JPH0485973A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH0485973A
JPH0485973A JP2201858A JP20185890A JPH0485973A JP H0485973 A JPH0485973 A JP H0485973A JP 2201858 A JP2201858 A JP 2201858A JP 20185890 A JP20185890 A JP 20185890A JP H0485973 A JPH0485973 A JP H0485973A
Authority
JP
Japan
Prior art keywords
thermoelectric
combustion chamber
cylindrical body
chamber
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2201858A
Other languages
Japanese (ja)
Inventor
Yasutada Kobayashi
木林 靖忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP2201858A priority Critical patent/JPH0485973A/en
Publication of JPH0485973A publication Critical patent/JPH0485973A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a generating efficiency and reliability by connecting the high temperature side of a thermoelectric semiconductor directly to the outer wall of a combustion chamber made of a heat conductive cylinder through electrodes, heating it at the high temperature side by the combustion heat of the chamber, and generating an electromotive force. CONSTITUTION:A combustion chamber is made of a quartz glass cylinder having a netlike catalyst holding cylinder 30 therein, and amber alloy electrodes 4, 5 formed on the outer wall of the chamber through a nickel metallized layer M are formed, and a thermoelectric element 3 is secured thereto. Heat radiating fins 20 are formed at a heat exchanging board 2 of a low temperature side of the element. A heat exchanging board of a high temperature side is used also as the chamber Is. Butane gas is supplied into the chamber Is of this thermoelectric generator thereby to acceleration combustion by using catalyst in the cylinder 30, temperature of the inner wall of the chamber is raised to 220 deg.C, while the low temperature side is cooled by the fins and a fan, and an electromotive force due to a current flowing between both the electrodes is output tea. In this case, its internal resistance changing ratio is maintained small, excellent thermoelectric characteristic is obtained, high reliability is obtained without damage and removal.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、熱電発電装置に係り、特に起電力の大きな熱
電発電装置の実装構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thermoelectric generator, and particularly to a mounting structure for a thermoelectric generator with a large electromotive force.

〔従来の技術〕[Conventional technology]

P型半導体とN型半導体とを、金属を介して接合してP
N素子対を形成し、この両端に温度差を与え、これによ
って両端に生起せしめられるいわゆる熱起電力を利用し
、発電を行う熱電発電装置は、非常用発電装置、僻地用
発電装置、携帯用発電装置として注目されている。
A P-type semiconductor and an N-type semiconductor are bonded via metal to form a P-type semiconductor.
Thermoelectric power generators that generate electricity by forming N element pairs and applying a temperature difference between the two ends of the two ends of the so-called thermoelectromotive force generated at both ends can be used as emergency power generators, power generators for remote areas, and portable power generators. It is attracting attention as a power generation device.

従来、熱電発電装置は第4図に一例を示すように、燃焼
室1とこの燃焼室の外壁の相対向する位置にグリースを
用いて圧着せしめられた2つの熱電発電部10とから構
成されている。20は熱電発電部10の低温部を冷却す
るための冷却用ファンである。
Conventionally, a thermoelectric power generation device is composed of a combustion chamber 1 and two thermoelectric power generation sections 10 that are crimped with grease at opposing positions on the outer wall of this combustion chamber, as shown in an example in FIG. There is. 20 is a cooling fan for cooling the low temperature part of the thermoelectric power generating section 10.

この熱電発電装置では、高温部と低温部との温度差が1
20〜150℃にも達するもので、熱応力による熱電半
導体の破損を防止するため、熱電発電部は燃焼室の外壁
にグリースGを介して圧着されている。
In this thermoelectric generator, the temperature difference between the high temperature part and the low temperature part is 1
The temperature reaches 20 to 150°C, and the thermoelectric generator is crimped to the outer wall of the combustion chamber via grease G to prevent damage to the thermoelectric semiconductor due to thermal stress.

しかしながら、この装置では燃焼室の壁面の温度と熱電
発電部の高温側接合部(電極と熱電半導体との接合部)
の温度との温度差か大きく、熱効率か悪いという問題か
あった。
However, in this device, the temperature of the wall surface of the combustion chamber and the high-temperature side junction of the thermoelectric generation section (junction between the electrode and the thermoelectric semiconductor) are
There was a problem of poor thermal efficiency due to the large temperature difference.

また、長時間使用しているうちに、グリースが蒸発し、
熱抵抗が増大して温度差がさらに大きくなり、−層熱効
率が低下するという問題があった。
Also, while using it for a long time, the grease may evaporate.
There was a problem in that the thermal resistance increased, the temperature difference further increased, and the -layer thermal efficiency decreased.

またこの熱電発電部は、第5図に拡大図を示すように、
例えばアルミナセラミックス基板等の熱伝導性の良好な
絶縁性基板からなる第1および第2の熱交換基板11.
12間にこれに対して良好な熱接触性をもつように多数
個のPN素子対13か挾持せしめられると共に、各素子
対13間を夫々第1および第2の電極14.15によっ
て直列接続せしめられて構成されている。
In addition, this thermoelectric power generation section, as shown in an enlarged view in Fig. 5,
First and second heat exchange substrates 11 made of insulating substrates with good thermal conductivity, such as alumina ceramic substrates, for example.
A large number of PN element pairs 13 are sandwiched between the elements 12 and 12 so as to have good thermal contact with each other, and each element pair 13 is connected in series by first and second electrodes 14 and 15, respectively. It is constructed according to the following.

そして、この第1および第2の電極14,1.5は大電
流にも耐え得るように通常銅板からなり、熱交換基板1
1..12表面に形成された導電体層パターン上に半田
等の溶着層を介して固着されている。
The first and second electrodes 14, 1.5 are usually made of copper plates so as to withstand large currents, and the heat exchanger substrate 1.
1. .. It is fixed onto the conductor layer pattern formed on the surface of 12 via a welding layer such as solder.

更にこの第1および第2の電極上には、半田層を介して
P型熱電素子13a又はN型熱電素子13bが交互に夫
々1対ずつ固着せしめられ、PN素子対13を構成する
と共に各素子対間は直列接続されている。
Furthermore, pairs of P-type thermoelectric elements 13a or N-type thermoelectric elements 13b are alternately fixed on the first and second electrodes via solder layers, forming a PN element pair 13 and each element The pairs are connected in series.

ところで、熱交換効率の増大をはかるには、熱交換基板
を良好な熱伝導性を有する絶縁性の材料で構成する必要
があり、また熱歪による劣化を防止するため、熱膨張率
が小さいものでなければならない。
By the way, in order to increase the heat exchange efficiency, the heat exchange board must be made of an insulating material with good thermal conductivity, and in order to prevent deterioration due to thermal distortion, it must be made of a material with a small coefficient of thermal expansion. Must.

しかしながら、熱交換基板材料として、従来から用いら
れているアルミナセラミックス基板やベリリアセラミッ
クス基板は、線膨脹係数が7×10−6/にと大きく、
これに線膨脹係数が16.5XIO−6/にの銅電極を
形成しているため、熱応力により、熱電半導体が破損し
たりするという問題があった。
However, alumina ceramic substrates and beryllia ceramic substrates, which have been conventionally used as heat exchange substrate materials, have a large coefficient of linear expansion of 7 × 10-6/.
Since a copper electrode having a linear expansion coefficient of 16.5XIO-6/ is formed thereon, there is a problem that the thermoelectric semiconductor may be damaged due to thermal stress.

そこで応力を緩和するため、基板を分割構造としたり、
基板を用いることなく電極のみて構成するスケルトン構
造としたりするという方法がとられているか、構造か複
雑となるという問題があった。
Therefore, in order to alleviate stress, the board has a divided structure,
The problem is that a skeleton structure consisting only of electrodes without using a substrate has been adopted, or that the structure is complicated.

また、分割構造とした場合、熱の伝達効率が悪く熱交換
効率を高めることかできない上、強度的にも問題があっ
た。
Furthermore, when using a split structure, the heat transfer efficiency is poor, and the heat exchange efficiency cannot be improved, and there are also problems in terms of strength.

(発明か解決しようとする課題) このように従来の熱電発電装置では熱効率が良好でない
ため、燃焼室の発熱量に対する熱起電力の割合すなわち
熱電効率か十分に得られないという問題があった。
(Problems to be Solved by the Invention) As described above, conventional thermoelectric power generation devices do not have good thermal efficiency, so there is a problem that the ratio of thermoelectromotive force to the calorific value of the combustion chamber, that is, the thermoelectric efficiency cannot be sufficiently obtained.

また従来の装置の基板材料及び電極は熱膨張係数が大き
いものが用いられているため、低温側と高温側の差が大
きくなるに従い、熱雷半導体が破損したり、脱落したり
するという問題があった。
In addition, since the substrate materials and electrodes of conventional devices are made of materials with a large coefficient of thermal expansion, as the difference between the low temperature side and the high temperature side increases, there is a problem that the thermal lightning semiconductor may be damaged or fall off. there were.

本発明は前記実情に鑑みてなされたもので、発電効率が
良好で、信頼性の高い熱電発電装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoelectric power generation device with good power generation efficiency and high reliability.

〔発明の構成〕[Structure of the invention]

(課題を解決するだめの手段) そこで本発明では、熱伝導性の筒状体からなる燃焼室の
外壁に電極を介して熱電半導体の高温側を直接接合せし
め、燃焼室の燃焼熱で高温側を加熱し、起電力を生起せ
しめるようにしている。
(Another Means to Solve the Problem) Therefore, in the present invention, the high temperature side of the thermoelectric semiconductor is directly bonded to the outer wall of the combustion chamber made of a thermally conductive cylindrical body via an electrode, and the high temperature side is absorbed by the combustion heat of the combustion chamber. is heated to generate an electromotive force.

望ましくはこの筒状体を、線膨張係数4×10t、/℃
以下の材料で構成するようにしている。
Preferably, this cylindrical body has a linear expansion coefficient of 4 x 10t/°C.
It is made up of the following materials.

さらに、この筒状体は絶縁性材料で構成されており、こ
の筒状体表面にメタライズ層を介して線膨脹係数8 X
 10−’/ ℃以下、体積抵抗率10Ωcm以下の材
料からなる電極を形成するようにしている。
Furthermore, this cylindrical body is made of an insulating material, and a linear expansion coefficient of 8
The electrode is made of a material having a temperature of 10-'/°C or less and a volume resistivity of 10 Ωcm or less.

また、この筒状体は導電性材料で構成されており、この
筒状体表面に絶縁層およびメタライズ層を介して線膨脹
係数8×10−6/”C以下、体積抵抗率10−6Ωc
11の材料からなる電極を形成するようにしている。
The cylindrical body is made of a conductive material, and the surface of the cylindrical body is coated with an insulating layer and a metallized layer to provide a coefficient of linear expansion of 8 x 10-6/"C or less and a volume resistivity of 10-6 Ωc.
The electrodes are made of 11 materials.

さらに望ましくは、この筒状体を石英ガラス、低膨脹ガ
ラス、アンバー合金のうちのいずれかで構成している。
More preferably, the cylindrical body is made of quartz glass, low expansion glass, or an amber alloy.

さらにこの電極を、アンバー合金、モリブデン、タング
ステン、タンタルなどの高融点金属あるいはこれらと銅
との合金のうちのいずれかで構成している。
Further, this electrode is made of a high melting point metal such as an amber alloy, molybdenum, tungsten, or tantalum, or an alloy of these and copper.

(作用) 上記構成によれば、燃焼室の外壁に直接熱電半導体が接
合されているため、極めて熱交換効率が良好であり、か
つ小型化をはかることができる。
(Function) According to the above configuration, since the thermoelectric semiconductor is directly bonded to the outer wall of the combustion chamber, the heat exchange efficiency is extremely good, and the size of the combustion chamber can be reduced.

また、熱交換基板を熱膨張率の小さい材料で構成してい
るため、燃焼室の外壁に直接接合して、低温部と高温部
との温度差が大きい場合にも、破損や脱落が生しること
なく、良好な特性を維持することができる。
In addition, since the heat exchange board is made of a material with a low coefficient of thermal expansion, it will not break or fall off even if it is directly bonded to the outer wall of the combustion chamber and there is a large temperature difference between the low temperature part and the high temperature part. It is possible to maintain good characteristics without causing any damage.

また、電極材料として熱交換基板と線膨張係数の差が小
さい材料を用いているため、上下基板の温度差が大きい
場合でも、熱電半導体が熱応力により破損することがな
い。
Furthermore, since a material with a small difference in linear expansion coefficient from that of the heat exchange substrate is used as the electrode material, the thermoelectric semiconductor will not be damaged by thermal stress even if the temperature difference between the upper and lower substrates is large.

(実施例) 以下、本発明の実施例について図面を参照しつつ詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 この熱電発電装置は、第1図に示すように内部に網目状
の触媒保持筒30を備えた石英ガラス製の筒体からなる
燃焼室]Sと、この燃焼室の外壁に、膜厚5μ釘のニッ
ケルメタライス層Mを介して膜厚120tt膚のアンバ
ー合金電極4,5を厚膜法で形成し、これに熱電素子3
を固着したものである。そしてこの熱電素子の低温側の
熱交換基板2には放熱用のフィン20が形成されている
Example 1 As shown in FIG. 1, this thermoelectric power generation device consists of a combustion chamber made of a cylinder made of quartz glass and equipped with a mesh-shaped catalyst holding cylinder 30 inside, and a membrane on the outer wall of the combustion chamber. Amber alloy electrodes 4 and 5 with a film thickness of 120 tt are formed by a thick film method via a nickel metal rice layer M with a thickness of 5 μm, and a thermoelectric element 3 is attached to this.
is fixed. A heat radiating fin 20 is formed on the heat exchange substrate 2 on the low temperature side of this thermoelectric element.

なお、高温側の熱交換基板は燃焼室1sをかねている。Note that the heat exchange board on the high temperature side also serves as the combustion chamber 1s.

この熱電発電装置の燃焼室ls内にブタンガスを供給す
ることにより、触媒保持筒3o内の触媒を用いて燃焼が
促進され、燃焼室内壁の温度を220℃まで上昇せしめ
る一方低温側を放熱フィンおよびファンを用いて冷却し
、両電極間に流れる電流による起電力を取り出すように
したものである。
By supplying butane gas into the combustion chamber ls of this thermoelectric power generation device, combustion is promoted using the catalyst in the catalyst holding cylinder 3o, and the temperature of the inner wall of the combustion chamber is raised to 220°C. A fan is used for cooling, and the electromotive force generated by the current flowing between the two electrodes is extracted.

本発明の熱電発電装置によれば、10000時間経過後
も内部抵抗変化率は小さく維持され、極めて良好な熱電
特性を呈している。
According to the thermoelectric power generation device of the present invention, the rate of change in internal resistance is maintained small even after 10,000 hours, and exhibits extremely good thermoelectric characteristics.

また、破損も脱落もなく極めて信頼性の高いものとなっ
ている。なお第4図および第5図に示した従来例の熱電
発電装置ではわずか]000時間で3個中2個の装置が
破損した。
Furthermore, it is extremely reliable with no damage or falling off. In the conventional thermoelectric generators shown in FIGS. 4 and 5, two out of three devices were damaged after only 1,000 hours.

なお、前記実施例1では、基板として石英ガラス、電極
としてアンバー合金を用いたか、これに限定されること
なく、他の材料の組み合わせを用いても良い。他の材料
の組み合わせ例を第1表に示す。
In the first embodiment, quartz glass was used for the substrate and amber alloy was used for the electrodes, but the present invention is not limited to these, and other combinations of materials may be used. Examples of combinations of other materials are shown in Table 1.

第1表 基IF4f1     石英ガラス   低IIガラス
  表面絶縁アンバー合金メタライズ層  タングステ
ン  ニッケル    ニッケル 銅タングステンHチ
タン電極材料    アンバ合金   モリブデン  
 銅タングステン合金実施例2 この熱電発電装置は、第2図に示すように、実施例1の
燃焼室1sを96%石英ガラス(バイコールガラス)で
構成し、この燃焼室の外壁に、スパッタリング法によっ
て形成した膜厚1μmのタングステン層Mを介してアン
バー合金からなる電極チップ24.25を95船(Pb
)−5錫(Sn)半田で接合し、これに熱電素子3を同
じく95鉛(Pb)−5錫(Sn)半田で接合し固着し
たものである。
Table 1 Group IF4f1 Quartz glass Low II glass Surface insulation amber alloy metallized layer Tungsten Nickel Nickel Copper tungsten H Titanium electrode material Amber alloy Molybdenum
Copper-tungsten alloy Example 2 As shown in Fig. 2, this thermoelectric power generation device consists of the combustion chamber 1s of Example 1 made of 96% quartz glass (Vycor glass), and the outer wall of the combustion chamber is made of 96% quartz glass (Vycor glass). An electrode tip 24.25 made of an amber alloy is inserted through the formed tungsten layer M with a thickness of 1 μm.
)-5 tin (Sn) solder, and the thermoelectric element 3 is also bonded and fixed using 95 lead (Pb)-5 tin (Sn) solder.

他の部分については実施例1と同様であり、熱雷素子の
低温側には放熱用のフィン20が形成されている。
The other parts are the same as in Example 1, and a heat radiation fin 20 is formed on the low temperature side of the thermal lightning element.

そしてこの熱電発電装置の燃焼室ls内にブタンガスを
供給することにより、触媒保持筒30内の触媒を用いて
燃焼が促進され、燃焼室内壁の温度を250℃まで上昇
せしめる一方低温側を放熱フィンおよびファンを用いて
70℃程度に冷却し、両電極間に流れる電流による起電
力を取り出すようにしたものである。
By supplying butane gas into the combustion chamber ls of this thermoelectric power generation device, combustion is promoted using the catalyst in the catalyst holding cylinder 30, and the temperature of the inner wall of the combustion chamber is raised to 250°C, while the low-temperature side is connected to the heat radiation fin. It is then cooled to about 70° C. using a fan, and the electromotive force generated by the current flowing between both electrodes is extracted.

この場合も、内部抵抗変化率は小さく維持され、極めて
良好な熱電特性を呈しており、また長期にわたる使用に
際しても、破損も脱落もなく極めて信頼性の高いものと
なっている。
In this case as well, the rate of change in internal resistance is maintained small, exhibiting extremely good thermoelectric properties, and is extremely reliable with no breakage or falling off even during long-term use.

実施例3 この熱電発電装置は、第3図に示すように、燃焼室31
を表面を酸化シリコン膜32て被覆したアンバー合金で
構成し、この燃焼室の外壁に、厚膜法によって形成した
膜厚120μmの銅(Cu)−タングステンのメタライ
ズ層Mを介してアンバー合金からなる電極チップ24.
25を95鉛(Pb)−5錫(Sn)半田て接合し、こ
れに熱電素子3を同じく95鉛(Pb) −5錫(Sn
)半田で接合し固着したものである。
Embodiment 3 This thermoelectric power generation device has a combustion chamber 31 as shown in FIG.
The combustion chamber is made of an amber alloy whose surface is covered with a silicon oxide film 32, and a copper (Cu)-tungsten metallized layer M with a thickness of 120 μm formed by a thick film method is formed on the outer wall of this combustion chamber. Electrode tip 24.
25 is soldered with 95 lead (Pb)-5 tin (Sn), and the thermoelectric element 3 is joined to this using 95 lead (Pb)-5 tin (Sn) solder.
) They are joined and fixed with solder.

他の部分については実施例1および2と同様であり、熱
電素子の低温側には放熱用のフィン20が形成されてい
る。
The other parts are the same as those in Examples 1 and 2, and a heat radiation fin 20 is formed on the low temperature side of the thermoelectric element.

そして実施例2と同様この熱電発電装置の燃焼室31内
にブタンガスを供給することにより、触媒保持筒30内
の触媒を用いて燃焼が促進され、燃焼室内壁の温度を2
50℃まで上昇せしめる一方低温側を放熱フィンおよび
ファンを用いて70℃程度に冷却し、両電極間に流れる
電流による起電力を取り出すようにしたものである。
As in Example 2, by supplying butane gas into the combustion chamber 31 of this thermoelectric generator, combustion is promoted using the catalyst in the catalyst holding cylinder 30, and the temperature of the inner wall of the combustion chamber is reduced by 2.
The temperature is raised to 50°C, while the low temperature side is cooled down to about 70°C using heat radiation fins and a fan, and the electromotive force generated by the current flowing between both electrodes is extracted.

この場合も、内部抵抗変化率は小さく維持され、極めて
良好な熱電特性を呈しており、また長期にわたる使用に
際しても、破損も脱落もなく極めて信頼性の高いものと
なっている。
In this case as well, the rate of change in internal resistance is maintained small, exhibiting extremely good thermoelectric properties, and is extremely reliable with no breakage or falling off even during long-term use.

そしてこの場合は、燃焼室が金属製であることにより、
セラミック製の燃焼室と比較して、燃焼ガス導入部、排
気部等との接合が容易であり、機械的衝撃に強いことか
ら、取扱いが極めて容易となる。
And in this case, because the combustion chamber is made of metal,
Compared to a ceramic combustion chamber, it is easier to connect to the combustion gas inlet, exhaust, etc., and is resistant to mechanical shock, making it extremely easy to handle.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明の熱電発電装置によれ
ば、燃焼室の外壁に直接熱電素子を接合するようにして
いるため、熱電効率が良好で信頼性の高いものとなる。
As explained above, according to the thermoelectric power generation device of the present invention, since the thermoelectric element is directly bonded to the outer wall of the combustion chamber, the thermoelectric power generation device has good thermoelectric efficiency and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の熱電発電装置を示す図
、第2図は本発明の第2の実施例の熱電発電装置を示す
図、第3図は本発明の第3の実施例の熱電発電装置を示
す図、第4図および第5図は従来例の熱電発電装置を示
す図である。 1.1s・・・燃焼室、10・・・熱電発電部、20・
・・冷却用ファン、30・・・触媒保持筒、11・・・
高温側熱交換基板、2.12・・・低温側熱交換基板、
313・・・熱電素子、4,5・・・アンバー合金電極
(厚膜)、14.15・・・電極、24.25・・・ア
ンバー合金(チップ)、M・・・メタライズ層、30・
・触媒保持筒、・31・・・アンバー合金(燃焼室)、
32・・酸化シリコン膜。
FIG. 1 is a diagram showing a thermoelectric generator according to a first embodiment of the present invention, FIG. 2 is a diagram depicting a thermoelectric generator according to a second embodiment of the present invention, and FIG. 3 is a diagram showing a thermoelectric generator according to a third embodiment of the present invention. FIGS. 4 and 5 are diagrams showing a thermoelectric power generation device according to an embodiment, and FIGS. 4 and 5 are diagrams showing a conventional thermoelectric power generation device. 1.1s... Combustion chamber, 10... Thermoelectric power generation section, 20.
...Cooling fan, 30...Catalyst holding cylinder, 11...
High temperature side heat exchange board, 2.12... low temperature side heat exchange board,
313... Thermoelectric element, 4,5... Amber alloy electrode (thick film), 14.15... Electrode, 24.25... Amber alloy (chip), M... Metallized layer, 30...
・Catalyst holding tube, ・31... Amber alloy (combustion chamber),
32...Silicon oxide film.

Claims (6)

【特許請求の範囲】[Claims] (1)熱伝導性の筒状体からなる燃焼室と、前記筒状体
の外壁に電極を介して高温側が直接接合せしめられた熱
電素子対とを具備し、前記燃焼室の燃焼熱で高温側を加
熱し、起電力を生起せしめるようにしたことを特徴とす
る熱電装置。
(1) A combustion chamber made of a thermally conductive cylindrical body, and a pair of thermoelectric elements whose high temperature side is directly connected to the outer wall of the cylindrical body via an electrode, and the combustion chamber generates a high temperature due to the combustion heat of the combustion chamber. A thermoelectric device characterized by heating the side and generating an electromotive force.
(2)前記筒状体は、線膨脹係数4×10^−^6/℃
以下の材料から構成されていることを特徴とする請求項
第(1)に記載の熱電発電装置。
(2) The cylindrical body has a linear expansion coefficient of 4×10^-^6/℃
The thermoelectric power generation device according to claim 1, characterized in that it is made of the following materials:
(3)前記筒状体は絶縁性材料から構成されており、前
記電極は、前記筒状体表面にメタライズ層を介して形成
された線膨脹係数8×10^−^6/℃以下、体積抵抗
率10^−^6Ωcm以下の材料からなる材料から構成
されていることを特徴とする請求項第(2)に記載の熱
電発電装置。
(3) The cylindrical body is made of an insulating material, and the electrode is formed on the surface of the cylindrical body through a metallized layer with a linear expansion coefficient of 8×10^-^6/℃ or less, and a volumetric 3. The thermoelectric power generation device according to claim 2, wherein the thermoelectric generator is made of a material having a resistivity of 10^-^6 Ωcm or less.
(4)前記熱交換基板は、導電性材料から構成されてお
り、 前記電極は、前記筒状体表面全体を覆う絶縁層上にメタ
ライズ層を介して形成された線膨脹係数8×10^−^
6/℃以下、体積抵抗率10^−^6Ωcm以下の材料
から構成されていることを特徴とする請求項第(2)に
記載の熱電発電装置。
(4) The heat exchange substrate is made of a conductive material, and the electrode is formed on an insulating layer covering the entire surface of the cylindrical body via a metallized layer, and has a linear expansion coefficient of 8×10^- ^
6/C or less and a volume resistivity of 10^-^6 Ωcm or less.
(5)前記筒状体は石英ガラス、低膨脹ガラス、アンバ
ー合金のうちのいずれかであることを特徴とする請求項
第(1)乃至第(4)項のいずれかに記載の熱電発電装
置。
(5) The thermoelectric power generation device according to any one of claims (1) to (4), wherein the cylindrical body is made of quartz glass, low expansion glass, or an amber alloy. .
(6)前記電極は、アンバー合金、モリブデン、タング
ステン、タンタルなどの高融点金属あるいはこれらと銅
との合金からなることを特徴とする請求項第(1)乃至
第(4)項のいずれかに記載の熱電発電装置。
(6) The electrode is made of a high melting point metal such as an amber alloy, molybdenum, tungsten, tantalum, or an alloy of these and copper. The thermoelectric power generation device described.
JP2201858A 1990-07-30 1990-07-30 Thermoelectric generator Pending JPH0485973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201858A JPH0485973A (en) 1990-07-30 1990-07-30 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201858A JPH0485973A (en) 1990-07-30 1990-07-30 Thermoelectric generator

Publications (1)

Publication Number Publication Date
JPH0485973A true JPH0485973A (en) 1992-03-18

Family

ID=16448056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201858A Pending JPH0485973A (en) 1990-07-30 1990-07-30 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JPH0485973A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813253A2 (en) * 1996-06-11 1997-12-17 Matsushita Electric Industrial Co., Ltd. Thermoelectric generator
US6307142B1 (en) * 2000-04-13 2001-10-23 Hi-Z Technology, Inc. Combustion heat powered portable electronic device
JP2004180488A (en) * 2002-11-11 2004-06-24 Matsushita Electric Works Ltd Combustion device and thermoelectric generator
EP2180534A1 (en) * 2008-10-27 2010-04-28 Corning Incorporated Energy conversion devices and methods
US8674588B2 (en) 2010-02-26 2014-03-18 Fujitsu Limited Electric power generation device, electric power generation method, and electric power generation device manufacturing method
JP2014241318A (en) * 2013-06-11 2014-12-25 北海道特殊飼料株式会社 Thermoelectric generation device
GB2555814A (en) * 2016-11-10 2018-05-16 Univ Cranfield Improvement in and relating to catalysis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813253A2 (en) * 1996-06-11 1997-12-17 Matsushita Electric Industrial Co., Ltd. Thermoelectric generator
EP0813253A3 (en) * 1996-06-11 2006-01-25 Matsushita Electric Industrial Co., Ltd. Thermoelectric generator
US6307142B1 (en) * 2000-04-13 2001-10-23 Hi-Z Technology, Inc. Combustion heat powered portable electronic device
WO2001080325A1 (en) * 2000-04-13 2001-10-25 Hi-Z Technology, Inc. Combustion heat powered portable electronic device
JP2004180488A (en) * 2002-11-11 2004-06-24 Matsushita Electric Works Ltd Combustion device and thermoelectric generator
EP2180534A1 (en) * 2008-10-27 2010-04-28 Corning Incorporated Energy conversion devices and methods
US8674588B2 (en) 2010-02-26 2014-03-18 Fujitsu Limited Electric power generation device, electric power generation method, and electric power generation device manufacturing method
JP2014241318A (en) * 2013-06-11 2014-12-25 北海道特殊飼料株式会社 Thermoelectric generation device
CN105379102A (en) * 2013-06-11 2016-03-02 北海道特殊饲料株式会社 Thermoelectric generation device
EP3010139A4 (en) * 2013-06-11 2016-06-29 Hokkaido Tokushushiryou Kabushikikaisha Thermoelectric generation device
GB2555814A (en) * 2016-11-10 2018-05-16 Univ Cranfield Improvement in and relating to catalysis
GB2555814B (en) * 2016-11-10 2020-05-27 Univ Cranfield Improvement in and relating to catalysis

Similar Documents

Publication Publication Date Title
RU2173007C2 (en) Thermoelectric device
JP5160784B2 (en) Thermoelectric conversion element module
JP4255691B2 (en) Electronic component cooling device using thermoelectric conversion material
CN101587934A (en) Diaphragm type thermoelectric converting component and manufacturing method thereof
TWI620354B (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
JPH0485973A (en) Thermoelectric generator
CN103022338B (en) Manufacturing method of cascade temperature-difference power generating device
JPH0951126A (en) Thermoelectric conversion device
JP2996305B2 (en) High thermal resistance thermoelectric generator
US3524772A (en) Generator of electrical energy
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
JP2000286463A (en) Thermoelectric conversion module
JP3472593B2 (en) Thermoelectric device
JP2018093152A (en) Thermoelectric power generation device
JP3498223B2 (en) Thermopile
CN106784278B (en) Thermoelectric conversion device
JP2000188429A (en) Thermo-electric conversion module
TWI744717B (en) Thermoelectric power generating device and manufacturing method thereof
JPS5975684A (en) Thermo-electric generating element
US20200227613A1 (en) Thin-film thermoelectric module based energy box to generate electric power at utility scale
WO2002021608A1 (en) Thermoelement
KR102423607B1 (en) Thermoelectric module
JP2003234515A (en) Thermoelectric module
JP2017152618A (en) Thermoelectric module and manufacturing method thereof and thermoelectric device
JP2021057383A (en) Thermoelectric conversion device