JP2009277777A - Solder ball loading method and member for mounting electronic component - Google Patents

Solder ball loading method and member for mounting electronic component Download PDF

Info

Publication number
JP2009277777A
JP2009277777A JP2008125924A JP2008125924A JP2009277777A JP 2009277777 A JP2009277777 A JP 2009277777A JP 2008125924 A JP2008125924 A JP 2008125924A JP 2008125924 A JP2008125924 A JP 2008125924A JP 2009277777 A JP2009277777 A JP 2009277777A
Authority
JP
Japan
Prior art keywords
solder
composition
solder ball
electronic component
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008125924A
Other languages
Japanese (ja)
Inventor
Masahiko Furuno
雅彦 古野
Masaru Shirai
大 白井
Atsushi Hiratsuka
篤志 平塚
Junichi Onozaki
純一 小野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2008125924A priority Critical patent/JP2009277777A/en
Publication of JP2009277777A publication Critical patent/JP2009277777A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a loading method of a solder ball that enhances reliability of connection by reducing a stress at solder joints, thus reducing a heat damage to a semiconductor and putting no burden on the environment, and also to provide a semiconductor element with such a solder ball mounted. <P>SOLUTION: On a surface of a substrate on which an electrode is arranged in a predetermined position and which is for mounting an electronic component, the solder ball loading method has the steps of: forming a solder resist opening at a place corresponding to the electrode; supplying an Sn-Bi system solder composition to the solder resist opening; further placing an Sn-Ag system solder ball on top of the Sn-Bi system solder composition; and heating the Sn-Bi system solder composition and Sn-Ag system solder ball by a temperature equal to or higher than the melting point of the Sn-Bi system solder composition and lower than that of the Sn-Ag system solder ball to melt and join the Sn-Ag system solder ball onto the Sn-Bi system solder composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品を実装する基板に関し、特に、従来よりも低温条件下にてフリップチップを実装できる電子部品実装用基板の接合部を形成するための、基板の電極部位にはんだボールを搭載する方法、及びこのようなはんだボールを搭載した電子部品実装用基板に関する。   The present invention relates to a substrate on which electronic components are mounted, and in particular, a solder ball is mounted on an electrode portion of a substrate for forming a joint portion of an electronic component mounting substrate that can mount a flip chip under a lower temperature condition than before. And an electronic component mounting board on which such solder balls are mounted.

従来、電子部品実装用基板に設けられた電極とチップ表面の電極とを接合する場合、Sn‐Pb共晶はんだが用いられていた。しかし、Pbは人体に有毒な重金属であるため、環境配慮の観点から、Pbフリーのはんだの使用が進められ、代替材料としてSn−Ag系のはんだ合金が使用され始めている。このとき、Sn−Ag系はんだはSn‐Pb共晶はんだよりも融点が約40℃も高いことから、電子部品実装用基板上にチップを実装する際に基板等の内部接合材料が融解することが問題となっている。   Conventionally, Sn—Pb eutectic solder has been used to join an electrode provided on an electronic component mounting substrate and an electrode on a chip surface. However, since Pb is a heavy metal that is toxic to the human body, the use of Pb-free solder has been promoted from the viewpoint of environmental considerations, and Sn-Ag solder alloys have begun to be used as an alternative material. At this time, Sn—Ag solder has a melting point about 40 ° C. higher than that of Sn—Pb eutectic solder, so that when the chip is mounted on the electronic component mounting substrate, the internal bonding material such as the substrate is melted. Is a problem.

さらに、高温にてチップを実装することにより、電子部品実装用基板にダメージを与え、またチップの線膨張係数と電子部品実装用基板の線膨張係数の差からはんだ接合部に高い応力が生じて接続信頼性に悪影響を与えることも問題となっている。特に、近年、半導体素子自体の微細化に伴って配線間の静電容量が増大し、配線による不要な消費電力が増えていることから、その低減を図るためにLow-K材が用いられているが、Low-K材は機械的強度が低いことからも、はんだ接合部への応力を低減して接続信頼性を確保することがさらに重要となっている。   Furthermore, mounting the chip at a high temperature causes damage to the electronic component mounting board, and high stress is generated in the solder joint due to the difference between the linear expansion coefficient of the chip and the linear expansion coefficient of the electronic component mounting board. Adversely affecting the connection reliability is also a problem. In particular, with the recent miniaturization of semiconductor elements themselves, the capacitance between wirings has increased, and unnecessary power consumption due to wiring has increased, so low-K materials have been used to reduce this. However, since the low-K material has low mechanical strength, it is more important to reduce the stress on the solder joints to ensure connection reliability.

そこで、特許文献1には、Sn−Pb共晶はんだの代替材料であるPbフリーはんだ合金として、従来のSn−Pb共晶はんだと同様に220〜230℃の温度ではんだ付けが可能である10重量%〜25重量%のBi、1.5重量%〜3重量%のAg、残りがSn、及び不可避不純物で構成されるSn−Ag−Bi系はんだが記載され、これにより回路基板の配線パターンと電子部品の電極とを接続するとしている。   Therefore, in Patent Document 1, as a Pb-free solder alloy that is an alternative material for Sn—Pb eutectic solder, soldering is possible at a temperature of 220 to 230 ° C. as in the case of conventional Sn—Pb eutectic solder. An Sn-Ag-Bi solder composed of 25% to 25% Bi, 1.5% to 3% Ag, the rest Sn and unavoidable impurities is described. Are connected to the electrodes of the electronic component.

しかし、特許文献1でも、依然として従来通りの温度にてはんだ付けを行うことから、はんだ接合部に生じる応力により接続不良が生じ、また機械的強度が低いLow-K材が損傷するという問題がある。   However, even in Patent Document 1, since soldering is still performed at a conventional temperature, there is a problem that a connection failure occurs due to a stress generated in a solder joint, and a low-K material having low mechanical strength is damaged. .

さらに、Pbフリーに対応した電極部位へのはんだ合金の供給方法として、Sn−Ag系合金をはんだ材料としたボール搭載法が用いられることもある。ボール搭載法とは、ボール搭載部位にフラックスを供給した後に、はんだボールを搭載してはんだボールが溶融する温度以上に加熱してはんだボールを基板に接合するというものである。従って、Sn−Ag系はんだの融点が219℃であることから、はんだボールの接合温度は250℃前後の高温となって半導体素子にダメージを与えるとともに、はんだによる基板とチップの接合の際、はんだ接合部に熱による応力歪が生じ接続信頼性が得られないという問題がある。また、Cu電極上にははんだボールの接合の際に、Cuとはんだ中のSnとの金属間化合物が形成されるが、高温下での接合であるために金属間化合物層が厚くなり、原子の拡散速度の差異が原因で発生するカーケンダルボイドが生成しやすくなることからも接続信頼性が得られない。   Furthermore, as a method for supplying a solder alloy to an electrode part corresponding to Pb-free, a ball mounting method using a Sn—Ag alloy as a solder material may be used. In the ball mounting method, after supplying flux to the ball mounting portion, the solder ball is mounted and heated to a temperature higher than the temperature at which the solder ball melts to join the solder ball to the substrate. Accordingly, since the melting point of the Sn-Ag solder is 219 ° C., the solder ball joining temperature becomes as high as about 250 ° C. and damages the semiconductor element, and at the time of joining the substrate and the chip with the solder, There is a problem in that stress reliability due to heat is generated at the joint and connection reliability cannot be obtained. In addition, an intermetallic compound of Cu and Sn in the solder is formed on the Cu electrode when the solder ball is joined. However, since the joining is performed at a high temperature, the intermetallic compound layer becomes thicker, The connection reliability is not obtained because the Kirkendall void generated due to the difference in the diffusion rate of the metal is easily generated.

一方、Sn−Ag系はんだを用いる場合には、通常、電解めっきにてはんだ材料を供給するが、電解めっき後は、不要なめっき層及びシード層を除去するエッチング工程が必要となるために、生産性が低下し、さらに、めっき廃液の処理により環境に負荷を与えることとなる。
特開平10−166178
On the other hand, when using Sn-Ag solder, the solder material is usually supplied by electrolytic plating. However, after the electrolytic plating, an etching process for removing unnecessary plating layers and seed layers is required. Productivity is reduced, and further, a burden is placed on the environment by the treatment of the plating waste liquid.
JP-A-10-166178

本発明は上記事情に鑑み、はんだ接合部の応力を低減して接続信頼性を高め、半導体素子への熱によるダメージも減らし、環境への負荷も与えないはんだボール搭載方法及びこのようなはんだボールを搭載した半導体素子を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above circumstances, the present invention reduces solder joint stress to increase connection reliability, reduces damage to the semiconductor element due to heat, and does not give an environmental load, and such solder ball. An object of the present invention is to provide a semiconductor device on which is mounted.

本発明の第1の態様は、所定位置に電極が配置された電子部品を実装する基板の表面であって、前記電極に対応する部位に、ソルダーレジスト開口部を形成する工程と、前記ソルダーレジスト開口部にSn−Bi系はんだ組成物を供給する工程と、前記Sn−Bi系はんだ組成物にさらにSn−Ag系はんだボールを載置する工程と、前記Sn−Bi系はんだ組成物と前記Sn−Ag系はんだボールを、該Sn−Bi系はんだ組成物の融点以上該Sn−Ag系はんだボールの融点未満の温度で加熱して前記Sn−Bi系はんだ組成物に前記Sn−Ag系はんだボールを溶融接合させる工程と、を含むことを特徴とするはんだボール搭載方法である。   According to a first aspect of the present invention, there is provided a step of forming a solder resist opening on a surface of a substrate on which an electronic component having electrodes arranged at predetermined positions is mounted, and corresponding to the electrodes, and the solder resist Supplying a Sn-Bi solder composition to the opening; placing a Sn-Ag solder ball on the Sn-Bi solder composition; and Sn-Bi solder composition and Sn -Ag solder ball is heated at a temperature not lower than the melting point of the Sn-Bi solder composition and lower than the melting point of the Sn-Ag solder ball to the Sn-Bi solder composition. And a solder ball mounting method characterized by comprising:

上記態様は、Sn−Ag系のはんだボールは溶融させずに、電子部品実装用基板側の電極上に供給されたSn−Bi系はんだ組成物を溶融させることで、はんだボールを電極に接合させるというものである。   In the above aspect, the solder ball is bonded to the electrode by melting the Sn-Bi solder composition supplied on the electrode on the electronic component mounting substrate side without melting the Sn-Ag solder ball. That's it.

本発明の第2の態様は、前記溶融接合の温度が、138〜200℃であることを特徴とするはんだボール搭載方法である。   According to a second aspect of the present invention, there is provided a solder ball mounting method, wherein the temperature of the melt bonding is 138 to 200 ° C.

本発明の第3の態様は、前記基板と前記フリップチップとの接合温度が、138〜200℃であることを特徴とするはんだボール搭載方法である。つまり、上記態様は電子部品実装用基板側電極に搭載された前記Sn−Ag系はんだボールは溶解させずに、フリップチップ側の電極上に供給されたSn−Bi系はんだ組成物を溶融させることで、電子部品実装用基板とフリップチップを接合させるというものである。   According to a third aspect of the present invention, there is provided a solder ball mounting method, wherein a bonding temperature between the substrate and the flip chip is 138 to 200 ° C. That is, in the above aspect, the Sn—Bi solder composition supplied on the flip chip side electrode is melted without melting the Sn—Ag solder ball mounted on the electronic component mounting board side electrode. Thus, the electronic component mounting substrate and the flip chip are joined.

本発明の第4の態様は、前記基板のSn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が、2〜8質量%であることを特徴とするはんだボール搭載方法である。   According to a fourth aspect of the present invention, the Bi content in the solder portion of the substrate composed of the Sn-Bi solder composition and the Sn-Ag solder ball is 2 to 8% by mass. It is a ball mounting method.

本発明の第5の態様は、所定位置に電極が配置された基板と、前記電極に対応する部位に形成されたソルダーレジスト開口部と、前記ソルダーレジスト開口部内に形成されたSn−Bi系はんだ組成物膜と、前記Sn−Bi系はんだ組成物膜に載置されたSn−Ag系はんだボールであって、前記Sn−Bi系はんだ組成物の融点以上前記Sn−Ag系はんだボールの融点未満の温度で前記Sn−Bi系はんだ組成物膜を溶融させて接合された前記Sn−Ag系はんだボールと、を備えることを特徴とする電子部品実装用部材である。つまり、上記態様では、Sn−Ag系はんだボールは、Sn−Bi系はんだ組成物の溶融により該Sn−Bi系はんだ組成物を介して電子部品実装用基板側の電極と接合されている。   According to a fifth aspect of the present invention, there is provided a substrate on which an electrode is disposed at a predetermined position, a solder resist opening formed in a portion corresponding to the electrode, and an Sn-Bi solder formed in the solder resist opening. A Sn-Ag solder ball placed on the composition film and the Sn-Bi solder composition film, the melting point of the Sn-Bi solder composition being higher than the melting point of the Sn-Ag solder ball And an Sn-Ag solder ball joined by melting the Sn-Bi solder composition film at a temperature of 5 ° C. That is, in the above aspect, the Sn—Ag solder ball is joined to the electrode on the electronic component mounting substrate side via the Sn—Bi solder composition by melting the Sn—Bi solder composition.

本発明の第6の態様は、前記基板のSn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が、2〜8質量%であることを特徴とする電子部品実装用部材である。   According to a sixth aspect of the present invention, the Bi content in the solder portion of the substrate composed of the Sn—Bi solder composition and the Sn—Ag solder ball is 2 to 8% by mass. This is a component mounting member.

本発明の第1の態様によれば、Sn−Bi系はんだ組成物の融点以上Sn−Ag系はんだボールの融点未満の温度で加熱してSn−Bi系はんだ組成物を溶融させて前記Sn−Ag系はんだボールを電子部品実装用基板側電極に接合させるので、はんだボールの接合温度は低減されて電子部品実装用基板等にダメージを与えることが防止できる。また、はんだボールの接合温度が低いので、加熱時及び冷却時における電子部品実装用基板への応力を低減できる。   According to the first aspect of the present invention, the Sn—Bi solder composition is melted by heating at a temperature not lower than the melting point of the Sn—Bi solder composition and lower than the melting point of the Sn—Ag solder ball. Since the Ag-based solder balls are bonded to the electronic component mounting substrate side electrode, the bonding temperature of the solder balls is reduced, and damage to the electronic component mounting substrate or the like can be prevented. Also, since the solder ball bonding temperature is low, the stress on the electronic component mounting board during heating and cooling can be reduced.

さらに、電極がCuの場合、電極上にはんだボールを接合する際に、電極とはんだとの間にCuとはんだ中のSnとからなる金属間化合物が形成されるが、接合温度を低減できることからこの金属間化合物層は厚くならないので、金属間化合物層におけるカーケンダルボイドの生成を抑制し、電子部品実装用基板はより高い接続信頼性が得られる。また、はんだボールを溶融させないので、電子部品実装用基板とフリップチップとの間隔寸法の制御が容易であり、この間隔を十分確保することで、構造上の信頼性も向上する。   Furthermore, when the electrode is Cu, an intermetallic compound composed of Cu and Sn in the solder is formed between the electrode and the solder when the solder ball is bonded on the electrode, but the bonding temperature can be reduced. Since the intermetallic compound layer does not become thick, generation of Kirkendall voids in the intermetallic compound layer is suppressed, and the electronic component mounting board can obtain higher connection reliability. In addition, since the solder balls are not melted, it is easy to control the distance between the electronic component mounting substrate and the flip chip. By ensuring this distance sufficiently, the structural reliability is improved.

さらには、はんだ材料の供給に電解めっきを用いないことから、不要なめっき層及びシード層を除去するエッチング工程が不要となるので、生産効率に優れ、めっき廃液の処理による環境への負荷を防止できる。   Furthermore, since electrolytic plating is not used to supply solder material, an etching process that removes unnecessary plating layers and seed layers is not required, resulting in excellent production efficiency and prevention of environmental burden due to the treatment of plating waste liquid. it can.

本発明の第2の態様によれば、はんだボールの接合温度の上限値が、Sn−Ag系はんだボールの融点である219℃を大きく下回る温度である200℃なので、電子部品実装用基板等へのダメージを確実に抑制でき、また、はんだボールの接合温度の下限値が、Sn−Bi系はんだ組成物の融点である138℃なので、Sn−Bi系はんだ組成物を確実に溶融させてはんだボールを電子部品実装用基板上に搭載することができる。   According to the second aspect of the present invention, the upper limit value of the solder ball bonding temperature is 200 ° C., which is a temperature that is significantly lower than the melting point of Sn—Ag solder balls, 219 ° C. Since the lower limit of the solder ball bonding temperature is 138 ° C., which is the melting point of the Sn—Bi solder composition, the Sn—Bi solder composition can be reliably melted and the solder ball Can be mounted on an electronic component mounting board.

本発明の第3の態様によれば、電子部品実装用基板とフリップチップの接合の際、その接合温度を従来例よりも低減できるので、熱による応力歪が電子部品実装用基板とフリップチップとのはんだ接合部に生じることを防止でき、高い接続信頼性が得られる。   According to the third aspect of the present invention, when the electronic component mounting substrate and the flip chip are bonded, the bonding temperature can be reduced as compared with the conventional example. Can be prevented from occurring at the solder joint, and high connection reliability can be obtained.

本発明の第4の態様によれば、基板側のSn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が適正化されるのでSn−Bi系はんだ組成物とSn−Ag系はんだボールとの接合強度に優れている。   According to the 4th aspect of this invention, since Bi content in the solder part which consists of Sn-Bi type solder composition and Sn-Ag type solder ball by the side of a board | substrate is optimized, Sn-Bi type solder composition And excellent bonding strength between Sn-Ag solder balls.

本発明の第5の態様によれば、Sn−Ag系はんだボールは、融点が138℃であるSn−Bi系はんだ組成物膜の溶融により電子部品実装用基板上の電極に接合されているので、Sn−Ag系はんだボールを搭載するときに、電子部品実装用基板等にダメージが発生するのが防止されている。また、接合温度が低いことから、電極とはんだ組成物との間に生成する金属間化合物層は厚くならないので、金属間化合物層中におけるカーケンダルボイドの発生が抑制されており、より高い接続信頼性が得られる。また、はんだボールを溶融しないので、はんだボールの高さが均一化されており、接続信頼性が高い。   According to the fifth aspect of the present invention, the Sn—Ag solder ball is bonded to the electrode on the electronic component mounting substrate by melting the Sn—Bi solder composition film having a melting point of 138 ° C. When an Sn-Ag solder ball is mounted, damage to the electronic component mounting board or the like is prevented. In addition, since the bonding temperature is low, the intermetallic compound layer formed between the electrode and the solder composition does not become thick, so the occurrence of Kirkendall voids in the intermetallic compound layer is suppressed and higher connection reliability is achieved. Sex is obtained. Further, since the solder balls are not melted, the height of the solder balls is made uniform, and the connection reliability is high.

本発明の第6の態様によれば、基板側のSn−Bi系はんだ組成物とSn−Ag系はんだボールとから構成されるはんだ部におけるBi含有量が適正化されるので、電子部品実装用基板とフリップチップとの接合強度に優れ、接続信頼性が高い。   According to the sixth aspect of the present invention, since the Bi content in the solder portion composed of the Sn-Bi solder composition on the substrate side and the Sn-Ag solder ball is optimized, it is suitable for mounting electronic components. Excellent bonding strength between substrate and flip chip, and high connection reliability.

次に、本発明の実施形態例に係るはんだボール搭載方法及びはんだボールを搭載した材料を図面を用いながら説明する。図1は、本発明の実施形態例に係るはんだボール搭載方法を示す概略図である。図2は、本発明の実施形態例に係るはんだボール搭載方法にて搭載されたはんだボールを備えた電子部品実装用基板とフリップチップとの接合状態を示す概略図である。   Next, a solder ball mounting method and a material mounting a solder ball according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a solder ball mounting method according to an embodiment of the present invention. FIG. 2 is a schematic view showing a bonding state between a flip chip and an electronic component mounting board provided with solder balls mounted by a solder ball mounting method according to an embodiment of the present invention.

本発明の実施形態例に係るはんだボール搭載方法は、まず、図1(a)に示すように、電子部品実装用基板1の表面を厚さ30μmのソルダーレジスト7でコーティングし、銅電極2の部位についてはこのソルダーレジスト7を除去して、銅電極2を露出させたソルダーレジスト開口部5を電子部品実装用基板1上に形成する。なお、本実施形態例では、ソルダーレジスト開口部5は、直径130μm、深さ30μmの円柱状の空間であって、その底部に電子部品実装用基板1表面に配置された銅電極2が露出している。また、電子部品実装用基板1には、例えば、合成樹脂基板や半導体ウエハを挙げることができる。   In the solder ball mounting method according to the embodiment of the present invention, first, as shown in FIG. 1 (a), the surface of the electronic component mounting substrate 1 is coated with a solder resist 7 having a thickness of 30 μm. For the part, the solder resist 7 is removed, and a solder resist opening 5 exposing the copper electrode 2 is formed on the electronic component mounting substrate 1. In this embodiment, the solder resist opening 5 is a cylindrical space having a diameter of 130 μm and a depth of 30 μm, and the copper electrode 2 disposed on the surface of the electronic component mounting substrate 1 is exposed at the bottom. ing. Examples of the electronic component mounting substrate 1 include a synthetic resin substrate and a semiconductor wafer.

次に、図1(b)に示すように、Sn−Bi系はんだ組成物3をソルダーレジスト開口部5内に供給する。   Next, as shown in FIG. 1B, the Sn—Bi based solder composition 3 is supplied into the solder resist opening 5.

本実施形態例では、Sn−Bi系はんだ組成物3として、低融点のはんだ合金であるSn42−Bi58はんだ粉をペースト成分であるビヒクルに50質量%含有させた、はんだペースト材料であるソルダーペーストを使用する。Sn−Bi系はんだ組成物3には、機械的強度を高める等の目的で、必要に応じて、Ag、Cu、Ni、P、Zn、In、Geなどの元素を少量添加してもよい。また、ビヒクルには、ロジン(松やに)、レジン(合成樹脂)等の樹脂成分を主成分としたものを使用し、必要に応じて、有機酸(例えば、マロン酸、コハク酸など)、チクソ剤、耐酸化剤などを添加してもよい。   In this embodiment, as the Sn-Bi solder composition 3, a solder paste, which is a solder paste material, containing 50 mass% of Sn42-Bi58 solder powder, which is a low melting point solder alloy, in a vehicle, which is a paste component, is used. use. A small amount of elements such as Ag, Cu, Ni, P, Zn, In, and Ge may be added to the Sn—Bi based solder composition 3 as necessary for the purpose of increasing mechanical strength. In addition, the vehicle is mainly composed of resin components such as rosin (pine yani) and resin (synthetic resin), and if necessary, organic acid (for example, malonic acid, succinic acid, etc.), thixotropic agent Further, an oxidation resistant agent or the like may be added.

このSn−Bi系はんだ組成物3の供給方法は特に限定されないが、印刷法が簡易な点で優れている。印刷法には、例えば、印刷パターンを形成するためのマスクを電子部品実装用基板1にコンタクトさせて、この電子部品実装用基板1にソルダーペーストを転写により塗布するコンタクト印刷法がある。   Although the supply method of this Sn-Bi solder composition 3 is not particularly limited, it is excellent in that the printing method is simple. As the printing method, for example, there is a contact printing method in which a mask for forming a printing pattern is brought into contact with the electronic component mounting substrate 1 and a solder paste is applied to the electronic component mounting substrate 1 by transfer.

このSn−Bi系はんだ組成物3の供給量の上限は、Sn−Ag系はんだボール4をソルダーレジスト開口部5内に供給したときに、ソルダーレジスト開口部5内壁とSn−Ag系はんだボール4との間に生じるソルダーレジスト開口部5内の空隙が、Sn−Bi系はんだ組成物3により全て埋められる量である。これを超えてSn−Bi系はんだ組成物3をソルダーレジスト開口部5内に供給すると、硬くて脆いSn−Bi系はんだ組成物3がソルダーレジスト開口部5から溢れ出てしまい、Sn−Bi系はんだ組成物3とSn−Ag系はんだボール4との間の接続信頼性が低下する。また、溢れ出たSn−Bi系はんだ組成物3により、隣接する銅電極2同士が短絡する。さらに、このとき、Sn−Bi系はんだ組成物3とSn−Ag系はんだボール4とから構成されるはんだ部に対するBi含有量の上限は、Bi含有量が多くなるとはんだ合金が不安定になることから、8質量%以下が好ましい。   The upper limit of the supply amount of the Sn-Bi solder composition 3 is that when the Sn-Ag solder balls 4 are supplied into the solder resist openings 5, the inner walls of the solder resist openings 5 and the Sn-Ag solder balls 4 are supplied. The voids in the solder resist opening 5 between the two are filled with the Sn—Bi solder composition 3. If the Sn-Bi solder composition 3 is supplied into the solder resist opening 5 beyond this, the hard and brittle Sn-Bi solder composition 3 overflows from the solder resist opening 5, and the Sn-Bi solder The connection reliability between the solder composition 3 and the Sn—Ag solder balls 4 is lowered. Moreover, the adjacent copper electrodes 2 are short-circuited by the overflowing Sn—Bi solder composition 3. Furthermore, at this time, the upper limit of the Bi content with respect to the solder portion composed of the Sn—Bi solder composition 3 and the Sn—Ag solder ball 4 is that the solder alloy becomes unstable as the Bi content increases. Therefore, 8 mass% or less is preferable.

一方、Sn−Bi系はんだ組成物3の供給量の下限は、前記ソルダーレジスト開口部5内に最低限のはんだフィレットを形成させることで、Sn−Ag系はんだボール4の接続強度が劣化するのを防止できる供給量であるのが好ましい。Sn−Bi系はんだ組成物3の供給量が不足してはんだフィレットが形成されないと、Sn−Ag系はんだボール4と電子部品実装用基板1との接続強度が劣化する。さらに、このとき、Sn−Bi系はんだ組成物3とSn−Ag系はんだボール4とから構成されるはんだ部に対するBi含有量の下限は、Bi含有量が少なくなると接合強度が低減することから、2質量%以上が好ましい。   On the other hand, the lower limit of the supply amount of the Sn—Bi solder composition 3 is that the connection strength of the Sn—Ag solder balls 4 is deteriorated by forming a minimum solder fillet in the solder resist opening 5. It is preferable that the supply amount be one that can prevent the above. If the supply amount of the Sn—Bi solder composition 3 is insufficient and a solder fillet is not formed, the connection strength between the Sn—Ag solder ball 4 and the electronic component mounting substrate 1 is deteriorated. Further, at this time, the lower limit of the Bi content with respect to the solder portion composed of the Sn-Bi solder composition 3 and the Sn-Ag solder ball 4 is that the bonding strength decreases as the Bi content decreases. 2 mass% or more is preferable.

次に、図1(c)に示すように、Sn−Ag系はんだボール4をSn−Bi系はんだ組成物3上に載置する。はんだボールの供給方法には、例えば、はんだボールを保持する保持ヘッドにより、はんだボールの貯留部から電子部品実装用基板の直上まではんだボールを運び、この保持ヘッドから電子部品実装用基板1の銅電極2上にSn−Ag系はんだボール4を載せる方法がある。   Next, as shown in FIG. 1C, the Sn—Ag solder balls 4 are placed on the Sn—Bi solder composition 3. For example, the solder ball is supplied from the solder ball storage portion to a position directly above the electronic component mounting substrate by a holding head that holds the solder ball, and the copper of the electronic component mounting substrate 1 is transferred from the holding head. There is a method of placing an Sn—Ag solder ball 4 on the electrode 2.

本実施形態例で使用するSn−Ag系はんだボール4の組成は、Sn96.5−Ag3.0−Cu0.5であり、形状は直径160μmの球形である。また、機械的強度を高める等の目的で、必要に応じて、Ni、P、Zn、Bi、In、Geなどの元素を少量添加してもよい。   The composition of the Sn-Ag solder balls 4 used in this embodiment is Sn96.5-Ag3.0-Cu0.5, and the shape is a sphere with a diameter of 160 μm. Further, for the purpose of increasing the mechanical strength, a small amount of elements such as Ni, P, Zn, Bi, In, and Ge may be added as necessary.

次に、Sn−Ag系はんだボール4が載置された電子部品実装用基板1を、Sn−Bi系はんだ組成物3の融点以上Sn−Ag系はんだボール4の融点未満の温度で加熱処理して、Sn−Bi系はんだ組成物3を溶融させることで、Sn−Ag系はんだボール4を電子部品実装用基板1上に接合させる。   Next, the electronic component mounting substrate 1 on which the Sn-Ag solder balls 4 are placed is heated at a temperature not lower than the melting point of the Sn-Bi solder composition 3 and lower than the melting point of the Sn-Ag solder balls 4. Then, by melting the Sn—Bi solder composition 3, the Sn—Ag solder balls 4 are joined onto the electronic component mounting substrate 1.

加熱温度の下限は、Sn−Bi系はんだ組成物3の融点である138℃以上であり、Sn−Bi系はんだ組成物3の不完全な溶融による弱い接合状態を防ぐ点から、その下限は150℃が好ましい。また、加熱温度の上限は、Sn−Ag系はんだボール4の融点である219℃未満であり、加熱、冷却時の応力を小さくし、また電子部品実装用基板1への熱によるダメージを低減させる点から、その上限は200℃が好ましく、特に180℃が好ましい。   The lower limit of the heating temperature is 138 ° C. or higher, which is the melting point of the Sn—Bi solder composition 3, and the lower limit is 150 from the viewpoint of preventing a weak joined state due to incomplete melting of the Sn—Bi solder composition 3. ° C is preferred. The upper limit of the heating temperature is less than 219 ° C., which is the melting point of the Sn—Ag solder ball 4, reduces the stress during heating and cooling, and reduces damage to the electronic component mounting substrate 1 due to heat. From the viewpoint, the upper limit is preferably 200 ° C, and particularly preferably 180 ° C.

上記の通り、Sn−Bi系はんだ組成物3を溶融させると、図1(d)に示すように、Sn−Bi系はんだ組成物3が、Sn−Ag系はんだボール4とソルダーレジスト開口部5内壁との間の空隙を埋めることで、Sn−Ag系はんだボール4を溶融させることなくSn−Bi系はんだ組成物3とSn−Ag系はんだボール4とから構成されるはんだ部を形成させて、Sn−Ag系はんだボール4を電子部品実装用基板1上に搭載させる。   As described above, when the Sn—Bi solder composition 3 is melted, the Sn—Bi solder composition 3 is converted into the Sn—Ag solder balls 4 and the solder resist openings 5 as shown in FIG. By filling a gap between the inner wall and the inner wall, a solder portion composed of the Sn—Bi solder composition 3 and the Sn—Ag solder ball 4 is formed without melting the Sn—Ag solder ball 4. The Sn-Ag solder balls 4 are mounted on the electronic component mounting substrate 1.

次に、本発明の実施形態例に係るはんだボール搭載方法にて作成した電子部品実装用基板を用いて、フリップチップを接合する方法について説明する。まず、フリップチップ11側の突起電極12に、上記印刷法等にてSn−Bi系はんだ組成物13を供給して、Sn−Bi系はんだ組成物膜を形成させる。次に、フリップチップの回路面を下向きにして、前記突起電極12を電子部品実装用基板1に設けられた所定のSn−Ag系はんだボール4に対向させて載置する。次に、Sn−Bi系はんだ組成物13の融点以上Sn−Ag系はんだボール4の融点未満の温度で加熱処理して、Sn−Bi系はんだ組成物13を溶融させることで、電子部品実装用基板1側のSn−Bi系はんだ組成物3、Sn−Ag系はんだボール4、フリップチップ11側のSn−Bi系はんだ組成物13とから構成されるはんだ接合部6を形成させて電子部品実装用基板1とフリップチップ11とを接合する。   Next, a method of joining flip chips using the electronic component mounting substrate created by the solder ball mounting method according to the embodiment of the present invention will be described. First, the Sn—Bi based solder composition 13 is supplied to the protruding electrode 12 on the flip chip 11 side by the above printing method or the like to form a Sn—Bi based solder composition film. Next, the bump electrode 12 is placed facing the predetermined Sn-Ag solder ball 4 provided on the electronic component mounting board 1 with the circuit surface of the flip chip facing downward. Next, heat treatment is performed at a temperature higher than the melting point of the Sn-Bi solder composition 13 and lower than the melting point of the Sn-Ag solder ball 4 to melt the Sn-Bi solder composition 13, thereby mounting the electronic component. Electronic component mounting by forming a solder joint 6 comprising a Sn-Bi solder composition 3 on the substrate 1 side, a Sn-Ag solder ball 4 and a Sn-Bi solder composition 13 on the flip chip 11 side. The substrate 1 and the flip chip 11 are joined.

Sn−Bi系はんだ組成物3を溶融させることによりSn−Ag系はんだボール4を電子部品実装用基板1上に接合させるときと同様に、電子部品実装用基板1とフリップチップ11とを接合する際の加熱温度の下限は、Sn−Bi系はんだ組成物13の融点である138℃以上であり、弱い接合状態を防ぐ点から、その下限は150℃が好ましい。また、加熱温度の上限は、Sn−Ag系はんだボール4の融点である219℃未満であり、特に、加熱、冷却時の応力を小さくし、電子部品実装用基板1やフリップチップ11への熱によるダメージ、及び電子部品実装用基板1とフリップチップ11との接合部の応力歪を低減させる点から、その上限は200℃が好ましく、さらに180℃が好ましい。   The electronic component mounting substrate 1 and the flip chip 11 are bonded in the same manner as when the Sn-Ag solder ball 4 is bonded onto the electronic component mounting substrate 1 by melting the Sn-Bi solder composition 3. The lower limit of the heating temperature at that time is 138 ° C. or higher, which is the melting point of the Sn—Bi solder composition 13, and the lower limit is preferably 150 ° C. from the viewpoint of preventing a weakly bonded state. The upper limit of the heating temperature is less than 219 ° C., which is the melting point of the Sn—Ag solder balls 4. The upper limit is preferably 200 ° C. and more preferably 180 ° C. from the viewpoint of reducing the damage caused by the above and the stress strain at the joint between the electronic component mounting substrate 1 and the flip chip 11.

このとき、Sn−Bi系はんだ組成物13とSn−Ag系はんだボール4とから構成されるはんだ部に対するBi含有量の上限は、Bi含有量が多くなるとはんだ合金が不安定になることから、8質量%以下が好ましく、Bi含有量の下限は、Bi含有量が少なくなると接合強度が低減することから、2質量%以上が好ましい。   At this time, the upper limit of the Bi content for the solder portion composed of the Sn-Bi solder composition 13 and the Sn-Ag solder ball 4 is that the solder alloy becomes unstable as the Bi content increases. The lower limit of the Bi content is preferably 2% by mass or more because the lower the Bi content, the bonding strength decreases when the Bi content decreases.

このように、従来よりも低温にて電子部品実装用基板1とフリップチップ11とを接合できるので、電子部品実装用基板1とフリップチップ11との線膨張係数の差異から生じるはんだ接合部6における応力を低減することができ、接続信頼性が向上する。   Thus, since the electronic component mounting substrate 1 and the flip chip 11 can be bonded at a lower temperature than in the past, the solder bonding portion 6 resulting from the difference in linear expansion coefficient between the electronic component mounting substrate 1 and the flip chip 11 can be used. Stress can be reduced and connection reliability is improved.

次に、本発明の他の実施形態例を説明する。前記実施形態例では、ソルダーレジスト開口部5は、直径130μm、深さ30μmの円柱状の空間であり、載置されるSn−Ag系はんだボール4の直径は160μmであったが、Sn−Ag系はんだボール4がソルダーレジスト開口部5に載置可能な限り、この寸法に限定されるものではない。例えば、ソルダーレジスト開口部5の寸法をより大きく、Sn−Ag系はんだボール4をより小さくして、電子部品実装用基板1からのSn−Ag系はんだボール4の突出量を小さくしてもよい。また、その反対に、ソルダーレジスト開口部5の寸法をより小さく、Sn−Ag系はんだボール4をより大きくして、溶融接合後にSn−Ag系はんだボール4がソルダーレジスト開口部5の底部に直接当接しない態様にして、電子部品実装用基板1からのSn−Ag系はんだボール4の突出量を大きくしてもよい。   Next, another embodiment of the present invention will be described. In the embodiment, the solder resist opening 5 is a cylindrical space having a diameter of 130 μm and a depth of 30 μm, and the diameter of the placed Sn—Ag solder balls 4 is 160 μm. As long as the system solder ball 4 can be placed in the solder resist opening 5, it is not limited to this size. For example, the size of the solder resist opening 5 may be made larger, the Sn-Ag solder ball 4 may be made smaller, and the protruding amount of the Sn-Ag solder ball 4 from the electronic component mounting board 1 may be made smaller. . On the contrary, the size of the solder resist opening 5 is made smaller, the Sn-Ag solder ball 4 is made larger, and the Sn-Ag solder ball 4 is directly on the bottom of the solder resist opening 5 after the melt bonding. The protrusion amount of the Sn-Ag solder balls 4 from the electronic component mounting substrate 1 may be increased in a manner that does not make contact.

このとき、Sn−Bi系はんだ組成物3が供給過剰となってソルダーレジスト開口部5から溢れ出ないように、また、供給不足となってはんだフィレットが形成できなくならないように、Sn−Bi系はんだ組成物3の供給量を調節する。   At this time, the Sn-Bi solder composition 3 is not excessively supplied and overflows from the solder resist opening 5, and the Sn-Bi alloy is not supplied so that the solder fillet cannot be formed. The supply amount of the solder composition 3 is adjusted.

また、前記実施形態例では、Sn−Bi系はんだ組成物3は、Sn42−Bi58はんだ粉をビヒクルに50質量%含有させたソルダーペーストであったが、Sn−Bi系はんだ組成物の供給量が適切な範囲内であって、Sn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が2〜8質量%であれば、はんだ粉の組成及びビヒクル量とも、前記実施形態例の態様に限定されない。   In the above embodiment, the Sn-Bi solder composition 3 was a solder paste containing 50 mass% of Sn42-Bi58 solder powder in the vehicle. However, the supply amount of the Sn-Bi solder composition is as follows. If the Bi content in the solder portion within the appropriate range and consisting of the Sn-Bi solder composition and the Sn-Ag solder ball is 2 to 8% by mass, both the composition of the solder powder and the amount of the vehicle are: It is not limited to the aspect of the said embodiment example.

また、前記実施形態例では、Sn−Bi系はんだ組成物3で用いるはんだ合金の組成は、Sn42−Bi58はんだ粉であったが、低融点であって、Sn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が2〜8質量%となれば、Sn−Biはんだ粉の組成は上記に限定されない。同様に、前記実施形態例では、Sn−Ag系はんだボール4の組成は、Sn96.5−Ag3.0−Cu0.5であったが、Sn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が2〜8質量%となれば、Sn−Ag系はんだボールの組成は、上記に限定されない。   In the embodiment, the composition of the solder alloy used in the Sn-Bi solder composition 3 is Sn42-Bi58 solder powder, but it has a low melting point, and the Sn-Bi solder composition and Sn-- The composition of the Sn—Bi solder powder is not limited to the above as long as the Bi content in the solder portion composed of the Ag-based solder ball is 2 to 8% by mass. Similarly, in the above embodiment, the composition of the Sn-Ag solder balls 4 was Sn96.5-Ag3.0-Cu0.5, but the Sn-Bi solder composition and the Sn-Ag solder balls 4 If the Bi content in the solder part consisting of 2 to 8% by mass, the composition of the Sn—Ag solder balls is not limited to the above.

電子部品実装用基板へのはんだボールの搭載、及び電子部品実装用基板とフリップチップとの接合を従来よりも低温で行えるので、はんだ接合部への応力を低減でき、電子部品の分野で利用価値が高い。   Solder balls can be mounted on the electronic component mounting board and the electronic component mounting board and the flip chip can be bonded at a lower temperature than before, so the stress on the solder joint can be reduced. Is expensive.

本発明の実施形態例に係るはんだボール搭載方法を示す概略図である。It is the schematic which shows the solder ball mounting method which concerns on the example of embodiment of this invention. 本発明の実施形態例に係るはんだボール搭載方法にて搭載されたはんだボールを備えた電子部品実装用基板とフリップチップとの接合状態を示す概略図である。It is the schematic which shows the joining state of the board | substrate for electronic component mounting provided with the solder ball mounted by the solder ball mounting method which concerns on the example of embodiment of this invention, and a flip chip.

符号の説明Explanation of symbols

1 電子部品実装用基板
2、12 銅電極
3、13 Sn−Bi系はんだ組成物
4 Sn−Ag系はんだボール
5 ソルダーレジスト開口部
6 はんだ接合部
11 フリップチップ
DESCRIPTION OF SYMBOLS 1 Substrate for electronic component mounting 2, 12 Copper electrode 3, 13 Sn-Bi solder composition 4 Sn-Ag solder ball 5 Solder resist opening 6 Solder joint 11 Flip chip

Claims (6)

所定位置に電極が配置された電子部品を実装する基板の表面であって、前記電極に対応する部位に、ソルダーレジスト開口部を形成する工程と、
前記ソルダーレジスト開口部にSn−Bi系はんだ組成物を供給する工程と、
前記Sn−Bi系はんだ組成物にさらにSn−Ag系はんだボールを載置する工程と、
前記Sn−Bi系はんだ組成物と前記Sn−Ag系はんだボールを、該Sn−Bi系はんだ組成物の融点以上該Sn−Ag系はんだボールの融点未満の温度で加熱して前記Sn−Bi系はんだ組成物に前記Sn−Ag系はんだボールを溶融接合させる工程と、を含むことを特徴とするはんだボール搭載方法。
A step of forming a solder resist opening on a surface of a substrate on which an electronic component having electrodes arranged at predetermined positions is mounted, corresponding to the electrodes;
Supplying a Sn-Bi solder composition to the solder resist opening;
A step of further placing a Sn-Ag solder ball on the Sn-Bi solder composition;
The Sn-Bi solder composition and the Sn-Ag solder ball are heated at a temperature not lower than the melting point of the Sn-Bi solder composition and lower than the melting point of the Sn-Ag solder ball. And a step of melt-bonding the Sn-Ag solder balls to the solder composition.
前記溶融接合の温度が、138〜200℃であることを特徴とする請求項1に記載のはんだボール搭載方法。   The solder ball mounting method according to claim 1, wherein a temperature of the fusion bonding is 138 to 200 ° C. 前記基板とフリップチップとの接合温度が、138〜200℃であることを特徴とする請求項1に記載のはんだボール搭載方法。   2. The solder ball mounting method according to claim 1, wherein a bonding temperature between the substrate and the flip chip is 138 to 200 ° C. 3. 前記基板のSn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が、2〜8質量%であることを特徴とする請求項1に記載のはんだボール搭載方法。   2. The solder ball mounting method according to claim 1, wherein the Bi content in the solder portion of the substrate made of the Sn—Bi solder composition and the Sn—Ag solder ball is 2 to 8 mass%. . 所定位置に電極が配置された基板と、
前記電極に対応する部位に形成されたソルダーレジスト開口部と、
前記ソルダーレジスト開口部内に形成されたSn−Bi系はんだ組成物膜と、
前記Sn−Bi系はんだ組成物膜に載置されたSn−Ag系はんだボールであって、前記Sn−Bi系はんだ組成物の融点以上前記Sn−Ag系はんだボールの融点未満の温度で前記Sn−Bi系はんだ組成物膜を溶融させて接合された前記Sn−Ag系はんだボールと、を備えることを特徴とする電子部品実装用部材。
A substrate on which electrodes are arranged at predetermined positions;
A solder resist opening formed in a portion corresponding to the electrode;
A Sn-Bi solder composition film formed in the solder resist opening;
An Sn-Ag solder ball placed on the Sn-Bi solder composition film, wherein the Sn-Ag solder ball is at a temperature not lower than the melting point of the Sn-Bi solder composition and lower than the melting point of the Sn-Ag solder ball. An electronic component mounting member comprising: the Sn-Ag solder ball joined by melting a Bi solder composition film.
前記基板のSn−Bi系はんだ組成物とSn−Ag系はんだボールとからなるはんだ部におけるBi含有量が、2〜8質量%であることを特徴とする請求項5に記載の電子部品実装用部材。   6. The electronic component mounting device according to claim 5, wherein a Bi content in a solder portion of the substrate composed of a Sn—Bi solder composition and a Sn—Ag solder ball is 2 to 8 mass%. Element.
JP2008125924A 2008-05-13 2008-05-13 Solder ball loading method and member for mounting electronic component Pending JP2009277777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125924A JP2009277777A (en) 2008-05-13 2008-05-13 Solder ball loading method and member for mounting electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125924A JP2009277777A (en) 2008-05-13 2008-05-13 Solder ball loading method and member for mounting electronic component

Publications (1)

Publication Number Publication Date
JP2009277777A true JP2009277777A (en) 2009-11-26

Family

ID=41442955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125924A Pending JP2009277777A (en) 2008-05-13 2008-05-13 Solder ball loading method and member for mounting electronic component

Country Status (1)

Country Link
JP (1) JP2009277777A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090129A (en) * 2012-10-31 2014-05-15 Toppan Printing Co Ltd Method of mounting solder joint material on a mounting substrate and mounting substrate mounted with solder joint material
JP2014103382A (en) * 2012-11-16 2014-06-05 Samsung Electro-Mechanics Co Ltd Solder ball, printed circuit board using the same, and semiconductor package
KR20140138755A (en) * 2012-03-20 2014-12-04 알파 메탈즈, 인코포레이티드 Solder preforms and solder alloy assembly methods
JP2015103794A (en) * 2013-11-25 2015-06-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method for manufacturing printed circuit board
CN117712035A (en) * 2024-02-06 2024-03-15 苏州锐杰微科技集团有限公司 Composite welding spot low-temperature interconnection method for solving substrate warpage problem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036059A (en) * 2005-07-28 2007-02-08 Sharp Corp Solder joint mounting structure and its production process, and its utilization
JP2007335652A (en) * 2006-06-15 2007-12-27 Fujitsu Ltd Semiconductor device, circuit board, and their manufacturing methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036059A (en) * 2005-07-28 2007-02-08 Sharp Corp Solder joint mounting structure and its production process, and its utilization
JP2007335652A (en) * 2006-06-15 2007-12-27 Fujitsu Ltd Semiconductor device, circuit board, and their manufacturing methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140138755A (en) * 2012-03-20 2014-12-04 알파 메탈즈, 인코포레이티드 Solder preforms and solder alloy assembly methods
JP2015514316A (en) * 2012-03-20 2015-05-18 アルファ・メタルズ・インコーポレイテッドAlpha Metals,Inc. Solder preform and solder alloy assembly method
KR102087004B1 (en) * 2012-03-20 2020-03-10 알파 어셈블리 솔루션스 인크. Solder preforms and solder alloy assembly methods
JP2014090129A (en) * 2012-10-31 2014-05-15 Toppan Printing Co Ltd Method of mounting solder joint material on a mounting substrate and mounting substrate mounted with solder joint material
JP2014103382A (en) * 2012-11-16 2014-06-05 Samsung Electro-Mechanics Co Ltd Solder ball, printed circuit board using the same, and semiconductor package
JP2015103794A (en) * 2013-11-25 2015-06-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method for manufacturing printed circuit board
CN117712035A (en) * 2024-02-06 2024-03-15 苏州锐杰微科技集团有限公司 Composite welding spot low-temperature interconnection method for solving substrate warpage problem
CN117712035B (en) * 2024-02-06 2024-04-30 苏州锐杰微科技集团有限公司 Composite welding spot low-temperature interconnection method for solving substrate warpage problem

Similar Documents

Publication Publication Date Title
JP4817418B2 (en) Circuit device manufacturing method
JP4650220B2 (en) Electronic component soldering method and electronic component soldering structure
JP5724411B2 (en) Solder, soldering method and semiconductor device
JP4200325B2 (en) Solder bonding paste and solder bonding method
JP2007287712A (en) Semiconductor device, packaging structure thereof, and manufacturing method of semiconductor device and packaging structure
JP4356581B2 (en) Electronic component mounting method
JP2005095977A (en) Circuit device
JP2009283628A (en) Method for mounting semiconductor element
JP2007251053A (en) Mounting structure of semiconductor device and method of manufacturing mounting structure
JP2009277777A (en) Solder ball loading method and member for mounting electronic component
JP4211828B2 (en) Mounting structure
JP2015008254A (en) Circuit board, method of manufacturing the same, method of manufacturing semiconductor device, and method of manufacturing mounting substrate
JP4812429B2 (en) Circuit device manufacturing method
JP2006100845A (en) Method of manufacturing electronic component with bump electrode
JP2006100844A (en) Electronic component with bump electrode
JP4940662B2 (en) Solder bump, method of forming solder bump, and semiconductor device
JP2011035155A (en) Method of manufacturing semiconductor device
JP2008034514A (en) Semiconductor device
JP2014146635A (en) Solder joint method and joint structure of solder ball and electrode
JP4940758B2 (en) Solder ball, semiconductor device, and method of manufacturing solder ball
JP2008218552A (en) Mounting substrate and mounting method for electronic part
WO2009150759A1 (en) Solder bonding method and solder joint
JP2008218483A (en) Semiconductor device and its manufacturing method
JP2008171975A (en) Mounting method and mounting structure of semiconductor component
JP2008071792A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130401