JP2009273231A - ハイブリッド励磁モータ - Google Patents

ハイブリッド励磁モータ Download PDF

Info

Publication number
JP2009273231A
JP2009273231A JP2008121289A JP2008121289A JP2009273231A JP 2009273231 A JP2009273231 A JP 2009273231A JP 2008121289 A JP2008121289 A JP 2008121289A JP 2008121289 A JP2008121289 A JP 2008121289A JP 2009273231 A JP2009273231 A JP 2009273231A
Authority
JP
Japan
Prior art keywords
core
magnetic flux
rotating shaft
flux control
control coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008121289A
Other languages
English (en)
Inventor
Shinji Mito
信二 三戸
Tetsuaki Ichikawa
哲章 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008121289A priority Critical patent/JP2009273231A/ja
Publication of JP2009273231A publication Critical patent/JP2009273231A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】簡単な構成でモータ特性を簡単に可変できるハイブリッド励磁モータを提供する。
【解決手段】アキシャルエアギャップタイプのハイブリッド励磁モータ1は、ステータ3の電機子コア11に複数の磁極(15)を環状に配置し、その環状に配置した磁極(15)群の外周側及び内周側に、外側磁束制御コイル16a及び内側磁束制御コイル16bを配置した。外側磁束制御コイル16a及び内側磁束制御コイル16bに流す直流電流の向き及び値を制御することにより、電機子コア11の各磁極(15)における磁束の増減を制御することができるようにした。
【選択図】図1

Description

本発明は、ハイブリッド励磁モータに関する。
ブラシレスモータとしてステータの一側又は両側にロータを備えたアキシャルエアギャップタイプのモータが種々提案されている(例えば、特許文献1)。
一般に、この種のモータは、ステータの電機子コアに設けた電機子コイルが巻回された複数のコア部を、回転軸を中心軸として周方向に環状に配置し、ロータの複数個の永久磁石を、回転軸を中心軸として周方向に配置するとともに各永久磁石のN,S極が周方向に向きかつ隣あう磁石のN,S極が異なるように環状に配置する。
そして、各コア部の電機子コイルは、周方向に3相(U相、V相、W相)に分類され、それぞれ分類された各コア部の電機子コイルに、位相差120度の交流電流を供給することによって、各コア部に回転磁界を発生させ、この回転磁界にてロータを回転させるようになっている。
また、アキシャルエアギャップタイプのモータに対して、回転軸に固着したロータを、内側に内包したラジアルエアギャップタイプのモータがある(例えば、特許文献2)。
この種のモータは、ロータの複数個の永久磁石を、回転軸を中心軸として周方向に配置するとともに各永久磁石のN,S極が径方向に向きかつ隣あう磁石のN,S極が異なるように環状に配置し、ステータの電機子コアに設けた電機子コイルが複数のコア部を、回転軸を中心軸として周方向に環状に配置しかつ各コア部からの磁束がロータに向くようにする。
そして、各コア部の電機子コイルは、周方向に3相(U相、V相、W相)に分類され、それぞれ分類された各コア部の電機子コイルに位相差120度の交流電流を供給することによって、各コア部に回転磁界を発生させ、この回転磁界にてロータを回転させるようになっている。
特開2006−325315号公報 特開2006−158008号公報
ところで、上記アキシャルエアギャップタイプ及びラジアルエアギャップタイプのモータにおいては、そのモータの特性を変化させるには、3相(U相、V相、W相)に分類された電機子コイルに流す交流電流を適切に処理しなければならず、そのために複雑かつ高精度な信号処理をしなければならかった。そのため、この種のモータは信号処理のための高価で複雑な特別な構造を必要としていた。
本発明は、上記問題を解決するためになされたものであり、その目的は、簡単な構成でモータ特性を簡単に可変できるハイブリッド励磁モータを提供することにある。
上記課題を解決するために、請求項1に記載の発明は、複数個の永久磁石を、回転軸を中心軸として周方向に環状に配置するとともに前記各永久磁石が発生する磁束を径方向若しくは軸方向に磁極毎に繰り返すように配置する第1コア体と、コイルがそれぞれ巻回された複数のコア部を、前記回転軸を中心軸として周方向に環状に配置した第2コア体とを備えるモータであって、前記第2コア体に、前記周方向に環状に配置されたコア部群の一側または両側に、前記各コア部の磁束を制御する磁束制御コイルを設けたハイブリッド励磁モータであることをその要旨とする。尚、駆動用のスロット励磁コイルの他に磁束制御用の励磁コイルを備えたタイプのモータを、ハイブリッド励磁モータと呼ぶこととする。
この発明によれば、磁束制御コイルに電流を流すと、第1コア体、第2コア体のコア部を周回する磁束が発生する。従って、磁束制御コイルに流す電流を制御するだけで、第2コア体に設けた環状に配置した各コア部の磁束を制御できる。その結果、コア部に巻回したコイルに流す電流を制御することなくモータ特性を簡単に可変できる。
請求項2に記載の発明は、請求項1に記載のハイブリッド励磁モータにおいて、前記第1コア体は、前記各永久磁石をそのN,S極が前記周方向に向くように配置するとともに、それぞれ前記各永久磁石を、前記各永久磁石が発生する磁束を径方向に向けるコア片を介して前記周方向に環状に配置するものであり、前記第2コア体は、前記各コア部の磁束が前記第1コア体に向くように、前記各コア部を環状に配置したものであり、前記磁束制御コイルを前記環状に配置されたコア部群の外周側及び内周側の少なくとも一方に設けたことをその要旨とする。
この発明によれば、磁束制御コイルに電流を流すと、第1コア体のコア片、第2コア体のコア部を周回する磁束が発生する。従って、磁束制御コイルに流す電流を制御するだけで、第2コア体に設けた環状に配置した各コア部の磁束を制御できる。その結果、コア部に巻回したコイルに流す電流を制御することなくモータ特性を簡単に可変できる。
請求項3に記載の発明は、請求項2に記載のハイブリッド励磁モータにおいて、前記第1コア体は、前記回転軸を回転可能に支持し、前記第2コア体は、前記回転軸に固着されたことをその要旨とする。
この発明によれば、第2コア体は回転軸とともに一体的に回転する。
請求項4に記載の発明は、回転軸に固着され、複数個の永久磁石を、前記回転軸を中心軸として周方向にそれぞれコア片を介して配置するとともに前記各永久磁石のN,S極が前記周方向に向くように環状に配置したロータと、前記ロータに並設されるとともに前記回転軸を回転可能に支持し、電機子コイルがそれぞれ巻回された複数のコア部を、前記回転軸を中心軸として周方向に環状に配置して前記各コア部の磁束が前記ロータに向く電機子コアを有したステータとを備えるアキシャルエアギャップタイプのモータであって、前記環状に配置されたコア部群の外周側及び内周側の少なくとも一方に、前記各コア部の磁束を制御する磁束制御コイルを設けたアキシャルエアギャップタイプのハイブリッド励磁モータであることをその要旨とする。
この発明によれば、ロータは回転軸とともに一体的に回転する。このとき、磁束制御コイルに電流を流すと、ロータのコア片、電機子コアのコア部を周回する磁束が発生する。従って、磁束制御コイルに流す電流を制御するだけで、電機子コアに設けた環状に配置した磁極の磁束を制御できる。その結果、磁極の電機子コイルに流す電流を制御することなくモータ特性を簡単に可変できる。
請求項5に記載の発明は、請求項4に記載のハイブリッド励磁モータにおいて、前記ロータは、前記回転軸を回転可能に支持する前記ステータの両側に配置され、それぞれ前記回転軸に固着されていることをその要旨とする。
この発明によれば、ロータをステータの両側に設けたので、より高出力のハイブリッド励磁モータとなる。
請求項6に記載の発明は、請求項4又は5に記載のハイブリッド励磁モータにおいて、前記ステータは、前記電機子コアを内包する円筒状の制御磁束コアを、前記電機子コアの外周に固着し、前記各永久磁石間を連結する前記コア片は、第1コア片と第2コア片とからなり、前記第1コア片と前記第2コア片を交互に配置し、前記第1コア片を、その外周面が前記制御磁束コアから離間し、その内周面が回転軸から接触するように配置するとともに、前記第2コア片を、その外周面が前記制御磁束コアに近接し、その内周面が前記回転軸から離間するように配置したことをその要旨とする。
この発明によれば、例えば、環状に配置された磁極群の外周側及び内周側にそれぞれ磁束制御コイルを設ける。
そして、外周側の磁束制御コイルに直流電流を流すと、流す方向によって、磁極のコア部、一方のロータの第2コア片、磁束制御コア、他方のロータの第2コア片、磁極1のコア部を、正逆方向に周回する磁束を形成することができる。従って、外周側の磁束制御コイルに直流電流を流すことによって、電機子コアに設けた環状に配置した磁極の磁束を増磁、減磁することができる。
又、内周側磁束制御コイルに直流電流を流すと、流す方向によって、磁極のコア部、他方のロータの第1コア片、回転軸、一方のロータの第1コア片、磁極のコア部を、正逆方向に周回する磁束を形成することができる。
従って、内周側の磁束制御コイルに直流電流を流すことによって、電機子コアに設けた環状に配置した磁極の磁束を増磁、減磁することができる。
請求項7に記載の発明は、回転軸に固着され、複数個の永久磁石を、前記回転軸を中心軸として周方向に配置するとともに、前記各永久磁石のN極、S極が前記回転軸を中心軸として径方向に向きかつ隣合う永久磁石のN極、S極の向きが異なるように環状に配置したロータと、前記ロータの外周に配置されるとともに前記回転軸を回転可能に支持し、電機子コイルがそれぞれ巻回された複数のコア部を、前記回転軸を中心軸として周方向に環状に配置しかつ前記各コア部からの磁束が前記ロータに向く電機子コアを有したステータとを備えるラジアルエアギャップタイプのモータであって、前記環状に配置されたコア部群の中心軸線方向の一側又は両側に、前記各コア部の磁束を制御する磁束制御コイルを設けたラジアルエアギャップタイプのハイブリッド励磁モータであることをその要旨とする。
この発明によれば、ロータは回転軸とともに一体的に回転する。このとき、磁束制御コイルに電流を流すと、電機子コアのコア部を周回する磁束が発生する。従って、磁束制御コイルに流す電流を制御するだけで、電機子コアに設けた環状に配置したコア部の磁束を制御できる。その結果、磁極の電機子コイルに流す電流を制御することなくモータ特性を簡単に可変できる。
請求項8に記載の発明は、請求項7に記載のハイブリッド励磁モータにおいて、前記ステータは、前記回転軸を回転可能に支持したヨークに前記電機子コアが内包され、その電機子コアの外側を前記ヨークの内側面に固定し、前記ロータは、周方向に配置した永久磁石群の中心軸線方向の両側の離間した位置に界磁制御コアを配置し、一側の界磁制御コアには、N極がステータ側に向いた前記永久磁石に接続されたコア片を延出形成し、他側の界磁制御コアには、S極がステータ側に向いた前記永久磁石に接続されたコア片を延出形成したことをその要旨とする。
請求項8に記載のハイブリッド励磁モータによれば、例えば、環状に配置されたコア部群の中心軸線方向の両側にそれぞれ磁束制御コイルを設ける。
そして、一側の磁束制御コイルに直流電流を流すと、流す方向によって、ヨーク、電機子コアのコア部、一側の界磁制御コアのコア片、ヨークを、正逆方向に周回する磁束を形成することができる。従って、一側の磁束制御コイルに直流電流を流すことによって、電機子コアに設けた環状に配置した各コア部の磁束を増磁、減磁することができる。
又、他側の磁束制御コイルに直流電流を流すと、流す方向によって、ヨーク、電機子コアのコア部、他側の界磁制御コアのコア片、ヨークを、正逆方向に周回する磁束を形成することができる。
従って、他側の磁束制御コイルに直流電流を流すことによって、電機子コアに設けた環状に配置した各コア部の磁束を増磁、減磁することができる。
本発明によれば、簡単な構成でモータ特性を簡単に可変できる。
(第1実施形態)
以下、本発明をアキシャルエアギャップタイプのハイブリッド励磁モータに具体化した第1実施形態を図面に従って説明する。
図1に示すように、本実施形態のハイブリッド励磁モータ1は、ダブルギャップ構造のモータであって、回転軸2と、回転軸2を回転可能に支持する第2コア体としてのステータ3と、該ステータ3の両側に配置され回転軸2に固着された一対の上側及び下側ロータ4,5とを有している。そして、ステータ3及び一対の第1コア体としてのロータ4,5は、2点鎖線で示す筐体6に収容され、ステータ3は筐体6に回転不能に固定されている。回転軸2は、その両側が筐体6に対して軸受け7を介して回転可能に支持されている。
ステータ3は、樹脂モールドされた円板形状の電機子コア11を有し、その電機子コア11は、円筒状の磁束制御コア12に内包されるように、その外周部が磁束制御コア12の内周面に固着されている。磁束制御コア12は、円筒状に形成され、その外側面が筐体6に固着されている。
電機子コア11は、円筒状に形成された磁束制御コア12の内側中間位置に固着されている。電機子コア11は、図3に示すように、複数個(図3では12個)の磁極15を回転軸2を中心軸線として周方向に配置した環状の磁極群と、かつ、その環状に配置された磁極群の外周側及び内周側に配置された外側磁束制御コイル16a及び内側磁束制御コイル16bとを樹脂17で樹脂モールドするによって円板状に形成されている。
円環状に配置された各磁極15は、それぞれコア部15aと、そのコア部15aを巻回する電機子コイル15bとからなる。各磁極15の電機子コイル15bは、周方向に2つおきの4つずつが、3相(U相、V相、W相)に分類され、図示しない制御回路から各相の電機子コイル15bに位相差120度の交流電流が供給されるようになっている。
外側磁束制御コイル16aは、円環状に配置された各磁極15の外周を一定の間隔もって巻回されている。外側磁束制御コイル16aは、図示しない制御回路から直流電流が供給されるようになっている。また、内側磁束制御コイル16bは、円環状に配置された各磁極15の内周を一定の間隔もって巻回されている。内側磁束制御コイル16bは、図示しない制御回路から直流電流が供給されるようになっている。外側磁束制御コイル16a及び内側磁束制御コイル16bは、本実施形態では、直流電流が共に同じ値で、同じ方向に向かって流れるように制御回路によって制御されている。
電機子コア11は、その中心部に貫通穴18が形成され、その貫通穴18に回転軸2が貫挿される。電機子コア11の貫通穴18と回転軸2との間には、軸受け19が配設されている。電機子コア11は軸受け19を介して回転軸2を回転可能に支持している。
図1において、電機子コア11の上側であって磁束制御コア12に内包される位置には、回転軸2に固着された上側ロータ4が配置されている。上側ロータ4は、上側界磁コア20と複数個(8個)の上側永久磁石MG1を有している。
上側界磁コア20は、十字形状の第1コア21と、複数(図2では4個)の第2コア片22とから構成されている。十字形状の第1コア21は、中央の円板部21aから四方に扇状の第1コア片21bが延出形成されている。そして、扇状の各第1コア片21bは、その外周面が磁束制御コア12の内周面と大きく離間するように形成されている。円板部21aには、貫通穴21cが形成され、その貫通穴21cに回転軸2が固着されている。
第2コア片22は扇状に形成され、第1コア21の各第1コア片21bの間に一定の間隔でそれぞれ配置されている。そして、第2コア片22は、第1コア21の各第1コア片21bとそれぞれ上側永久磁石MG1を介して連結されている。また、扇状の各第2コア片22は、磁束制御コア12に対して、その外周面が磁束制御コア12の内周面と近接するように僅かな間隔になるように、配置されている。
複数の上側永久磁石MG1は、第2コア片22と第1コア21の各第1コア片21bにその一部埋設されて第1コア21及び第2コア片22と一体的に形成されている。各上側永久磁石MG1の磁極(N極、S極)は、回転軸2を中心軸線として周方向に形成されている。そして、各上側永久磁石MG1の磁極の向きは、隣同士の上側永久磁石MG1が互いに異なる向きとなるように、着磁されている。即ち、各上側永久磁石MG1は、その磁束が軸方向に磁極毎に繰り返すように配置されており、該磁束が前記ステータ3の電機子コア11に作用するようになっている。
図1において、電機子コア11の下側であって磁束制御コア12に内包される位置には、回転軸2に固着された下側ロータ5が配置されている。下側ロータ5は、下側界磁コア30と複数個(8個)の下側永久磁石MG2を有している。
下側界磁コア30は、十字形状の第1コア31と、複数(図2では4個)の第2コア片32とから構成されている。十字形状の第1コア31は、中央の円板部31aから四方に扇状の第1コア片31bが延出形成されている。そして、扇状の各第1コア片31bは、その外周面が磁束制御コア12の内周面と大きく離間するように形成されている。円板部31aには貫通穴31cが形成され、その貫通穴31cに回転軸2が固着されている。
第2コア片32は扇状に形成され、第1コア31の各第1コア片31bの間に一定の間隔でそれぞれ配置されている。そして、第2コア片32は、第1コア31の各第1コア片31bとそれぞれ下側永久磁石MG2を介して連結されている。また、扇状の各第2コア片32は、磁束制御コア12に対して、その外周面が磁束制御コア12の内周面と近接するように僅かな間隔になるように、配置されている。
複数の下側永久磁石MG2は、第2コア片32と第1コア31の各第1コア片31bにその一部埋設されて第1コア31及びと第2コア片32と一体的に形成されている。各下側永久磁石MG2の磁極(N極、S極)は、回転軸2を中心軸線として周方向に形成されている。そして、各下側永久磁石MG2の磁極の向きは、隣同士の上側永久磁石MG1が互いに異なる向きとなるように、着磁されている。即ち、各下側永久磁石MG2は、その磁束が軸方向に磁極毎に繰り返すように配置されており、該磁束が前記ステータ3の電機子コア11に作用するようになっている。
なお、上側ロータ4と下側ロータ5は、形状、材質は同じでかつ回転軸2に固着された状態での相対位置も同じにした。しかし、相対向する上側永久磁石MG1と下側永久磁石MG2において、図4に示すように、磁極の向きが異なるようにそれぞれ着磁している。
つまり、図4に矢印に示すように、電機子コア11の磁極15のコア部15aに巻回した電機子コイル15bを通電したとき、磁極15によって形成される磁束φmの磁路(主磁路)が上側ロータ4と下側ロータ5を介して周回するようしている。
ちなみに、外側磁束制御コイル16aに対して、図5に示すように、図5において反時計回り方向に直流電流Iaが流されると、外側磁束制御コイル16aによって形成される磁束φaは、矢印で示すように、磁極15のコア部15a→上側界磁コア20の第2コア片22→磁束制御コア12→下側界磁コア30の第2コア片32→磁極15のコア部15a、を周回する磁束を形成する。
従って、図5に示すように、外側磁束制御コイル16aによって形成される磁束φaが、磁極15自身の磁束φmと同じ方向に形成されると、磁極15の全磁束が増加することになる。
反対に、外側磁束制御コイル16aに対して、図6に示すように、図6において時計回り方向に直流電流Iaが流されると、外側磁束制御コイル16aによって形成される磁束φaは、矢印で示すように、磁極15のコア部15a→下側界磁コア30の第2コア片32→磁束制御コア12→上側界磁コア20の第2コア片22→磁極15のコア部15a、を周回する磁束を形成する。
従って、図6に示すように、外側磁束制御コイル16aによって形成される磁束φaが、磁極15自身の磁束φmと反対方向に形成されると、磁極15の全磁束が減少することになる。
一方、内側磁束制御コイル16bに対して、図5に示すように、図5において反時計回り方向に直流電流Ib(=Ia)が流されると、内側磁束制御コイル16bによって形成される磁束φbは、矢印で示すように、磁極15のコア部15a→下側界磁コア30の第1コア31(第1コア片31b)→回転軸2→上側界磁コア20の第1コア21(第1コア片21b)→磁極15のコア部15a、を周回する磁束を形成する。
従って、図5に示すように、内側磁束制御コイル16bによって形成される磁束φbが、磁極15自身の磁束φmと同じ方向に形成されると、磁極15の全磁束が増加することになる。
反対に、内側磁束制御コイル16bに対して、図6に示すように、図6において時計回り方向に直流電流Ib(=Ia)が流されると、内側磁束制御コイル16bによって形成される磁束φbは、矢印で示すように、磁極15のコア部15a→上側界磁コア20の第1コア21(第1コア片21b)→回転軸2→下側界磁コア30の第1コア31(第1コア片31b)→磁極15のコア部15a、を周回する磁束を形成する。
従って、図6に示すように、内側磁束制御コイル16bによって形成される磁束φbが、磁極15自身の磁束φmと反対方向に形成されると、磁極15の磁束が減少することになる。
図7は、本実施形態のハイブリッド励磁モータ1の外側磁束制御コイル16a及び内側磁束制御コイル16bに直流電流Ia(Ib)を流した時における、磁極15における磁束の増減率を示す。
図7において、右半分は直流電流Ia,Ib(=Ia)を、図5に示すように、図5において反時計回り方向に電流値を変えて、外側磁束制御コイル16a及び内側磁束制御コイル16bに流したときの増減率の推移を示す。また、左半分は直流電流Ia,Ib(=Ia)を、図6に示すように、図6において時計回り方向に電流値を変えて、外側磁束制御コイル16a及び内側磁束制御コイル16bに流したときの増減率の推移を示す。
図7から明らかなように、外側磁束制御コイル16a及び内側磁束制御コイル16bに直流電流Ia,Ib(=Ia)を、図5において反時計回り方向に流したとき、電流値を増加するに従って磁束増減率(増磁率)は、増加の方向に1000ATまで大きく推移し、1000ATを過ぎるとその増磁率は緩やかに推移する。
反対に、図7から明らかなように、外側磁束制御コイル16a及び内側磁束制御コイル16bに直流電流Ia,Ib(=Ia)を、図6において時計回り方向に流したとき、電流値を増加するに従って磁束増減率(減磁率)は、減少の方向に1000ATまで大きく推移し、1000ATを過ぎるとその減磁率は緩やかに推移する。
従って、外側磁束制御コイル16a及び内側磁束制御コイル16bに流す直流電流Ia,Ib(=Ia)の向きと値とを変えるだけで、電機子コア11の各磁極15における磁束の増減を制御することができ、ハイブリッド励磁モータ1の出力特性を制御することができる。
次に、上記のように構成した第1実施形態の効果を以下に記載する。
(1)上記実施形態によれば、電機子コア11に複数の磁極15を環状に配置した磁極15群の外周側及び内周側に、外側磁束制御コイル16a及び内側磁束制御コイル16bを配置した。そして、外側磁束制御コイル16a及び内側磁束制御コイル16bに流す直流電流Ia,Ibの向き及び値を制御することにより、電機子コア11の各磁極15における磁束の増減を制御することができるようにした。
従って、磁極15の電機子コイル15bに流す交流電流を制御することなく、簡単にハイブリッド励磁モータ1の出力特性を可変できる。
(2)上記実施形態によれば、ステータ3の両側にロータ4,5をそれぞれ設けたので、ハイブリッド励磁モータ1はより高出力を得ることができる。
(3)上記実施形態によれば、上側及び下側ロータ4,5の第1コア21,31(第1コア片21b,31b)を、その外周面が磁束制御コア12から離間し、その内周面が回転軸2から接触するように配置した。また、上側及び下側ロータ4,5の第2コア片22,32を、その外周面が磁束制御コア12に近接し、その内周面が回転軸2から離間するように配置した。
そして、外側磁束制御コイル16aに直流電流Iaを流すと、その流す方向によって、磁極15のコア部15a、一方のロータの第2コア片22(32)、磁束制御コア12、他方のロータの第2コア片32(22)、磁極15のコア部15aを、正逆方向に周回する磁束φaを形成することができる。
従って、外側磁束制御コイル16aに直流電流Iaを流すことによって、電機子コア11に設けた環状に配置した各磁極15の磁束を増磁、減磁することができる。
又、内側磁束制御コイル16bに直流電流Ibを流すと、その流す方向によって、磁極15のコア部15a、他方のロータの第1コア片21b(31b)、回転軸2、一方のロータの第1コア片31b(21b)、磁極15のコア部15aを、正逆方向に周回する磁束を形成することができる。
従って、内側磁束制御コイル16bに直流電流Ibを流すことによって、電機子コア11に設けた環状に配置した各磁極15の磁束を増磁、減磁することができる。
(第2実施形態)
以下、本発明をラジアルエアギャップタイプのハイブリッド励磁モータに具体化した第2実施形態を図面に従って説明する。
図8に示すように、本実施形態のハイブリッド励磁モータ51は、回転軸52と、回転軸52に固着された1コア体としてのロータ53、ロータ53を内包し回転軸52を回転可能に支持する第2コア体としてのステータ54とを有している。
ロータ53は、図9に示すように、回転軸52に貫通固着した円柱状のロータコア60と、ロータコア60の上側及び下側に配置固定された上部界磁コア61及び下部界磁コア62を有している。ロータコア60は、その外周面に複数(10個)の永久磁石MGを固着している。複数(10個)の永久磁石MGは、その磁極(N極、S極)が回転軸52を中心軸として径方向に向くとともに、隣り合う永久磁石MGが異なる磁極となるように着磁されている。
ロータコア60の上側に配置固定された上部界磁コア61は、回転軸52に固着した円板状の基部61aを有している。基部61aは、ロータコア60と一定の間隔で離間し、そのロータコア60側の面に、複数(5個)の上部コア片61bが等間隔に延出形成されロータコア60に固着されている。基部61aから延出形成された各上部コア片61bは、それぞれ表面側がN極に着磁された永久磁石MGとその永久磁石MGが固着された部分のロータコア60の位置に固着されている。
従って、表面側がN極に着磁された各永久磁石MGの上側には、上部界磁コア61の各上部コア片61bが配置される。これに対して、表面側がS極に着磁された各永久磁石MGの上側には、上部界磁コア61の各上部コア片61bが配置されないようになっている。
ロータコア60の下側に配置固定された下部界磁コア62は、回転軸52に固着した円板状の基部62aを有している。基部62aは、ロータコア60と一定の間隔で離間し、そのロータコア60側の面に、複数(5個)の下部コア片62bが等間隔に延出形成されロータコア60に固着されている。基部62aから延出形成された各下部コア片62bは、それぞれ表面側がS極に着磁された永久磁石MGとその永久磁石MGが固着された部分のロータコア60の位置に固着されている。
従って、表面側がS極に着磁された各永久磁石MGの下側には、下部界磁コア62の各下部コア片62bが配置される。これに対して、表面側がN極に着磁された各永久磁石MGの下側には、下部界磁コア62の各下部コア片62bが配置されないようになっている。
ロータ53を内包するステータ54は、電機子コア71を有している。電機子コア71は、円筒状の基部72を有している。図10に示すように、その基部72の内周面には、回転軸52の中心軸Cに向かって延出形成された複数(30個)のコア部73が、周方向に等間隔に配置形成されている。電機子コア71の中心軸線方向の長さは、コア部73の上端部が、上部界磁コア61の上部コア片61bと、コア部73の下端部が下部界磁コア62の下部コア片62bと相対向する長さに形成されている。
図8に示すように、各コア部73には、それぞれ電機子コイル74が巻回されている。各コア部73の電機子コイル74は、周方向に2つおきの10ずつが、3相(U相、V相、W相)に分類され、図示しない制御回路から各相の電機子コイル74に位相差120度の交流電流が供給されるようになっている。
電機子コア71の上側には、前記回転軸52の中心軸Cを中心とした上側磁束制御コイル75aが基部72の環状の上面に沿って配置固定されている。上側磁束制御コイル75aは、図示しない制御回路から直流電流が供給されるようになっている。
電機子コア71の下側には、前記回転軸52の中心軸Cを中心とした下側磁束制御コイル75bが基部72の環状の下面に沿って配置固定されている。下側磁束制御コイル75bは、図示しない制御回路から直流電流が供給されるようになっている。
尚、上側磁束制御コイル75a及び下側磁束制御コイル75bは、本実施形態では、直流電流が共に同じ値で、同じ方向に向かって流れるように制御回路によって制御されている。
上側磁束制御コイル75a及び下側磁束制御コイル75bを配置固定した電機子コア71の上下両側部は、上部ヨーク76a及び下部ヨーク76bにそれぞれ嵌合固着されている。尚、図9では、上部ヨーク76a及び下部ヨーク76b内にそれぞれ、前記上側磁束制御コイル75a及び下側磁束制御コイル75bを図示している。上部ヨーク76a及び下部ヨーク76bは、回転軸52を軸受け77を介して回転可能に支持している。
そして、図11に示すように、上側磁束制御コイル75aに、矢印Aで示す方向に直流電流Iaが流されると、上側磁束制御コイル75aによって形成される磁束φaは、矢印で示すように、上部ヨーク76a→上部界磁コア61の上部コア片61b→電機子コア71のコア部73(基部72)→上部ヨーク76a、を周回する磁束を形成する。
従って、図11に示すように、上側磁束制御コイル75aによって形成される磁束φaが、表面側にN極が着磁された永久磁石MG自身の磁束φmと同じ方向に形成されると、電機子コア71のコア部73の全磁束が増加することになる。
反対に、図12に示すように、上側磁束制御コイル75aに、矢印Bに示す方向に直流電流Iaが流されると、上側磁束制御コイル75aによって形成される磁束φaは、矢印で示すように、上部ヨーク76a→電機子コア71の基部72(コア部73)→上部界磁コア61の上部コア片61b→上部ヨーク76a、を周回する磁束を形成する。
従って、図12に示すように、上側磁束制御コイル75aによって形成される磁束φaが、表面側にN極が着磁された永久磁石MG自身の磁束φmと反対方向に形成されると、電機子コア71のコア部73の全磁束が減少することになる。
一方、図11に示すように、下側磁束制御コイル75bに、矢印Aに示す方向に直流電流Ib(=Ia)が流されると、下側磁束制御コイル75bによって形成される磁束φbは、矢印で示すように、下部ヨーク76b→電機子コア71のコア部73(基部72)→下部界磁コア62の下部コア片62b→下部ヨーク76b、を周回する磁束を形成する。
従って、図11に示すように、下側磁束制御コイル75bによって形成される磁束φbが、表面側にS極が着磁された永久磁石MG自身の磁束φmと同じ方向に形成されると、電機子コア71のコア部73の全磁束が増加することになる。
反対に、図12に示すように、下側磁束制御コイル75bに対して、矢印Bに示す方向に直流電流Ib(=Ia)が流されると、下側磁束制御コイル75bによって形成される磁束φbは、矢印で示すように、下部ヨーク76b→下部界磁コア62の下部コア片62b→電機子コア71の基部72(コア部73)→下部ヨーク76b、を周回する磁束を形成する。
従って、図12に示すように、下側磁束制御コイル75bによって形成される磁束φbが、表面側にS極が着磁された永久磁石MG自身の磁束φmと反対方向に形成されると、電機子コア71のコア部73の磁束が減少することになる。
図13に実線で示す曲線は、本実施形態のハイブリッド励磁モータ51の上側磁束制御コイル75a及び下側磁束制御コイル75bに直流電流Ia,Ib(=Ia)を流した時における、電機子コア71のコア部73における磁束の増減率を示す。
図13において、右半分は直流電流Ia,Ib(=Ia)を、図11に示す方向に電流値を変えて、上側磁束制御コイル75a及び下側磁束制御コイル75bに流したときの増減率の推移を示す。また、左半分は直流電流Ia,Ib(=Ia)を、図12に示す方向に電流値を変えて、上側磁束制御コイル75a及び下側磁束制御コイル75bに流したときの増減率の推移を示す。
図13から明らかなように、上側磁束制御コイル75a及び下側磁束制御コイル75bに直流電流Ia,Ib(=Ia)を、図11に示すように、矢印Aの方向に、流したとき、電流値を増加するに従って磁束増減率(増磁率)は、増加の方向に推移する。
反対に、図13から明らかなように、上側磁束制御コイル75a及び下側磁束制御コイル75bに直流電流Ia,Ib(=Ia)を、図12に示すように、矢印Bの方向に、流したとき、電流値を増加するに従って磁束増減率(減磁率)は、減少の方向に推移する。
従って、上側磁束制御コイル75a及び下側磁束制御コイル75bに流し直流電流Ia,Ib(=Ia)の向きと値とを変えるだけで、電機子コア71の各コア部73における磁束の増減を制御することができ、ハイブリッド励磁モータ51の出力特性を制御することができる。
尚、本実施形態のハイブリッド励磁モータ51において、ロータコア60、永久磁石MG及び電機子コア71の中央軸線方向の長さを長くして筒長形状としてもよい。図13に示すように、ロータコア60、永久磁石MG及び電機子コア71が中央軸線方向に筒長に形成される程、永久磁石MG自身の磁束φmが増加して電機子コア71のコア部73における磁束増減率の絶対値は減少するようになっている。
次に、上記のように構成した第2実施形態の効果を以下に記載する。
(1)上記実施形態によれば、電機子コア71に環状に配置したコア部73群の上側に上側磁束制御コイル75aを電機子コア71の上側面に沿って配置するとともに、コア部73群の下側に下側磁束制御コイル75bを電機子コア71の下側面に沿って配置した。そして、上側磁束制御コイル75a及び下側磁束制御コイル75bに流す直流電流Ia,Ibの向き及び値を制御することにより、電機子コア71の各コア部73における磁束の増減を制御することができるようにした。
従って、コア部73の電機子コイル74に流す交流電流を制御することなく、簡単にハイブリッド励磁モータ51の出力特性を可変できる。
(2)上記実施形態によれば、電機子コア71の上下両側に、上側磁束制御コイル75a及び下側磁束制御コイル75bを設けたので、ハイブリッド励磁モータ51はより高出力を得ることができる。
(3)上記実施形態によれば、ロータコア60に設けた上部界磁コア61の各上部コア片61bは、表面側がN極に着磁された永久磁石MG及びその永久磁石MGが固着された部分のロータコア60に固着され、表面側がS極に着磁された各永久磁石MGには配置されないようにした。
一方、下部界磁コア62各下部コア片62bは、表面側がS極に着磁された永久磁石MG及びその永久磁石MGが固着された部分のロータコア60に固着され、表面側がN極に着磁された各永久磁石MGには配置されないようにした。
そして、図11に示す方向に、上側磁束制御コイル75aに直流電流Iaを流すとともに、下側磁束制御コイル75bに直流電流Ib(=Ia)を流すと、上側磁束制御コイル75aによる磁束φaが、表面側にN極が着磁された永久磁石MG自身の磁束φmと同じ方向に形成されるととともに、下側磁束制御コイル75bによる磁束φbが、表面側にS極が着磁された永久磁石MG自身の磁束φmと同じ方向に形成される。
従って、電機子コア71のコア部73の全磁束を効率よく増加させることができる。
反対に、図12に示す方向に、上側磁束制御コイル75aに直流電流Iaが流すとともに、下側磁束制御コイル75bに直流電流Ib(=Ia)を流すと、上側磁束制御コイル75aによる磁束φaが、表面側にN極が着磁された永久磁石MG自身の磁束φmと反対方向に形成されるとともに、下側磁束制御コイル75bによる磁束φbが、表面側にS極が着磁された永久磁石MG自身の磁束φmと反対方向に形成される。
従って、電機子コア71のコア部73の磁束を効率よく減少させることができる。
尚、上記実施形態は以下のように変更してもよい。
・上記第1実施形態では、電機子コア11に、外側磁束制御コイル16aと内側磁束制御コイル16bを設けた。これを、外側磁束制御コイル16aだけ、または、内側磁束制御コイル16bだけで実施してもよい。この場合、部品点数を減らすことができるとともに、径方向のサイズを小さくでき全体にモータを小型化できる。
・上記第1実施形態では、ステータ3の両側に上側及び下側ロータ4,5を配置したダブルギャップ構造のアキシャルエアギャップタイプのハイブリッド励磁モータ1であった。これを、図14に示す、回転軸82に固着した1つロータ83の両側に、ステータ84,85を回転軸82に配置し、両ステータ84,85が回転軸82を回転可能に支持するようにしたダブルギャップ構造のアキシャルエアギャップタイプのハイブリッド励磁モータ81に応用してもよい。
・上記第1実施形態では、ダブルギャップ構造のアキシャルエアギャップタイプのハイブリッド励磁モータ1に具体化したが、これに替えて、図15に示すシングルギャップ構造のアキシャルエアギャップタイプのハイブリッド励磁モータ91、または、図16に示すシングルギャップ構造のアキシャルエアギャップタイプのハイブリッド励磁モータ92に応用してもよい。
図15に示すハイブリッド励磁モータ91は、ステータ93の一側(図15では上側)にのみにロータ94を配置し、同ロータ94を回転軸95に固着したモータである。この場合にも、電機子コア11に環状に配置された磁極群を囲むように配置された外側磁束制御コイル16a及び内側磁束制御コイル16bに流す直流電流Ia,Ibの制御することによって、第1実施形態と同様に、磁極15の電機子コイル15bに流す交流電流を制御することなく、簡単にハイブリッド励磁モータ91の出力特性を可変できる。
また、図16に示すハイブリッド励磁モータ92は、図15に示すハイブリッド励磁モータ91の第2コア体(ステータ93)を回転軸95に対して固着し、回転軸95と一体回転させ、図15に示すハイブリッド励磁モータ91の第1コア体(ロータ94)が回転軸95を回転可能に支持するように構成する。
図16に示す回転する第2コア体93に配置された外側磁束制御コイル16a及び内側磁束制御コイル16bに流す直流電流Ia,Ibの制御することによって、第1実施形態と同様に、磁極15の電機子コイル15bに流す交流電流を制御することなく、簡単にハイブリッド励磁モータ92の出力特性を可変できる。
・上記第2実施形態では、ロータ53が表面磁石(SPM)構造のラジアルエアギャップタイプのハイブリッド励磁モータ51に具体化した。これを、ロータがV字型の磁石埋込(IPM)構造やI字型の磁石埋込(IPM)のラジアルエアギャップタイプのハイブリッド励磁モータに応用してもよい。
・上記第1及び第2実施形態では、直流電流Ia,Ibの電流値を同じにしていたが、これを変更して実施してもよい。
第1実施形態のアキシャルエアギャップタイプのハイブリッド励磁モータの断面図。 アキシャルエアギャップタイプのハイブリッド励磁モータの分解斜視図。 ステータを説明するためのステータの要部分解斜視図。 アキシャルエアギャップタイプのハイブリッド励磁モータの主磁路を説明するための説明図。 増磁を説明するための説明図。 減磁を説明するための説明図。 磁束制御コイルに流す直流電流に対する磁束増減率を示す図。 第2実施形態のラジアルエアギャップタイプのハイブリッド励磁モータの断面図。 ラジアルエアギャップタイプのハイブリッド励磁モータの分解斜視図。 ロータとステータの要部断面図。 増磁を説明するための説明図。 減磁を説明するための説明図。 磁束制御コイルに流す直流電流に対する磁束増減率を示す図。 第1実施形態の別例を示す図。 第1実施形態の別例を示す図。 第1実施形態の別例を示す図。
符号の説明
1…アキシャルエアギャップタイプのハイブリッド励磁モータ、2,52…回転軸、3…ステータ、4…上側ロータ、5…下側ロータ、11…電機子コア、12…磁束制御コア、15…磁極、15a…コア部、15b…電機子コイル、16a…外側磁束制御コイル、16b…内側磁束制御コイル、17…樹脂、20…上側界磁コア、21…第1コア、21b…第1コア片、22…第2コア片、30…下側界磁コア、31…第1コア、31b…第1コア片、32…第2コア片、51…ラジアルエアギャップタイプのハイブリッド励磁モータ、52…回転軸、53…ロータ、54…ステータ、60…ロータコア、61…上部界磁コア、61b…上部コア片、62…下部界磁コア、62b…下部コア片、71…電機子コア、73…コア部、74…電機子コイル、75a…上側磁束制御コイル、75b…下側磁束制御コイル、76a…上部ヨーク、76b…下部ヨーク、MG…永久磁石、MG1…上側永久磁石、MG2…下側永久磁石。
φa,φb,φm…磁束、Ia,Ib…直流電流。

Claims (8)

  1. 複数個の永久磁石を、回転軸を中心軸として周方向に環状に配置するとともに前記各永久磁石が発生する磁束を径方向若しくは軸方向に磁極毎に繰り返すように配置する第1コア体と、
    コイルがそれぞれ巻回された複数のコア部を、前記回転軸を中心軸として周方向に環状に配置した第2コア体と
    を備えるモータであって、
    前記第2コア体に、前記周方向に環状に配置されたコア部群の一側または両側に、前記各コア部の磁束を制御する磁束制御コイルを設けたことを特徴とするハイブリッド励磁モータ。
  2. 請求項1に記載のハイブリッド励磁モータにおいて、
    前記第1コア体は、前記各永久磁石をそのN,S極が前記周方向に向くように配置するとともに、それぞれ前記各永久磁石を、前記各永久磁石が発生する磁束を径方向に向けるコア片を介して前記周方向に環状に配置するものであり、
    前記第2コア体は、前記各コア部の磁束が前記第1コア体に向くように、前記各コア部を環状に配置したものであり、前記磁束制御コイルを前記環状に配置されたコア部群の外周側及び内周側の少なくとも一方に設けたことを特徴とするハイブリッド励磁モータ。
  3. 請求項2に記載のハイブリッド励磁モータにおいて、
    前記第1コア体は、前記回転軸を回転可能に支持し、前記第2コア体は、前記回転軸に固着されたことを特徴とするハイブリッド励磁モータ。
  4. 回転軸に固着され、複数個の永久磁石を、前記回転軸を中心軸として周方向にそれぞれコア片を介して配置するとともに前記各永久磁石のN,S極が前記周方向に向くように環状に配置したロータと、
    前記ロータに並設されるとともに前記回転軸を回転可能に支持し、電機子コイルがそれぞれ巻回された複数のコア部を、前記回転軸を中心軸として周方向に環状に配置して前記各コア部の磁束が前記ロータに向く電機子コアを有したステータと
    を備えるアキシャルエアギャップタイプのモータであって、
    前記環状に配置されたコア部群の外周側及び内周側の少なくとも一方に、前記各コア部の磁束を制御する磁束制御コイルを設けたことを特徴とするアキシャルエアギャップタイプのハイブリッド励磁モータ。
  5. 請求項4に記載のハイブリッド励磁モータにおいて、
    前記ロータは、前記回転軸を回転可能に支持する前記ステータの両側に配置され、それぞれ前記回転軸に固着されていることを特徴とするハイブリッド励磁モータ。
  6. 請求項4又は5に記載のハイブリッド励磁モータにおいて、
    前記ステータは、前記電機子コアを内包する円筒状の制御磁束コアを、前記電機子コアの外周に固着し、
    前記各永久磁石間を連結する前記コア片は、第1コア片と第2コア片とからなり、前記第1コア片と前記第2コア片を交互に配置し、
    前記第1コア片を、その外周面が前記制御磁束コアから離間し、その内周面が回転軸から接触するように配置するとともに、
    前記第2コア片を、その外周面が前記制御磁束コアに近接し、その内周面が前記回転軸から離間するように配置したことを特徴とするハイブリッド励磁モータ。
  7. 回転軸に固着され、複数個の永久磁石を、前記回転軸を中心軸として周方向に配置するとともに、前記各永久磁石のN極、S極が前記回転軸を中心軸として径方向に向きかつ隣合う永久磁石のN極、S極の向きが異なるように環状に配置したロータと、
    前記ロータの外周に配置されるとともに前記回転軸を回転可能に支持し、電機子コイルがそれぞれ巻回された複数のコア部を、前記回転軸を中心軸として周方向に環状に配置しかつ前記各コア部からの磁束が前記ロータに向く電機子コアを有したステータと
    を備えるラジアルエアギャップタイプのモータであって、
    前記環状に配置されたコア部群の中心軸線方向の一側又は両側に、前記各コア部の磁束を制御する磁束制御コイルを設けたことを特徴とするラジアルエアギャップタイプのハイブリッド励磁モータ。
  8. 請求項7に記載のハイブリッド励磁モータにおいて、
    前記ステータは、前記回転軸を回転可能に支持したヨークに前記電機子コアが内包され、その電機子コアの外側を前記ヨークの内側面に固定し、
    前記ロータは、周方向に配置した永久磁石群の中心軸線方向の両側の離間した位置に界磁制御コアを配置し、一側の界磁制御コアには、N極がステータ側に向いた前記永久磁石に接続されたコア片を延出形成し、他側の界磁制御コアには、S極がステータ側に向いた前記永久磁石に接続されたコア片を延出形成したことを特徴とするハイブリッド励磁モータ。
JP2008121289A 2008-05-07 2008-05-07 ハイブリッド励磁モータ Pending JP2009273231A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121289A JP2009273231A (ja) 2008-05-07 2008-05-07 ハイブリッド励磁モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121289A JP2009273231A (ja) 2008-05-07 2008-05-07 ハイブリッド励磁モータ

Publications (1)

Publication Number Publication Date
JP2009273231A true JP2009273231A (ja) 2009-11-19

Family

ID=41439291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121289A Pending JP2009273231A (ja) 2008-05-07 2008-05-07 ハイブリッド励磁モータ

Country Status (1)

Country Link
JP (1) JP2009273231A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083225B2 (en) 2011-03-02 2015-07-14 Kabushiki Kaisha Toyota Jidoshokki Rotary electric machine
WO2016170608A1 (ja) * 2015-04-22 2016-10-27 株式会社日立産機システム アキシャルギャップ型回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083225B2 (en) 2011-03-02 2015-07-14 Kabushiki Kaisha Toyota Jidoshokki Rotary electric machine
WO2016170608A1 (ja) * 2015-04-22 2016-10-27 株式会社日立産機システム アキシャルギャップ型回転電機

Similar Documents

Publication Publication Date Title
JP5159228B2 (ja) 磁気誘導子形同期回転機およびそれを用いた自動車用過給機
JP6460159B2 (ja) ロータ及びモータ
JP2005151725A (ja) アキシャルギャップ回転電機
US20060022553A1 (en) Rotating electric machine
JP2006238623A (ja) 直流モータ
JP2007236073A5 (ja)
JP5865174B2 (ja) ブラシレスモータ
US9337709B2 (en) Axial gap type permanent magnet electric rotating apparatus and method of manufacturing the same
JP5290795B2 (ja) ブラシ給電式ハイブリッド励磁モータ及びブラシ給電式ハイブリッド励磁モータの駆動方法
JP2018082600A (ja) ダブルロータ型の回転電機
JP2006271142A (ja) 回転機
JP2008252979A (ja) アキシャルギャップ型回転機
JP5869306B2 (ja) ロータ及びモータ
JP5944683B2 (ja) ロータ及びモータ
JP2006074989A (ja) アキシャルギャップ型回転電機
JP2009273231A (ja) ハイブリッド励磁モータ
JP2006025486A (ja) 回転電機
JP7193422B2 (ja) 回転電機及び回転電機の製造方法
JP2013201865A (ja) ブラシレスモータ
JP2004350492A (ja) 軸流構造形式の電気機械
JP2009124852A (ja) 回転電機のロータ及び回転電機
JP5324025B2 (ja) 回転電機
JP2008086176A5 (ja)
JP2016067138A (ja) 回転電機
JP3228782U (ja) 永久磁石を用いたモータ