JP2009264926A - Wavelength dispersion type x-ray spectrometer - Google Patents

Wavelength dispersion type x-ray spectrometer Download PDF

Info

Publication number
JP2009264926A
JP2009264926A JP2008114829A JP2008114829A JP2009264926A JP 2009264926 A JP2009264926 A JP 2009264926A JP 2008114829 A JP2008114829 A JP 2008114829A JP 2008114829 A JP2008114829 A JP 2008114829A JP 2009264926 A JP2009264926 A JP 2009264926A
Authority
JP
Japan
Prior art keywords
wave height
ray
scanning
distribution data
height distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008114829A
Other languages
Japanese (ja)
Other versions
JP5320807B2 (en
Inventor
Takao Marui
隆雄 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008114829A priority Critical patent/JP5320807B2/en
Priority to CN 200910134989 priority patent/CN101566591B/en
Publication of JP2009264926A publication Critical patent/JP2009264926A/en
Application granted granted Critical
Publication of JP5320807B2 publication Critical patent/JP5320807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength dispersion type X-ray spectrometer that performs detailed and precise analysis in a short time and has small individual difference. <P>SOLUTION: A signal output from an X-ray detector 10 by dispersion of X-rays released from a sample S and introduction of it into the X-ray detector 10 is input into an A/D converter 30 through a preamplifier 14, sampled and digitized with a predetermined sampling period, and then input into a digital processing circuit 32. The digital processing circuit 32 discriminates the input digital signals according to its wave height value, then counts them independently, and creates wave height distribution data. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子線プローブ微小分析装置、走査電子顕微鏡、透過電子顕微鏡、蛍光X線分析装置等に用いられる波長分散型X線分光器に関する。   The present invention relates to a wavelength dispersive X-ray spectrometer used in an electron probe microanalyzer, a scanning electron microscope, a transmission electron microscope, a fluorescent X-ray analyzer, and the like.

電子線プローブ微小分析装置(EMPA)では、高エネルギーを有する電子ビームを励起線として試料に照射し、それによって試料から放出される固有X線を分析することにより試料に含まれる元素の同定や定量を行ったり、元素の分布を調べたりする。このようなEMPAで用いられるX線の分光器には大別して波長分散型(WDS)とエネルギー分散型(EDS)とがある。
波長分散型X線分光器は、X線を分光結晶等で分光し、特定波長(エネルギー)を有するX線のみを検出器に導入して検出する。一方、エネルギー分散型X線分析装置は、X線を波長選別を行わずに直接半導体検出器に導入し、その検出信号をエネルギー(つまり波長)毎に分離する。このようにエネルギー分散型では、多数の波長の情報が同時に得られるため、短時間で波長(又はエネルギー)に対するX線強度分布を取得できるが、波長分解能やS/N比が比較的低い。これに対して、波長分散型は分光結晶で波長を逐次選別してから検出するため、高い波長分解能とS/N比でX線強度分布を取得できる(例えば特許文献1参照)。
Electron probe microanalyzer (EMPA) identifies and quantifies the elements contained in a sample by irradiating the sample with an electron beam having high energy as an excitation beam and analyzing the intrinsic X-rays emitted from the sample. Or check the distribution of elements. X-ray spectrometers used in such EMPA are roughly classified into a wavelength dispersion type (WDS) and an energy dispersion type (EDS).
A wavelength dispersive X-ray spectrometer splits X-rays with a spectroscopic crystal or the like, and introduces and detects only X-rays having a specific wavelength (energy) into the detector. On the other hand, the energy dispersive X-ray analyzer directly introduces X-rays into the semiconductor detector without performing wavelength selection, and separates the detection signal for each energy (that is, wavelength). As described above, in the energy dispersion type, since information on a large number of wavelengths can be obtained simultaneously, an X-ray intensity distribution with respect to the wavelength (or energy) can be acquired in a short time, but the wavelength resolution and the S / N ratio are relatively low. On the other hand, since the wavelength dispersion type is detected after sequentially selecting wavelengths with a spectral crystal, an X-ray intensity distribution can be acquired with high wavelength resolution and S / N ratio (see, for example, Patent Document 1).

図5は従来の波長分散型X線分析装置の概略構成図である。図5に示すように、電子ビームが照射されることにより試料Sから放出されたX線は分光結晶10に入射する。分光結晶10に入射したX線は波長分散されることにより、特定波長を有するX線が選別されてX線検出器12に入射する。
具体的には、X線検出器12には次式(1)に示すブラッグの式を満たすX線が選別されて到達する。
2d・sinθ=nλ ・・・(1)
ここで、dは分光結晶の光子面間隔(格子定数)、θは分光結晶へのX線の入射角、λはX線の波長、nは自然数で回折次数を表す。
FIG. 5 is a schematic configuration diagram of a conventional wavelength dispersion X-ray analyzer. As shown in FIG. 5, X-rays emitted from the sample S by being irradiated with the electron beam enter the spectral crystal 10. The X-rays incident on the spectral crystal 10 are wavelength-dispersed, so that X-rays having a specific wavelength are selected and incident on the X-ray detector 12.
Specifically, X-rays satisfying the Bragg equation shown in the following equation (1) are selected and arrived at the X-ray detector 12.
2d · sinθ = nλ (1)
Here, d is the photon plane interval (lattice constant) of the spectral crystal, θ is the incident angle of the X-ray to the spectral crystal, λ is the wavelength of the X-ray, and n is a natural number and represents the diffraction order.

式(1)から明らかなように、X線検出器12には1次線(n=1)だけでなく、n=2以上のいわゆる高次線が混在して到達する。次数の異なるX線は波長、即ちエネルギーが異なるため、それぞれ異なる高さのパルス状の波形としてX線検出器12から出力される。そこで、単一波長のX線(通常は1次のX線)を選別するために、X線検出器12から出力されるパルス状の波形はプリアンプ14で増幅された後、波高弁別回路16にて所定の波高値を有するパルス信号のみが選別され、計数回路18にて計数される。
この場合、X線検出器12から出力される信号には各種ノイズが重畳しているため、波高弁別回路16の前段に波形整形回路20を設けて、X線検出器12からのパルス信号を適当な波形形状に整えるようにしている。前記波形整形回路20には通常、ノイズを除去するためのCRフィルタが用いられている。
特開2000-180392号公報
As apparent from the equation (1), not only the primary line (n = 1) but also so-called higher order lines with n = 2 or more reach the X-ray detector 12 in a mixed manner. Since X-rays having different orders have different wavelengths, that is, energies, they are output from the X-ray detector 12 as pulse-like waveforms having different heights. Therefore, in order to select single-wavelength X-rays (usually primary X-rays), the pulse-like waveform output from the X-ray detector 12 is amplified by the preamplifier 14 and then sent to the wave height discrimination circuit 16. Thus, only pulse signals having a predetermined peak value are selected and counted by the counting circuit 18.
In this case, since various kinds of noise are superimposed on the signal output from the X-ray detector 12, a waveform shaping circuit 20 is provided in front of the wave height discriminating circuit 16 so that the pulse signal from the X-ray detector 12 is appropriately transmitted. It is trying to arrange it to a simple waveform shape. The waveform shaping circuit 20 usually uses a CR filter for removing noise.
JP 2000-180392 A

ところが、このような従来の波長分散型X線分析装置では次のような問題がある。即ち、CRフィルタのようなアナログ部品は部品間のバラツキが大きく、バラツキによる固体差をなくすための調整が必要となる。
更に、従来の波長分散型X線分析装置では、波高弁別回路16による弁別範囲の設定値を決めるために、実際の測定に先立って波高分布を求めるためのパルス信号の計数作業を行う必要がある。つまり、波高弁別回路16の弁別範囲の設定値を順次変更してパルス信号を計数し、波高と信号強度との関係(波高分布)を求めてから、波高弁別回路16による弁別範囲の設定値を決める必要があり、分析時間が長くなってしまう。
However, such a conventional wavelength dispersion type X-ray analyzer has the following problems. That is, analog components such as CR filters have large variations between components, and adjustments are necessary to eliminate individual differences due to variations.
Further, in the conventional wavelength dispersion type X-ray analyzer, in order to determine the set value of the discrimination range by the wave height discriminating circuit 16, it is necessary to perform a pulse signal counting operation for obtaining the wave height distribution prior to actual measurement. . That is, the set value of the discrimination range of the wave height discriminating circuit 16 is sequentially changed, pulse signals are counted, the relationship between the wave height and the signal intensity (wave height distribution) is obtained, and then the set value of the discrimination range by the wave height discriminating circuit 16 is set. It is necessary to decide and the analysis time becomes long.

本発明は上記課題を解決するためになされたものであり、その目的は、詳細で精密な分析を短時間で行うことができ、しかも、個体差の少ない波長分散型X線分光器を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a wavelength dispersive X-ray spectrometer capable of performing detailed and precise analysis in a short time and having little individual difference. There is.

上記課題を解決するためになされた本発明は、試料から発生するX線を分光素子で分光しX線検出器に導入して検出する波長分散型X線分光器において、
a) 前記X線検出器の出力信号をディジタル信号に変換するA/D変換手段と、
b) 前記ディジタル信号からパルス部分を抽出し、該パルス部分をその波高毎に分別し、それぞれを独立的に計数することにより波高分布データを求める波高分布データ取得手段と、
を備えることを特徴としている。
The present invention made to solve the above problems is a wavelength dispersive X-ray spectrometer that detects X-rays generated from a sample with a spectroscopic element and introduces them into an X-ray detector.
a) A / D conversion means for converting the output signal of the X-ray detector into a digital signal;
b) Extracting a pulse part from the digital signal, separating the pulse part for each wave height, and independently counting each wave height distribution data obtaining means for obtaining the wave height distribution data;
It is characterized by having.

本発明に係る波長分散型X線分光器は、X線検出器からのパルス状の信号を波高毎に独立的に計数して波高分布データを求めるようにしたことにより、得られた波高分布データから定量分析に利用する波高の範囲を決めることができる。波高の範囲を決める方法は特に限定されないが、例えば波高分布データに基づく波高分布図を表示部に表示させ、その波高分布図を見ながら作業者が決めるように構成してもよく、予め記憶された元素毎の波高分布データとの比較により自動的に決まるようにしても良い。
尚、X線検出器による電気信号は、そのままディジタル信号に変換することもできるが、増幅してからディジタル信号に変換することも可能である。
The wavelength dispersive X-ray spectrometer according to the present invention obtains the pulse height distribution data by counting the pulse-shaped signals from the X-ray detector independently for each wave height to obtain the pulse height distribution data. From this, the range of wave heights used for quantitative analysis can be determined. The method for determining the range of the wave height is not particularly limited. For example, the wave height distribution map based on the wave height distribution data may be displayed on the display unit, and the operator may determine the wave height distribution map while viewing the wave height distribution map. Alternatively, it may be automatically determined by comparison with the wave height distribution data for each element.
The electric signal from the X-ray detector can be converted into a digital signal as it is, but can also be converted into a digital signal after amplification.

X線検出器に1次線と高次線とが混在して到達した場合には、波高分布データに複数のピークが現れる。そこで、前記波高分布データに基づいてピークを検出し、そのピークのX線強度を算出する強度算出手段を設け、前記強度算出手段は、複数のピークを検出したときはピーク分離処理を行い、各ピークのX線強度を算出するように構成するとよい。これにより、重複しているピークの影響を取り除くことができ、各ピークのX線強度を精度良く算出することができる。   When a primary line and a high-order line reach the X-ray detector in a mixed manner, a plurality of peaks appear in the wave height distribution data. Therefore, an intensity calculating means for detecting a peak based on the wave height distribution data and calculating the X-ray intensity of the peak is provided, and the intensity calculating means performs a peak separation process when a plurality of peaks are detected, It may be configured to calculate the peak X-ray intensity. Thereby, the influence of the overlapping peak can be removed, and the X-ray intensity of each peak can be calculated with high accuracy.

また、本発明に係る波長分散型X線分光器の一態様として、前記分光素子及びX線検出器を所定の角度関係を保って走査することにより前記分光素子へのX線の入射角度を走査する走査手段と、走査角度位置毎の波高分布データを記憶する波高分布データ記憶手段とを設けることができる。   Further, as an aspect of the wavelength dispersion X-ray spectrometer according to the present invention, the incident angle of X-rays to the spectral element is scanned by scanning the spectral element and the X-ray detector while maintaining a predetermined angular relationship. Scanning means for performing the above and a pulse height distribution data storage means for storing the wave height distribution data for each scanning angle position can be provided.

更に、別の態様として、ディジタル信号の波高の時系列データを記憶する波高データ記憶手段を設けることも良い構成である。このような構成において前記分光素子及びX線検出器を所定の角度関係を保って走査することにより前記分光素子へのX線の入射角度を走査する走査手段を設ける場合には、前記波高データ記憶手段は、走査角度位置毎のディジタル信号の波高の時系列データを記憶すると良い。   Furthermore, as another aspect, it is also a good configuration to provide a pulse height data storage means for storing time series data of the pulse height of the digital signal. In such a configuration, in the case where scanning means for scanning the incident angle of the X-rays to the spectroscopic element by scanning the spectroscopic element and the X-ray detector with a predetermined angular relationship is provided, the wave height data storage The means may store time series data of the wave height of the digital signal for each scanning angle position.

本発明に係る波長分散型X線分光器は、X線検出器による出力信号の全体波形をディジタル信号に変換し、その後の処理をディジタル的に行うように構成したことにより、アナログ回路を用いて処理していた従来構成に比べて個体差を小さくすることができる。また、ディジタル信号をその波高毎に分別し、それぞれ独立的に計数することにより波高分布データを得るようにしたため、試料に含まれる元素の定量分析に要する時間を短縮することができる。   The wavelength dispersive X-ray spectrometer according to the present invention is configured to convert the entire waveform of the output signal from the X-ray detector into a digital signal and perform the subsequent processing digitally, thereby using an analog circuit. Individual differences can be reduced as compared with the conventional configuration which has been processed. Further, since the digital signal is classified for each wave height and independently counted, the wave height distribution data is obtained, so that the time required for quantitative analysis of the elements contained in the sample can be shortened.

以下、本発明を電子線プローブ微小分析装置(EPMA)に適用した一実施例について図1〜図4を参照しながら説明する。図5で説明した構成要素と同一のものについては同一の符号を付している。
図1は本実施例に係るEPMAの概略構成図である。本実施例に係るEPMAは、ビーム発生部28、分光素子である湾曲型の分光結晶10、X線検出器12、プリアンプ14、A/D変換器30、ディジタル処理回路32、波長走査駆動部34、表示部38、前記ディジタル処理回路32及び波長走査駆動部34を制御する制御部36を備えて構成されている。
Hereinafter, an embodiment in which the present invention is applied to an electron probe microanalyzer (EPMA) will be described with reference to FIGS. The same components as those described in FIG. 5 are denoted by the same reference numerals.
FIG. 1 is a schematic configuration diagram of an EPMA according to the present embodiment. The EPMA according to this embodiment includes a beam generation unit 28, a curved spectral crystal 10 as a spectral element, an X-ray detector 12, a preamplifier 14, an A / D converter 30, a digital processing circuit 32, and a wavelength scanning drive unit 34. And a control unit 36 for controlling the display unit 38, the digital processing circuit 32, and the wavelength scanning drive unit 34.

前記分光結晶10の結晶面、X線検出器12の入射面(前記分光結晶10の出射側焦点)、試料S上の電子ビーム照射位置(分光結晶10の入射側焦点)はローランド円上に乗っており、X線検出器12及び分光結晶10は波長走査駆動部34により、それぞれ同軸上の周りに1:2の回転角度比で回転駆動されるようになっている。これにより、分光結晶10とX線検出器12とは倍角の関係(θ、2θ)を保って移動し、X線検出器12に入射するX線の波長(エネルギー)が走査される。
また、図示しないが試料Sは試料テーブルに載置されており、この試料テーブルを水平方向に移動させることにより試料S上の電子ビーム照射位置を走査できるようになっている。
The crystal plane of the spectral crystal 10, the incident surface of the X-ray detector 12 (the output-side focal point of the spectral crystal 10), and the electron beam irradiation position on the sample S (the incident-side focal point of the spectral crystal 10) are on a Roland circle. The X-ray detector 12 and the spectroscopic crystal 10 are rotated by a wavelength scanning drive unit 34 around the same axis at a rotation angle ratio of 1: 2. Thereby, the spectral crystal 10 and the X-ray detector 12 move while maintaining the double angle relationship (θ, 2θ), and the wavelength (energy) of the X-rays incident on the X-ray detector 12 is scanned.
Although not shown, the sample S is placed on the sample table, and the electron beam irradiation position on the sample S can be scanned by moving the sample table in the horizontal direction.

ビーム発生部28にて発せられた電子ビームが試料Sに当たると、これにより励起されたX線が試料Sより放出され、分光結晶により波長選別されてX線検出器12に入射して検出される。X線検出器12からの出力はプリアンプ14にて増幅される。このときの出力は電圧パルス信号となる。この信号の高さの違いが回折次数に対応している。この電圧パルス信号はA/D変換器30にて所定のサンプリング周期でサンプリングされ、ディジタル化されてディジタル処理回路32に入力される。   When the electron beam emitted from the beam generating unit 28 strikes the sample S, the X-rays excited thereby are emitted from the sample S, are subjected to wavelength selection by the spectroscopic crystal, and enter the X-ray detector 12 to be detected. . The output from the X-ray detector 12 is amplified by a preamplifier 14. The output at this time is a voltage pulse signal. This difference in signal height corresponds to the diffraction order. This voltage pulse signal is sampled by the A / D converter 30 at a predetermined sampling period, digitized, and input to the digital processing circuit 32.

ディジタル処理回路32では、ディジタル化された信号波形をディジタル的にフィルタリングした後、パルス部分を抽出し、各パルス部分を波高値に応じて弁別し、それぞれを独立的に並列に計数する。そして、波高分布データを作成してデータメモリ32aに格納する。これにより、図2に示すような波高分布データが得られる。このように弁別後のパルス信号をそれぞれ独立的に且つ並列に計数することにより、波高分布データの作成時間を短縮できる。
また、波長走査駆動部34による分光結晶10の回動動作に同期させて波高分布データを得るために、波長走査駆動部34からディジタル処理回路32に同期信号が送られるようになっている。これにより、データメモリ32aには、走査角度位置毎の波高分布データが時系列で格納される。
尚、波長走査駆動部34からディジタル処理回路32に同期信号を送る構成に代えて、制御部36から波長走査駆動部34及びディジタル処理回路32に制御信号を送るようにしてもよい。
The digital processing circuit 32 digitally filters the digitized signal waveform, extracts pulse portions, discriminates each pulse portion according to the peak value, and independently counts them in parallel. Then, the wave height distribution data is created and stored in the data memory 32a. Thereby, wave height distribution data as shown in FIG. 2 is obtained. Thus, the pulse height distribution data creation time can be reduced by counting the pulse signals after discrimination independently and in parallel.
In addition, a synchronization signal is sent from the wavelength scanning drive unit 34 to the digital processing circuit 32 in order to obtain wave height distribution data in synchronization with the rotation operation of the spectral crystal 10 by the wavelength scanning driving unit 34. Thereby, the data memory 32a stores the wave height distribution data for each scanning angle position in time series.
Instead of the configuration in which the synchronization signal is sent from the wavelength scanning drive unit 34 to the digital processing circuit 32, the control signal may be sent from the control unit 36 to the wavelength scanning driving unit 34 and the digital processing circuit 32.

次に、ディジタル処理回路32で行われるデータ処理について図3及び図4を参照して説明する。
測定が開始されると、ビーム発生部28で発生した電子ビームが試料Sに照射され、試料Sの電子ビーム照射位置からX線が放出される。これにより、ディジタル処理回路32にて波高分布データが作成される。また、制御部36の制御の下、波長走査駆動部34により分光結晶10とX線検出器12とが駆動される。この結果、X線検出器12で検出されるX線の波長範囲が走査され、その走査角度位置毎の波高分布データがディジタル処理回路32にて取得される。取得された波高分布データはデータメモリ32aに格納されると共にそれに基づく波高分布図が表示部38に表示される。図3は走査角度位置毎に取得された波高分布図の一例を示している。
Next, data processing performed by the digital processing circuit 32 will be described with reference to FIGS.
When measurement is started, the electron beam generated by the beam generator 28 is irradiated onto the sample S, and X-rays are emitted from the electron beam irradiation position of the sample S. As a result, wave height distribution data is created by the digital processing circuit 32. Further, under the control of the control unit 36, the spectral crystal 10 and the X-ray detector 12 are driven by the wavelength scanning drive unit 34. As a result, the X-ray wavelength range detected by the X-ray detector 12 is scanned, and the wave height distribution data for each scanning angle position is acquired by the digital processing circuit 32. The acquired wave height distribution data is stored in the data memory 32a, and a wave height distribution map based on the data is displayed on the display unit 38. FIG. 3 shows an example of a wave height distribution map acquired for each scanning angle position.

また、試料Sが載置された試料テーブルを水平方向に移動させて試料S上の電子ビーム照射位置を走査する場合は、照射位置毎の波高分布データが取得される。試料テーブルの移動は制御部36の制御の下で行われる。このときディジタル処理回路32にて取得される波高分布データは、走査角度位置に加えて試料テーブルの位置、つまり試料S上における電子ビーム照射位置と共にデータメモリ32aに格納される。   When the sample table on which the sample S is placed is moved in the horizontal direction to scan the electron beam irradiation position on the sample S, the wave height distribution data for each irradiation position is acquired. The sample table is moved under the control of the control unit 36. The pulse height distribution data acquired by the digital processing circuit 32 at this time is stored in the data memory 32a together with the position of the sample table, that is, the electron beam irradiation position on the sample S in addition to the scanning angle position.

波高分布データが取得されると、ディジタル処理回路32はピーク検出処理を実行し、ピーク面積やピークの高さつまり信号強度から定量分析を行う。また、試料Sに含まれる元素の強度分布や元素の含有量分布に関する情報を得るための処理を実行する。このとき、複数のピーク、例えば図4に示すように2つのピークP1及びP2が重複している場合にはピーク分離処理を実行し、各ピークについて定量分析等を行う。   When the wave height distribution data is acquired, the digital processing circuit 32 executes peak detection processing, and performs quantitative analysis from the peak area and peak height, that is, signal intensity. In addition, a process for obtaining information related to the intensity distribution of elements contained in the sample S and the content distribution of elements is executed. At this time, when a plurality of peaks, for example, two peaks P1 and P2 overlap as shown in FIG. 4, a peak separation process is executed, and quantitative analysis or the like is performed for each peak.

ピーク分離処理としては例えば周知の関数フィッティング処理を用いることができる。関数フィッティング処理では、ガウス関数やローレンツ関数等といった関数が与える曲線を拡大、縮小等して一つの検出ピークにフィッティングさせ、そのフィッティングした関数が与えるピーク位置、ピーク強度を求めた後、その検出ピークからフィッティングした関数の値を差し引いてピークを除き、さらに残余の検出ピークについても同様の処理を行ってピーク位置とピーク強度を求めることで、順次ピーク分離を行う。これにより近接するピークを分離して相互のピークの影響が取り除くことができるため、真のピーク波長やピークの高さを求めることができる。これにより、正確な定量分析が可能となる。   For example, a well-known function fitting process can be used as the peak separation process. In function fitting processing, a curve given by a function such as a Gaussian function or Lorentz function is expanded or reduced to fit to one detection peak, and after obtaining the peak position and peak intensity given by the fitted function, the detected peak The peak value is removed by subtracting the value of the fitted function from the above, and the same processing is performed on the remaining detection peaks to obtain the peak position and peak intensity, thereby sequentially separating the peaks. As a result, adjacent peaks can be separated and the influence of the mutual peaks can be removed, so that the true peak wavelength and peak height can be obtained. This enables accurate quantitative analysis.

なお、上記実施例は一例であって、以下のような変更や修正を行うことができる。
波高分布データに計数値がゼロになる部分が存在する場合に、全ての波高についてその計数値を記憶することとすると、データメモリの記憶領域の無駄に消費してしまうことになる。そこで、波高値の時系列データをデータメモリに格納するようにすると良い。また、走査角度位置毎の波高値の時系列データを格納するようにしても良い。このような構成によれば、データメモリの記憶領域を節約することができる。
In addition, the said Example is an example, Comprising: The following changes and corrections can be performed.
If there is a portion where the count value is zero in the wave height distribution data, if the count values are stored for all the wave heights, the storage area of the data memory is wasted. Therefore, it is preferable to store the time-series data of the peak values in the data memory. Further, time series data of peak values for each scanning angle position may be stored. According to such a configuration, the storage area of the data memory can be saved.

波高分布データ或いは波高データをデータメモリに格納する際に対応付ける情報としては、走査角度位置、サンプリング時刻の他、雰囲気温度、電子ビームのエネルギー等の種々の情報を用いることができる。
分光結晶として平板型分光結晶を用いても良い。この場合は、試料から放出されるX線はマルチキャピラリX線レンズを通して平行化され、分光結晶により分光されて特定の波長を持つX線のみがソーラースリットを通って検出器に入射する。このような構成においても、分光結晶及び検出器は波長走査駆動部により倍角の関係を保って回転駆動される。
試料テーブルを水平方向に移動する代わりにビーム発生部を制御することにより試料S上の電子ビームの照射位置を走査するようにしても良い。
As the information to be associated when the wave height distribution data or the wave height data is stored in the data memory, various information such as the atmospheric temperature and the energy of the electron beam can be used in addition to the scanning angle position and the sampling time.
A plate-type spectral crystal may be used as the spectral crystal. In this case, X-rays emitted from the sample are collimated through a multi-capillary X-ray lens, and only X-rays having a specific wavelength are separated by a spectroscopic crystal and enter the detector through the solar slit. Even in such a configuration, the spectral crystal and the detector are rotationally driven by the wavelength scanning drive unit while maintaining a double angle relationship.
You may make it scan the irradiation position of the electron beam on the sample S by controlling a beam generation part instead of moving a sample table to a horizontal direction.

また、上記以外にも本発明の趣旨の範囲で適宜変形、追加、修正を加えても本願の特許請求の範囲に包含されることは明らかである。   In addition to the above, it is obvious that modifications, additions, and modifications as appropriate within the scope of the present invention are included in the scope of the claims of the present application.

本発明の一実施例を示す電子線プローブ微小分析装置の概略構成図。The schematic block diagram of the electron beam probe microanalyzer which shows one Example of this invention. 本実施例のEPMAで取得される波高分布データの一例を示す図。The figure which shows an example of the wave height distribution data acquired by EPMA of a present Example. 本実施例のEPMAで取得される走査角度位置毎の波高分布図の概念図。The conceptual diagram of the wave height distribution map for every scanning angle position acquired by EPMA of a present Example. ピーク分離処理を説明するための図。The figure for demonstrating a peak separation process. 従来の電子線プローブ微小分析装置の概略構成図。The schematic block diagram of the conventional electron beam probe microanalyzer.

符号の説明Explanation of symbols

10…分光結晶
12…X線検出器
14…プリアンプ
16…波高弁別回路
18…計数回路
20…波形整形回路
28…ビーム発生部
30…A/D変換器
32…ディジタル処理回路
32a…データメモリ
34…波長走査駆動部
36…制御部
38…表示部
DESCRIPTION OF SYMBOLS 10 ... Spectral crystal 12 ... X-ray detector 14 ... Preamplifier 16 ... Wave height discrimination circuit 18 ... Counting circuit 20 ... Waveform shaping circuit 28 ... Beam generation part 30 ... A / D converter 32 ... Digital processing circuit 32a ... Data memory 34 ... Wavelength scanning drive unit 36 ... control unit 38 ... display unit

Claims (5)

試料から発生するX線を分光素子で分光し、X線検出器に導入して検出する波長分散型X線分光器において、
a) 前記X線検出器の出力信号をディジタル信号に変換するA/D変換手段と、
b) 前記ディジタル信号からパルス部分を抽出し、該パルス部分をその波高毎に分別し、それぞれを独立的に計数することにより波高分布データを求める波高分布データ取得手段と、
を備えることを特徴とする波長分散型X線分光器。
In a wavelength dispersive X-ray spectrometer, X-rays generated from a sample are dispersed with a spectroscopic element and introduced into an X-ray detector for detection.
a) A / D conversion means for converting the output signal of the X-ray detector into a digital signal;
b) Extracting a pulse part from the digital signal, separating the pulse part for each wave height, and independently counting each wave height distribution data obtaining means for obtaining the wave height distribution data;
A wavelength dispersive X-ray spectrometer comprising:
前記波高分布データに基づいてピークを検出し、そのピークのX線強度を算出する強度算出手段を備え、
前記強度算出手段は、複数のピークを検出したときはピーク分離処理を行い、各ピークのX線強度を算出することを特徴とする請求項1に記載の波長分散型X線分光器。
Intensity calculating means for detecting a peak based on the wave height distribution data and calculating the X-ray intensity of the peak,
The wavelength dispersion type X-ray spectrometer according to claim 1, wherein the intensity calculation unit performs peak separation processing when a plurality of peaks are detected, and calculates the X-ray intensity of each peak.
前記分光素子及びX線検出器を所定の角度関係を保って走査することにより前記分光器へのX線の入射角度を走査する走査手段と、
走査角度位置毎の波高分布データを記憶する波高分布データ記憶手段と、
を備えることを特徴とする請求項1又は2に記載の波長分散型X線分光器。
Scanning means for scanning the incident angle of the X-rays to the spectroscope by scanning the spectroscopic element and the X-ray detector while maintaining a predetermined angular relationship;
Wave height distribution data storage means for storing wave height distribution data for each scanning angle position;
The wavelength dispersive X-ray spectrometer according to claim 1, comprising:
ディジタル信号の波高の時系列データを記憶する波高データ記憶手段を備えることを特徴とする請求項1又は2に記載の波長分散型X線分光器。   The wavelength dispersion type X-ray spectrometer according to claim 1 or 2, further comprising a pulse height data storage means for storing time series data of the pulse height of the digital signal. 前記分光素子及びX線検出器を所定の角度関係を保って走査することにより前記分光素子へのX線の入射角度を走査する走査手段を備え、
前記波高データ記憶手段は、走査角度位置毎のディジタル信号の波高の時系列データを記憶することを特徴とする請求項4に記載の波長分散型X線分光器。
Scanning means for scanning the incident angle of the X-rays to the spectral element by scanning the spectral element and the X-ray detector while maintaining a predetermined angular relationship;
5. The wavelength dispersive X-ray spectrometer according to claim 4, wherein the wave height data storage means stores time series data of wave heights of digital signals for each scanning angle position.
JP2008114829A 2008-04-25 2008-04-25 Wavelength dispersive X-ray spectrometer Active JP5320807B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008114829A JP5320807B2 (en) 2008-04-25 2008-04-25 Wavelength dispersive X-ray spectrometer
CN 200910134989 CN101566591B (en) 2008-04-25 2009-04-20 Wavelength dispersion type x ray spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114829A JP5320807B2 (en) 2008-04-25 2008-04-25 Wavelength dispersive X-ray spectrometer

Publications (2)

Publication Number Publication Date
JP2009264926A true JP2009264926A (en) 2009-11-12
JP5320807B2 JP5320807B2 (en) 2013-10-23

Family

ID=41282851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114829A Active JP5320807B2 (en) 2008-04-25 2008-04-25 Wavelength dispersive X-ray spectrometer

Country Status (2)

Country Link
JP (1) JP5320807B2 (en)
CN (1) CN101566591B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752997B2 (en) 2014-05-30 2017-09-05 Hitachi, Ltd. Charged-particle-beam analysis device and analysis method
WO2019064868A1 (en) * 2017-09-27 2019-04-04 株式会社島津製作所 X-ray spectroscopic analysis device and chemical state analysis device using said x-ray spectroscopic analysis device
US11112371B2 (en) 2017-05-18 2021-09-07 Shimadzu Corporation X-ray spectrometer
EP4365580A1 (en) * 2022-11-02 2024-05-08 Jeol Ltd. Wavelength-dispersive x-ray spectrometer analyzing method and analyzer
JP7496767B2 (en) 2020-12-15 2024-06-07 株式会社日立ハイテク Charged particle beam equipment

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953298B1 (en) * 2009-11-30 2014-10-31 Commissariat Energie Atomique METHOD OF CORRECTING THE STACK PHENOMENON APPLIED TO ACQUIRED X-RAY SPECTRA USING A SPECTROMETRIC SENSOR
JP6026936B2 (en) * 2013-03-28 2016-11-16 株式会社日立ハイテクサイエンス Foreign object detection device
CN105092618A (en) * 2015-09-18 2015-11-25 北京师范大学 X-ray diffractometer achieving microbeam energy dispersion and use method thereof
DE102016014213A1 (en) * 2015-12-08 2017-07-06 Shimadzu Corporation X-RAY SPECTROSCOPIC ANALYSIS DEVICE AND ELEMENTARY ANALYSIS METHOD
CN105911681A (en) * 2016-06-28 2016-08-31 顾士平 High resolution X ray, gamma ray and electron ray microscope
CN110621986B (en) * 2017-03-22 2022-05-17 斯格瑞公司 Method of performing x-ray spectral analysis and x-ray absorption spectrometer system
JP6791081B2 (en) * 2017-09-26 2020-11-25 株式会社島津製作所 Refractive index measuring device and refractive index measuring method
JP7395775B2 (en) 2020-05-18 2023-12-11 シグレイ、インコーポレイテッド Systems and methods for X-ray absorption spectroscopy using a crystal analyzer and multiple detector elements
CN111678600B (en) * 2020-08-10 2020-10-30 中国工程物理研究院激光聚变研究中心 Hall crystal with flat response
DE112021004828T5 (en) 2020-09-17 2023-08-03 Sigray, Inc. SYSTEM AND PROCEDURE USING X-RAYS FOR DEPTH RESOLUTION MEASUREMENT AND ANALYSIS
WO2022126071A1 (en) 2020-12-07 2022-06-16 Sigray, Inc. High throughput 3d x-ray imaging system using a transmission x-ray source
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167451A (en) * 1985-12-20 1987-07-23 Shimadzu Corp X-ray spectroscope
JPH01185480A (en) * 1988-01-20 1989-07-25 Horiba Ltd Radiation analyzing apparatus for both edx/wdx
JPH04204397A (en) * 1990-11-30 1992-07-24 Shimadzu Corp X-ray spectroscopic device
JPH06130155A (en) * 1992-04-15 1994-05-13 Philips Electron Nv X-ray analyzer having function for correcting pulse amplitude shifting and detector reading circuit means suitable for utilization in analyzer thereof
JPH11352080A (en) * 1998-06-05 1999-12-24 Shimadzu Corp Fluorescent x-ray analyzer
JP2002357571A (en) * 2001-05-31 2002-12-13 Rigaku Industrial Co Wavelength dispersion type fluorescent x-ray analysis apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167451A (en) * 1985-12-20 1987-07-23 Shimadzu Corp X-ray spectroscope
JPH01185480A (en) * 1988-01-20 1989-07-25 Horiba Ltd Radiation analyzing apparatus for both edx/wdx
JPH04204397A (en) * 1990-11-30 1992-07-24 Shimadzu Corp X-ray spectroscopic device
JPH06130155A (en) * 1992-04-15 1994-05-13 Philips Electron Nv X-ray analyzer having function for correcting pulse amplitude shifting and detector reading circuit means suitable for utilization in analyzer thereof
JPH11352080A (en) * 1998-06-05 1999-12-24 Shimadzu Corp Fluorescent x-ray analyzer
JP2002357571A (en) * 2001-05-31 2002-12-13 Rigaku Industrial Co Wavelength dispersion type fluorescent x-ray analysis apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752997B2 (en) 2014-05-30 2017-09-05 Hitachi, Ltd. Charged-particle-beam analysis device and analysis method
US11112371B2 (en) 2017-05-18 2021-09-07 Shimadzu Corporation X-ray spectrometer
WO2019064868A1 (en) * 2017-09-27 2019-04-04 株式会社島津製作所 X-ray spectroscopic analysis device and chemical state analysis device using said x-ray spectroscopic analysis device
WO2019064360A1 (en) * 2017-09-27 2019-04-04 株式会社島津製作所 X-ray spectroscopic analysis device and chemical state analysis device using said x-ray spectroscopic analysis device
JPWO2019064868A1 (en) * 2017-09-27 2020-10-01 株式会社島津製作所 An X-ray spectroscopic analyzer and a chemical state analysis method using the X-ray spectroscopic analyzer.
US11137360B2 (en) 2017-09-27 2021-10-05 Shimadzu Corporation X-ray spectrometer and chemical state analysis method using the same
JP7147770B2 (en) 2017-09-27 2022-10-05 株式会社島津製作所 X-ray spectroscopic analyzer and chemical state analysis method using the X-ray spectroscopic analyzer
JP7496767B2 (en) 2020-12-15 2024-06-07 株式会社日立ハイテク Charged particle beam equipment
EP4365580A1 (en) * 2022-11-02 2024-05-08 Jeol Ltd. Wavelength-dispersive x-ray spectrometer analyzing method and analyzer

Also Published As

Publication number Publication date
CN101566591B (en) 2013-01-02
JP5320807B2 (en) 2013-10-23
CN101566591A (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP5320807B2 (en) Wavelength dispersive X-ray spectrometer
Pascarelli et al. Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications
JP6769402B2 (en) Electron microanalyzer and data processing program
CN110873725B (en) X-ray analysis apparatus
US9752997B2 (en) Charged-particle-beam analysis device and analysis method
JP2007285786A (en) X-ray analyzer using electron beam
JP6576751B2 (en) Analysis method and X-ray photoelectron spectrometer
US4885465A (en) Spectrum display device for x-ray microanalyzer or the like
JP2009250867A (en) X-ray analyzer with energy dispersive x-ray spectrometer
JP2009047586A (en) X-ray analysis device conducting chemical bonding state analysis
JP6851283B2 (en) Image processing equipment, analyzers, and image processing methods
JP4499125B2 (en) Quantitative analysis method in sample analyzer
JP6808693B2 (en) X-ray analyzer and counting rate correction method
JP7030077B2 (en) X-ray analyzer
KR101169502B1 (en) Wave dispersive x-ray spectrometer
JP2010223898A (en) Sample analysis method and sample analyzer
JP2009097957A (en) Analysis method using x-ray spectrum
JP2688349B2 (en) Spectrum display device for X-ray microanalyzer etc.
JP3869988B2 (en) Spectral display device for surface analysis equipment
JP4486438B2 (en) X-ray analyzer with wave height distribution display function
WO2018100873A1 (en) X-ray fluorescence analyzer
JP2002062270A (en) Method of displaying face analysis data in surface analyzer using electron beam
JP7444294B2 (en) Fluorescent X-ray analyzer
JP4365687B2 (en) Analysis method and analyzer
JP2002357571A (en) Wavelength dispersion type fluorescent x-ray analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5320807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151