルプ重量1.2%添加して硫酸でpH7.5に調整した。この製紙原料に前記製造例1のイオン性水溶性高分子粉末溶解液をパルプ重量に対して高分子の重量で200ppmになるように添加した後30秒攪拌した。その後、タッピスタンダードシートマシンで坪量80g/mとなるように抄紙し、得られた湿紙を4Kg/cmで5分間プレス後、105℃回転式ドライヤーで3分間乾燥し手抄き紙を得た。この手抄き紙を20℃、65% HRの条件下に24時間調湿した後、成紙の地合いの様子、不透明度およびISO白色度を評価した。結果を表5に示す。 The ionic water-soluble polymer composed of the powder synthesized in Production Example 1 was dissolved in water to prepare a 0.2 wt% aqueous solution, and a papermaking test and a Brit type dynamic jar tester using LBKP beaten to 400 ml of Canadian Standard Freeness A yield test was conducted. After adjusting LBKP to a concentration of 1.0%, commercially available calcium carbonate is added to the pulp weight by 20%, and aluminum sulfate (8.0% as Al 2 O 3 minutes) is added to the pulp weight by 1.2%. To pH 7.5. The ionic water-soluble polymer powder solution of Production Example 1 was added to this papermaking raw material so that the weight of the polymer was 200 ppm relative to the weight of the pulp, followed by stirring for 30 seconds. After that, paper is made with a Tappi standard sheet machine so that the basis weight is 80 g / m 2 , the obtained wet paper is pressed at 4 kg / cm 2 for 5 minutes, and then dried with a 105 ° C. rotary dryer for 3 minutes, and handmade paper. Got. This handmade paper was conditioned for 24 hours under the conditions of 20 ° C. and 65% HR, and then the texture of the finished paper, opacity and ISO whiteness were evaluated. The results are shown in Table 5.

LBKPを0.5%濃度とした後、市販の炭酸カルシウムをパルプ重量に対して20%、硫酸アルミニウム(Al2O3分として8.0%)を対パルプ重量1.2%添加して硫酸でpH7.5に調整した。この製紙原料をブリット式ダイナミックジャーテスターに投入し、前記製造例1のイオン性水溶性高分子粉末溶解液をパルプ重量に対して高分子の重量で200ppmになるように添加した。2000rpmで30秒攪拌した後、攪拌回転数を800rpmに落とし白水を10秒間排出し、その後、30秒間白水を回収した。回収した白水のSS濃度および525℃で2時間灰化して得られた灰分量から、製紙原料の総歩留率および灰分歩留率を求めた。結果を表5に示す。 After adjusting LBKP to a concentration of 0.5%, commercially available calcium carbonate is added to the pulp weight by 20%, aluminum sulfate (8.0% as Al2O3) is added to the pulp weight by 1.2%, and the pH is adjusted to 7. with sulfuric acid. Adjusted to 5. This papermaking raw material was put into a Brit type dynamic jar tester, and the ionic water-soluble polymer powder solution of Production Example 1 was added so that the polymer weight was 200 ppm relative to the pulp weight. After stirring at 2000 rpm for 30 seconds, the stirring rotation speed was reduced to 800 rpm, white water was discharged for 10 seconds, and then white water was collected for 30 seconds. From the SS concentration of the collected white water and the amount of ash obtained by ashing at 525 ° C. for 2 hours, the total yield and the ash yield of the papermaking raw material were determined. The results are shown in Table 5.

(比較例5) 製造例1のイオン性水溶性高分子粉末を比較製造例1としたこと以外は、実施例5と同様な方法で抄紙試験および歩留試験を行い、成紙の地合いの様子、不透明度、ISO白色度、製紙原料の総歩留率および灰分歩留率を求めた。結果を表5に示す。 (Comparative Example 5) A papermaking test and a yield test were performed in the same manner as in Example 5 except that the ionic water-soluble polymer powder of Production Example 1 was changed to Comparative Production Example 1, and the texture of the finished paper The opacity, ISO whiteness, total yield of papermaking raw materials, and ash content yield were determined. The results are shown in Table 5.

(表5)
(Table 5)

表5で示した通り製造例1と比較製造例1のイオン性水溶性高分子粉末を比較すると、電荷内包率の高い製造例1のイオン性水溶性高分子粉末の方は地合い評価、不透明度、ISO白色度、総歩留率および灰分歩留率について比較製造例1のイオン性水溶性高分子より優位にあることが明白である。 As shown in Table 5, when the ionic water-soluble polymer powders of Production Example 1 and Comparative Production Example 1 are compared, the ionic water-soluble polymer powder of Production Example 1 having a higher charge encapsulation rate is evaluated for texture and opacity. It is apparent that ISO whiteness, total yield rate, and ash yield rate are superior to the ionic water-soluble polymer of Comparative Production Example 1.

水で2.0重量%に調整したベントナイト分散液および製造例1で合成した粉末からなるイオン性水溶性高分子を水で溶解し0.2重量%とした水溶液を調製し、カナディアンスタンダードフリーネス400mlに叩解したLBKPを用いて抄紙試験およびブリット式ダイナミックジャーテスターによる歩留試験を行った。LBKPを1.0%濃度とした後、市販の炭酸カルシウムをパルプ重量に対して20%、硫酸アルミニウム(Al分として8.0%)を対パルプ重量1.2%添加して硫酸でpH7.5に調整した。この製紙原料に前記ベントナイト分散液をパルプ重量に対してベントナイト1000ppmとなるように添加した後15秒攪拌し、次に製造例1のイオン性水溶性高分子粉末溶解液をパルプ重量に対して高分子の重量でそれぞれ100ppmおよび200ppmになるように添加した後さらに2000rpmで30秒攪拌した。その後、タッピスタンダードシートマシンで坪量80g/mとなるように抄紙し、得られた湿紙を4Kg/cmで5分間プレス後、105℃回転式ドライヤーで3分間乾燥し手抄き紙を得た。この手抄き紙を20℃、65% HRの条件下に24時間調湿した後、成紙の地合いの様子、不透明度およびISO白色度を評価した。結果を表6に示す。 An aqueous solution prepared by dissolving the ionic water-soluble polymer consisting of the bentonite dispersion adjusted to 2.0 wt% with water and the powder synthesized in Production Example 1 with water to 0.2 wt% was prepared, and Canadian Standard Freeness 400 ml A papermaking test and a yield test using a britt type dynamic jar tester were conducted using LBKP beaten in the above. After adjusting LBKP to a concentration of 1.0%, commercially available calcium carbonate is added to the pulp weight by 20%, and aluminum sulfate (8.0% as Al 2 O 3 minutes) is added to the pulp weight by 1.2%. To pH 7.5. The bentonite dispersion was added to the papermaking raw material so that the bentonite was 1000 ppm with respect to the pulp weight and then stirred for 15 seconds. Next, the ionic water-soluble polymer powder solution of Production Example 1 was added to the pulp weight. After adding the molecular weight to 100 ppm and 200 ppm, respectively, the mixture was further stirred at 2000 rpm for 30 seconds. After that, paper is made with a Tappi standard sheet machine so that the basis weight is 80 g / m 2 , the obtained wet paper is pressed at 4 kg / cm 2 for 5 minutes, and then dried with a 105 ° C. rotary dryer for 3 minutes, and handmade paper. Got. This handmade paper was conditioned for 24 hours under the conditions of 20 ° C. and 65% HR, and then the texture of the finished paper, opacity and ISO whiteness were evaluated. The results are shown in Table 6.

LBKPを0.5%濃度とした後、市販の炭酸カルシウムをパルプ重量に対して20%、硫酸アルミニウム(Al2O3分として8.0%)を対パルプ重量1.2%添加して硫酸でpH7.5に調整した。この製紙原料をブリット式ダイナミックジャーテスターに投入し、前記ベントナイト分散液をパルプ重量に対してベントナイト1000ppmとなるように添加した後2000rpmで15秒攪拌し、次に製造例1のイオン性水溶性高分子粉末溶解液をパルプ重量に対して高分子の重量でそれぞれ100ppmおよび200ppmになるように添加した。次に、2000rpmで30秒攪拌した後、攪拌回転数を800rpmに落とし白水を10秒間排出し、その後、30秒間白水を回収した。回収した白水のSS濃度および525℃で2時間灰化して得られた灰分量から、製紙原料の総歩留率および灰分歩留率を求めた。結果を表6に示す。 After adjusting LBKP to a concentration of 0.5%, commercially available calcium carbonate is added to the pulp weight by 20%, aluminum sulfate (8.0% as Al2O3) is added to the pulp weight by 1.2%, and the pH is adjusted to 7. with sulfuric acid. Adjusted to 5. This papermaking raw material was put into a britt dynamic jar tester, and the bentonite dispersion was added so that the bentonite was 1000 ppm relative to the weight of the pulp, followed by stirring at 2000 rpm for 15 seconds. The molecular powder solution was added so that the weight of the polymer was 100 ppm and 200 ppm, respectively, with respect to the pulp weight. Next, after stirring at 2000 rpm for 30 seconds, the stirring rotation speed was reduced to 800 rpm, white water was discharged for 10 seconds, and then white water was collected for 30 seconds. From the SS concentration of the collected white water and the amount of ash obtained by ashing at 525 ° C. for 2 hours, the total yield and the ash yield of the papermaking raw material were determined. The results are shown in Table 6.

(比較例6) ベントナイトを添加しないこと以外は、実施例6と同様な方法で抄紙試験および歩留試験を行い、成紙の地合いの様子、不透明度、ISO白色度、製紙原料の総歩留率および灰分歩留率を求めた。結果を表6に示す。 (Comparative Example 6) A papermaking test and a yield test were performed in the same manner as in Example 6 except that bentonite was not added, and the texture of the formed paper, the opacity, the ISO whiteness, and the total yield of the papermaking raw material Rate and ash yield were determined. The results are shown in Table 6.

(比較例7) 製造例1のイオン性水溶性高分子粉末を比較製造例1としたこと以外は、実施例6と同様な方法で抄紙試験および歩留試験を行い、成紙の地合いの様子、不透明度、ISO白色度、製紙原料の総歩留率および灰分歩留率を求めた。結果を表6に示す。 (Comparative Example 7) A papermaking test and a yield test were performed in the same manner as in Example 6 except that the ionic water-soluble polymer powder of Production Example 1 was changed to Comparative Production Example 1, and the texture of the finished paper The opacity, ISO whiteness, total yield of papermaking raw materials, and ash content yield were determined. The results are shown in Table 6.

(表6)
(Table 6)

表6で示したように、実施例6は比較例6および7と比較して、総歩留率、灰分歩留率を大きく向上する効果が得られることが明白である。特に、灰分の歩留向上効果が高い。 As shown in Table 6, it is apparent that Example 6 has an effect of greatly improving the total yield rate and the ash content rate as compared with Comparative Examples 6 and 7. In particular, the effect of improving the yield of ash is high.

水で0.2重量%に調整したアニオン性高分子(アクリル酸ナトリウム20mol%−アクリルアミド80mol%共重合物、0.5重量%食塩水溶液粘度120.0(mPa・s)(食塩濃度4重量%、B型粘度計2号ローター、60rpm、25℃測定))および、製造例1で合成したイオン性水溶性高分子粉末を水で溶解し0.2重量%とした水溶液を調製し、カナディアンスタンダードフリーネス400mlに叩解したLBKPを用いて抄紙試験およびブリット式ダイナミックジャーテスターによる歩留試験を行った。LBKPを1.0%濃度とした後、市販の炭酸カルシウムをパルプ重量に対して20%、硫酸アルミニウム(Al分として8.0%)を対パルプ重量1.2%添加して硫酸でpH7.5に調整した。この製紙原料に前記アニオン性高分子水溶液をパルプ重量に対してアニオン性高分子100ppmとなるように添加した後15秒攪拌し、次に製造例1のイオン性水溶性高分子粉末溶解液をパルプ重量に対して高分子の重量でそれぞれ100ppmおよび200ppmになるように添加した後さらに2000rpmで30秒攪拌した。その後、タッピスタンダードシートマシンで坪量80g/mとなるように抄紙し、得られた湿紙を4Kg/cmで5分間プレス後、105℃回転式ドライヤーで3分間乾燥し手抄き紙を得た。この手抄き紙を20℃、65% HRの条件下に24時間調湿した後、成紙の地合いの様子、不透明度およびISO白色度を評価した。結果を表7に示す。 Anionic polymer adjusted to 0.2 wt% with water (sodium acrylate 20 mol% -acrylamide 80 mol% copolymer, 0.5 wt% saline solution viscosity 120.0 (mPa · s) (salt concentration 4 wt% B type viscometer No. 2 rotor, 60 rpm, measured at 25 ° C.)) and an aqueous solution prepared by dissolving the ionic water-soluble polymer powder synthesized in Production Example 1 with water to 0.2 wt%, Canadian Standard A papermaking test and a yield test using a britt dynamic jar tester were conducted using LBKP beaten to 400 ml of freeness. After adjusting LBKP to a concentration of 1.0%, commercially available calcium carbonate is added to the pulp weight by 20%, and aluminum sulfate (8.0% as Al 2 O 3 minutes) is added to the pulp weight by 1.2%. To pH 7.5. The anionic polymer aqueous solution was added to the papermaking raw material so that the anionic polymer was 100 ppm based on the weight of the pulp, followed by stirring for 15 seconds. Next, the ionic water-soluble polymer powder solution of Production Example 1 was added to the pulp. After adding the polymer to 100 ppm and 200 ppm by weight with respect to the weight, the mixture was further stirred at 2000 rpm for 30 seconds. After that, paper is made with a Tappi standard sheet machine so that the basis weight is 80 g / m 2 , the obtained wet paper is pressed at 4 kg / cm 2 for 5 minutes, and then dried with a 105 ° C. rotary dryer for 3 minutes, and handmade paper. Got. This handmade paper was conditioned for 24 hours under the conditions of 20 ° C. and 65% HR, and then the texture of the finished paper, opacity and ISO whiteness were evaluated. The results are shown in Table 7.

LBKPを0.5%濃度とした後、市販の炭酸カルシウムをパルプ重量に対して20%、硫酸アルミニウム(Al2O3分として8.0%)を対パルプ重量1.2%添加して硫酸でpH7.5に調整した。この製紙原料をブリット式ダイナミックジャーテスターに投入し、前記アニオン性高分子溶解液をパルプ重量に対してアニオン性高分子重量で100ppmとなるように添加した後2000rpmで15秒攪拌し、次に製造例1のイオン性水溶性高分子粉末溶解液をパルプ重量に対して高分子の重量でそれぞれ100ppmおよび200ppmになるように添加した。次に、2000rpmで30秒攪拌した後、攪拌回転数を800rpmに落とし白水を10秒間排出し、その後、30秒間白水を回収した。回収した白水のSS濃度および525℃で2時間灰化して得られた灰分量から、製紙原料の総歩留率および灰分歩留率を求めた。結果を表7に示す。 After adjusting LBKP to a concentration of 0.5%, commercially available calcium carbonate is added to the pulp weight by 20%, aluminum sulfate (8.0% as Al2O3) is added to the pulp weight by 1.2%, and the pH is adjusted to 7. with sulfuric acid. Adjusted to 5. This papermaking raw material was put into a britt dynamic jar tester, and the anionic polymer solution was added so that the anionic polymer weight was 100 ppm with respect to the pulp weight, and then stirred at 2000 rpm for 15 seconds, and then manufactured. The ionic water-soluble polymer powder solution of Example 1 was added so that the polymer weight was 100 ppm and 200 ppm, respectively, with respect to the pulp weight. Next, after stirring at 2000 rpm for 30 seconds, the stirring rotation speed was reduced to 800 rpm, white water was discharged for 10 seconds, and then white water was collected for 30 seconds. From the SS concentration of the collected white water and the amount of ash obtained by ashing at 525 ° C. for 2 hours, the total yield and the ash yield of the papermaking raw material were determined. The results are shown in Table 7.

(比較例8) アニオン性高分子を添加しないこと以外は、実施例7と同様な方法で抄紙試験および歩留試験を行い、成紙の地合いの様子、不透明度、ISO白色度、製紙原料の総歩留率および灰分歩留率を求めた。結果を表7に示す。 (Comparative Example 8) A papermaking test and a yield test were performed in the same manner as in Example 7 except that the anionic polymer was not added, and the condition of the formation of the paper, the opacity, the ISO whiteness, The total yield rate and ash yield rate were determined. The results are shown in Table 7.

(比較例9) 製造例1のイオン性水溶性高分子粉末を比較製造例1としたこと以外は、実施例7と同様な方法で抄紙試験および歩留試験を行い、成紙の地合いの様子、不透明度、ISO白色度、製紙原料の総歩留率および灰分歩留率を求めた。結果を表7に示す。 (Comparative example 9) Except having made the ionic water-soluble polymer powder of the manufacture example 1 into the comparative manufacture example 1, the papermaking test and the yield test were done by the same method as Example 7, and the state of the formation of the paper The opacity, ISO whiteness, total yield of papermaking raw materials, and ash content yield were determined. The results are shown in Table 7.

(表7)
(Table 7)

表7で示したように、実施例7は比較例8および9と比較して、総歩留率、灰分歩留率を大きく向上する効果が得られることが明白である。実施例6と同様に、本発明の粉末からなるイオン性水溶性高分子は特に灰分の歩留向上効果が高い。






As shown in Table 7, it is clear that Example 7 has an effect of greatly improving the total yield rate and the ash content rate as compared with Comparative Examples 8 and 9. As in Example 6, the ionic water-soluble polymer comprising the powder of the present invention has a particularly high ash yield improvement effect.






Claims (11)

界面活性剤により水に非混和性有機液体を連続相、カチオン性単量体および複数の不飽和二重結合を有する多官能性単量体を必須として含む単量体混合物水溶液を分散相となるよう乳化し重合した後、得られる油中水滴型エマルジョン状液体を、乾燥工程を経ることによって造粒し製造したイオン性水溶性高分子であって、イオン性水溶性高分子の電荷内包率が35%以上90%以下であることを特徴とする粉末からなるイオン性水溶性高分子。 A water-immiscible organic liquid is used as a continuous phase by a surfactant, and an aqueous monomer mixture containing a cationic monomer and a polyfunctional monomer having a plurality of unsaturated double bonds as an essential phase is used as a dispersed phase. After the emulsion and polymerization, the resulting water-in-oil emulsion liquid is an ionic water-soluble polymer produced by granulation through a drying process, and the charge inclusion rate of the ionic water-soluble polymer is An ionic water-soluble polymer comprising a powder characterized by being 35% or more and 90% or less. 前記乾燥工程が、噴霧乾燥であることを特徴とする請求項1に記載の粉末からなるイオン性水溶性高分子。 The ionic water-soluble polymer comprising a powder according to claim 1, wherein the drying step is spray drying. 前記乾燥工程が、前記油中水滴型エマルジョン状液体を液状のまま直接乾燥することを特徴とする請求項1に記載の粉末からなるイオン性水溶性高分子。 The ionic water-soluble polymer comprising a powder according to claim 1, wherein the drying step directly dries the water-in-oil emulsion liquid in a liquid state. 前記イオン性水溶性高分子が、下記一般式(1)及び/または(2)で表わされる単量体5〜100mol%、下記一般式(3)で表わされる単量体0〜50mol%および水溶性の非イオン性単量体0〜95mol%および複数の不飽和二重結合を有する多官能性単量体を共重合して得られることを特徴とする、請求項1〜3のいずれかに記載の粉末からなるイオン性水溶性高分子。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。AはOまたはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表す。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Yは水素または陽イオンをそれぞれ表す。
The ionic water-soluble polymer contains 5 to 100 mol% of a monomer represented by the following general formula (1) and / or (2), 0 to 50 mol% of a monomer represented by the following general formula (3), and water It is obtained by copolymerizing a polyfunctional monomer having 0 to 95 mol% of a nonionic monomer and a plurality of unsaturated double bonds, according to any one of claims 1 to 3. An ionic water-soluble polymer comprising the described powder.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, and R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group. , Same or different. A is O or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents respectively an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group, or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO - or COO - and is, Y 1 represents respectively hydrogen or a cation.
HLB値が10以上の界面活性剤を含まないことを特徴とする、請求項1〜3のいずれかに記載の粉末からなるイオン性水溶性高分子。 The ionic water-soluble polymer comprising a powder according to any one of claims 1 to 3, wherein the surfactant does not contain a surfactant having an HLB value of 10 or more. 請求項1〜5に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、汚泥に添加し凝集させ脱水機により脱水することを特徴とした汚泥の脱水方法。 A method for dewatering sludge, comprising dissolving the ionic water-soluble polymer composed of the powder according to claim 1 in water, adding to the sludge, agglomerating and dehydrating with a dehydrator. 請求項1〜5に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、製紙スラッジに添加し凝集させ脱水機により脱水することを特徴とした製紙スラッジの脱水方法。 A method for dewatering paper sludge, comprising dissolving the ionic water-soluble polymer comprising the powder according to claim 1 in water, adding it to paper sludge, aggregating it and dehydrating with a dehydrator. 請求項1〜5に記載の粉末からなるイオン性水溶性高分子を水に溶解した後、抄紙前の製紙原料中に添加し使用することを特徴とした製紙方法。 A papermaking method, comprising: dissolving the ionic water-soluble polymer comprising the powder according to any one of claims 1 to 5 in water, and then adding the polymer to a papermaking raw material before papermaking. 無機及び/または有機のアニオン性物質と組み合わせて使うことを特徴とした、請求項8記載の製紙方法。 9. The papermaking method according to claim 8, wherein the papermaking method is used in combination with an inorganic and / or organic anionic substance. 前記アニオン性物質がコロイダルシリカあるいはベントナイトであることを特徴とする、請求項9記載の製紙方法。 The papermaking method according to claim 9, wherein the anionic substance is colloidal silica or bentonite. 前記アニオン性物質が、下記一般式(3)で表わされる単量体3〜100mol%と水溶性の非イオン性単量体の重合物であることを特徴とする、請求項9記載の製紙方法。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Yは水素または陽イオンをそれぞれ表す。






The papermaking method according to claim 9, wherein the anionic substance is a polymer of 3 to 100 mol% of a monomer represented by the following general formula (3) and a water-soluble nonionic monomer. .
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO - or COO - and is, Y 1 represents respectively hydrogen or a cation.






JP2008131705A 2008-05-20 2008-05-20 Ionic water-soluble polymer composed of powder, production method thereof and use thereof Active JP5557366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131705A JP5557366B2 (en) 2008-05-20 2008-05-20 Ionic water-soluble polymer composed of powder, production method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131705A JP5557366B2 (en) 2008-05-20 2008-05-20 Ionic water-soluble polymer composed of powder, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2009280649A true JP2009280649A (en) 2009-12-03
JP5557366B2 JP5557366B2 (en) 2014-07-23

Family

ID=41451447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131705A Active JP5557366B2 (en) 2008-05-20 2008-05-20 Ionic water-soluble polymer composed of powder, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP5557366B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application
JP2012170944A (en) * 2011-02-24 2012-09-10 Hymo Corp Flocculation treatment agent, and method of dewatering sludge using the same
JP2012170945A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012228664A (en) * 2011-04-27 2012-11-22 Hymo Corp Sludge treating agent and sludge dewatering treatment method
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same
JP2013039539A (en) * 2011-08-18 2013-02-28 Hymo Corp Method for inhibition of foaming in supernatant liquid
WO2013031245A1 (en) * 2011-08-29 2013-03-07 ハイモ株式会社 Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same
JP2015183333A (en) * 2014-03-26 2015-10-22 ハイモ株式会社 Yield improver and yield improvement method for papermaking raw material
WO2018168447A1 (en) 2017-03-14 2018-09-20 栗田工業株式会社 Sludge dehydrating agent and sludge dehydrating method
JP2018149531A (en) * 2017-03-14 2018-09-27 栗田工業株式会社 Sludge dehydrating agent and sludge dewatering method
WO2019235345A1 (en) 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydration agent and sludge dehydration method
JP2020025939A (en) * 2018-08-16 2020-02-20 栗田工業株式会社 Sludge dewatering method
WO2020217772A1 (en) 2019-04-24 2020-10-29 栗田工業株式会社 Sludge dehydrating agent and sludge dehydration method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248720A (en) * 1984-03-26 1985-12-09 アトランテイツク・リツチフイ−ルド・カンパニ− Water-insoluble water-swellable high molecular compound and manufacture
JPS6461588A (en) * 1987-09-01 1989-03-08 Kyoritsu Yuki Co Ltd Enhancement of filler yield in neutral papermaking
JPS6485199A (en) * 1987-09-25 1989-03-30 Mitsui Cyanamid Kk Dehydration method for sludge
JP2000513395A (en) * 1996-06-21 2000-10-10 サイテク・テクノロジー・コーポレーシヨン Spray-dried polymer composition and method
JP2004025094A (en) * 2002-06-27 2004-01-29 Hymo Corp Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
JP2006000759A (en) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd Sludge dehydrating agent for rotary compression filter and sludge dehydrating method using the same
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248720A (en) * 1984-03-26 1985-12-09 アトランテイツク・リツチフイ−ルド・カンパニ− Water-insoluble water-swellable high molecular compound and manufacture
JPS6461588A (en) * 1987-09-01 1989-03-08 Kyoritsu Yuki Co Ltd Enhancement of filler yield in neutral papermaking
JPS6485199A (en) * 1987-09-25 1989-03-30 Mitsui Cyanamid Kk Dehydration method for sludge
JP2000513395A (en) * 1996-06-21 2000-10-10 サイテク・テクノロジー・コーポレーシヨン Spray-dried polymer composition and method
JP2004025094A (en) * 2002-06-27 2004-01-29 Hymo Corp Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
JP2006000759A (en) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd Sludge dehydrating agent for rotary compression filter and sludge dehydrating method using the same
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application
JP2012170944A (en) * 2011-02-24 2012-09-10 Hymo Corp Flocculation treatment agent, and method of dewatering sludge using the same
JP2012170945A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012228664A (en) * 2011-04-27 2012-11-22 Hymo Corp Sludge treating agent and sludge dewatering treatment method
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same
JP2013039539A (en) * 2011-08-18 2013-02-28 Hymo Corp Method for inhibition of foaming in supernatant liquid
WO2013031245A1 (en) * 2011-08-29 2013-03-07 ハイモ株式会社 Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same
CN103946281A (en) * 2011-08-29 2014-07-23 海茂株式会社 Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same
US20140243458A1 (en) * 2011-08-29 2014-08-28 Hymo Corporation Powdery hydrophilic polymer, method for producing the same, and flocculating agent using same
JPWO2013031245A1 (en) * 2011-08-29 2015-03-23 ハイモ株式会社 Powdered hydrophilic polymer, process for producing the same, and aggregating agent using the same
JP2015183333A (en) * 2014-03-26 2015-10-22 ハイモ株式会社 Yield improver and yield improvement method for papermaking raw material
WO2018168447A1 (en) 2017-03-14 2018-09-20 栗田工業株式会社 Sludge dehydrating agent and sludge dehydrating method
JP2018149531A (en) * 2017-03-14 2018-09-27 栗田工業株式会社 Sludge dehydrating agent and sludge dewatering method
KR20190124710A (en) 2017-03-14 2019-11-05 쿠리타 고교 가부시키가이샤 Sludge dehydrator and sludge dewatering method
WO2019235345A1 (en) 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydration agent and sludge dehydration method
JP2019209287A (en) * 2018-06-06 2019-12-12 栗田工業株式会社 Sludge dehydrating agent, and sludge dewatering method
KR20210018191A (en) 2018-06-06 2021-02-17 쿠리타 고교 가부시키가이샤 Sludge dehydration agent and sludge dehydration method
JP2020025939A (en) * 2018-08-16 2020-02-20 栗田工業株式会社 Sludge dewatering method
WO2020217772A1 (en) 2019-04-24 2020-10-29 栗田工業株式会社 Sludge dehydrating agent and sludge dehydration method
JP2020179330A (en) * 2019-04-24 2020-11-05 栗田工業株式会社 Sludge dehydration agent and sludge dehydration method
KR20220002281A (en) 2019-04-24 2022-01-06 쿠리타 고교 가부시키가이샤 Sludge Dewatering Agent and Sludge Dewatering Method

Also Published As

Publication number Publication date
JP5557366B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5557366B2 (en) Ionic water-soluble polymer composed of powder, production method thereof and use thereof
JP5366301B2 (en) Powdered ionic water-soluble polymer and use thereof
JP4167969B2 (en) Aggregation treatment agent and method of using the same
JP2012254430A (en) Flocculant, and sludge dehydration method using the same
JP2010053234A (en) Powdered ionic water-soluble polymer and application thereof
JP5622263B2 (en) Sludge dewatering method
JP2007023146A (en) Ionic fine particle and application of the same
JP5780632B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP3886098B2 (en) Sludge dewatering agent and sludge dewatering method
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP2004057837A (en) Flocculant and its usage
US20140243458A1 (en) Powdery hydrophilic polymer, method for producing the same, and flocculating agent using same
JP5692911B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5283253B2 (en) Method for dewatering paper sludge
JP4167972B2 (en) Organic sludge dewatering method
JP5995534B2 (en) Aggregation treatment agent and waste water treatment method
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP5765768B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP4167919B2 (en) Sludge dewatering method
JP2009280648A (en) Ionic water-soluble polymer comprising powder, method for producing the same and its application
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method
JP2013255863A (en) Flocculant and sludge dehydration method using the same
JPH09225499A (en) Organic sludge dehydrator, treatment of organic and production of organic sludge dehydrator
JP5630782B2 (en) Sludge dewatering agent and sludge dewatering method
JP5946166B2 (en) Sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5557366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250