JP2009269237A - ラミネート用フィルムおよび積層体 - Google Patents

ラミネート用フィルムおよび積層体 Download PDF

Info

Publication number
JP2009269237A
JP2009269237A JP2008119867A JP2008119867A JP2009269237A JP 2009269237 A JP2009269237 A JP 2009269237A JP 2008119867 A JP2008119867 A JP 2008119867A JP 2008119867 A JP2008119867 A JP 2008119867A JP 2009269237 A JP2009269237 A JP 2009269237A
Authority
JP
Japan
Prior art keywords
film
meth
acrylate
examples
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008119867A
Other languages
English (en)
Inventor
Hideko Okamoto
英子 岡本
Masa Nakamura
雅 中村
Katsuhiro Kojima
克宏 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008119867A priority Critical patent/JP2009269237A/ja
Publication of JP2009269237A publication Critical patent/JP2009269237A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

【課題】反射率が低く、かつ反射率の波長依存性が少ないラミネート用フィルム、加飾層や基材の本来の絵柄や色が十分に再現された意匠性の高い積層体を提供する。
【解決手段】表面に微細凹凸構造を有するラミネート用フィルム10であって、前記微細凹凸構造が、複数の凸部を有し、該凸部間の平均間隔が400nm以下であるラミネート用フィルム10;基材と、該基材の表面に、微細凹凸構造が形成された表面が最表面となるようにラミネートされたラミネート用フィルム10とを有する積層体。
【選択図】図1

Description

本発明は、ラミネート用フィルム、および基材の表面に該ラミネート用フィルムがラミネートされた積層体に関する。
基材(木材、樹脂成形品、金属板等)に意匠性、耐擦傷性等を付与する方法として、該基材の表面に該ラミネート用フィルムをラミネートする方法がよく知られている(例えば、特許文献1)。
基材の表面に該ラミネート用フィルムがラミネートされた積層体としては、合板等の表面に、木目柄等の加飾層(印刷層等)を有するラミネート用フィルム(化粧フィルムまたはシート)をラミネートした化粧板;印刷または着色された樹脂フィルムまたはシートに、透明なラミネート用フィルムをラミネートした壁紙;内部に蛍光灯が設置された半透明の樹脂箱の表面に、加飾層を有するラミネート用フィルムをラミネートした行灯看板;金属板の表面に、加飾層を有するラミネート用フィルムをラミネートした金属製看板等が挙げられる。
しかし、該積層体においては、加飾層や基材の前面に、ラミネート用フィルムを構成する透明な保護層が存在しているため、該保護層の表面における光の反射によって、加飾層や基材が全体的に白っぽくなったり、色相がかわったりして、加飾層や基材の本来の絵柄や色を再現できず、意匠性が低下する問題がある。
特開2000−327874号公報
本発明は、反射率が低く、かつ反射率の波長依存性が少ないラミネート用フィルム、および加飾層や基材の本来の絵柄や色が十分に再現された意匠性の高い積層体を提供する。
本発明のラミネート用フィルムは、表面に微細凹凸構造を有するラミネート用フィルムであって、前記微細凹凸構造が、複数の凸部を有し、該凸部間の平均間隔が400nm以下であることを特徴とする。
前記微細凹凸構造は、陽極酸化アルミナの表面の微細凹凸構造を転写して形成されたものであることが好ましい。
本発明の積層体は、基材と、該基材の表面に、前記微細凹凸構造が形成された表面が最表面となるようにラミネートされた本発明のラミネート用フィルムとを有することを特徴とする。
本発明のラミネート用フィルムは、反射率が低く、かつ反射率の波長依存性が少ない。
本発明の積層体は、加飾層や基材の本来の絵柄や色が十分に再現され、意匠性が高い。
本明細書において、(メタ)アクリレートは、アクリレートまたはメタクリレートを意味する。また、活性エネルギー線は、可視光線、紫外線、電子線、プラズマ、熱線(赤外線等)等を意味する。
<ラミネート用フィルム>
〔第1の実施形態〕
図1は、本発明のラミネート用フィルムの一例を示す断面図である。ラミネート用フィルム10は、フィルム本体12と、フィルム本体12の表面に形成された、微細凹凸構造(図示略)を有する硬化樹脂膜14とを有する。
(フィルム本体)
フィルム本体12は、熱可塑性樹脂層16と、熱可塑性樹脂層16の表面に形成された加飾層18と、加飾層18の表面に形成された保護層20とを有するフィルムまたはシートである。
熱可塑性樹脂層16は、例えば、加飾層を形成する際の基材となる層である。
熱可塑性樹脂層16の材料としては、アクリル系樹脂、ポリカーボネート、スチレン系樹脂、ポリエステル、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン、脂環式ポリオレフィン、塩化ビニル樹脂等が挙げられる。
熱可塑性樹脂層16の厚さは、10〜500μmが好ましい。熱可塑性樹脂層16の厚さが500μmを超えると、フィルムとしての可とう性が乏しくなり加飾層を生産性高く設けることが難しい。熱可塑性樹脂層16の厚さが10μm未満では、フィルム強度が低下し加飾層を設けることが難しい。
加飾層18としては、印刷法等で形成された印刷層、蒸着法で形成された蒸着層が挙げられる。
印刷層は、積層体における絵柄、模様、文字等となる。印刷柄としては、例えば、木目、石目、布目、砂目、幾何学模様、文字、全面ベタ等が挙げられる。また、印刷層は、全面ベタと、該表面に形成された絵柄、文字等との2層以上から構成されていてもよい。
印刷層の形成方法としては、オフセット印刷法、グラビア輪転印刷法、スクリーン印刷法、ロールコート法、スプレーコート法、フレキソグラフ印刷法等が挙げられる。
印刷層の厚さは、通常、0.5〜30μm程度である。
蒸着層は、金属(アルミニウム、ニッケル、金、白金、クロム、鉄、銅、インジウム、スズ、銀、チタニウム、鉛、亜鉛等)、これらの合金、またはこれらの化合物で形成される。蒸着層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等の方法が挙げられる。
保護層20は、光を透過できる層である。保護層20の材料としては、アクリル系樹脂、ポリカーボネート、スチレン系樹脂、ポリエステル、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン、脂環式ポリオレフィン、熱硬化型のポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、電子線硬化樹脂、紫外線硬化樹脂等が挙げられ、透明性、耐候性、耐磨耗性、生産性に優れている点から、紫外線硬化型アクリル系樹脂が好ましい。保護層20は、微細凹凸構造を有する硬化樹脂膜14と兼ねてもよい。
保護層20の厚さは、5〜500μmが好ましく、10〜200μmがより好ましい。保護層20の厚さが5μm以上であれば、基材の保護性とともに、積層体に深み感をより十分に付与できる。保護層20の厚さが500μm以下であれば、安定にフィルムを製造できる。
熱可塑性樹脂層16および保護層20は、公知の添加剤(安定剤、酸化防止剤、滑剤、加工助剤、可塑剤、耐衝撃剤、充填剤、抗菌剤、防カビ剤、離型剤、帯電防止剤、紫外線吸収剤、光安定剤、熱安定剤、難燃剤等)を含んでいてもよい。
(硬化樹脂膜)
硬化樹脂膜14は、後述の活性エネルギー線硬化性樹脂組成物の硬化物からなる膜であり、表面に微細凹凸構造を有する。
微細凹凸構造は、活性エネルギー線硬化性樹脂組成物の硬化物からなる複数の凸部を有する。
微細凹凸構造としては、略円錐形状、角錐形状等の突起(凸部)が複数並んだ、いわゆるモスアイ構造が好ましい。突起間の間隔が可視光の波長以下であるモスアイ構造は、空気の屈折率から材料の屈折率に連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。
凸部間の平均間隔は、可視光の波長以下、すなわち400nm以下である。後述する陽極酸化アルミナのモールドを用いて凸部を形成した場合、凸部間の平均間隔は100nm程度となることから、200nm以下が好ましく、150nm以下が特に好ましい。
凸部間の平均間隔は、凸部の形成のしやすさの点から、20nm以上が好ましい。
凸部間の平均間隔は、電子顕微鏡観察によって隣接する凸部間の間隔(凸部の中心から隣接する凸部の中心までの距離)を50点測定し、これらの値を平均したものである。
凸部の高さは、平均間隔が100nmの場合は80〜500nmが好ましく、120〜400nmがより好ましく、150〜300nmが特に好ましい。凸部の高さが80nm以上であれば、反射率が十分に低くなり、かつ反射率の波長依存性が少ない。凸部の高さが500nm以下であれば、凸部の耐擦傷性が良好となる。
凸部の高さは、電子顕微鏡観察によって倍率30000倍で観察したときにおける、凸部の最頂部と、凸部間に存在する凹部の最底部との間の距離を測定した値である。
凸部のアスペクト比(凸部の高さ/凸部間の平均間隔)は、0.8〜5.0が好ましく、1.2〜4.0がより好ましく、1.5〜3.0が特に好ましい。凸部のアスペクト比が1.0以上であれば、反射率が十分に低くなる。凸部のアスペクト比が5.0以下であれば、凸部の耐擦傷性が良好となる。
凸部の形状は、高さ方向と直交する方向の凸部断面積が最表面から深さ方向に連続的に増加する形状、すなわち、凸部の高さ方向の断面形状が、三角形、台形、釣鐘型等の形状が好ましい。
硬化樹脂膜14の厚さは、1〜50μmが好ましい。硬化樹脂膜14の厚さを20μm以上とすることで、保護層としての効果も得られる。
硬化樹脂膜14の屈折率とフィルム本体12の屈折率との差は、0.2以下が好ましく、0.1以下がより好ましく、0.05以下が特に好ましい。屈折率差が0.2以下であれば、硬化樹脂膜14とフィルム本体12との界面における反射が抑えられる。
表面に微細凹凸構造を有する場合、その表面が疎水性の材料から形成されていればロータス効果により超撥水性が得られ、その表面が親水性の材料から形成されていれば超親水性が得られることが知られている。
硬化樹脂膜14の材料が疎水性の場合の微細凹凸構造の表面の水接触角は、90゜以上が好ましく、110゜以上がより好ましく、120゜以上が特に好ましい。水接触角が90゜以上であれば、水汚れが付着しにくくなるため、十分な防汚性が発揮される。また、水が付着しにくいため、着氷防止を期待できる。
硬化樹脂膜14の材料が親水性の場合の微細凹凸構造の表面の水接触角は、25゜以下が好ましく、23゜以下がより好ましく、21゜以下が特に好ましい。水接触角が25゜以下であれば、表面に付着した汚れが水で洗い流され、また油汚れが付着しにくくなるため、十分な防汚性が発揮される。該水接触角は、硬化樹脂膜14の吸水による微細凹凸構造の変形、それに伴う反射率の上昇を抑える点から、3゜以上が好ましい。
(他の層)
本発明のラミネート用フィルムは、接着層等、他の層を有していてもよい。
接着層は、硬化樹脂膜14とは反対側のラミネート用フィルム10の最外層に形成されることが好ましい。
接着層の材料としては、酢酸ビニル系水性エマルジョン系、アクリル系樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。
接着層の厚さは、通常、1〜5μm程度である。
(ラミネート用フィルムの製造方法)
第1の実施形態のラミネート用フィルム10の製造方法としては、下記の方法が挙げられる。
熱可塑性樹脂層16のフィルムを製造し、該フィルムの表面に加飾層18を形成し、加飾フィルムを得る。これとは別に、保護層20のフィルムを製造し、該フィルムの表面に硬化樹脂膜14を形成し、反射防止フィルムを得る。ついで、加飾フィルムと反射防止フィルムとを貼り合わせてラミネート用フィルム10を得る。
熱可塑性樹脂層16のフィルムおよび保護層20フィルムの製造方法としては、溶融押出法(溶融流延法、Tダイ法、インフレーション法)、カレンダー法等の公知の方法が挙げられ、経済性の点からTダイ法が好ましい。
硬化樹脂膜14の形成方法としては、後述のロール状モールドを用いた方法が挙げられる。
表面に微細凹凸構造を有する硬化樹脂膜14は、例えば、図2に示す製造装置を用いて、下記のようにして製造される。
表面に微細凹凸構造(図示略)を有するロール状モールド22と、ロール状モールド22の表面に沿って移動する帯状の保護層20のフィルムとの間に、タンク24から活性エネルギー線硬化性樹脂組成物を供給する。
ロール状モールド22と、空気圧シリンダ26によってニップ圧が調整されたニップロール28との間で、保護層20のフィルムおよび活性エネルギー線硬化性樹脂組成物をニップし、活性エネルギー線硬化性樹脂組成物を、保護層20のフィルムとロール状モールド22との間に均一に行き渡らせると同時に、ロール状モールド22の微細凹凸構造の凹部内に充填する。
ロール状モールド22の下方に設置された活性エネルギー線照射装置30から、保護層20のフィルムを通して活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射し、活性エネルギー線硬化性樹脂組成物を硬化させることによって、ロール状モールド22の表面の微細凹凸構造が転写された硬化樹脂膜14を形成する。
剥離ロール32により、表面に硬化樹脂膜14が形成された保護層20のフィルムを剥離することによって、反射防止フィルムを得る。
活性エネルギー線照射装置30としては、高圧水銀ランプ、メタルハライドランプ等が好ましく、この場合の光照射エネルギー量は、100〜10000mJ/cmが好ましい。
(ロール状モールド)
ロール状モールド22は、表面に微細凹凸構造を有するものである。微細凹凸構造は、複数の凹部を有する。
ロール状モールドとしては、電子ビーム描画で作製されたモールド、レーザー光干渉法によって作製されたモールド、表面に陽極酸化アルミナを有するモールド等が挙げられ、大面積化が可能であり、ロール状モールドの作製が簡便である点から、表面に陽極酸化アルミナを有するモールドが好ましい。
陽極酸化アルミナは、アルミニウムの多孔質の酸化皮膜(アルマイト)であり、表面に複数の細孔(凹部)を有する。
表面に陽極酸化アルミナを有するモールドは、例えば、下記(a)〜(e)工程を経て製造できる。
(a)ロール状のアルミニウムを電解液中、定電圧下で陽極酸化して酸化皮膜を形成する工程。
(b)酸化皮膜を除去し、陽極酸化の細孔発生点を形成する工程。
(c)ロール状のアルミニウムを電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
(d)細孔の径を拡大させる工程。
(e)前記(c)工程と(d)工程を繰り返し行う工程。
(a)工程:
図3に示すように、アルミニウム34を陽極酸化すると、細孔36を有する酸化皮膜38が形成される。
アルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上が特に好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析により可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりすることがある。
電解液としては、硫酸、シュウ酸、リン酸等が挙げられる。
シュウ酸を電解液として用いる場合:
シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
化成電圧が30〜60Vの時、周期が100nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向にある。
電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
硫酸を電解液として用いる場合:
硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
化成電圧が25〜30Vの時、周期が63nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。
電解液の温度は、30℃以下が好ましく、20℃以下がよりに好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
(b)工程:
図3に示すように、酸化皮膜38を一旦除去し、これを陽極酸化の細孔発生点40にすることで細孔の規則性を向上することができる。
酸化皮膜を除去する方法としては、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液に溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
(c)工程:
図3に示すように、酸化皮膜を除去したアルミニウム34を再度、陽極酸化すると、円柱状の細孔36を有する酸化皮膜38が形成される。
陽極酸化は、(a)工程と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
(d)工程:
図3に示すように、細孔36の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
(e)工程:
図3に示すように、(c)工程の陽極酸化と、(d)工程の細孔径拡大処理を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔36を有する陽極酸化アルミナが形成され、表面に陽極酸化アルミナを有するモールド(ロール状モールド22)が得られる。
繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が2回以下では、非連続的に細孔の直径が減少するため、このような細孔を有する陽極酸化アルミナを用いて製造された硬化樹脂膜14の反射率低減効果は不十分である。
陽極酸化アルミナの表面は、硬化樹脂膜14との分離が容易になるように、離型剤で処理されていてもよい。処理方法としては、例えば、シリコーン樹脂またはフッ素含有ポリマーをコーティングする方法、フッ素含有化合物を蒸着する方法、フッ素含有シランカップリング剤またはフッ素含有シリコーン系シランカップリング剤をコーティングする方法等が挙げられる。
細孔36の形状としては、略円錐形状、角錐形状、円柱形状等が挙げられ、円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。
細孔36間の平均間隔は、可視光の波長以下、すなわち400nm以下である。細孔36間の平均間隔は、20nm以上が好ましい。
細孔36間の平均間隔は、電子顕微鏡観察によって隣接する細孔36間の間隔(細孔36の中心から隣接する細孔36の中心までの距離)を50点測定し、これらの値を平均したものである。
細孔36の深さは、平均間隔が100nmの場合は80〜500nmが好ましく、120〜400nmがより好ましく、150〜300nmが特に好ましい。
細孔36の深さは、電子顕微鏡観察によって倍率30000倍で観察したときにおける、細孔36の最底部と、細孔36間に存在する凸部の最頂部との間の距離を測定した値である。
細孔36のアスペクト比(細孔の深さ/細孔間の平均間隔)は、0.8〜5.0が好ましく、1.2〜4.0がより好ましく、1.5〜3.0が特に好ましい。
図3に示すような細孔36を転写して形成された硬化樹脂膜14の表面は、いわゆるモスアイ構造となる。
(活性エネルギー線硬化性樹脂組成物)
活性エネルギー線硬化性樹脂組成物は、重合性化合物および重合開始剤を含む。
重合性化合物としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマー等が挙げられる。
活性エネルギー線硬化性樹脂組成物は、非反応性のポリマー、活性エネルギー線ゾルゲル反応性組成物を含んでいてもよい。
ラジカル重合性結合を有するモノマーとしては、単官能モノマー、多官能モノマーが挙げられる。
単官能モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート等の(メタ)アクリレート誘導体;(メタ)アクリル酸、(メタ)アクリロニトリル;スチレン、α−メチルスチレン等のスチレン誘導体;(メタ)アクリルアミド、N−ジメチル(メタ)アクリルアミド、N−ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体等が挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2−ビス(4−(メタ)アクリロキシエトキシフェニル)プロパン、2,2−ビス(4−(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)フェニル)プロパン、1,2−ビス(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)エタン、1,4−ビス(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等の二官能性モノマー;ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等の三官能モノマー;コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等の四官能以上のモノマー;二官能以上のウレタンアクリレート、二官能以上のポリエステルアクリレート等が挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
カチオン重合性結合を有するモノマーとしては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーが挙げられ、エポキシ基を有するモノマーが特に好ましい。
オリゴマーまたは反応性ポリマーとしては、不飽和ジカルボン酸と多価アルコールとの縮合物等の不飽和ポリエステル類;ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、側鎖にラジカル重合性結合を有する上述のモノマーの単独または共重合ポリマー等が挙げられる。
非反応性のポリマーとしては、アクリル系樹脂、スチレン系樹脂、ポリウレタン、セルロース系樹脂、ポリビニルブチラール、ポリエステル、熱可塑性エラストマー等が挙げられる。
活性エネルギー線ゾルゲル反応性組成物としては、アルコキシシラン化合物、アルキルシリケート化合物等が挙げられる。
アルコキシシラン化合物としては、下記式(1)の化合物が挙げられる。
11 Si(OR12 ・・・(1)。
ただし、R11、R12は、それぞれ炭素数1〜10のアルキル基を表し、x、yは、x+y=4の関係を満たす整数を表す。
アルコキシシラン化合物としては、テトラメトキシシラン、テトラ−i−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−t−ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルプロポキシシラン、トリメチルブトキシシラン等が挙げられる。
アルキルシリケート化合物としては、下記式(2)の化合物が挙げられる。
21O[Si(OR23)(OR24)O]22 ・・・(2)。
ただし、R21〜R24は、それぞれ炭素数1〜5のアルキル基を表し、zは、3〜20の整数を表す。
アルキルシリケート化合物としては、メチルシリケート、エチルシリケート、イソプロピルシリケート、n−プロピルシリケート、n−ブチルシリケート、n−ペンチルシリケート、アセチルシリケート等が挙げられる。
光硬化反応を利用する場合、光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾフェノン、p−メトキシベンゾフェノン、2,2−ジエトキシアセトフェノン、α,α−ジメトキシ−α−フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4'−ビス(ジメチルアミノ)ベンゾフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物;2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
電子線硬化反応を利用する場合、重合開始剤としては、例えば、ベンゾフェノン、4,4−ビス(ジエチルアミノ)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4−フェニルベンゾフェノン、t−ブチルアントラキノン、2−エチルアントラキノン、2,4−ジエチルチオキサントン、イソプロピルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン;ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド等のアシルホスフィンオキサイド;メチルベンゾイルホルメート、1,7−ビスアクリジニルヘプタン、9−フェニルアクリジン等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
熱硬化反応を利用する場合、熱重合開始剤としては、例えば、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、ラウロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物;前記有機過酸化物にN,N−ジメチルアニリン、N,N−ジメチル−p−トルイジン等のアミンを組み合わせたレドックス重合開始剤等が挙げられる。
重合開始剤の量は、重合性化合物100質量部に対して、0.1〜10質量部が好ましい。重合開始剤の量が0.1質量部未満では、重合が進行しにくい。重合開始剤の量が10質量部を超えると、硬化膜が着色したり、機械強度が低下したりすることがある。
活性エネルギー線硬化性樹脂組成物は、必要に応じて、帯電防止剤、離型剤、防汚性を向上させるためのフッ素化合物等の添加剤;微粒子、少量の溶剤を含んでいてもよい。
(疎水性材料)
硬化樹脂膜14の微細凹凸構造の表面の水接触角を90°以上にするためには、疎水性の材料を形成しうる活性エネルギー線硬化性樹脂組成物として、フッ素含有化合物またはシリコーン系化合物を含む組成物を用いることが好ましい。
また、疎水性材料以外からなる硬化樹脂膜14の微細凹凸構造の表面に、イオンスパッタリング、蒸着、CVD等の方法でフッ素系化合物を塗布してもよい。
フッ素含有化合物:
フッ素含有化合物としては、下記式(3)で表されるフルオロアルキル基を有する化合物が好ましい。
−(CF−X ・・・(3)。
ただし、Xは、フッ素原子または水素原子を表し、nは、1以上の整数を表し、1〜20が好ましく、3〜10がより好ましく、4〜8が特に好ましい。
フッ素含有化合物としては、フッ素含有モノマー、フッ素含有シランカップリング剤、フッ素含有界面活性剤、フッ素含有ポリマー等が挙げられる。
フッ素含有モノマーとしては、フルオロアルキル基置換ビニルモノマー、フルオロアルキル基置換開環重合性モノマー等が挙げられる。
フルオロアルキル基置換ビニルモノマーとしては、フルオロアルキル基置換(メタ)アクリレート、フルオロアルキル基置換(メタ)アクリルアミド、フルオロアルキル基置換ビニルエーテル、フルオロアルキル基置換スチレン等が挙げられる。
フルオロアルキル基置換開環重合性モノマーとしては、フルオロアルキル基置換エポキシ化合物、フルオロアルキル基置換オキセタン化合物、フルオロアルキル基置換オキサゾリン化合物等が挙げられる。
フッ素含有モノマーとしては、フルオロアルキル基置換(メタ)アクリレートが好ましく、下記式(4)の化合物が特に好ましい。
CH=C(R41)C(O)O−(CH−(CF−X ・・・(4)。
ただし、R41は、水素原子またはメチル基を表し、Xは、水素原子またはフッ素原子を表し、mは、1〜6の整数を表し、1〜3が好ましく、1または2がより好ましく、nは、1〜20の整数を表し、3〜10が好ましく、4〜8がより好ましい。
フッ素含有シランカップリング剤としては、フルオロアルキル基置換シランカップリング剤が好ましく、下記式(5)の化合物が特に好ましい。
(R51 SiY ・・・(5)。
は、エーテル結合またはエステル結合を1個以上含んでいてもよい炭素数1〜20のフッ素置換アルキル基を表す。Rとしては、3,3,3−トリフルオロプロピル基、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル基、3−トリフルオロメトキシプロピル基、3−トリフルオロアセトキシプロピル基等が挙げられる。
51は、炭素数1〜10のアルキル基を表す。R51としては、メチル基、エチル基、シクロヘキシル基等が挙げられる。
Yは、水酸基または加水分解性基を表す。
加水分解性基としては、アルコキシ基、ハロゲン原子、R52C(O)O(ただし、R52は、水素原子または炭素数1〜10のアルキル基を表す。)等が挙げられる。
アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、i−プロピルオキシ基、ブトキシ基、i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基等が挙げられる。
ハロゲン原子としては、Cl、Br、I等が挙げられる。
52C(O)Oとしては、CHC(O)O、CC(O)O等が挙げられる。
a、b、cは、a+b+c=4であり、かつa≧1、c≧1を満たす整数を表し、a=1、b=0、c=3が好ましい。
フッ素含有シランカップリング剤としては、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリアセトキシシラン、ジメチル−3,3,3−トリフルオロプロピルメトキシシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチルトリエトキシシラン等が挙げられる。
フッ素含有界面活性剤としては、フルオロアルキル基含有アニオン系界面活性剤、フルオロアルキル基含有カチオン系界面活性剤等が挙げられる。
フルオロアルキル基含有アニオン系界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸またはその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[オメガ−フルオロアルキル(C〜C11)オキシ]−1−アルキル(C〜C)スルホン酸ナトリウム、3−[オメガ−フルオロアルカノイル(C〜C)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸またはその金属塩、パーフルオロアルキルカルボン酸(C〜C13)またはその金属塩、パーフルオロアルキル(C〜C12)スルホン酸またはその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C〜C16)エチルリン酸エステル等が挙げられる。
フルオロアルキル基含有カチオン系界面活性剤としては、フルオロアルキル基含有脂肪族一級、二級または三級アミン酸、パーフルオロアルキル(C〜C10)スルホンアミドプロピルトリメチルアンモニウム塩等の脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩等が挙げられる。
フッ素含有ポリマーとしては、フルオロアルキル基含有モノマーの重合体、フルオロアルキル基含有モノマーとポリ(オキシアルキレン)基含有モノマーとの共重合体、フルオロアルキル基含有モノマーと架橋反応性基含有モノマーとの共重合体等が挙げられる。フッ素含有ポリマーは、共重合可能な他のモノマーとの共重合体であってもよい。
フッ素含有ポリマーとしては、フルオロアルキル基含有モノマーとポリ(オキシアルキレン)基含有モノマーとの共重合体が好ましい。
ポリ(オキシアルキレン)基としては、下記式(6)で表される基が好ましい。
−(OR61− ・・・(6)。
ただし、R61は、炭素数2〜4のアルキレン基を表し、pは、2以上の整数を表す。R61としては、−CHCH−、−CHCHCH−、−CH(CH)CH−、−CH(CH)CH(CH)−等が挙げられる。
ポリ(オキシアルキレン)基は、同一のオキシアルキレン単位(OR61)からなるものであってもよく、2種以上のオキシアルキレン単位(OR61)からなるものであってもよい。2種以上のオキシアルキレン単位(OR61)の配列は、ブロックであってもよく、ランダムであってもよい。
シリコーン系化合物:
シリコーン系化合物としては、(メタ)アクリル酸変性シリコーン、シリコーン樹脂、シリコーン系シランカップリング剤等が挙げられる。
(メタ)アクリル酸変性シリコーンとしては、シリコーン(ジ)(メタ)アクリレート等が挙げられる。
(親水性材料)
硬化樹脂層14の微細凹凸構造の表面の水接触角を25°以下にするためには、親水性の材料を形成しうる活性エネルギー線硬化性樹脂組成物として、少なくとも親水性モノマーを含む組成物を用いることが好ましい。また、耐擦傷性や耐水性付与の観点からは、架橋可能な多官能モノマーを含むのがより好ましい。なお、親水性モノマーと架橋可能な多官能モノマーは、同一(すなわち、親水性多官能モノマー)であってもよい。さらに、活性エネルギー線硬化性樹脂組成物は、その他のモノマーを含んでいてもよい。
親水性の材料を形成しうる活性エネルギー線硬化性樹脂組成物としては、下記の重合性化合物を含む組成物を用いることがより好ましい。
4官能以上の多官能(メタ)アクリレートの10〜50質量%、
2官能以上の親水性(メタ)アクリレートの30〜80質量%、
単官能モノマーの0〜20質量%の合計100質量%からなる重合性化合物。
4官能以上の多官能(メタ)アクリレートとしては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物、ウレタンアクリレート類(ダイセル・サイテック社製:EBECRYL220、EBECRYL1290、EBECRYL1290K、EBECRYL5129、EBECRYL8210、EBECRYL8301、KRM8200)、ポリエーテルアクリレート類(ダイセル・サイテック社製:EBECRYL81)、変性エポキシアクリレート類(ダイセル・サイテック社製:EBECRYL3416)、ポリエステルアクリレート類(ダイセル・サイテック社製:EBECRYL450、EBECRYL657、EBECRYL800、EBECRYL810、EBECRYL811、EBECRYL812、EBECRYL1830、EBECRYL845、EBECRYL846、EBECRYL1870)等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
4官能以上の多官能(メタ)アクリレートとしては、5官能以上の多官能(メタ)アクリレートがより好ましい。
4官能以上の多官能(メタ)アクリレートの割合は、10〜50質量%が好ましく、耐水性、耐薬品性の点から、20〜50質量%がより好ましく、30〜50質量%が特に好ましい。4官能以上の多官能(メタ)アクリレートの割合が10質量%以上であれば、弾性率が高くなって耐擦傷性が向上する。4官能以上の多官能(メタ)アクリレートの割合が50質量%以下であれば、表面に小さな亀裂が入りにくく、外観不良となりにくい。
2官能以上の親水性(メタ)アクリレートとしては、アロニックスM−240、アロニックスM260(東亞合成社製)、NKエステルAT−20E、NKエステルATM−35E(新中村化学社製)等の長鎖ポリエチレングリコールを有する多官能アクリレート、ポリエチレングリコールジメタクリレート等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
ポリエチレングリコールジメタクリレートにおいて、一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は、6〜40が好ましく、9〜30がより好ましく、12〜20が特に好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば、親水性が十分となり、防汚性が向上する。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、4官能以上の多官能(メタ)アクリレートとの相溶性が良好となり、活性エネルギー線硬化性樹脂組成物が分離しにくい。
2官能以上の親水性(メタ)アクリレートの割合は、30〜80質量%が好ましく、40〜70質量%がより好ましい。2官能以上の親水性(メタ)アクリレートの割合が30質量%以上であれば、親水性が十分となり、防汚性が向上する。2官能以上の親水性(メタ)アクリレートの割合が80質量%以下であれば、弾性率が高くなって耐擦傷性が向上する。
単官能モノマーとしては、親水性単官能モノマーが好ましい。
親水性単官能モノマーとしては、M−20G、M−90G、M−230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等のエステル基に水酸基を有する単官能(メタ)アクリレート、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、メタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート等のカチオン性モノマー類等が挙げられる。
また、単官能モノマーとして、アクリロイルモルホリン、ビニルピロリドン等の粘度調整剤、基材への密着性を向上させるアクリロイルイソシアネート類等の密着性向上剤等を用いてもよい。
単官能モノマーの割合は、0〜20質量%が好ましく、5〜15質量%がより好ましい。単官能モノマーを用いることにより、基材と硬化樹脂との密着性が向上する。単官能モノマーの割合が20質量%以下であれば、4官能以上の多官能(メタ)アクリレートまたは2官能以上の親水性(メタ)アクリレートが不足することなく、防汚性または耐擦傷性が十分に発現する。
単官能モノマーは、1種または2種以上を(共)重合した低重合度の重合体として活性エネルギー線硬化性樹脂組成物に0〜35質量部配合してもよい。低重合度の重合体としては、M−230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類と、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートとの40/60共重合オリゴマー(MRCユニテック社製、MGポリマー)等が挙げられる。
〔第2の実施形態〕
図4は、本発明のラミネート用フィルムの他の例を示す断面図である。ラミネート用フィルム10は、熱可塑性樹脂層16と、熱可塑性樹脂層16の表面に形成された、微細凹凸構造(図示略)を有する硬化樹脂膜14と、熱可塑性樹脂層16の裏面に形成された加飾層18とを有するフィルムまたはシートである。
第2の実施形態においては、第1の実施形態と同じ構成については説明を省略する。
第2の実施形態のラミネート用フィルム10の製造方法としては、下記の方法が挙げられる。
熱可塑性樹脂層16のフィルムを製造し、これを基材フィルムとして熱可塑性樹脂層16のフィルムの表面に保護層を兼ねた硬化樹脂膜14を形成し、熱可塑性樹脂層16のフィルムの裏面に加飾層18を設けてラミネート用フィルム10を得る。
第2の実施形態における硬化樹脂膜14は、帯状の保護層20のフィルムの代わりに熱可塑性樹脂層16のフィルムを用いる以外は、図2に示す製造装置を用いる第1の実施形態の製造方法と同様にして製造される。
以上説明したラミネート用フィルム10にあっては、表面に複数の凸部を有する微細凹凸構造を有し、該凸部間の平均間隔が400nm以下であるため、該表面における反射率が低く、かつ反射率の波長依存性が少ない。
なお、本発明のラミネート用フィルムは、図示例のラミネート用フィルム10に限定はされない。例えば、微細凹凸構造は、ラミネート用フィルム10においては、ラミネート用フィルム10の硬化樹脂膜14の表面に形成されているが、硬化樹脂膜14を設けることなく保護層20または熱可塑性樹脂層16の表面に直接形成されていてもよい。ただし、ロール状モールド22を用いて効率よく微細凹凸構造を形成できる点、および微細凹凸構造が破損した際にラミネート用フィルム10を貼りなおすことができる点から、ラミネート用フィルム10の硬化樹脂膜14の表面に微細凹凸構造が形成されていることが好ましい。
また、第1の実施形態のラミネート用フィルム10においては、熱可塑性樹脂層16および/または加飾層18は、必ずしも設ける必要はない。
また、第2の実施形態のラミネート用フィルム10においては、加飾層18は、必ずしも設ける必要はない。
<積層体>
図5は、本発明の積層体の一例を示す断面図である。積層体50は、基材52と、該基材52の表面に、接着層54を介して、微細凹凸構造が形成された表面が最表面となるようにラミネートされた第1の実施形態のラミネート用フィルム10とを有する。
図6は、本発明の積層体の他の例を示す断面図である。積層体50は、基材52と、該基材52の表面に、接着層54を介して、微細凹凸構造が形成された表面が最表面となるようにラミネートされた第2の実施形態のラミネート用フィルム10とを有する。
基材52は、着色剤(顔料、染料等)で着色されていてもよく、表面に印刷、塗装等が施されていてもよい。
基材52としては、木材、樹脂成形品、金属板等が挙げられる。
木材としては、無垢材、合板、パーティクルボード、中密度繊維板等が挙げられる。
樹脂成形品としては、フィルム、シート、板等が挙げられる。
樹脂成形品の材料としては、オレフィン系樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン共重合体、オレフィン系熱可塑性エラストマー等)、スチレン系樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体)、AS樹脂(アクリロニトリル−スチレン共重合体)、アクリル系樹脂、ウレタン系樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート、ポリアセタール、ポリカーボネート変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリエーテルイミド、ポリイミド、液晶ポリエステル、ポリアリル系耐熱樹脂、塩化ビニル樹脂、各種複合樹脂、各種変性樹脂等が挙げられる。
樹脂成形品の材料は、着色剤(顔料、染料等)を含んでいてもよい。また、樹脂成形品の材料は、公知の添加剤(安定剤、酸化防止剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤、防カビ剤、離型剤、帯電防止剤、紫外線吸収剤、光安定剤、熱安定剤、難燃剤等)を含んでいてもよい。
以上説明した積層体50にあっては、表面にラミネート用フィルム10を有しているため、加飾層18の本来の絵柄や色が十分に再現され、意匠性が高い。
なお、本発明の積層体は、図示例のラミネート用フィルム10に限定はされない。例えば、熱可塑性樹脂層16と基材52とが熱融着可能な場合は、接着層54を設けることなく、ラミネート用フィルム10と基材52とを熱ラミネートしてもよい。
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(陽極酸化アルミナの細孔)
陽極酸化アルミナの一部を削り、断面にプラチナを1分間蒸着し、電界放出形走査電子顕微鏡(日本電子社製、JSM−7400F)を用いて、加速電圧3.00kVの条件にて、断面を観察し、細孔の間隔、細孔の深さを測定した。各測定は、それぞれ50点について行い、平均値を求めた。
(硬化樹脂膜の凸部)
硬化樹脂膜の破断面にプラチナを10分間蒸着し、陽極酸化アルミナと同様に断面を観察し、凸部の間隔、凸部の高さを測定した。各測定は、それぞれ50点について行い、平均値を求めた。
(加重平均反射率)
黒ベタの加飾層を有するラミネート用フィルムについて、分光光度計(日立製作所社製、U−4000)を用い、入射角5°、波長380〜780nmの範囲で硬化樹脂膜側の表面の相対反射率を測定し、JIS R3106に準拠して算出した。
(水接触角)
接触角測定装置(Kruss社製、DSA10−Mk2)を用い、硬化樹脂膜の微細凹凸構造の表面に、1.6μLの水を滴下した後、滴下の10秒後から1秒間隔で水接触角を10点測定し、平均値を求めた。さらに、水を滴下する位置を変えて同様の操作を3回行い、計4回の平均値をさらに平均した。
(意匠性)
蛍光灯の光の下での積層体のラミネート用フィルム側の表面の見え方を目視により以下のように評価した。
○:蛍光灯の映り込みが僅かであり、加飾層の黒色が漆黒に見える。
△:蛍光灯の映り込みがあり、加飾層の黒色は漆黒というほどではない。
×:蛍光灯の映り込みが激しく、加飾層の黒色は漆黒ではない。
〔ロール状モールドの製造〕
純度99.99%のアルミニウムからなるロールを、過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨した。
(a)工程:
該ロールについて、0.5Mシュウ酸水溶液中で、直流40V、温度16℃の条件で6時間陽極酸化を行った。
(b)工程:
酸化皮膜が形成されたロールを、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して、酸化皮膜を除去した。
(c)工程:
該ロールについて、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で20秒間陽極酸化を行った。
(d)工程:
酸化皮膜が形成されたロールを、32℃の5質量%リン酸に8分間浸漬して、細孔径拡大処理を行った。
(e)工程:
前記(c)工程および(d)工程を合計で5回繰り返し、平均周期:100nm、深さ:220nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたロール状モールドaを得た。
ロール状モールドaを、オプツールDSX(ダイキン化成品販売社製)の0.1質量%希釈溶液に浸漬し、一晩風乾して、酸化皮膜表面のフッ素化処理を行った。
〔活性エネルギー線硬化性樹脂組成物の調製〕
表1、表2に示す割合で各成分を混合し、活性エネルギー線硬化性樹脂組成物A、Bを調製した。
Figure 2009269237
表中の略号は下記の通りである。
DPHA:ジペンタエリスリトールヘキサアクリレート(東亞合成社製、アロニックスM400)、
M260:ポリエチレングリコールジアクリレートn=13〜14(東亞合成社製、アロニックスM260)、
HEA:2−ヒドロキシエチルアクリレート、
Ir184:1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ社製、イルガキュア184)。
Figure 2009269237
表中の略号は下記の通りである。
TAS:トリメチロールエタン・アクリル酸・無水コハク酸縮合エステル、
C6DA:1,6−ヘキサンジオールジアクリレート、
X−22−1602:ラジカル重合性シリコーンオイル(信越化学工業社製)、
Ir184:1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ社製、イルガキュア184)。
〔フィルム本体の製造〕
メタクリル酸メチル、アクリル酸ブチル、アクリル酸メチル、1,3−ブタジエンおよびメタクリル酸アリルを重合してなるゴム含有多段重合体の75質量部、およびアクリル樹脂(三菱レイヨン社製、BR80)の25質量部をあらかじめ溶融押し出しした後、該アクリル系樹脂組成物を製膜して、厚さ200μmの熱可塑性樹脂層のフィルムを得た。
〔実施例1〕
図2に示す製造装置を用いて、熱可塑性樹脂層のフィルムの表面に、微細凹凸構造を有する硬化樹脂膜を形成した。
ロール状モールド22としては、前記ロール状モールドaを用いた。
活性エネルギー線硬化性樹脂組成物としては、前記活性エネルギー線硬化性樹脂組成物Aを用いた。
熱可塑性樹脂層のフィルム側から、積算光量3200mJ/cmの紫外線を、活性エネルギー線硬化性樹脂組成物Aの塗膜に照射し、活性エネルギー線硬化性樹脂組成物Aの硬化を行った。
該フィルムの裏面に黒色インキを用いてロールコート法により黒ベタの加飾層を形成し、図4に示すラミネートフィルムを得た。
得られたラミネート用フィルムについて、凸部間の平均間隔、凸部の高さ、加重平均反射率、水接触角を測定した。結果を表3に示す。
得られたラミネート用フィルムを、接着剤(日本エヌエスシー社製、ボンドマスターCL27M)を用いて基材(中密度繊維板)にラミネートし、図6に示す積層体を得た。
得られた積層体について、意匠性を評価した。結果を表3に示す。
〔実施例2〕
活性エネルギー線硬化性樹脂組成物Bを用いた以外は、実施例1と同様にして、ラミネート用フィルムおよび積層体を得た。ラミネート用フィルムについて、凸部間の平均間隔、凸部の高さ、加重平均反射率、水接触角を測定した。結果を表3に示す。また、積層体について、意匠性を評価した。結果を表3に示す。
〔比較例1〕
活性エネルギー線硬化性樹脂組成物Aをフィルム本体にコーターにて塗工し、紫外線で硬化させて平滑な保護層とした以外は実施例1と同様にしてラミネート用フィルムおよび積層体を得た。加重平均反射率、水接触角を測定した。結果を表3に示す。また、積層体について、意匠性を評価した。結果を表3に示す。
Figure 2009269237
本発明のラミネート用フィルムは、化粧材(壁面、天井、床、ドア等)、壁紙、看板(行灯看板、金属製看板)等の積層体の製造に有用である。
本発明のラミネート用フィルムの一例を示す断面図である。 本発明のラミネート用フィルムの製造装置の一例を示す構成図である。 表面に陽極酸化アルミナを有するモールドの製造工程を示す断面図である。 本発明のラミネート用フィルムの他の例を示す断面図である。 本発明の積層体の一例を示す断面図である。 本発明の積層体の他の例を示す断面図である。
符号の説明
10 ラミネート用フィルム
50 積層体

Claims (3)

  1. 表面に微細凹凸構造を有するラミネート用フィルムであって、
    前記微細凹凸構造が、複数の凸部を有し、該凸部間の平均間隔が400nm以下である、ラミネート用フィルム。
  2. 前記微細凹凸構造が、陽極酸化アルミナの表面の微細凹凸構造を転写して形成されたものである、請求項1に記載のラミネート用フィルム。
  3. 基材と、
    該基材の表面に、前記微細凹凸構造が形成された表面が最表面となるようにラミネートされた請求項1または2に記載のラミネート用フィルムと
    を有する、積層体。
JP2008119867A 2008-05-01 2008-05-01 ラミネート用フィルムおよび積層体 Pending JP2009269237A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119867A JP2009269237A (ja) 2008-05-01 2008-05-01 ラミネート用フィルムおよび積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008119867A JP2009269237A (ja) 2008-05-01 2008-05-01 ラミネート用フィルムおよび積層体

Publications (1)

Publication Number Publication Date
JP2009269237A true JP2009269237A (ja) 2009-11-19

Family

ID=41436222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119867A Pending JP2009269237A (ja) 2008-05-01 2008-05-01 ラミネート用フィルムおよび積層体

Country Status (1)

Country Link
JP (1) JP2009269237A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118367A1 (ja) * 2010-03-24 2011-09-29 シャープ株式会社 積層体
JP2012011685A (ja) * 2010-07-01 2012-01-19 Mitsubishi Rayon Co Ltd 成形体とその製造方法、および成形体を備えた撥水性物品
WO2013024887A1 (ja) * 2011-08-16 2013-02-21 三菱レイヨン株式会社 保護フィルム付き微細凹凸構造体およびその製造方法
JP2014159154A (ja) * 2013-01-23 2014-09-04 Dexerials Corp 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP2014210368A (ja) * 2013-04-18 2014-11-13 リケンテクノス株式会社 高鮮鋭性加飾シート
JP5629033B1 (ja) * 2013-01-23 2014-11-19 デクセリアルズ株式会社 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP2015057327A (ja) * 2014-10-16 2015-03-26 大日本印刷株式会社 印刷物、及びその製造方法
JP2015187378A (ja) * 2014-03-10 2015-10-29 大日本印刷株式会社 シート及び化粧板
JP2020069684A (ja) * 2018-10-30 2020-05-07 三井化学株式会社 多層構造体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118367A1 (ja) * 2010-03-24 2011-09-29 シャープ株式会社 積層体
JP2012011685A (ja) * 2010-07-01 2012-01-19 Mitsubishi Rayon Co Ltd 成形体とその製造方法、および成形体を備えた撥水性物品
WO2013024887A1 (ja) * 2011-08-16 2013-02-21 三菱レイヨン株式会社 保護フィルム付き微細凹凸構造体およびその製造方法
KR101412270B1 (ko) 2011-08-16 2014-06-25 미쯔비시 레이온 가부시끼가이샤 보호 필름 부착 미세 요철 구조체 및 그의 제조 방법
US9519082B2 (en) 2011-08-16 2016-12-13 Mitsubishi Rayon Co., Ltd. Microscopic roughness structure with protective film and method thereof
JPWO2013024887A1 (ja) * 2011-08-16 2015-03-05 三菱レイヨン株式会社 保護フィルム付き微細凹凸構造体およびその製造方法
JP5629033B1 (ja) * 2013-01-23 2014-11-19 デクセリアルズ株式会社 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP2015003519A (ja) * 2013-01-23 2015-01-08 デクセリアルズ株式会社 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP2014159154A (ja) * 2013-01-23 2014-09-04 Dexerials Corp 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
US10252302B2 (en) 2013-01-23 2019-04-09 Dexerials Corporation Hydrophilic laminate and method for manufacturing the same, antifouling laminate, product and method for manufacturing the same, and antifouling method
JP2014210368A (ja) * 2013-04-18 2014-11-13 リケンテクノス株式会社 高鮮鋭性加飾シート
JP2015187378A (ja) * 2014-03-10 2015-10-29 大日本印刷株式会社 シート及び化粧板
JP2015057327A (ja) * 2014-10-16 2015-03-26 大日本印刷株式会社 印刷物、及びその製造方法
JP2020069684A (ja) * 2018-10-30 2020-05-07 三井化学株式会社 多層構造体

Similar Documents

Publication Publication Date Title
JP5162344B2 (ja) 反射防止物品、およびこれを備えた自動車用部品
JP5605223B2 (ja) 反射防止物品およびディスプレイ装置
JP5742220B2 (ja) フィルムの製造方法
JP2009269237A (ja) ラミネート用フィルムおよび積層体
JP6032196B2 (ja) スタンパの製造方法、および成形体の製造方法
JP5362826B2 (ja) 微細凹凸構造を有する硬化樹脂層が基材の表面に形成された物品の製造方法
JP2010000719A (ja) フィルム状レプリカモールド、その製造方法および微細凹凸構造を有するフィルム製品の製造方法
JP5673534B2 (ja) モールド、その製造方法、微細凹凸構造を表面に有する物品およびその製造方法
JP2010005841A (ja) モールドの製造方法
JP2009271782A (ja) 導電性透明基材およびタッチパネル
JP6265125B2 (ja) ナノインプリント用モールドの製造方法、および反射防止物品の製造方法
JP2011026449A (ja) 積層体、およびこれを有する物品
JP2009174007A (ja) 鋳型とその製造方法、および成形体の製造方法
JP5549943B2 (ja) モールドの製造方法および微細凹凸構造を表面に有する物品の製造方法
JP2010201641A (ja) 微細凹凸構造を表面に有する透明フィルムおよびその製造方法
JP2013129198A (ja) 成形体
JP2009271298A (ja) 防曇性透明部材、およびこれを具備した物品
JP2009258487A (ja) 交通安全施設
JP6455127B2 (ja) 透明フィルムの製造方法
JP2009271205A (ja) 光学ミラー
JP2009241351A (ja) インサート成形用フィルム、インサート成形品およびその製造方法
JP2012108502A (ja) 微細凹凸構造を表面に有する物品の製造方法
JP5269467B2 (ja) 照明装置用保護板、およびこれを具備した照明装置
JP2011245767A (ja) 積層体、およびこれを有する物品
JP2009270327A (ja) 壁材、およびこれを具備した壁構造物