JP2009267316A - Thermoelectric conversion module, manufacturing method thereof, and thermoelectric generation system - Google Patents

Thermoelectric conversion module, manufacturing method thereof, and thermoelectric generation system Download PDF

Info

Publication number
JP2009267316A
JP2009267316A JP2008137268A JP2008137268A JP2009267316A JP 2009267316 A JP2009267316 A JP 2009267316A JP 2008137268 A JP2008137268 A JP 2008137268A JP 2008137268 A JP2008137268 A JP 2008137268A JP 2009267316 A JP2009267316 A JP 2009267316A
Authority
JP
Japan
Prior art keywords
thermoelectric
conversion module
thermoelectric conversion
thermoelectric element
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008137268A
Other languages
Japanese (ja)
Other versions
JP5228160B2 (en
Inventor
Keiichi Ohata
惠一 大畑
Shutaro Nanbu
修太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASSET-WITS CO Ltd
Original Assignee
ASSET-WITS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASSET-WITS CO Ltd filed Critical ASSET-WITS CO Ltd
Priority to JP2008137268A priority Critical patent/JP5228160B2/en
Publication of JP2009267316A publication Critical patent/JP2009267316A/en
Application granted granted Critical
Publication of JP5228160B2 publication Critical patent/JP5228160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-resistance and inexpensive thermoelectric module which has the flexibility capable of being mounted on the outer surface of a drain pipe through a low contacting thermal resistance and are adapted to a power generation using a warm drain water as the heat source thereof, to provide a manufacturing method thereof, and to provide a power generating system having the plurality of modules. <P>SOLUTION: In the thermoelectric conversion module, very small bulky thermoelectric element chips are mounted on the mounting lands on a substrate formed of a resin thin film, highly densely so as to have a flexibility by bending the substrate between the mounting lands little by little. In the power generating system, a plurality of thermoelectric conversion modules are mounted on the outer surface of a warm drain water pipe so as to have a means for water-cooling the outside thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、熱(温度差)と電気とを相互変換する熱電変換モジュール、特に発電を行うモジュールならびにその製造方法およびそのモジュールを使用した熱電発電システムに関する。  The present invention relates to a thermoelectric conversion module that mutually converts heat (temperature difference) and electricity, in particular, a module that generates power, a manufacturing method thereof, and a thermoelectric power generation system using the module.

熱電発電は、無駄に捨てられる熱から電気を起こすゆえに、地球環境の保護に有用である。従来、熱電発電はごみ焼却の高温排ガス等の高温熱源を利用することが考えられてきた。しかしながらこのような熱源は、熱容量が小さいために安定せず、効率的な発電が行われないこと、また熱電素子に大きな熱ストレスおよび熱サイクルがかかるために信頼性に大きな負荷がかかる問題があり、まだ実用化には至っていない。これに対し、焼却炉の冷却排水や蒸気、ガスタービン発電機において熱回収される熱・温水は、温度は低いものの、熱源として大量に存在し、かつ熱容量が大きいために、効率は低いが安定な発電が行える。また温度が低いために熱電素子の信頼性への影響は軽微であるメリットがある。このような冷却排水の熱源を利用するためには熱電発電モジュールは排水パイプに貼り付けられるフレキシブルなものである必要である。また利用する熱源の温度が低くかつ温度差が小さい故に効率が低いために、発電モジュールとして機能するためには内部抵抗の小さいことが必須である。したがって低抵抗な多数の熱電素子ができるだけ小さな面積に実装され、かつ量産性の良い低コストのモジュールである必要がある。さらに熱電素子にできるだけ温度差を与えるために、実装基板等の熱抵抗、パイプへの装着の際の接触熱抵抗が小さいことが必要である。従来開示されているフレキシブルな熱電変換モジュールとして以下のものがある。
特許第2896497号公報 ここには図7に示すような、熱電素子1の側面を部分的に柔軟な保持部材4で支持し、熱電素子を直列に接続する電極2、3を曲げ可能な厚さ、または可撓性のある厚さにしておくことで、曲面に適合できる熱電素子モジュールが開示されている。 特許第3501394号公報 ここには図8に示すような、高、低温端電極102、103によって電気的接続がされ、ガラス接着層104で側面同士が接着されたp型101Aとn型101Bの熱電素子対列100が、電気絶縁性のフィルム上に間隔をあけて複数接着され電気配線がされる熱電変換モジュールが開示されている。 特開2005−217353号公報 ここには基板に設けられた孔にペースト状の熱電半導体素子を塗布するという印刷技術によって製造される熱電変換モジュールであり、基板にフレキシブル性を持たせることにより曲面状に成形するものが開示されている。
Thermoelectric power generation is useful for protecting the global environment because it generates electricity from wasted heat. Conventionally, it has been considered that thermoelectric power generation uses a high-temperature heat source such as high-temperature exhaust gas from incineration of garbage. However, such a heat source is not stable because of its small heat capacity, so that efficient power generation is not performed, and there is a problem that a large thermal stress and thermal cycle are applied to the thermoelectric element, which places a heavy load on reliability. It has not yet been put into practical use. On the other hand, cooling wastewater and steam from incinerators, and heat and hot water recovered in the gas turbine generator are low in temperature, but exist in large quantities as a heat source and have a large heat capacity, so the efficiency is low but stable. Power generation. Further, since the temperature is low, there is an advantage that the influence on the reliability of the thermoelectric element is slight. In order to use such a heat source for cooling wastewater, the thermoelectric power generation module needs to be flexible and attached to the drainage pipe. Further, since the efficiency of the heat source to be used is low because the temperature of the heat source used is low and the temperature difference is small, it is essential that the internal resistance is small in order to function as a power generation module. Therefore, a low-cost module in which a large number of low-resistance thermoelectric elements are mounted in as small an area as possible and has good mass productivity. Furthermore, in order to give a temperature difference as much as possible to the thermoelectric element, it is necessary that the thermal resistance of the mounting substrate or the like and the contact thermal resistance when mounting on the pipe be small. Conventionally disclosed flexible thermoelectric conversion modules include the following.
Japanese Patent No. 2896497 Here, as shown in FIG. 7, the side surface of the thermoelectric element 1 is partially supported by a flexible holding member 4, and the electrodes 2 and 3 that connect the thermoelectric elements in series can be bent or flexible. A thermoelectric element module that can be adapted to a curved surface by keeping a certain thickness is disclosed. Japanese Patent No. 3501394 Here, as shown in FIG. 8, a p-type 101A and n-type 101B thermoelectric element pair array 100 is electrically connected by high and low temperature end electrodes 102 and 103 and the side surfaces are bonded to each other by a glass adhesive layer 104. A thermoelectric conversion module is disclosed in which a plurality of electric wires are bonded to each other on an electrically insulating film to form electric wiring. JP 2005-217353 A This discloses a thermoelectric conversion module manufactured by a printing technique in which a paste-like thermoelectric semiconductor element is applied to a hole provided in a substrate, and is formed into a curved surface by giving the substrate flexibility. ing.

しかしながら、以上の特許文献1の技術によれば、熱電素子モジュール全体を保持するものが無いか、あっても可撓性テープであり、堅牢性に著しく劣ること、さらに曲面に適合する場合に曲がるのは熱電素子を接続する電極であり、熱電素子の接続の信頼性を劣化させる恐れがあることの問題がある。また製造に際しては、一定の厚さに保たれた接着剤層上へ熱電変換素子を押し付けることにより側面にはみ出した接着剤により側面接着を自動化できるとされるが、電極接続後の上下両面からの工程であるため再現性、量産性に問題があると予想される。さらに低抵抗を実現する技術についてはなんら開示されていない。また特許文献2の技術によれば熱電素子が固着、配線接続された長い熱電素子対列が複数基板上に装着されるため、高密度なモジュールを量産性良く提供することが難しく、また低抵抗を実現する技術、低コスト化技術についてはなんら開示されていない。また特許文献2の技術によれば、熱電素子粉末が樹脂、ゴムやガラス材中に混練されたペーストを基板に薄膜状に塗布して製造される熱電素子であるため、低抵抗を実現することは困難である。
そこで、この発明は、高性能なバルク熱電素子を用いて低抵抗を実現するとともに排水パイプ外面に低接触熱抵抗で装着できるフレキシブル性を有する、温排水を熱源とする発電に適した、低コストの熱電変換モジュールならびにその製造方法、および複数のモジュールを具備した発電システムを提供することを課題とする。
However, according to the technique of the above-mentioned Patent Document 1, there is nothing to hold the entire thermoelectric element module, or even if it is a flexible tape, it is extremely inferior in toughness, and bends when it conforms to a curved surface. These are electrodes for connecting the thermoelectric elements, and there is a problem that the reliability of connection of the thermoelectric elements may be deteriorated. In manufacturing, side adhesion can be automated by pressing the thermoelectric conversion element onto the adhesive layer maintained at a constant thickness, and the adhesive sticks out to the side. It is expected that there will be problems in reproducibility and mass productivity due to the process. Furthermore, there is no disclosure about a technique for realizing low resistance. Further, according to the technique of Patent Document 2, since a long thermoelectric element pair with fixed thermoelectric elements and wiring connections is mounted on a plurality of substrates, it is difficult to provide a high-density module with high productivity and low resistance. There is no disclosure of a technology for realizing the above and a cost reduction technology. Further, according to the technique of Patent Document 2, since the thermoelectric element powder is a thermoelectric element manufactured by applying a paste kneaded in resin, rubber or glass material onto a substrate in a thin film shape, low resistance is realized. It is difficult.
Therefore, the present invention realizes low resistance using a high-performance bulk thermoelectric element and has flexibility that can be attached to the outer surface of a drain pipe with low contact thermal resistance, and is suitable for power generation using hot waste water as a heat source. It is an object to provide a thermoelectric conversion module, a manufacturing method thereof, and a power generation system including a plurality of modules.

以上の課題を解決するために、第一発明は、少なくとも樹脂薄膜からなる基板上の実装ランドにバルク熱電素子チップが実装された熱電変換モジュールであって、微小な熱電素子チップが高密度実装され、実装ランド間で基板が少しずつ曲がることによってフレキシブル性を持たせたことを特徴とする熱電変換モジュールである。
また、第二発明は、前記第一発明において、熱電素子チップの高さが電極平面をなす他の二辺の寸法より小さいことを特徴とする熱電変換モジュールである。
また、第三発明は、前記第一ないし第二発明において、熱電変換モジュールが排水パイプ外面に装着されるべきものであり、その外周方向の実装ランド間で基板が少しずつ曲がり、長手方向では基板が曲がらないことを特徴とする熱電変換モジュールである。
また、第四発明は、前記第一ないし第三発明において、排水パイプの外径をD、外周方

Figure 2009267316
する熱電変換モジュールである。
また、第五発明は、前記第一ないし第四発明において、パイプの長手方向となる熱電素
Figure 2009267316
また、第六発明は、前記第一ないし第五発明において、熱電素子チップの基板と反対面において防水シートが設けられたことを特徴とする熱電変換モジュールである。
また、第七発明は、前記第一ないし第六発明において、基板が金属箔上の樹脂薄膜で構成されていることを特徴とする熱電変換モジュールである。
また、第八発明は、少なくとも樹脂薄膜からなる基板を準備する工程、熱電素子チップの実装ランド兼接続電極を形成する工程、p型熱電素子およびn型熱電素子チップを自動実装機を用いて高密度実装する工程、p型とn型熱電素子を接続する工程からなることを特徴とする熱電変換モジュールの製造方法である。
また、第九発明は、複数の前記熱電変換モジュールを排水パイプ外面に装着し、モジュールの防水シート外側を水冷する手段を具備したことを特徴とする熱電発電システムである。In order to solve the above-described problems, the first invention is a thermoelectric conversion module in which a bulk thermoelectric element chip is mounted on a mounting land on a substrate made of at least a resin thin film, and the minute thermoelectric element chip is mounted at high density. The thermoelectric conversion module is characterized by having flexibility by bending the substrate little by little between the mounting lands.
The second invention is the thermoelectric conversion module according to the first invention, wherein the height of the thermoelectric element chip is smaller than the dimensions of the other two sides forming the electrode plane.
Further, the third invention is the first or second invention, wherein the thermoelectric conversion module is to be mounted on the outer surface of the drain pipe, the board is bent little by little between the mounting lands in the outer peripheral direction, and the board in the longitudinal direction. Is a thermoelectric conversion module characterized in that it does not bend.
The fourth invention is the first to third inventions, wherein the outer diameter of the drain pipe is D,
Figure 2009267316
It is a thermoelectric conversion module.
The fifth invention is the thermoelectric element in the longitudinal direction of the pipe in the first to fourth inventions.
Figure 2009267316
The sixth invention is the thermoelectric conversion module according to any one of the first to fifth inventions, wherein a waterproof sheet is provided on the surface opposite to the substrate of the thermoelectric element chip.
A seventh invention is the thermoelectric conversion module according to any one of the first to sixth inventions, wherein the substrate is formed of a resin thin film on a metal foil.
Further, the eighth invention provides a step of preparing a substrate made of at least a resin thin film, a step of forming a mounting land / connection electrode of a thermoelectric element chip, a p-type thermoelectric element and an n-type thermoelectric element chip using an automatic mounting machine. A method for manufacturing a thermoelectric conversion module comprising a step of density mounting and a step of connecting a p-type and an n-type thermoelectric element.
The ninth invention is a thermoelectric power generation system comprising means for mounting a plurality of the thermoelectric conversion modules on an outer surface of a drain pipe and cooling the outside of the waterproof sheet of the module with water.

第一発明、ないし第八発明によれば、樹脂薄膜からなる基板上の実装ランドに微小な熱電素子チップが高密度実装され、実装ランド間で基板が少しずつ曲がることによってフレキシブル性を持たせた、低抵抗で低コストの温排水パイプ外面に装着できる発電に適した熱電変換モジュールを実現でき、また第九発明によれば、複数の熱電変換モジュールを排水パイプ外面に装着し、モジュール外側を水冷する手段を具備する温排水を熱源とするに適した発電システムを提供できるので、焼却炉等の廃熱を利用した発電等未利用エネルギーの活用、原油消費量削減により、地球環境の保護に貢献すること極めて大である。  According to the first invention or the eighth invention, micro thermoelectric element chips are densely mounted on mounting lands on a substrate made of a resin thin film, and flexibility is provided by bending the substrate little by little between the mounting lands. Therefore, it is possible to realize a thermoelectric conversion module suitable for power generation that can be mounted on the outer surface of a hot drain pipe with low resistance and low cost, and according to the ninth invention, a plurality of thermoelectric conversion modules are mounted on the outer surface of the drain pipe, and the outside of the module is Power generation system suitable for using hot wastewater as a heat source, contributing to the protection of the global environment by utilizing unused energy such as power generation using waste heat from incinerators and reducing crude oil consumption It is extremely large to do.

この発明の一実施形態を、図1に示す。(a)は排水パイプの外面に装着されるべき熱電変換モジュールのパイプの円周方向の断面図である。(b)はパイプの長手方向の断面図である。(c)は平面図である。(d)は(a)の断面図において、パイプに装着した場合の図であり、(e)はそのときの部分拡大図である。
バルクすなわち単結晶あるいは多結晶の微小な熱電素子チップ11が樹脂基板12上の実装ランド13に実装されている。熱電素子チップ上においてp型チップ11Aとn型チップ11Bの接続配線14が例えばリボンボンディングでなされている。なお図では熱電素子チップの電極と半田等接着層は図示していない。本例では、図1(b)に示すように、p型チップ11Aとn型チップ11B対列はパイプの長手方向に配置し、直列接続されており、図1(a)のようにパイプの円周方向には実装ランドと熱電素子チップ上とも接続は無いが、図1(c)のように列の両端で並列接続されている。熱源の高温端は樹脂基板12の裏面である。低温端は熱電素子チップ11と接続配線14の上面であり、本実施形態では、この低温端は空冷される。
One embodiment of the present invention is shown in FIG. (A) is sectional drawing of the circumference direction of the pipe of the thermoelectric conversion module which should be mounted | worn with the outer surface of a drainage pipe. (B) is sectional drawing of the longitudinal direction of a pipe. (C) is a plan view. (D) is a figure at the time of attaching to a pipe in sectional drawing of (a), (e) is the elements on larger scale at that time.
A bulk or single crystal or polycrystalline micro thermoelectric element chip 11 is mounted on a mounting land 13 on a resin substrate 12. On the thermoelectric element chip, the connection wiring 14 between the p-type chip 11A and the n-type chip 11B is made by, for example, ribbon bonding. In the figure, the electrodes of the thermoelectric element chip and the adhesive layer such as solder are not shown. In this example, as shown in FIG. 1B, a pair of p-type chips 11A and n-type chips 11B are arranged in the longitudinal direction of the pipe and connected in series, and as shown in FIG. Although there is no connection between the mounting land and the thermoelectric element chip in the circumferential direction, they are connected in parallel at both ends of the row as shown in FIG. The high temperature end of the heat source is the back surface of the resin substrate 12. The low temperature end is the upper surface of the thermoelectric element chip 11 and the connection wiring 14, and in this embodiment, the low temperature end is air-cooled.

「実施形態の効果」
この実施形態によれば、図1(a)、(c)、(d)および(e)に示すように、多数の熱電素子チップの実装ランド13の間において、薄い樹脂基板12が排水パイプの外周方向に沿って少しずつ曲がり、全体として排水パイプ15に装着が可能なフレキシブル性を持たせることができる。排水パイプの長手方向では曲がらないので、熱電素子チップの実装電極およびp−nチップ間の接続に影響を与えることは無い。樹脂基板12は、熱損失をできるだけ少なくする必要があるので、熱伝導率が大きい材料を用い、丈夫で実装に耐え、モジュールとして保持できる最低限の厚さにすることが望ましい。
またこの実施形態では、微小チップ部品の高密度自動実装機を用いて熱電素子チップを実装することにより低コストモジュールを実現することができる。この場合、少なくとも熱電素子チップの電極面ないし高さ方向(電極面に垂直方向)を識別する必要があるが、チップの高さhを平面(電極面)の2辺の寸法(後述のaおよびb)より小さくすることによって容易に識別できる。また寸法に合わせたスロットにより方向を揃えて供給できる。これはチップの内部抵抗を低減することにも重要な要素である。
図1(d)の部分拡大図に示すように、本実施形態の熱電変換モジュールを排水パイプに装着したとき、排水パイプ外周15Aと基板12の間に間隙が発生する。熱電素子チップの平面寸法において外周の方向の寸法をa、チップ端での最大の間隙をs、排水パイプの外径をDとすると、
s〜a/(4D)
である。現状で温排水を熱源とする発電に最適なバルク熱電素子材料はBiTe系である。その熱伝導率は〜2W/mKであり、熱電素子チップの低抵抗化のため高さhを1mm以下とすると、空気の熱伝導率は0.024W/mKであるから、間隙により大きな熱損失

Figure 2009267316
寸法の条件は、
Figure 2009267316
である。排水パイプの外径100mm程度までの装着を考えると、熱電素子チップの寸法は1.4mm以下である必要がある。
具体的な実施例は、高耐熱性の0.1mm厚のガラス繊維強化熱硬化樹脂、実装ランドに0.04mm厚の銅箔、熱電素子チップはBiTe系0.9×0.9mm角、高さ0.5mm、実装ランド間隔(熱電素子チップ間隙)0.1mm、接続リボン幅0.5mm、厚さ0.05mmで、モジュールは50p−nチップ対直列、100並列、計5000p−nチップ対構成で、大きさ約100mm角、高温端95℃、低温端40℃の条件で、出力30Wである。
なお本熱電変換モジュールを湾曲させて排水パイプに装着後、全体にワニス等を浸透、硬化させて堅牢性を増大させても良い。"Effect of the embodiment"
According to this embodiment, as shown in FIGS. 1 (a), (c), (d), and (e), a thin resin substrate 12 is a drain pipe between the mounting lands 13 of many thermoelectric element chips. It bends little by little along the outer peripheral direction, and can be given flexibility so that it can be attached to the drain pipe 15 as a whole. Since it does not bend in the longitudinal direction of the drain pipe, it does not affect the connection between the mounting electrode of the thermoelectric element chip and the pn chip. Since the resin substrate 12 needs to reduce heat loss as much as possible, it is desirable to use a material having a high thermal conductivity, and to have a minimum thickness that can withstand mounting and hold as a module.
In this embodiment, a low-cost module can be realized by mounting a thermoelectric element chip using a high-density automatic mounting machine for microchip components. In this case, it is necessary to identify at least the electrode surface or the height direction (perpendicular to the electrode surface) of the thermoelectric element chip. However, the height h of the chip is determined by the dimensions of two sides of the plane (electrode surface) (a and b) It can be easily identified by making it smaller. In addition, it can be supplied in the same direction with slots that match the dimensions. This is also an important factor for reducing the internal resistance of the chip.
As shown in the partially enlarged view of FIG. 1 (d), when the thermoelectric conversion module of this embodiment is mounted on a drain pipe, a gap is generated between the drain pipe outer periphery 15 </ b> A and the substrate 12. Assuming that the dimension in the direction of the outer periphery in the plane dimension of the thermoelectric element chip is a, the maximum gap at the end of the chip is s, and the outer diameter of the drain pipe is D.
s~a 2 / (4D)
It is. At present, the most suitable bulk thermoelectric element material for power generation using hot wastewater as a heat source is BiTe. The thermal conductivity is ˜2 W / mK, and if the height h is 1 mm or less in order to reduce the resistance of the thermoelectric element chip, the thermal conductivity of air is 0.024 W / mK.
Figure 2009267316
The dimension conditions are
Figure 2009267316
It is. Considering the mounting of the drain pipe to an outer diameter of about 100 mm, the dimension of the thermoelectric element chip needs to be 1.4 mm or less.
A specific example is a highly heat-resistant 0.1 mm thick glass fiber reinforced thermosetting resin, 0.04 mm thick copper foil on a mounting land, and a thermoelectric element chip of BiTe 0.9 × 0.9 mm square, high 0.5mm in length, mounting land interval (thermoelectric element chip gap) 0.1mm, connecting ribbon width 0.5mm, thickness 0.05mm, module 50 pn chip pair in series, 100 parallel, total 5000 pn chip pair With the configuration, the output is 30 W under the conditions of a size of about 100 mm square, a high temperature end of 95 ° C., and a low temperature end of 40 ° C.
The thermoelectric conversion module may be bent and attached to the drainage pipe, and then the varnish or the like may be infiltrated and cured to increase the robustness.

「他の実施形態1」
他の実施形態1では、上記実施形態の図1(b)に対して、図2の構成を用いる。すなわちパイプの長手方向の熱電素子チップの寸法を大きくする。長手方向では曲げる必要が無く、チップ寸法を大きくすることによって、チップの内部抵抗を小さくするとともに電極の接触抵抗も低減でき、さらに実装数も減らせる効果がある。具体例では、長手方向のチップの寸法を1.9mmで、内部抵抗を上記の47%に、チップ数は1/2になるのでモジュール全体では94%に低減できる。
“Other embodiment 1”
In the other embodiment 1, the configuration of FIG. 2 is used with respect to FIG. 1B of the above embodiment. That is, the dimension of the thermoelectric element chip in the longitudinal direction of the pipe is increased. There is no need to bend in the longitudinal direction, and by increasing the chip size, the internal resistance of the chip can be reduced, the contact resistance of the electrodes can be reduced, and the number of mountings can be reduced. In a specific example, the size of the chip in the longitudinal direction is 1.9 mm, the internal resistance is 47%, and the number of chips is halved, so the entire module can be reduced to 94%.

「他の実施形態2」
他の実施形態2を図3に示す。(a)は、図1(d)に対するもので、熱電変換モジュールのパイプの円周方向の断面図でパイプに装着した場合の図であり、(b)はその部分拡大図である。本実施形態では、熱電素子チップ11と接続配線14の上に防水シート16を設けている。低温端はこの防水シートの上面であって、水冷が可能となり、前記実施形態より大きくかつ安定な温度差がとれ、熱電発電に好適である。
なお本実施形態において、熱電変換モジュールを排水パイプに装着したとき、図3(b)のように防水シート16はチップ間において伸びる必要がある。その伸展量をΔPとすると、実装ランド間隔(熱電素子チップ間隔)が熱電素子チップ寸法aに較べて十分小さいとき、
ΔP〜2ah/D
である。D=100mm、実装ランド間隔すなわちチップ間での防水シート長さ0.1m

Figure 2009267316
である必要がある。前記具体的実施例でのa=0.9mm、h=0.5mmはこの条件を満たしている。“Other embodiment 2”
Another embodiment 2 is shown in FIG. (A) is a figure with respect to FIG.1 (d), and is a figure at the time of attaching to a pipe with the sectional drawing of the circumference direction of the pipe of a thermoelectric conversion module, (b) is the elements on larger scale. In the present embodiment, a waterproof sheet 16 is provided on the thermoelectric element chip 11 and the connection wiring 14. The low-temperature end is the upper surface of this waterproof sheet, and water cooling is possible, and a larger and more stable temperature difference can be obtained than in the above embodiment, which is suitable for thermoelectric power generation.
In this embodiment, when the thermoelectric conversion module is attached to the drain pipe, the waterproof sheet 16 needs to extend between the chips as shown in FIG. When the amount of extension is ΔP, when the mounting land interval (thermoelectric element chip interval) is sufficiently smaller than the thermoelectric element chip dimension a,
ΔP ~ 2ah / D
It is. D = 100 mm, interval between mounting lands, that is, a waterproof sheet length of 0.1 m between chips
Figure 2009267316
Need to be. In the specific embodiment, a = 0.9 mm and h = 0.5 mm satisfy this condition.

「他の実施形態3」
他の実施形態3を図4に示す。本形態では、基板12として金属箔例えば銅箔12Aと樹脂薄層12Bとから成っている。熱伝導率の小さい樹脂層を薄くし、かつその基体に熱伝導率の大きい銅箔を用いて、丈夫で熱損失の小さいモジュール基板を構成したものである。具体例では0.1mm厚の銅箔と0.02mm厚のポリイミド層で構成する。
Other embodiment 3”
Another embodiment 3 is shown in FIG. In this embodiment, the substrate 12 is made of a metal foil, for example, a copper foil 12A and a resin thin layer 12B. A durable module substrate with a small heat loss is configured by thinning a resin layer having a low thermal conductivity and using a copper foil having a high thermal conductivity for the substrate. In a specific example, it is composed of a 0.1 mm thick copper foil and a 0.02 mm thick polyimide layer.

「製造方法の実施形態」
本発明の熱電変換モジュールの製造の実施形態を図5の工程図で示す。工程は、(1)少なくとも樹脂薄膜12Aからなる基板12を準備する工程、(2)熱電素子チップの実装ランド兼接続電極13を形成する工程、(3)p型熱電素子11Aおよびn型熱電素子チップ11Bを自動実装機を用いて高密度実装する工程、(4)p型とn型熱電素子を接続配線14で接続する工程、必要に応じて、(5)熱電素子および接続配線の表面側を防水シート16で覆う工程から成る。また(4)に代えて、(3A)防水シートとなる樹脂層下面に配線層14Aを形成する工程、(4A)実装した熱電素子上に前記配線層を形成した防水シートを接着する工程、(5A)モジュール端部防水17を施す工程から成る。本工程において、実装ランド兼接続電極13および配線層14Aの形成を導電性接着剤のスクリーン印刷を用いて行えば、量産性の良い低コストの製造工程となる。
“Embodiment of Manufacturing Method”
Embodiment of manufacture of the thermoelectric conversion module of this invention is shown with process drawing of FIG. The steps include (1) a step of preparing a substrate 12 made of at least a resin thin film 12A, (2) a step of forming a mounting land / connection electrode 13 of a thermoelectric element chip, and (3) a p-type thermoelectric element 11A and an n-type thermoelectric element. A step of high-density mounting of the chip 11B using an automatic mounting machine, (4) a step of connecting the p-type and n-type thermoelectric elements by the connection wiring 14, and (5) the surface side of the thermoelectric elements and the connection wiring as required. Comprising a step of covering with a waterproof sheet 16. Further, instead of (4), (3A) a step of forming the wiring layer 14A on the lower surface of the resin layer to be a waterproof sheet, (4A) a step of adhering the waterproof sheet having the wiring layer formed on the mounted thermoelectric element, 5A) It comprises a step of applying the module end waterproofing 17. In this step, if the formation of the mounting land / connection electrode 13 and the wiring layer 14A is performed using screen printing of a conductive adhesive, a low-cost manufacturing process with good mass productivity is achieved.

「熱電発電システムの実施形態」
本発明の熱電発電システムの実施形態の例を図6に示す。前記本発明の熱電変換モジュールにおいて、熱電素子チップの高さは低く、かつ高密度実装されているので熱抵抗が小さく、モジュールを通過する熱流は膨大なものとなり、したがってその放熱手段が肝要である。水の比熱は大きいので冷却手段として優れており、本実施形態ではモジュールの低温端、すなわちモジュールの防水シートの外側を水冷して、大きな温度差を確保する。本実施形態では二重管構成を採り、内側の温排水パイプ15の外面に複数の熱電変換モジュール10を装着し、外側の冷却水パイプ20の冷却水で熱電変換モジュールの低温端を冷却する。この冷却水には、温排水の源の焼却炉等の冷却水の供給水を利用することができる。また電圧の昇圧およびDC−AC変換のためのコンバータ21が具備される。なお図6は、二重管の外側の一部を模式的にカットして、内部の構成を示すようにした斜視図である。
以上の実施形態では冷却水は二重管構成で供給したが、冷却水タンクに温排水パイプ15を貫通させて冷却水を得る構成も採ることができる。この場合には豊富な冷却水が確保でき、上記より効果的な冷却手段を得ることができる。
"Embodiment of thermoelectric power generation system"
An example of an embodiment of the thermoelectric power generation system of the present invention is shown in FIG. In the thermoelectric conversion module of the present invention, the height of the thermoelectric element chip is low and the chip is mounted at a high density, so that the thermal resistance is small and the heat flow through the module becomes enormous. Therefore, the heat dissipation means is essential. . Since the specific heat of water is large, it is excellent as a cooling means. In this embodiment, the low temperature end of the module, that is, the outside of the waterproof sheet of the module is cooled with water to ensure a large temperature difference. In the present embodiment, a double pipe configuration is adopted, a plurality of thermoelectric conversion modules 10 are mounted on the outer surface of the inner hot drain pipe 15, and the low temperature end of the thermoelectric conversion module is cooled with the cooling water of the outer cooling water pipe 20. As this cooling water, cooling water supply water such as an incinerator as a source of hot waste water can be used. A converter 21 for voltage boosting and DC-AC conversion is provided. FIG. 6 is a perspective view schematically showing a part of the inside of the double tube by cutting a part on the outside.
In the above embodiment, the cooling water is supplied in a double-pipe configuration, but it is also possible to adopt a configuration in which the cooling water is obtained by passing the hot drain pipe 15 through the cooling water tank. In this case, abundant cooling water can be secured, and more effective cooling means can be obtained.

この発明の熱電変換モジュールの実施形態を示す断面図である。It is sectional drawing which shows embodiment of the thermoelectric conversion module of this invention. この発明の熱電変換モジュールの実施形態を示す断面図である。It is sectional drawing which shows embodiment of the thermoelectric conversion module of this invention. この発明の熱電変換モジュールの実施形態を示す断面図である。It is sectional drawing which shows embodiment of the thermoelectric conversion module of this invention. この発明の熱電変換モジュールの実施形態を示す断面図である。It is sectional drawing which shows embodiment of the thermoelectric conversion module of this invention. この発明の熱電変換モジュールの製造方法の実施形態を示す工程図である。It is process drawing which shows embodiment of the manufacturing method of the thermoelectric conversion module of this invention. この発明の熱電発電システムの実施形態を示す斜視図である。It is a perspective view which shows embodiment of the thermoelectric power generation system of this invention. 従来技術を示す断面図および斜視図である。It is sectional drawing and a perspective view which show a prior art. 従来技術を示す断面図および斜視図である。It is sectional drawing and a perspective view which show a prior art.

符号の説明Explanation of symbols

10 熱電変換モジュール 11 熱電素子チップ 12 基板
13 実装ランド(兼接続電極) 14 接続配線
15 排水パイプ 16 防水シート 17 端部防水
20 冷却水パイプ 21 コンバータ
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion module 11 Thermoelectric element chip | tip 12 Board | substrate 13 Mounting land (cum connection electrode) 14 Connection wiring 15 Drain pipe 16 Waterproof sheet 17 End part waterproof 20 Cooling water pipe 21 Converter

Claims (9)

樹脂薄膜からなる基板上の実装ランドに熱電素子チップが実装された熱電変換モジュールであって、微小な熱電素子チップが高密度実装され、実装ランド間で基板が少しずつ曲がることによってフレキシブル性を持たせたことを特徴とする熱電変換モジュール。  A thermoelectric conversion module in which thermoelectric element chips are mounted on mounting lands on a substrate made of a resin thin film, with minute thermoelectric element chips mounted at high density and flexible by bending the substrate little by little between mounting lands A thermoelectric conversion module characterized in that 熱電素子チップの高さがチップの電極平面をなす他の二辺の寸法より小さいことを特徴とする請求項1記載の熱電変換モジュール。  The thermoelectric conversion module according to claim 1, wherein the height of the thermoelectric element chip is smaller than the dimensions of the other two sides forming the electrode plane of the chip. 熱電変換モジュールが排水パイプ外面に装着されるべきものであり、その外周方向の実装ランド間で基板が少しずつ曲がり、基板が曲がらない長手方向でチップ間の配線を行うことを特徴とする請求項1および請求項2記載の熱電変換モジュール。  The thermoelectric conversion module is to be mounted on the outer surface of a drain pipe, and the board is bent little by little between mounting lands in the outer peripheral direction, and wiring between chips is performed in a longitudinal direction in which the board is not bent. The thermoelectric conversion module according to claim 1.
Figure 2009267316
/2(mm)であることを特徴とする請求項1ないし請求項3記載の熱電変換モジュール。
Figure 2009267316
The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is / 2 (mm).
Figure 2009267316
る請求項1ないし請求項4記載の熱電変換モジュール。
Figure 2009267316
The thermoelectric conversion module according to claim 1.
熱電素子チップの基板と反対面において防水シートが設けられたことを特徴とする請求項1ないし請求項5記載の熱電変換モジュール。  6. The thermoelectric conversion module according to claim 1, wherein a waterproof sheet is provided on a surface opposite to the substrate of the thermoelectric element chip. 基板が金属箔上の樹脂薄膜で構成されていることを特徴とする請求項1ないし請求項6記載の熱電変換モジュール。  The thermoelectric conversion module according to claim 1, wherein the substrate is made of a resin thin film on a metal foil. 少なくとも樹脂薄膜からなる基板を準備する工程、熱電素子チップの実装ランド兼接続電極を形成する工程、p型熱電素子およびn型熱電素子チップを自動実装機を用いて高密度実装する工程、p型とn型熱電素子を接続する工程からなることを特徴とする熱電変換モジュールの製造方法。  A step of preparing a substrate made of at least a resin thin film, a step of forming a mounting land / connection electrode of a thermoelectric element chip, a step of high-density mounting of a p-type thermoelectric element and an n-type thermoelectric element chip using an automatic mounting machine, p-type A method for manufacturing a thermoelectric conversion module, comprising a step of connecting an n-type thermoelectric element. 複数の前記熱電変換モジュールを排水パイプ外面に装着し、モジュールの防水シート外側を水冷する手段を具備したことを特徴とする熱電発電システム。  A thermoelectric power generation system comprising means for mounting a plurality of the thermoelectric conversion modules on an outer surface of a drain pipe and cooling the outside of the waterproof sheet of the module with water.
JP2008137268A 2008-04-24 2008-04-24 Thermoelectric conversion module, manufacturing method thereof, and thermoelectric power generation system Active JP5228160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137268A JP5228160B2 (en) 2008-04-24 2008-04-24 Thermoelectric conversion module, manufacturing method thereof, and thermoelectric power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137268A JP5228160B2 (en) 2008-04-24 2008-04-24 Thermoelectric conversion module, manufacturing method thereof, and thermoelectric power generation system

Publications (2)

Publication Number Publication Date
JP2009267316A true JP2009267316A (en) 2009-11-12
JP5228160B2 JP5228160B2 (en) 2013-07-03

Family

ID=41392746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137268A Active JP5228160B2 (en) 2008-04-24 2008-04-24 Thermoelectric conversion module, manufacturing method thereof, and thermoelectric power generation system

Country Status (1)

Country Link
JP (1) JP5228160B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115445A1 (en) * 2012-01-30 2013-08-08 연세대학교 산학협력단 Thermoelectric element having structure capable of improving thermal efficiency
DE102012022328A1 (en) 2012-11-13 2014-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelectric module has material-bonded metal fibers or thin metal wires that are formed by substrate forming network structure in hollow or open space
JP2014529285A (en) * 2011-08-15 2014-10-30 インキューブ ラブズ, リミテッド ライアビリティー カンパニーInCube Labs, LLC System and method for thermoelectric power generation
KR20150136289A (en) * 2014-05-27 2015-12-07 주식회사 엘지화학 Thermoelectric generator using heat of gas range
JP2016015860A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Power generator
CN105706258A (en) * 2013-10-30 2016-06-22 爱信高丘株式会社 Thermoelectric element, thermoelectric module and manufacturing method thereof
WO2016175147A1 (en) * 2015-04-27 2016-11-03 株式会社Eサーモジェンテック Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
US10003000B2 (en) 2011-08-15 2018-06-19 Incube Labs, Llc System for thermoelectric energy generation
CN108233771A (en) * 2016-12-15 2018-06-29 财团法人工业技术研究院 Heat exchange device for radiant heat recovery power generation
KR20180104468A (en) * 2017-03-13 2018-09-21 두산중공업 주식회사 Additional generating apparatus and steam turbine having the same
TWI660528B (en) * 2014-05-13 2019-05-21 韓商Lg伊諾特股份有限公司 Heat conversion device
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape
US10622532B2 (en) 2016-02-18 2020-04-14 Mitsubishi Electric Corporation Thermoelectric conversion module and method of manufacturing the same
JP2020167800A (en) * 2019-03-28 2020-10-08 三井化学株式会社 Thermoelectric conversion device
WO2021149326A1 (en) * 2020-01-23 2021-07-29 株式会社Eサーモジェンテック Tubular heat exchanger with thermoelectric power generation function
WO2022180818A1 (en) 2021-02-26 2022-09-01 株式会社Eサーモジェンテック Thermoelectric power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704257B1 (en) 2015-09-10 2017-02-07 현대자동차주식회사 Thermoelectric module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202275A (en) * 1993-06-28 1995-08-04 Kiyoshi Yanagimachi Aggregate of electronic cooling element
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
JP2006108507A (en) * 2004-10-07 2006-04-20 Seiko Instruments Inc Thermoelectric conversion apparatus
JP2006269721A (en) * 2005-03-24 2006-10-05 Yamaha Corp Thermoelectric module and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202275A (en) * 1993-06-28 1995-08-04 Kiyoshi Yanagimachi Aggregate of electronic cooling element
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
JP2006108507A (en) * 2004-10-07 2006-04-20 Seiko Instruments Inc Thermoelectric conversion apparatus
JP2006269721A (en) * 2005-03-24 2006-10-05 Yamaha Corp Thermoelectric module and its manufacturing method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529285A (en) * 2011-08-15 2014-10-30 インキューブ ラブズ, リミテッド ライアビリティー カンパニーInCube Labs, LLC System and method for thermoelectric power generation
US10151220B2 (en) 2011-08-15 2018-12-11 Incube Labs, Llc System for thermoelectric energy generation using natural gas
US10003000B2 (en) 2011-08-15 2018-06-19 Incube Labs, Llc System for thermoelectric energy generation
WO2013115445A1 (en) * 2012-01-30 2013-08-08 연세대학교 산학협력단 Thermoelectric element having structure capable of improving thermal efficiency
DE102012022328A1 (en) 2012-11-13 2014-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelectric module has material-bonded metal fibers or thin metal wires that are formed by substrate forming network structure in hollow or open space
DE102012022328B4 (en) 2012-11-13 2018-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelectric module
CN105706258B (en) * 2013-10-30 2018-06-12 爱信高丘株式会社 The manufacturing method of thermoelectric element, electrothermal module and the electrothermal module
CN105706258A (en) * 2013-10-30 2016-06-22 爱信高丘株式会社 Thermoelectric element, thermoelectric module and manufacturing method thereof
US10290792B2 (en) 2013-10-30 2019-05-14 Aisin Takaoka Co., Ltd. Thermoelectric element and thermoelectric module comprising threaded screws, and manufacturing method thereof
TWI660528B (en) * 2014-05-13 2019-05-21 韓商Lg伊諾特股份有限公司 Heat conversion device
KR20150136289A (en) * 2014-05-27 2015-12-07 주식회사 엘지화학 Thermoelectric generator using heat of gas range
KR101672241B1 (en) * 2014-05-27 2016-11-03 주식회사 엘지화학 Thermoelectric generator using heat of gas range
JP2016015860A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Power generator
JP2016207995A (en) * 2015-04-27 2016-12-08 株式会社Eサーモジェンテック Thermoelectric conversion module and manufacturing method therefor, and electrothermal power generation system and manufacturing method therefor
US10680154B2 (en) 2015-04-27 2020-06-09 E-ThermoGentek Co., Ltd. Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
WO2016175147A1 (en) * 2015-04-27 2016-11-03 株式会社Eサーモジェンテック Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
US10622532B2 (en) 2016-02-18 2020-04-14 Mitsubishi Electric Corporation Thermoelectric conversion module and method of manufacturing the same
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape
CN108233771A (en) * 2016-12-15 2018-06-29 财团法人工业技术研究院 Heat exchange device for radiant heat recovery power generation
KR101953010B1 (en) * 2017-03-13 2019-02-27 두산중공업 주식회사 Additional generating apparatus and steam turbine having the same
KR20180104468A (en) * 2017-03-13 2018-09-21 두산중공업 주식회사 Additional generating apparatus and steam turbine having the same
JP2020167800A (en) * 2019-03-28 2020-10-08 三井化学株式会社 Thermoelectric conversion device
WO2021149326A1 (en) * 2020-01-23 2021-07-29 株式会社Eサーモジェンテック Tubular heat exchanger with thermoelectric power generation function
DE112020001913T5 (en) 2020-01-23 2021-12-30 E-ThermoGentek Co., Ltd. Tubular heat exchanger with thermoelectric energy generation function
WO2022180818A1 (en) 2021-02-26 2022-09-01 株式会社Eサーモジェンテック Thermoelectric power generation system

Also Published As

Publication number Publication date
JP5228160B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5228160B2 (en) Thermoelectric conversion module, manufacturing method thereof, and thermoelectric power generation system
US10680154B2 (en) Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
JP3981738B2 (en) Thermoelectric conversion element
WO2010004550A2 (en) Split thermo-electric structure and devices and systems that utilize said structure
JP2011091243A (en) Thermoelectric conversion module and method of producing the same
US8008573B2 (en) Integrated package structure having solar cell and thermoelectric element and method of fabricating the same
JP2013074291A (en) Thermoelectric module and method for manufacturing the same
CN111835231A (en) Flexible temperature difference energy-obtaining module applied to intelligent water meter
JP5306668B2 (en) Manufacturing method of photoelectric conversion module
JP2009043752A (en) Thermoelectric conversion module
CN101562415A (en) Generator
CN102891248A (en) Flexible thermoelectric conversion system and manufacturing method thereof
JP2019047565A (en) Thermoelectric generation system
JP6350297B2 (en) Thermoelectric generator
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
KR20130073554A (en) Thermoelectric module and manufacturing method for theremoelectric module
JP2012532468A (en) Module having a plurality of thermoelectric elements
JP2009272327A (en) Thermoelectric conversion system
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
KR102109486B1 (en) Multi-multi-array themoeletric generator and its generating system
JPH0485973A (en) Thermoelectric generator
JP2013251309A (en) Thermoelectric conversion device
CN202855804U (en) Flexible thermoelectric conversion system
CN208690302U (en) A kind of organic/inorganic composite material thermoelectric generating device
KR20200126554A (en) PCB unit equipped with Thermoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250