JP2009263448A - Inorganic particle-containing resin composition and inorganic layer using the same - Google Patents

Inorganic particle-containing resin composition and inorganic layer using the same Download PDF

Info

Publication number
JP2009263448A
JP2009263448A JP2008112442A JP2008112442A JP2009263448A JP 2009263448 A JP2009263448 A JP 2009263448A JP 2008112442 A JP2008112442 A JP 2008112442A JP 2008112442 A JP2008112442 A JP 2008112442A JP 2009263448 A JP2009263448 A JP 2009263448A
Authority
JP
Japan
Prior art keywords
inorganic
binder polymer
resin composition
inorganic fine
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008112442A
Other languages
Japanese (ja)
Inventor
Naoki Yamada
直毅 山田
Yoshizo Igarashi
由三 五十嵐
Hiroyuki Tanaka
裕之 田仲
Yuji Kobayashi
雄二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008112442A priority Critical patent/JP2009263448A/en
Publication of JP2009263448A publication Critical patent/JP2009263448A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic particle-containing resin composition maintaining advantages of containing a binder polymer (suppressing sedimentation, preventing alteration and adjusting a viscosity) while reducing a generation amount of amorphous carbon during pyrolysis of the binder polymer, and to provide an inorganic layer using the composition. <P>SOLUTION: The inorganic particle-containing resin composition comprises at least: (A) an organic compound having a viscosity of 10,000 to 1,000,000 mPa s at 25°C and a heating residue of 0 to 1 wt.% at 300°C; (B) a binder polymer; and (C) inorganic fine particles. The inorganic layer is obtained by applying and calcining the above inorganic particle-containing resin composition on a substrate to form a layer containing the inorganic fine particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無機微粒子含有樹脂組成物及びそれを用いた無機物層に関する。   The present invention relates to a resin composition containing inorganic fine particles and an inorganic layer using the same.

無機微粒子を含有する樹脂組成物は、適用される無機微粒子層又は無機物層(以下、両者を合わせて無機物層と言う場合がある)を形成する工程において、形成する層の厚さの制御が容易であり、かつ、粘度によっては液体同様に取り扱えることによる輸送の自由度の高さ、また、無機微粒子を樹脂と混合することで微粒子の飛び散りが抑制できるという特徴から、作業空間の清浄度改善等に大きく寄与するため、多くの無機微粒子層又は無機物層形成プロセスに適用されている。   In the resin composition containing inorganic fine particles, it is easy to control the thickness of the layer to be formed in the step of forming the applied inorganic fine particle layer or inorganic layer (hereinafter sometimes referred to as inorganic layer). In addition, due to the high degree of freedom of transportation that can be handled like a liquid depending on the viscosity, and the ability to suppress scattering of fine particles by mixing inorganic fine particles with resin, the cleanliness of the work space is improved, etc. Therefore, it is applied to many inorganic fine particle layer or inorganic layer forming processes.

従来、この無機微粒子含有樹脂組成物は、(A)バインダポリマ、(B)希釈溶媒、(C)無機微粒子を最低限含む組成により製造されてきた。このような樹脂組成物を、最終的に所望する無機物層の厚さに合わせて基材上に塗布し、加熱により希釈溶媒を蒸発させ、さらにバインダポリマを熱分解により脱離させ、無機微粒子を基材上で層状とし、さらに加熱することにより無機微粒子を溶融により結着させることで無機物層を形成する工程が広く用いられている(例えば特許文献1参照)。   Conventionally, this inorganic fine particle-containing resin composition has been produced with a composition containing at least (A) a binder polymer, (B) a diluting solvent, and (C) inorganic fine particles. Such a resin composition is finally applied on the substrate in accordance with the desired thickness of the inorganic layer, the diluted solvent is evaporated by heating, and the binder polymer is further desorbed by thermal decomposition, whereby inorganic fine particles are removed. A process of forming an inorganic layer by forming a layer on a substrate and further binding inorganic fine particles by heating to form a layer is widely used (see, for example, Patent Document 1).

前記の無機物層形成プロセスは、バインダポリマを熱分解するため、大量の不定形炭素が発生する。それらの不定形炭素が加熱装置内部に付着することで加熱の効率悪化、雰囲気の汚染を引き起こしやすい。また、発生する不定形炭素の処理は、一般に熱処理を行い完全燃焼させることが必要であるが、そのために環境負荷の増大、コストの増大といった問題が発生する。そこで、高粘度であり、かつ、バインダポリマの熱分解温度よりも低温で蒸発する有機化合物でバインダポリマを代替し、バインダポリマの熱分解工程を省略できる無機微粒子含有組成物を本発明者らは提案した。特に、イソボルニルシクロヘキサノールは、300℃における加熱残分が0〜1重量%であり、通常のバインダポリマとして用いられるセルロース類が、前記イソボルニルシクロヘキサノールと同様の加熱残分を達成するには、それよりも高い300〜500℃程度まで加熱することが必要であり、低温で加熱残分を抑制できる有用な化合物である。   In the inorganic layer forming process, the binder polymer is thermally decomposed, so that a large amount of amorphous carbon is generated. Since these amorphous carbons adhere to the inside of the heating device, heating efficiency is deteriorated and the atmosphere is easily contaminated. In addition, the treatment of the generated amorphous carbon generally requires heat treatment and complete combustion, but this causes problems such as an increase in environmental load and an increase in cost. Therefore, the present inventors have replaced the binder polymer with an organic compound that has a high viscosity and evaporates at a temperature lower than the thermal decomposition temperature of the binder polymer, and the present inventors have prepared an inorganic fine particle-containing composition that can omit the thermal decomposition step of the binder polymer. Proposed. In particular, isobornylcyclohexanol has a heating residue at 300 ° C. of 0 to 1% by weight, and celluloses used as ordinary binder polymers achieve the same heating residue as that of isobornylcyclohexanol. Is a useful compound that needs to be heated to a temperature of about 300 to 500 ° C., which is higher than that, and can suppress the heating residue at a low temperature.

特開平9−102272号公報JP-A-9-102272

しかしながら、無機微粒子を含有する組成物は、バインダポリマを併せて含有する場合、(1)組成物にチキソ性を付与でき、保存の際に無機微粒子の沈降を抑制する、(2)バインダポリマが無機微粒子の表面を保護して変質を予防する、(3)バインダポリマの分子量を調整することにより、ペースト粘度を任意の範囲へ誘導しやすい等の長所が挙げられる。そのため、イソボルニルシクロヘキサノール等の化合物と無機微粒子だけから成る組成物では、前記(1)〜(3)の長所が得られないこととなり、無機微粒子含有組成物の物性が著しく劣化する可能性がある。また、エチルセルロースは、無機微粒子の沈降抑制等に優れるポリマであるが、熱分解温度が高く、プラズマディスプレイパネル用ガラス基板用途の電極、誘電体層、蛍光体層の形成には好ましくない。
上記方法で用いられるバインダポリマは、良好な塗膜形成のためには有効であるが、上記のようにバインダポリマを分解させるためには、高温が必要であり、多大なエネルギーを要したり、分解生成物が電気炉内の壁に堆積する問題がある。更に、バインダポリマが分解中に炭化するなどして残存すると、気泡や膨れが発生したり、放電中に徐々に気化して放電特性に悪影響を及ぼしたりするなどの問題が生じることがある。
本発明は、上記事情に鑑みてなされたものであり、バインダポリマの熱分解時の不定形炭素の発生量を低減しつつ、バインダポリマ含有の長所を保持するという、相反する目的を満たした無機微粒子含有樹脂組成物及びそれを用いた無機物層を提供することを目的とする。
However, when the composition containing inorganic fine particles contains a binder polymer together, (1) it can impart thixotropy to the composition and suppress sedimentation of the inorganic fine particles during storage, (2) the binder polymer For example, the surface of the inorganic fine particles is protected to prevent alteration, and (3) by adjusting the molecular weight of the binder polymer, the paste viscosity can be easily guided to an arbitrary range. Therefore, in the composition consisting only of a compound such as isobornylcyclohexanol and inorganic fine particles, the advantages (1) to (3) cannot be obtained, and the physical properties of the inorganic fine particle-containing composition may be significantly deteriorated. There is. Ethyl cellulose is a polymer that is excellent in suppressing sedimentation of inorganic fine particles, but has a high thermal decomposition temperature, and is not preferable for forming electrodes, dielectric layers, and phosphor layers for plasma display panel glass substrates.
The binder polymer used in the above method is effective for forming a good coating film, but in order to decompose the binder polymer as described above, a high temperature is required, and a great deal of energy is required. There is a problem that decomposition products accumulate on the walls in the electric furnace. Furthermore, if the binder polymer remains by being carbonized during decomposition, problems such as bubbles and blisters may occur, or it may gradually evaporate during discharge and adversely affect discharge characteristics.
The present invention has been made in view of the above circumstances, and is an inorganic material that satisfies the conflicting purpose of reducing the amount of amorphous carbon generated during thermal decomposition of the binder polymer while maintaining the advantages of containing the binder polymer. An object is to provide a fine particle-containing resin composition and an inorganic layer using the same.

本発明は、[1]25℃における粘度が10,000〜1,000,000mPa・sで、300℃における加熱残分が0〜1重量%である有機化合物、(B)バインダポリマ、及び、(C)無機微粒子を少なくとも含んでなる無機微粒子含有樹脂組成物に関する。
また、本発明は、[2]前記(A)有機化合物が、下記構造式(1)で表わされるイソボルニルシクロヘキサノールである、上記[1]に記載の無機粒子含有組成物に関する。
The present invention provides [1] an organic compound having a viscosity at 25 ° C. of 10,000 to 1,000,000 mPa · s and a heating residue at 300 ° C. of 0 to 1% by weight, (B) a binder polymer, and (C) It relates to an inorganic fine particle-containing resin composition comprising at least inorganic fine particles.
The present invention also relates to [2] the inorganic particle-containing composition according to [1], wherein (A) the organic compound is isobornylcyclohexanol represented by the following structural formula (1).

Figure 2009263448
また、本発明は、[3]前記(B)バインダポリマが、アクリル樹脂である、上記[1]又は上記[2]に記載の無機粒子含有組成物に関する。
また、本発明は、[4](A)25℃における粘度が10,000〜1,000,000mPa・sで、300℃における加熱残分が0〜1重量%である有機化合物が、テルペン系化合物である上記[1]に記載の無機微粒子含有樹脂組成物に関する。
また、本発明は、[5]上記[1]ないし上記[4]のいずれかに記載の無機微粒子含有樹脂組成物を基材上に形成し焼成して無機微粒子を含む層を形成して得られる無機物層に関する。
Figure 2009263448
The present invention also relates to [3] the inorganic particle-containing composition according to [1] or [2] above, wherein the (B) binder polymer is an acrylic resin.
The present invention also provides: [4] (A) an organic compound having a viscosity at 25 ° C. of 10,000 to 1,000,000 mPa · s and a heating residue at 300 ° C. of 0 to 1% by weight is a terpene series. The inorganic fine particle-containing resin composition according to [1], which is a compound.
The present invention is also obtained by [5] forming the inorganic fine particle-containing resin composition according to any one of [1] to [4] above on a base material, and baking it to form a layer containing inorganic fine particles. It relates to an inorganic material layer.

本発明の無機微粒子含有樹脂組成物は、熱処理時にバインダポリマの熱分解により発生する不定形炭素の発生量が低減可能で、不定形炭素の発生量を低減できることから、その処理コストの低減も可能であり、無機物層を形成する際にバインダポリマを含有することによる長所を維持でき、しかも、バインダポリマ分解物の残存が少なく、また、気泡や膨れの発生のない無機物層を提供することができる。   The inorganic fine particle-containing resin composition of the present invention can reduce the amount of amorphous carbon generated due to thermal decomposition of the binder polymer during heat treatment, and can also reduce the amount of amorphous carbon generated, thereby reducing its processing cost. It is possible to maintain the advantages of containing the binder polymer when forming the inorganic layer, and to provide an inorganic layer with little residual binder polymer decomposition product and free from bubbles and blisters. .

以下、本発明の詳細について説明する。
本発明の無機微粒子含有樹脂組成物に用いる(A)25℃における粘度が10,000〜1,000,000mPa・sで、300℃における加熱残分が0〜1重量%である有機化合物としては、テルペン系化合物が好ましい。
前記テルペン系化合物としては、下記構造式(1)で表わされるイソボルニルシクロヘキサノールであることが特に好ましい。
Details of the present invention will be described below.
As the organic compound (A) used in the inorganic fine particle-containing resin composition of the present invention, the viscosity at 25 ° C. is 10,000 to 1,000,000 mPa · s, and the heating residue at 300 ° C. is 0 to 1% by weight. Terpene compounds are preferred.
The terpene compound is particularly preferably isobornylcyclohexanol represented by the following structural formula (1).

Figure 2009263448
Figure 2009263448

本発明における有機化合物の粘度とは、JIS Z 8803、JIS K7117に準拠した方法により25℃で測定された値を意味する。また、(A)有機化合物は、300℃で10分間加熱したときの加熱残分が1重量%以下である。なお、加熱環境は、大気中である。このような有機化合物を用いた場合、焼成して得られる無機体において、有機化合物に起因する悪影響を更に低減することができる。   The viscosity of the organic compound in the present invention means a value measured at 25 ° C. by a method based on JIS Z 8803 and JIS K7117. Moreover, the heating residue when (A) the organic compound is heated at 300 ° C. for 10 minutes is 1% by weight or less. The heating environment is in the atmosphere. When such an organic compound is used, an adverse effect caused by the organic compound can be further reduced in the inorganic body obtained by firing.

本発明における(B)バインダポリマは、無機粉末を安定的に含有することが出来る樹脂であれば特に制限されないが、溶剤や必要に応じて添加される添加剤など、樹指組成物中の他の成分との相溶性に優れることが好ましい。具体的には、例えば、(メタ)アクリル系樹脂、ヒドロキシスチレン樹脂、ノボラック樹指、ポリエステル樹脂などが好適に用いることができる。これらの中では、熱分解温度が低い(メタ)アクリル系樹脂が好ましい。ここで、本明細書において、「(メタ)アクリル」とは、メタクリル又はアクリルのことを意味し、「(メタ)アクリル系樹指」とは、メタクリル基又はアクリル基を有するモノマー由来のモノマー単位で主として構成される重合体のことを意味する。
上記樹脂として用いる(メタ)アクリル系樹脂としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸(2−エチル)ヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ベンジル、グリシジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の(メタ)アクリル酸エステルを重合したものが挙げられる。これらのモノマーは、1種を単独で又は2種以上を組み合わせて重合させてもよい。
The binder polymer (B) in the present invention is not particularly limited as long as it is a resin that can stably contain inorganic powder, but other solvents in the resin composition such as solvents and additives that are added as necessary. It is preferable that the compatibility with the component is excellent. Specifically, for example, (meth) acrylic resin, hydroxystyrene resin, novolak resin, polyester resin and the like can be suitably used. Among these, (meth) acrylic resins having a low thermal decomposition temperature are preferable. Here, in this specification, “(meth) acryl” means methacryl or acrylic, and “(meth) acrylic resin” means a monomer unit derived from a monomer having a methacryl group or an acrylic group. Means a polymer mainly composed of
Examples of the (meth) acrylic resin used as the resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (meth) What polymerized (meth) acrylic acid ester, such as (2-ethyl) hexyl acrylate, lauryl (meth) acrylate, benzyl (meth) acrylate, glycidyl (meth) acrylate, dicyclopentanyl (meth) acrylate, etc. Can be mentioned. These monomers may be polymerized singly or in combination of two or more.

また、上記の(メタ)アクリル酸エステルのようなモノマーの他、スチレン、α−メチルスチレン等の芳香族ビニル系モノマー類、ブタジエン、イソプレン等の共役ジエン類、ポリスチレン、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸ベンジル等のポリマー鎖の一方の末端に(メタ)アクリロイル基等の重合性不飽和基を有するマクロモノマー類、o−ヒドロキシスチレン、m−ヒドロキシスチレン、p−ヒドロキシスチレン等のフェノール性水酸基含有モノマ一類等のモノマーを、単独又は複数種で重合させて得られるポリマーが挙げられる。   In addition to monomers such as the above (meth) acrylic acid esters, aromatic vinyl monomers such as styrene and α-methylstyrene, conjugated dienes such as butadiene and isoprene, polystyrene, poly (meth) acrylate methyl , Macromonomers having a polymerizable unsaturated group such as a (meth) acryloyl group at one end of a polymer chain such as poly (meth) ethyl acrylate and poly (meth) acrylate benzyl, o-hydroxystyrene, m- Examples thereof include polymers obtained by polymerizing monomers such as monohydroxy phenol-containing monomers such as hydroxystyrene and p-hydroxystyrene, alone or in combination.

(B)バインダポリマは、その重量分子量が40,000〜2,000,000であることが好ましく、50,000〜300,000であることがより好ましく、100,000〜200,000であることが特に好ましい。40,000未満では所望の粘度を得るために必要な配合量が多くなるため、不定形炭素の発生量が多くなる傾向が強くなり、2,000,000を超えるとバインダポリマの溶解性が悪化し、溶解の際に使用可能な溶剤が過度に制限されたり、溶解工程に必要とされる時間が長くなるなど、取り扱いが困難となりやすい。
さらに、バインダポリマの分子量は、目的とするペーストの粘度に応じて適宜選択すべきであるが、例えば目的のペースト粘度が10,000〜100,000mPa・sである場合には、50,000〜300,000であることがより好ましく、100,000〜200,000であることが特に好ましい。
本発明におけるバインダポリマの分子量とは、GPC(ゲル浸透クロマトグラフィー)法により、ポリスチレン標準物質を用いて作成した検量線を基に推定した重量平均分子量(Mw)である。
(B) The binder polymer preferably has a weight molecular weight of 40,000 to 2,000,000, more preferably 50,000 to 300,000, and 100,000 to 200,000. Is particularly preferred. If it is less than 40,000, the blending amount necessary for obtaining the desired viscosity increases, so that the tendency to increase the amount of amorphous carbon generated becomes strong, and if it exceeds 2,000,000, the solubility of the binder polymer deteriorates. However, the solvent that can be used for the dissolution is excessively limited, and the time required for the dissolution process tends to be long.
Furthermore, the molecular weight of the binder polymer should be appropriately selected according to the viscosity of the target paste. For example, when the target paste viscosity is 10,000 to 100,000 mPa · s, 50,000 to 300,000 is more preferable, and 100,000 to 200,000 is particularly preferable.
The molecular weight of the binder polymer in the present invention is a weight average molecular weight (Mw) estimated by a GPC (gel permeation chromatography) method based on a calibration curve created using a polystyrene standard substance.

本発明で用いる(C)無機微粒子は特に制限はないが、金属粒子、金属酸化物粒子、ガラス粒子、蛍光体粒子などが挙げられる。金属粒子としては、金粉、銀粉などが挙げられる。また、これら粒子に結着材として後述するガラス粒子を添加することがある。金属酸化物粒子としては、酸化ルテニウム、酸化銅、酸化錫、ITOなどが挙げられる、また、これら粒子に結着材として後述するガラス粒子を添加することがある。ガラス粒子としては、低融点であることが好ましく、その軟化点が400〜600℃の範囲内にあることが好ましい。軟化点が600℃を超えるとガラス基板に歪みなどが発生しやすい傾向がある。金属粒子及び金属酸化物粒子の平均粒径は、0.01〜20μmが好ましく、0.1〜10μmがより好ましい。ガラス粒子の平均粒径は、0.01〜20μmが好ましく、0.1〜10μmがより好ましい。蛍光体粒子の平均粒径は、0.01〜20μmが好ましく、0.1〜10μmがより好ましい。   The (C) inorganic fine particles used in the present invention are not particularly limited, and examples thereof include metal particles, metal oxide particles, glass particles, and phosphor particles. Examples of the metal particles include gold powder and silver powder. Moreover, the glass particle mentioned later may be added to these particles as a binder. Examples of the metal oxide particles include ruthenium oxide, copper oxide, tin oxide, ITO and the like, and glass particles which will be described later may be added to these particles as a binder. The glass particles preferably have a low melting point and preferably have a softening point in the range of 400 to 600 ° C. If the softening point exceeds 600 ° C., the glass substrate tends to be distorted. 0.01-20 micrometers is preferable and, as for the average particle diameter of a metal particle and a metal oxide particle, 0.1-10 micrometers is more preferable. The average particle size of the glass particles is preferably from 0.01 to 20 μm, more preferably from 0.1 to 10 μm. The average particle diameter of the phosphor particles is preferably 0.01 to 20 μm, and more preferably 0.1 to 10 μm.

これらガラス粒子としては、例えば、酸化鉛、酸化ホウ素、酸化ケイ素系(PbO−B−SiO系)、酸化鉛、酸化ホウ素、酸化ケイ素、酸化アルミニウム系(PbO−B−SiO−Al系)、酸化亜鉛、酸化ホウ素、酸化ケイ素系(ZnO−B−SiO系)、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化アルミニウム系(ZnO−B−SiO−Al系)、酸化鉛、酸化亜鉛、酸化ホウ素、酸化ケイ素系(PbO−ZnO−B−SiO系)、酸化鉛、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化アルミニウム系(PbO−ZnO−B−SiO−Al系)、酸化ビスマス、酸化ホウ素、酸化ケイ素系(Bi−B−SiO系)、酸化ビスマス、酸化ホウ素、酸化ケイ素、酸化アルミニウム系(Bi−B−SiO−Al系)、酸化ビスマス、酸化亜鉛、酸化ホウ素、酸化ケイ素系(Bi−ZnO−B−SiO系)、酸化ビスマス、酸化亜鉛、酸化ホウ素、酸化ケイ素、酸化アルミニウム系(Bi−ZnO−B−SiO−Al系)等のガラス粒子が挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。 Examples of the glass particles include lead oxide, boron oxide, silicon oxide (PbO—B 2 O 3 —SiO 2 ), lead oxide, boron oxide, silicon oxide, and aluminum oxide (PbO—B 2 O 3 —). SiO 2 —Al 2 O 3 system), zinc oxide, boron oxide, silicon oxide system (ZnO—B 2 O 3 —SiO 2 system), zinc oxide, boron oxide, silicon oxide, aluminum oxide system (ZnO—B 2 O) 3- SiO 2 -Al 2 O 3 system), lead oxide, zinc oxide, boron oxide, silicon oxide system (PbO—ZnO—B 2 O 3 —SiO 2 system), lead oxide, zinc oxide, boron oxide, silicon oxide , based on aluminum oxide (PbO-ZnO-B 2 O 3 -SiO 2 -Al 2 O 3 system), bismuth oxide, boron oxide, silicon oxide (Bi 2 O 3 -B 2 O 3 -SiO 2 system , Bismuth oxide, boron oxide, silicon oxide, aluminum oxide-based (Bi 2 O 3 -B 2 O 3 -SiO 2 -Al 2 O 3 system), bismuth oxide, zinc oxide, boron oxide, silicon oxide (Bi 2 O 3- ZnO—B 2 O 3 —SiO 2 system), bismuth oxide, zinc oxide, boron oxide, silicon oxide, aluminum oxide system (Bi 2 O 3 —ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 system) ) And the like. These may be used alone or in combination of two or more.

蛍光体粒子としては、金属酸化物を主体とする蛍光体が挙げられ、赤色発色の蛍光体としては、例えば、YS:Eu、Zn(PO:Mn、Y:Eu、YVO:Eu、(Y,Gd)BO:Eu等が挙げられる。青色発色の蛍光体としては、例えば、ZnS:Ag、ZnS:Ag,Al、ZnS:Ag,Ga,Al、ZnS:Ag,Cu,Ga,Cl、ZnS:Ag+In、CaCl:Eu+、(Sr,Ca,Ba,Mg)10(POCl:Eu+、Sr10(POCl:Eu+、BaMgAl1423:Eu+、BaMgAl1626:Eu+等が挙げられる。緑色発色の蛍光体としては、例えば、ZnS:Cu、ZnSiO:Mn、ZnS:Cu+ZnSiO:Mn、GdS:Tb、YAl12:Ce、ZnS:Cu,Al、YS:Tb、ZnO:Zn、ZnS:Cu,Al+In、LaPO:Ce,Tb、BaO・6Al:Mn等が挙げられる。 Examples of the phosphor particles include phosphors mainly composed of metal oxides. Examples of red-colored phosphors include Y 2 O 2 S: Eu, Zn 3 (PO 4 ) 2 : Mn, Y 2 O. 3 : Eu, YVO 4 : Eu, (Y, Gd) BO 3 : Eu, and the like. Examples of the blue color phosphor include ZnS: Ag, ZnS: Ag, Al, ZnS: Ag, Ga, Al, ZnS: Ag, Cu, Ga, Cl, ZnS: Ag + In 2 O 3 , and Ca 2 B 5 O. 9 Cl: Eu 2 +, ( Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 2: Eu 2 +, Sr 10 (PO 4) 6 Cl 2: Eu 2 +, BaMgAl 14 O 23: Eu 2 +, BaMgAl 16 O 26 : Eu 2 + and the like. Examples of the green color fluorescent material include ZnS: Cu, Zn 2 SiO 4 : Mn, ZnS: Cu + Zn 2 SiO 4 : Mn, Gd 2 O 2 S: Tb, Y 3 Al 5 O 12 : Ce, ZnS: Cu. , Al, Y 2 O 2 S: Tb, ZnO: Zn, ZnS: Cu, Al + In 2 O 3 , LaPO 4 : Ce, Tb, BaO.6Al 2 O 3 : Mn, and the like.

前記した、(A)粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物、(B)バインダポリマ、及び、(C)無機微粒子を少なくとも含んでなる無機微粒子含有樹脂組成物は公知の混合法を用いて混合することで、スラリー液またはペーストとすることができる。   As described above, (A) an organic compound having a viscosity of 10,000 to 1,000,000 mPa · s (25 ° C.) and a heating residue at 300 ° C. of 0 to 1% by weight, (B) a binder polymer, and (C) The inorganic fine particle-containing resin composition comprising at least inorganic fine particles can be mixed into a slurry liquid or paste by using a known mixing method.

本発明の無機微粒子含有樹脂組成物における(A)有機化合物と(B)バインダポリマは、(A)/(B)=98/2〜50/50(重量比)が好ましく、(A)/(B)=96/4〜75/25がさらに好ましい。(A)有機化合物が50重量%未満では、バインダポリマの比率が高く、バインダポリマの熱分解時の不定形炭素の発生量低減の効果が低く、98重量%を超えると、バインダポリマが効果を発揮する無機微粒子の表面保護、無機微粒子の沈降抑制、及び無機微粒子含有樹脂組成物を塗布する際に塗膜の表面平滑性の確保が困難となる傾向がある。
また、(C)無機微粒子は、(A)有機化合物と(B)バインダポリマの総計に対して5〜80重量%が好ましく、10〜70重量%がさらに好ましく、50〜70重量%がより好ましい。(C)無機微粒子が、5重量%未満では、無機微粒子の存在量が希薄であるため、得られる無機物層の厚さが不均一となることがあり、80重量%を超えると無機微粒子含有樹脂組成物のチキソ性が上昇し、塗布時に平滑な層を形成すること、又は塗布自体が困難となる傾向がある。
The (A) organic compound and the (B) binder polymer in the inorganic fine particle-containing resin composition of the present invention are preferably (A) / (B) = 98/2 to 50/50 (weight ratio), and (A) / ( B) = 96/4 to 75/25 is more preferable. (A) If the organic compound is less than 50% by weight, the binder polymer ratio is high, and the effect of reducing the amount of amorphous carbon generated during thermal decomposition of the binder polymer is low. If the organic compound exceeds 98% by weight, the binder polymer is effective. When applying the surface protection of the inorganic fine particles to be exhibited, the suppression of the precipitation of the inorganic fine particles, and the resin composition containing the inorganic fine particles, it tends to be difficult to ensure the surface smoothness of the coating film.
Further, (C) inorganic fine particles are preferably 5 to 80% by weight, more preferably 10 to 70% by weight, and more preferably 50 to 70% by weight based on the total of (A) organic compound and (B) binder polymer. . (C) If the inorganic fine particles are less than 5% by weight, the amount of the inorganic fine particles is dilute, so the thickness of the resulting inorganic layer may be non-uniform. If it exceeds 80% by weight, the inorganic fine particle-containing resin The thixotropy of the composition increases, and it tends to be difficult to form a smooth layer at the time of coating, or to coat itself.

さらに、本発明における無機微粒子含有樹脂組成物には、必要に応じて、例えば、有機溶媒、染料、発色剤、可塑剤、顔料、重合禁止剤、表面改質剤、安定剤、密着性付与剤等を必要に応じて添加することができる。
中でも有機溶媒は概ね250℃以下で乾燥によりほぼ全量が樹脂組成物中から脱離し、粘度の調節に関して非常に自由度が高いため、最も頻繁に使用する添加剤である。
本発明においては、塗膜の平坦性の点で、沸点が150〜250℃の範囲にある有機溶媒が好ましい。なお、本明細書において溶媒の沸点は、大気圧下での値を指す。
Furthermore, the inorganic fine particle-containing resin composition in the present invention includes, for example, an organic solvent, a dye, a color former, a plasticizer, a pigment, a polymerization inhibitor, a surface modifier, a stabilizer, and an adhesion imparting agent as necessary. Etc. can be added as needed.
Among them, the organic solvent is the most frequently used additive because it is almost completely desorbed from the resin composition by drying at about 250 ° C. or less and has a very high degree of freedom in adjusting the viscosity.
In the present invention, an organic solvent having a boiling point in the range of 150 to 250 ° C. is preferable from the viewpoint of the flatness of the coating film. In the present specification, the boiling point of the solvent refers to a value under atmospheric pressure.

沸点が150〜250℃の範囲にある溶剤としては、例えば、ホロン(沸点:198℃)、シクロヘキサノン(沸点:155℃)、メチルシクロヘキサノン(沸点:170℃)等のケトン系溶剤、メチルフェニルエーテル(沸点:153℃)、エチルフェニルエーテル(172℃)、メトキシトルエン(沸点:172℃)、ベンジルエチルエーテル(沸点:189℃)、ジエチレングリコールジメチルエーテル(沸点:160℃)、ジエチレングリコールジエチルエーテル(沸点:188℃)、ジエチレングリコールモノメチルエーテル(沸点:194℃)、ジエチレングリコールモノブチルエーテル(沸点:231℃)、エチレングリコールモノブチルエーテル(沸点:171℃)、エチレングリコールモノイソアミルエーテル(沸点:181℃)等のエーテル系溶剤、1−ヘキサノール(沸点:157℃)、1−ヘプタノール(沸点:176℃)、2−ヘプタノール(沸点:160℃)、3−ヘプタノール(沸点:156℃)、1−オクタノール(沸点:195℃)、2−オクタノール(沸点:179℃)、2−エチル−1−ヘキサノール(沸点:184℃)、シクロヘキサノール(沸点:161℃)、1−メチルシクロヘキサノール(沸点:155℃)、2−メチルシクロヘキサノール(沸点:165℃)、3−メチルシクロヘキサノール(沸点:173℃)、4−メチルシクロヘキサノール(沸点:174℃)、フルフリルアルコール(沸点:170℃)、エチレングリコール(沸点:198℃)、プロピレングリコール(沸点:187℃)、1,2−ブチレングリコール(沸点:191℃)、ヘキシレングリコール(沸点:197℃)、3−メチル−3−メトキシブタノール(沸点:174℃)等のアルコール系溶剤、3−メトキシ−3−メチル−1−ブチルアセテート(沸点:188℃)、エチレングリコールモノアセテート(沸点:182℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)等のアセテート系溶剤、プロピレンカーボネート(沸点:241℃)等の環状カーボネート系溶剤、γ−ブチロラクトン(沸点:204℃)等のラクトン系溶剤、N−メチル−2−ピロリドン(沸点:202℃)等のピロリドン系溶剤、α−ピネン(沸点:156℃)、β−ピネン(沸点:161℃)、リモネン(沸点:177℃)、ターピネオール(沸点:209℃)、ジヒドロターピネオール(沸点:207℃)、ジヒドロターピニルアセテート(沸点:220℃)等のテルペン系溶剤、ジメチルホルムアミド(沸点:153℃)、ジメチルスルホキシド(沸点:189℃)などが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。これらの中でも特に、ターピネオール(沸点:209℃)、ジヒドロターピネオール(沸点:207℃)、ジヒドロターピニルアセテート(沸点:220℃)等のテルペン系溶剤が好ましい。
本発明の無機微粒子含有樹脂組成物における沸点が150〜250℃の範囲にある溶剤を使用する場合の含有量は、組成物に含まれる溶媒全量((A)有機化合物を除く)に対して20〜90重量%であることが好ましく、30〜85重量%であることがより好ましく、40〜80重量%であることが特に好ましい。
Examples of the solvent having a boiling point in the range of 150 to 250 ° C. include ketone solvents such as holon (boiling point: 198 ° C.), cyclohexanone (boiling point: 155 ° C.), methylcyclohexanone (boiling point: 170 ° C.), methyl phenyl ether ( Boiling point: 153 ° C), ethyl phenyl ether (172 ° C), methoxytoluene (boiling point: 172 ° C), benzyl ethyl ether (boiling point: 189 ° C), diethylene glycol dimethyl ether (boiling point: 160 ° C), diethylene glycol diethyl ether (boiling point: 188 ° C) ), Diethylene glycol monomethyl ether (boiling point: 194 ° C.), diethylene glycol monobutyl ether (boiling point: 231 ° C.), ethylene glycol monobutyl ether (boiling point: 171 ° C.), ethylene glycol monoisoamyl ether (boiling point: 1 Ether solvents such as 1 ° C), 1-hexanol (boiling point: 157 ° C), 1-heptanol (boiling point: 176 ° C), 2-heptanol (boiling point: 160 ° C), 3-heptanol (boiling point: 156 ° C), 1 -Octanol (boiling point: 195 ° C), 2-octanol (boiling point: 179 ° C), 2-ethyl-1-hexanol (boiling point: 184 ° C), cyclohexanol (boiling point: 161 ° C), 1-methylcyclohexanol (boiling point: 155 ° C), 2-methylcyclohexanol (boiling point: 165 ° C), 3-methylcyclohexanol (boiling point: 173 ° C), 4-methylcyclohexanol (boiling point: 174 ° C), furfuryl alcohol (boiling point: 170 ° C), Ethylene glycol (boiling point: 198 ° C), propylene glycol (boiling point: 187 ° C), 1,2-butylene glycol Boiling point: 191 ° C), hexylene glycol (boiling point: 197 ° C), alcohol solvents such as 3-methyl-3-methoxybutanol (boiling point: 174 ° C), 3-methoxy-3-methyl-1-butyl acetate (boiling point) : 188 ° C), acetate solvents such as ethylene glycol monoacetate (boiling point: 182 ° C), diethylene glycol monobutyl ether acetate (boiling point: 247 ° C), cyclic carbonate solvents such as propylene carbonate (boiling point: 241 ° C), and γ-butyrolactone Lactone solvents such as (boiling point: 204 ° C), pyrrolidone solvents such as N-methyl-2-pyrrolidone (boiling point: 202 ° C), α-pinene (boiling point: 156 ° C), β-pinene (boiling point: 161 ° C) Limonene (boiling point: 177 ° C), terpineol (boiling point: 209 ° C), dihydroterpineo And terpene solvents such as dihydroterpinyl acetate (boiling point: 220 ° C.), dimethylformamide (boiling point: 153 ° C.), dimethyl sulfoxide (boiling point: 189 ° C.), and the like. These can be used alone or in combination of two or more. Among these, terpene solvents such as terpineol (boiling point: 209 ° C), dihydroterpineol (boiling point: 207 ° C), dihydroterpinyl acetate (boiling point: 220 ° C) are preferable.
The content in the case of using a solvent having a boiling point in the range of 150 to 250 ° C. in the inorganic fine particle-containing resin composition of the present invention is 20 with respect to the total amount of the solvent (excluding the organic compound (A)) contained in the composition. It is preferably -90% by weight, more preferably 30-85% by weight, and particularly preferably 40-80% by weight.

また、本発明の無機微粒子含有樹脂組成物においては、乾燥後の塗膜にムラが発生するのを防止しつつ塗膜の乾燥時間を更に短縮する観点から、上記溶媒に加えて沸点が150℃未満の溶媒を併用することができる。   In addition, in the inorganic fine particle-containing resin composition of the present invention, the boiling point is 150 ° C. in addition to the above solvent from the viewpoint of further shortening the drying time of the coating film while preventing unevenness in the coating film after drying. Less than the solvent can be used in combination.

沸点が150℃未満の溶媒としては、例えば、アルコール系有機溶剤(メタノール、エタノール、イソプロピルアルコール、n−ブチルアルコール等)、芳香族系有機溶剤(ベンゼン、トルエン、キシレン等)、ケトン系溶剤(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エーテル系溶剤(テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル)、酢酸エチル、メチルプロピルジグリコール、ヘキシルカルビトール、ブチルプロピレンジグルコール、ベンジルアルコール、ブチルカルビトール、DBEシンナー(デュポン株式会社:商品名)、シクロヘキサン、シクロヘキサノン等が挙げられる。   Examples of the solvent having a boiling point of less than 150 ° C. include alcohol organic solvents (methanol, ethanol, isopropyl alcohol, n-butyl alcohol, etc.), aromatic organic solvents (benzene, toluene, xylene, etc.), ketone solvents (acetone). , Methyl ethyl ketone, methyl isobutyl ketone, etc.), ether solvents (tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether), ethyl acetate, methylpropyl diglycol, hexyl carbitol, butylpropylene diglycol, benzyl alcohol, butyl Examples include carbitol, DBE thinner (DuPont Co., Ltd .: trade name), cyclohexane, cyclohexanone, and the like.

本発明の無機微粒子含有樹脂組成物における溶媒の含有量は、特に制限されないが、(A)有機化合物と混合したときの混合物の25℃における粘度が500〜50000mPa・sとなるように設定することが好ましく、更に、無機含有組成物における粘度が後述する範囲となるように設定することが好ましい。   The content of the solvent in the inorganic fine particle-containing resin composition of the present invention is not particularly limited, but it is set so that the viscosity at 25 ° C. of the mixture when mixed with (A) the organic compound is 500 to 50000 mPa · s. Furthermore, it is preferable to set the viscosity of the inorganic-containing composition so as to be in a range described later.

本発明の無機微粒子含有樹脂組成物は、25℃における粘度が1000〜100000mPa・sであることが好ましい。この粘度が1000mPa・sより小さい場合は、無微粒子機含有組成物の保存中に無機微粒子粒子が沈降しやすくなり、一方、粘度が100000mPa・sより大きい場合は、塗膜の平坦性が低下する傾向がある。   The inorganic fine particle-containing resin composition of the present invention preferably has a viscosity at 25 ° C. of 1000 to 100,000 mPa · s. When the viscosity is less than 1000 mPa · s, the inorganic fine particle particles are likely to settle during storage of the composition containing no fine particles, whereas when the viscosity is greater than 100,000 mPa · s, the flatness of the coating film is lowered. Tend.

本発明の無機微粒子含有樹脂組成物を、公知の方法で基材上に塗布し、乾燥した後、焼成することによって、所望の無機粉末層又は無機物層を得ることが出来る。例えば、プラズマディスプレイパネル用ガラス基板へ塗布した後、乾燥・焼成を経て、電極、誘電体層、蛍光体層等とすることが出来る。   A desired inorganic powder layer or inorganic material layer can be obtained by applying the inorganic fine particle-containing resin composition of the present invention onto a substrate by a known method, drying, and firing. For example, after being applied to a glass substrate for a plasma display panel, it can be dried and fired to form an electrode, a dielectric layer, a phosphor layer, and the like.

上記の塗布方法としては、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、ダイコート法、カーテンコート法等が挙げられる。乾燥温度としては、特に制限は無いが、100〜150℃程度とすることが好ましく、乾燥時間は、1分間〜1時間程度とすることが好ましい。   Examples of the coating method include knife coating, roll coating, spray coating, gravure coating, bar coating, die coating, and curtain coating. The drying temperature is not particularly limited, but is preferably about 100 to 150 ° C., and the drying time is preferably about 1 minute to 1 hour.

次いで、このように形成された無機粉末含有樹脂組成物層を焼成することにより無機粉末層又は無機物層とすることができる。
焼成する方法としては、電気炉中で加熱する方法等が一例として挙げられる。例えば、プラズマディスプレイパネル用ガラス基板上に形成された無機粉末含有樹脂組成物層の焼成温度は、最高温度で、300〜700℃であることが好ましく、400〜600℃であることがより好ましい。本工程は大気中で行われることが好ましい。また、焼成時間は5分間〜2時間程度が好ましい。
Next, the inorganic powder-containing resin composition layer thus formed can be fired to obtain an inorganic powder layer or an inorganic layer.
An example of the firing method is a method of heating in an electric furnace. For example, the firing temperature of the inorganic powder-containing resin composition layer formed on the glass substrate for plasma display panel is the highest temperature, preferably 300 to 700 ° C, and more preferably 400 to 600 ° C. This step is preferably performed in the atmosphere. The firing time is preferably about 5 minutes to 2 hours.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(バインダポリマ)
バインダポリマは無機微粒子を良好に分散できること、及び熱分解温度が低いことが好ましい。無機微粒子を良好に分散性できるバインダポリマについては、種々検討した結果、アクリル樹脂とセルロース誘導体が良好であった。前記アクリル樹脂とセルロース誘導体の熱分解性を比較した。アクリル樹脂としてはメタクリル酸エチルの重合体を、セルロース誘導体としてはエトキシセルロースをそれぞれ採用し、熱分解特性を測定した。熱分解特性は、熱重量分析(TG)にて測定し、各サンプルを600℃まで昇温し、重量減少を基に熱分解の終了温度を比較した。熱重量分析の測定条件は以下に示す。
・測定機器:TG/DTA−6200(エスアイアイ・ナノテクノロジー社製)
・昇温速度:5℃/min
・測定温度;20〜600℃
・雰囲気 空気中 200ml/min
・サンプリング量 10mg
アクリル樹脂の熱分解特性を図1、セルロース誘導体の熱分解特性を図2にそれぞれ示した。アクリル樹脂が400℃程度でほぼ分解終了するのに対して、セルロース誘導体は500℃程度まで加熱する必要がある。
分解終了の温度がより高温であることは、焼成ピーク温度が比較的低い場合、焼成される無機微粒子層中に、樹脂成分の分解生成物が残留する可能性が高くなり、好ましくない。
以上の結果から、分解終了温度が400℃であるセルロース誘導体より約100℃低いアクリル樹脂がバインダポリマとして有効である。
(Binder polymer)
It is preferable that the binder polymer can disperse the inorganic fine particles well and has a low thermal decomposition temperature. As a result of various investigations on the binder polymer that can disperse the inorganic fine particles satisfactorily, acrylic resins and cellulose derivatives were satisfactory. The thermal decomposability of the acrylic resin and the cellulose derivative was compared. A polymer of ethyl methacrylate was employed as the acrylic resin, and ethoxycellulose was employed as the cellulose derivative, and the thermal decomposition characteristics were measured. Pyrolysis characteristics were measured by thermogravimetric analysis (TG), each sample was heated to 600 ° C., and the end temperatures of pyrolysis were compared based on weight loss. The measurement conditions for thermogravimetric analysis are shown below.
・ Measuring equipment: TG / DTA-6200 (manufactured by SII Nanotechnology)
・ Raising rate: 5 ° C / min
・ Measurement temperature: 20-600 ° C
・ Atmosphere In air 200ml / min
・ Sampling amount 10mg
The thermal decomposition characteristics of the acrylic resin are shown in FIG. 1, and the thermal decomposition characteristics of the cellulose derivative are shown in FIG. While the acrylic resin almost completes decomposition at about 400 ° C., the cellulose derivative needs to be heated to about 500 ° C.
It is not preferable that the decomposition end temperature is higher because the decomposition product of the resin component is likely to remain in the inorganic fine particle layer to be fired when the firing peak temperature is relatively low.
From the above results, an acrylic resin that is approximately 100 ° C. lower than the cellulose derivative having a decomposition end temperature of 400 ° C. is effective as the binder polymer.

(有機成分の製造)
(A)粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物として、イソボルニルシクロヘキサノール(MTPHと略)を、希釈溶媒としてターピネオール異性体混合物(日本テルペン化学株式会社製 ターピネオールC)を、(B)バインダポリマとして重量平均分子量150,000のポリメタクリル酸エチルを表1に示す組成で、撹拌機、還流冷却器、及び温度計を備えたフラスコに仕込み、撹拌しながら窒素ガス雰囲気下で120℃に昇温し、120±5℃に保ちながら3時間撹拌を続け、均一に分散した。その後、室温(25℃)まで冷却し樹脂組成物溶液を取り出した。なお、イソボルニルシクロヘキサノール、ターピネオール異性体混合物の25℃における粘度は、それぞれ、678,000mPa、35mPaで、300℃における10分間の加熱残分が0.028重量%、0.020重量%であった。
(Manufacture of organic components)
(A) As an organic compound having a viscosity of 10,000 to 1,000,000 mPa · s (25 ° C.) and a heating residue at 300 ° C. of 0 to 1% by weight, isobornyl cyclohexanol (abbreviated as MTPH) ), A terpineol isomer mixture (Terpineol C, manufactured by Nippon Terpene Chemical Co., Ltd.) as a diluent solvent, and (B) polyethyl methacrylate having a weight average molecular weight of 150,000 as a binder polymer in the composition shown in Table 1, The flask was equipped with a reflux condenser and a thermometer, heated to 120 ° C. under a nitrogen gas atmosphere with stirring, and stirred for 3 hours while maintaining 120 ± 5 ° C. to uniformly disperse. Then, it cooled to room temperature (25 degreeC) and took out the resin composition solution. The viscosity at 25 ° C. of the isobornylcyclohexanol and terpineol isomer mixture was 678,000 mPa and 35 mPa, respectively, and the heating residue at 300 ° C. for 10 minutes was 0.028 wt% and 0.020 wt%, respectively. there were.

Figure 2009263448
(有機成分組成(重量部)
Figure 2009263448
(Organic component composition (parts by weight)

(無機粉末含有樹脂組成物の製造)
上記で作製した有機成分と、無機粉末(ZnO−B−Al系ガラス粉末)を表2に示した組成に混合し、ホモミキサを用いて5分間分散し、更に25μm角の開口部を有する濾布を通過させて濾過し、無機粉末含有樹脂組成物を調製した。
(Production of inorganic powder-containing resin composition)
The organic component prepared above and inorganic powder (ZnO—B 2 O 3 —Al 2 O 3 glass powder) were mixed in the composition shown in Table 2, and dispersed for 5 minutes using a homomixer, and further 25 μm square It filtered through the filter cloth which has an opening part, and prepared the inorganic powder containing resin composition.

Figure 2009263448
(無機粉末含有樹脂組成物の組成(重量部))
Figure 2009263448
(Composition of inorganic powder-containing resin composition (parts by weight))

(試験例)
作製した各組成物を、2mm厚のガラス基板上へ塗布、乾燥した。乾燥後に最高温度560℃の条件で焼成し、厚さ10μmのガラス層を得た。市販の装置を用いて、得られたガラス層の光線透過率(直線透過率(400,550,700nm)全透過率)、表面粗さ(Ra)を測定した。
また、各組成物を10mgずつ量り取り、熱重量分析(TG)にて600℃まで昇温し、特に、バインダポリマの主要な熱分解から脱離温度である250℃以上での重量減少を比較した。
さらに、各試料を直径50mmの容器に深さ45mmずつ取り分け、40℃の環境に14日間放置した後、液面から深さ5mmの範囲を金属ヘラ(幅8mm)を用いて走査し、液最上部でのガラス粉末の沈降状態を観察した。さらに、容器の底に金属ヘラ(幅8mm)を当てて走査し、ガラス粉末の沈降・堆積状態を観察した。
以上の評価結果を、まとめて表3に示した。
(Test example)
Each prepared composition was applied onto a 2 mm thick glass substrate and dried. After drying, it was fired at a maximum temperature of 560 ° C. to obtain a glass layer having a thickness of 10 μm. The light transmittance (linear transmittance (400, 550, 700 nm) total transmittance) and surface roughness (Ra) of the obtained glass layer were measured using a commercially available apparatus.
Also, 10 mg of each composition was weighed and heated to 600 ° C. by thermogravimetric analysis (TG), especially comparing the weight loss at 250 ° C. or higher, which is the desorption temperature from the main thermal decomposition of the binder polymer. did.
Further, each sample was separated into a container having a diameter of 50 mm by a depth of 45 mm and left in an environment of 40 ° C. for 14 days, and then the range from the liquid surface to a depth of 5 mm was scanned with a metal spatula (width 8 mm). The sedimentation state of the glass powder at the top was observed. Further, a metal spatula (width 8 mm) was applied to the bottom of the container for scanning, and the sedimentation / deposition state of the glass powder was observed.
The above evaluation results are summarized in Table 3.

Figure 2009263448
Figure 2009263448

(*)重量減少は各試料10mg当りの重量減少(測定範囲250〜600℃)
ガラス粉末沈降に関する評価は、○:沈降無し、△:沈降の兆候あり、×:明らかな沈降有り、とした。
液面でのガラス粉末沈降は、液面から5mmのペーストの透明性を主な評価対象とし、○:変化無し、△:若干のガラス粉末沈降により透明性の上昇が見られる、×:完全にガラス粉末が沈降し透明な樹脂のみとなっている、との基準で判定を行なった。
底面でのガラス粉末沈降は、走査後に金属ヘラを引き上げ、特に先端部分におけるガラス粉末の凝集物の有無を主な評価対象とし、
○:凝集物無し、△:凝集物形成の兆候が見られる、×:明らかな凝集物有り、との基準で判定を行なった。
上記のガラス粉末沈降評価では、△までは実用上における特段の困難は伴わないが、×の評価である明らかな沈降・凝集が発生した場合、塗布プロセスにおいて凝集物が塗布面に残留することで、所望の平坦性が得られない。
(*) Weight reduction is weight reduction per 10mg of each sample (measurement range 250-600 ° C)
Evaluation regarding glass powder sedimentation was as follows: ○: No sedimentation, Δ: Signs of sedimentation, ×: Clear sedimentation.
The glass powder sedimentation at the liquid surface is mainly evaluated for the transparency of a paste of 5 mm from the liquid surface, ○: no change, Δ: slight increase in transparency due to glass powder sedimentation, x: completely Judgment was made based on the standard that the glass powder settled and became only a transparent resin.
Glass powder settling at the bottom is the main evaluation object, especially the presence or absence of glass powder agglomerates at the tip, pulling up the metal spatula after scanning,
○: No aggregates, Δ: Signs of aggregate formation are observed, ×: Clear aggregates are judged.
In the above-mentioned glass powder sedimentation evaluation, there is no particular difficulty in practical use until Δ, but when clear sedimentation / aggregation, which is an evaluation of ×, occurs, the aggregate remains on the coated surface in the coating process. The desired flatness cannot be obtained.

試験の結果、得られたガラス層の光学特性(直線透過率、全(光線)透過率)については全試料が同等の結果であった。このことから、バインダポリマを代替する高粘度有機化合物として、粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物を使用しても、ガラス層の光学特性には影響を及ぼさないことが見出された。
表面粗さについては、バインダポリマの減量により、表面がより平滑となる傾向が見出された。このことから、粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物の添加により、表面が平滑な層を形成できることが見出された。
250℃〜600℃に加熱した際の重量減少については、バインダポリマの配合量に比例し、ポリマ量が低い試料ほど重量減少は少ない結果となった。
以上の結果は、バインダポリマの代替として、粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物が使用可能であること、さらに、得られる無機物層の表面平滑性を向上させることを示すものである。
As a result of the test, the optical characteristics (linear transmittance, total (light) transmittance) of the obtained glass layer were the same for all samples. From this, as a high-viscosity organic compound that replaces the binder polymer, an organic material having a viscosity of 10,000 to 1,000,000 mPa · s (25 ° C.) and a heating residue at 300 ° C. of 0 to 1% by weight. It has been found that the use of the compound does not affect the optical properties of the glass layer.
Regarding the surface roughness, a tendency was found that the surface becomes smoother due to the weight loss of the binder polymer. Therefore, a layer having a smooth surface can be obtained by adding an organic compound having a viscosity of 10,000 to 1,000,000 mPa · s (25 ° C.) and a heating residue at 300 ° C. of 0 to 1% by weight. It has been found that it can be formed.
The weight loss when heated to 250 ° C. to 600 ° C. was proportional to the blending amount of the binder polymer, and the lower the polymer amount, the smaller the weight loss.
The above results indicate that an organic compound having a viscosity of 10,000 to 1,000,000 mPa · s (25 ° C.) and a heating residue at 300 ° C. of 0 to 1% by weight can be used as an alternative to the binder polymer. It further indicates that the surface smoothness of the obtained inorganic layer is improved.

しかし、ガラス粉末沈降の観察結果からは、バインダポリマを完全に省略することは不適であることが見出された。すなわち、バインダポリマを完全に省略し、粘度上昇のために、粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物のみを配合した比較例2のみ明らかなガラス粉末の沈降・堆積を示した。このことは、バインダポリマが粘度上昇のみでなく、無機粉末の沈降を防止し、組成物の長期安定性を向上するために重要なものであることを示すものである。   However, from the observation results of glass powder sedimentation, it was found that it is inappropriate to omit the binder polymer completely. That is, the binder polymer is completely omitted, the viscosity is 10,000 to 1,000,000 mPa · s (25 ° C.) and the heating residue at 300 ° C. is 0 to 1% by weight in order to increase the viscosity. Only the comparative example 2 which mix | blended only the organic compound showed sedimentation / deposition of clear glass powder. This indicates that the binder polymer is important not only for increasing the viscosity but also for preventing sedimentation of the inorganic powder and improving the long-term stability of the composition.

この試験例から分かるように、本発明の無機微粒子含有樹脂組成物は、比較例1に記載の従来型の組成物、すなわち、バインダポリマ、有機溶媒、無機粉末のみを用いて作製された組成物が与える無機物層と同等以上の性能を示す無機物層の形成が可能であり、かつ、熱処理時にバインダポリマの熱分解により発生する不定形炭素の発生量が低減可能である。不定形炭素の発生量を低減できることから、その処理コストの低減も可能である。また、比較例2に記載の組成物、すなわちバインダポリマを完全に省略し、粘度が10,000〜1,000,000mPa・s(25℃)、かつ、300℃における加熱残分が0〜1重量%である有機化合物のみを粘度上昇のための材料として作製された組成物と比較して、バインダポリマの特徴である無機粉末の沈降防止の能力に優れ、組成物の長期安定性が良好である。   As can be seen from this test example, the inorganic fine particle-containing resin composition of the present invention is a conventional composition described in Comparative Example 1, that is, a composition prepared using only a binder polymer, an organic solvent, and an inorganic powder. It is possible to form an inorganic layer exhibiting performance equal to or higher than that of the inorganic layer provided by the material, and to reduce the amount of amorphous carbon generated by thermal decomposition of the binder polymer during heat treatment. Since the generation amount of amorphous carbon can be reduced, the processing cost can be reduced. Further, the composition described in Comparative Example 2, that is, the binder polymer was omitted completely, the viscosity was 10,000 to 1,000,000 mPa · s (25 ° C.), and the heating residue at 300 ° C. was 0 to 1 Compared to a composition prepared using only an organic compound in weight% as a material for increasing the viscosity, it is superior in the ability to prevent sedimentation of inorganic powder, which is characteristic of the binder polymer, and the composition has long-term stability. is there.

実施例で用いたアクリル樹脂の熱分解特性図。The thermal decomposition characteristic view of the acrylic resin used in the Example. 実施例で用いたセルロース誘導体の熱分解特性図。The thermal decomposition characteristic view of the cellulose derivative used in the Example.

Claims (5)

(A)25℃における粘度が10,000〜1,000,000mPa・sで、300℃における加熱残分が0〜1重量%である有機化合物、(B)バインダポリマ、及び、(C)無機微粒子を少なくとも含んでなる無機微粒子含有樹脂組成物。   (A) an organic compound having a viscosity at 25 ° C. of 10,000 to 1,000,000 mPa · s and a heating residue at 300 ° C. of 0 to 1% by weight, (B) a binder polymer, and (C) inorganic An inorganic fine particle-containing resin composition comprising at least fine particles. 前記(A)有機化合物が、下記構造式(1)で表わされるイソボルニルシクロヘキサノールである、請求項1に記載の無機粒子含有組成物。
Figure 2009263448
The inorganic particle-containing composition according to claim 1, wherein the organic compound (A) is isobornylcyclohexanol represented by the following structural formula (1).
Figure 2009263448
前記(B)バインダポリマが、アクリル樹脂である、請求項1又は請求項2に記載の無機粒子含有組成物。   The inorganic particle-containing composition according to claim 1 or 2, wherein the (B) binder polymer is an acrylic resin. (A)25℃における粘度が10,000〜1,000,000mPa・sで、300℃における加熱残分が0〜1重量%である有機化合物が、テルペン系化合物である請求項1に記載の無機微粒子含有樹脂組成物。   (A) The organic compound whose viscosity in 25 degreeC is 10,000-1,000,000 mPa * s and whose heating residue in 300 degreeC is 0 to 1 weight% is a terpene type compound. Inorganic fine particle-containing resin composition. 請求項1ないし請求項4のいずれかに記載の無機微粒子含有樹脂組成物を基材上に形成し焼成して無機微粒子を含む層を形成して得られる無機物層。   An inorganic material layer obtained by forming the inorganic fine particle-containing resin composition according to any one of claims 1 to 4 on a base material and firing to form a layer containing inorganic fine particles.
JP2008112442A 2008-04-23 2008-04-23 Inorganic particle-containing resin composition and inorganic layer using the same Pending JP2009263448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112442A JP2009263448A (en) 2008-04-23 2008-04-23 Inorganic particle-containing resin composition and inorganic layer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112442A JP2009263448A (en) 2008-04-23 2008-04-23 Inorganic particle-containing resin composition and inorganic layer using the same

Publications (1)

Publication Number Publication Date
JP2009263448A true JP2009263448A (en) 2009-11-12

Family

ID=41389723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112442A Pending JP2009263448A (en) 2008-04-23 2008-04-23 Inorganic particle-containing resin composition and inorganic layer using the same

Country Status (1)

Country Link
JP (1) JP2009263448A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151591A (en) * 2012-01-24 2013-08-08 Taiyo Holdings Co Ltd Inorganic particles-containing paste, and inorganic circuit
JP2013197325A (en) * 2012-03-21 2013-09-30 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
JP2013235942A (en) * 2012-05-08 2013-11-21 Hitachi Chemical Co Ltd Impurity diffusion layer-forming composition, method for manufacturing impurity diffusion layer, method for manufacturing solar battery device, and solar battery
JP2014072449A (en) * 2012-09-28 2014-04-21 Hitachi Chemical Co Ltd Composition for formation of semiconductor substrate passivation film, semiconductor substrate with passivation film and manufacturing method thereof, and solar battery element
JP2014177395A (en) * 2013-02-12 2014-09-25 Heraeus Precious Metals North America Conshohocken Llc Organic vehicle for dispersion of glass composition and method of dispersion
JP2017059835A (en) * 2016-10-14 2017-03-23 日立化成株式会社 Impurity diffusion layer-forming composition, method for manufacturing impurity diffusion layer, method for manufacturing solar battery element, and solar battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151591A (en) * 2012-01-24 2013-08-08 Taiyo Holdings Co Ltd Inorganic particles-containing paste, and inorganic circuit
JP2013197325A (en) * 2012-03-21 2013-09-30 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
JP2013235942A (en) * 2012-05-08 2013-11-21 Hitachi Chemical Co Ltd Impurity diffusion layer-forming composition, method for manufacturing impurity diffusion layer, method for manufacturing solar battery device, and solar battery
JP2014072449A (en) * 2012-09-28 2014-04-21 Hitachi Chemical Co Ltd Composition for formation of semiconductor substrate passivation film, semiconductor substrate with passivation film and manufacturing method thereof, and solar battery element
JP2014177395A (en) * 2013-02-12 2014-09-25 Heraeus Precious Metals North America Conshohocken Llc Organic vehicle for dispersion of glass composition and method of dispersion
JP2017059835A (en) * 2016-10-14 2017-03-23 日立化成株式会社 Impurity diffusion layer-forming composition, method for manufacturing impurity diffusion layer, method for manufacturing solar battery element, and solar battery

Similar Documents

Publication Publication Date Title
KR102057919B1 (en) Paste composition, and sintered body and method for producing same
JP5385530B2 (en) Inorganic fine particle dispersed paste composition
JP2009263448A (en) Inorganic particle-containing resin composition and inorganic layer using the same
JPWO2008149748A1 (en) Inorganic particle-containing composition, inorganic layer forming method, and plasma display panel
JP2016196606A (en) Resin composition for baking paste and use thereof
JP2004315719A (en) Resin composition for baking
JP6337628B2 (en) Slurry composition and ceramic green sheet for manufacturing multilayer ceramic capacitor
JP6084397B2 (en) Inorganic particle-containing paste for sintering and coating formed product
TWI296567B (en)
JP6084396B2 (en) Inorganic particle-containing paste for sintering and coating formed product
JP4078686B2 (en) Transfer film for plasma display panel dielectric layer formation
JP4140838B2 (en) INORGANIC POWDER-CONTAINING RESIN COMPOSITION, TRANSFER SHEET, METHOD FOR PRODUCING DIELECTRIC LAYER-FORMING SUBSTRATE, AND DIELECTRIC LAYER-FORMING BOARD
JP2000144124A (en) Fluorescent substance paste composition
JP2016155920A (en) Copolymer for baking paste, and resin composition for baking paste
JP2006076818A (en) Glass powder-containing resin composition, transfer film, and method for manufacturing plasma display panel using the same
JP4267295B2 (en) Inorganic powder-containing resin composition, transfer sheet, and method for producing dielectric layer-formed substrate
JP2004315720A (en) Resin composition for baking
JP3877173B2 (en) Film forming material layer, transfer sheet, dielectric layer forming substrate manufacturing method, and dielectric layer forming substrate
JPH10310451A (en) Glass paste composition
JP2004296177A (en) Inorganic powder containing paste, and method for manufacturing display panel member using the same
JP2009269808A (en) Method for forming layer of inorganic matter and plasma display panel
JP2005068291A (en) Inorganic-powder-containing resin composition, membrane-forming material layer, transfer sheet, method for producing dielectric-layer-formed substrate, and dielectric-layer-formed substrate
JP2005232357A (en) Resin composition containing inorganic particle, transfer film and method for producing dielectric layer for plasma display panel
JP4239238B2 (en) Glass paste composition for forming glass sintered body and transfer film
JP2009140805A (en) Composition for forming flat panel display member, transfer film for forming flat panel display member, and method for manufacturing flat panel display member