JP2009259733A - Electrode for dye-sensitized solar cell and dye-sensitized solar cell - Google Patents

Electrode for dye-sensitized solar cell and dye-sensitized solar cell Download PDF

Info

Publication number
JP2009259733A
JP2009259733A JP2008109884A JP2008109884A JP2009259733A JP 2009259733 A JP2009259733 A JP 2009259733A JP 2008109884 A JP2008109884 A JP 2008109884A JP 2008109884 A JP2008109884 A JP 2008109884A JP 2009259733 A JP2009259733 A JP 2009259733A
Authority
JP
Japan
Prior art keywords
dye
solar cell
nonwoven fabric
sensitized solar
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008109884A
Other languages
Japanese (ja)
Other versions
JP5191266B2 (en
Inventor
Takashi Nishitani
崇 西谷
Takashi Tarao
隆 多羅尾
Masaaki Kawabe
雅章 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2008109884A priority Critical patent/JP5191266B2/en
Publication of JP2009259733A publication Critical patent/JP2009259733A/en
Application granted granted Critical
Publication of JP5191266B2 publication Critical patent/JP5191266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a dye-sensitized solar cell having high efficiency of conversion and the dye-sensitized solar cell. <P>SOLUTION: The electrode for the dye-sensitized solar cell includes a transparent conductive film 20b region; and a nonwoven fabric 20c region adjoined to the film region, comprising tin oxide-containing fibers having an aspect ratio of ≥1000 formed by using tin compound-containing spinnability sol and formed by an electrostatic spinning method. The nonwoven fabric region is formed by adhesion of fibers and adheres to the transparent conductive film region with a tin oxide compound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は色素増感型太陽電池用電極及び色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell electrode and a dye-sensitized solar cell.

色素増感型太陽電池はシリコン半導体を使用せず、低コストで作製できることから、近年注目を集めている。この色素増感型太陽電池は図1に模式的断面図を示すように、基材11a上に透明導電膜11bと白金11cを順に有する正極11、基材10a上に透明導電膜10bを有する負極10、負極10と隣接して存在する色素を吸着した多孔質酸化チタン粒子層12、及び電解液13としてヨウ素溶液を備えた構造を有する。このような色素増感型太陽電池の負極側から光をあてると、色素が光を吸収し、電子を放出するとともに、色素は電解液13であるヨウ素イオン(3I)を酸化し、三ヨウ化物イオン(I )とする。この放出された電子は多孔質酸化チタン粒子層12を導電して透明導電膜10bに到達した後、外部回路を通じて正極11に到達する。そして、正極11に到達した電子は三ヨウ化物イオン(I )をヨウ素イオン(3I)に還元する。このようなサイクルによって、発電することができる。 Dye-sensitized solar cells have attracted attention in recent years because they can be produced at low cost without using silicon semiconductors. As shown in the schematic cross-sectional view of FIG. 1, this dye-sensitized solar cell has a positive electrode 11 having a transparent conductive film 11b and a platinum 11c in this order on a base material 11a, and a negative electrode having a transparent conductive film 10b on the base material 10a. 10, a porous titanium oxide particle layer 12 that adsorbs a pigment existing adjacent to the negative electrode 10, and an iodine solution as the electrolytic solution 13. When light is applied from the negative electrode side of such a dye-sensitized solar cell, the dye absorbs light and emits electrons, and the dye oxidizes iodine ions (3I ) that are the electrolyte solution 13, thereby forming triiodine. It is referred to as a compound ion (I 3 ). The emitted electrons conduct through the porous titanium oxide particle layer 12 and reach the transparent conductive film 10b, and then reach the positive electrode 11 through an external circuit. The electrons that have reached the positive electrode 11 reduce triiodide ions (I 3 ) to iodine ions (3I ). Electricity can be generated by such a cycle.

このような色素増感型太陽電池の電極として、「透明導電層を有するプラスチックフィルムおよび透明導電層のうえに積層された多孔質金属酸化物層からなり、該多孔質金属酸化物層がエレクトロスピニング法によって得た、平均繊維径50〜1000nmの繊維状金属酸化物から構成される金属酸化物不織布からなることを特徴とする色素増感型太陽電池用電極」が提案されている(特許文献1)。このような金属酸化物不織布は、「金属酸化物前駆体およびこれとの錯体を形成する化合物の混合物と、溶媒と、高アスペクト形成性の溶質とから成る溶液を、エレクトロスピニング法にて捕集基板上に吐出して累積および焼成させることによって、金属酸化物不織布を得ることができる」ものであることが開示され、実際に、「チタンテトラノルマルブトキシド(和光純薬工業株式会社製、一級)1重量部に、酢酸(和光純薬工業株式会社製、特級)1.3重量部を添加し均一な溶液を得た。この溶液にイオン交換水1重量部を攪拌しながら添加することにより溶液中にゲルが生成した。生成したゲルは、さらに攪拌を続けることにより解離し、透明な溶液を調製した。調製した溶液に、ポリエチレングリコール(和光純薬工業株式会社製、一級、平均分子量300,000〜500,000)0.016重量部混合し紡糸溶液を調製」し、この紡糸溶液を用いてエレクトロスピニング法により累積および焼成し、二酸化チタンからなる金属酸化物不織布を製造したことが開示されている。しかしながら、このような方法により製造される金属酸化物不織布は金属酸化物粒子を用いて形成しているため粒界が存在し、導電性が悪く、集電効率が悪い結果、変換効率の低いものであった。   As an electrode of such a dye-sensitized solar cell, “a plastic film having a transparent conductive layer and a porous metal oxide layer laminated on the transparent conductive layer, and the porous metal oxide layer is electrospun. A dye-sensitized solar cell electrode characterized in that it is made of a metal oxide nonwoven fabric made of a fibrous metal oxide having an average fiber diameter of 50 to 1000 nm obtained by a method has been proposed (Patent Document 1). ). Such a metal oxide nonwoven fabric is obtained by collecting a solution comprising a mixture of a metal oxide precursor and a compound that forms a complex with the precursor, a solvent, and a high aspect-forming solute by an electrospinning method. It is disclosed that a metal oxide nonwoven fabric can be obtained by discharging and accumulating and firing on a substrate ", and in fact," titanium tetranormal butoxide (manufactured by Wako Pure Chemical Industries, Ltd., first grade) " To 1 part by weight, 1.3 parts by weight of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added to obtain a uniform solution, and 1 part by weight of ion-exchanged water was added to this solution while stirring. The gel was dissociated by further stirring to prepare a transparent solution, and polyethylene glycol (Wako Pure Chemical Industries, Ltd. Preparation of a spinning solution by mixing 0.016 parts by weight of primary and average molecular weight 300,000 to 500,000), and using this spinning solution, accumulation and firing are performed by an electrospinning method to obtain a metal oxide nonwoven fabric made of titanium dioxide. It is disclosed that it was manufactured. However, since the metal oxide nonwoven fabric produced by such a method is formed using metal oxide particles, grain boundaries exist, conductivity is poor, and current collection efficiency is poor, resulting in low conversion efficiency. Met.

特開2007−48659号公報(請求項1、請求項2、請求項4、段落番号0012、段落番号0081〜0082など)JP 2007-48659 A (Claim 1, Claim 2, Claim 4, Paragraph No. 0012, Paragraph Nos. 0081 to 0082, etc.)

本発明は上述のような問題を解決するためになされたもので、変換効率の優れる色素増感型太陽電池用電極及び色素増感型太陽電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a dye-sensitized solar cell electrode and a dye-sensitized solar cell with excellent conversion efficiency.

本発明の請求項1にかかる発明は、「透明導電性膜領域と、前記膜領域と隣接する、すず化合物を含む曳糸性ゾル溶液を用いて形成したアスペクト比が1000以上の酸化すず含有繊維からなる不織布領域とを有することを特徴とする、色素増感型太陽電池用電極。」である。   The invention according to claim 1 of the present invention is “a tin oxide-containing fiber having an aspect ratio of 1000 or more, formed using a transparent conductive film region and a spinnable sol solution containing a tin compound adjacent to the film region. A dye-sensitized solar cell electrode, comprising: a non-woven fabric region comprising:

本発明の請求項2にかかる発明は、「透明導電性膜領域と不織布領域とが酸化すず化合物によって接着していることを特徴とする、請求項1に記載の色素増感型太陽電池用電極。」である。   The invention according to claim 2 of the present invention is as follows: “The transparent conductive film region and the nonwoven fabric region are bonded with a tin oxide compound,” and the dye-sensitized solar cell electrode according to claim 1 . "

本発明の請求項3にかかる発明は、「不織布領域における繊維同士が接着していることを特徴とする、請求項1又は請求項2に記載の色素増感型太陽電池用電極。」である。   The invention according to claim 3 of the present invention is “the electrode for a dye-sensitized solar cell according to claim 1 or 2, wherein fibers in the nonwoven fabric region are bonded to each other”. .

本発明の請求項4にかかる発明は、「不織布領域における平均繊維径が1μm以下であることを特徴とする、請求項1〜請求項3のいずれかに記載の色素増感型太陽電池用電極。」である。   The invention according to claim 4 of the present invention is as follows: “The average fiber diameter in the non-woven fabric region is 1 μm or less, and the electrode for a dye-sensitized solar cell according to claim 1, . "

本発明の請求項5にかかる発明は、「不織布領域が静電紡糸法により形成された領域であることを特徴とする、請求項1〜請求項4のいずれかに記載の色素増感型太陽電池用電極。」である。   The invention according to claim 5 of the present invention is: “Dye-sensitized solar according to any one of claims 1 to 4, wherein the nonwoven fabric region is a region formed by an electrostatic spinning method”. Battery electrode. "

本発明の請求項6にかかる発明は、「請求項1〜請求項5のいずれかに記載の色素増感型太陽電池用電極を備えた色素増感型太陽電池。」である。   The invention concerning Claim 6 of this invention is "the dye-sensitized solar cell provided with the electrode for dye-sensitized solar cells in any one of Claims 1-5."

本発明の請求項1にかかる発明は、すず化合物を含む曳糸性ゾル溶液を用いて形成した不織布を構成する酸化すず含有繊維には粒界が存在しておらず、内部充実した繊維であり、しかもアスペクト比が1000以上の長繊維からなるため、導電性に優れ、集電性能の優れる色素増感型太陽電池用電極である。   The invention according to claim 1 of the present invention is a fiber that is solid inside and has no grain boundaries in the tin oxide-containing fiber constituting the nonwoven fabric formed using the spinnable sol solution containing a tin compound. Moreover, since it is composed of long fibers having an aspect ratio of 1000 or more, it is an electrode for a dye-sensitized solar cell that has excellent conductivity and excellent current collecting performance.

本発明の請求項2にかかる発明は、透明導電性膜領域と不織布領域とが酸化すず化合物によって接着しているため、透明導電性膜領域と不織布領域との間の導電性にも優れ、集電性能の優れる色素増感型太陽電池用電極である。なお、酸化すず化合物によって接着しているため光の透過を妨げることもない。   The invention according to claim 2 of the present invention is excellent in conductivity between the transparent conductive film region and the non-woven region because the transparent conductive film region and the non-woven region are bonded by the tin oxide compound. It is an electrode for a dye-sensitized solar cell having excellent electric performance. In addition, since it adhere | attaches with a tin oxide compound, permeation | transmission of light is not prevented.

本発明の請求項3にかかる発明は、繊維同士が接着しており、この接着点を通じて導電することもできるため、集電性能の優れる色素増感型太陽電池用電極である。   The invention according to claim 3 of the present invention is an electrode for a dye-sensitized solar cell having excellent current collecting performance because fibers are bonded to each other and can be conducted through the bonding point.

本発明の請求項4にかかる発明は、平均繊維径が1μm以下で、表面積が広く、多孔質酸化チタン粒子との接触点が多いため、集電性能の優れる色素増感型太陽電池用電極である。   The invention according to claim 4 of the present invention is an electrode for a dye-sensitized solar cell that has an average fiber diameter of 1 μm or less, a large surface area, and many contact points with porous titanium oxide particles. is there.

本発明の請求項5にかかる発明は、不織布領域が静電紡糸法により形成された領域であるため、繊維径が細くしかもアスペクト比の大きい実質的に連続した酸化すず含有繊維であることができ、導電性に優れ、集電性能の優れる色素増感型太陽電池用電極である。   In the invention according to claim 5 of the present invention, since the nonwoven fabric region is a region formed by an electrospinning method, it can be a substantially continuous tin oxide-containing fiber having a small fiber diameter and a large aspect ratio. It is an electrode for a dye-sensitized solar cell having excellent conductivity and excellent current collecting performance.

本発明の請求項6にかかる発明は、上記の集電性能の優れる色素増感型太陽電池用電極を備えているため、変換効率の優れる色素増感型太陽電池である。   Since the invention concerning Claim 6 of this invention is equipped with the electrode for dye-sensitized solar cells which is excellent in said current collection performance, it is a dye-sensitized solar cell which is excellent in conversion efficiency.

本発明の色素増感型太陽電池用電極(以下、単に「電極」ということがある)における透明導電性膜領域は透明導電性膜から構成されているため、基材側からの光を遮ることなく、多孔質酸化チタン粒子層まで光を透過させることができるように透明であり、可視光領域(約400〜700nm)の光透過率が80%以上である程に透明であるのが好ましい。また、電子を集電し外部回路へと供給できるように導電性であり、抵抗率が1×10−3Ω・cm以下である程に導電性であるのが好ましい。このような透明導電性膜は前記性能を満たす限り特に限定するものではないが、例えば、酸化すず系(フッ素ドープ酸化すず;FTO)、酸化インジュウム系(酸化インジュウム・すず;ITO)、酸化亜鉛系(アルミニウムドープ酸化亜鉛;AZO、ガリュウムドープ酸化亜鉛;GZO)などから構成することができる。 Since the transparent conductive film region of the dye-sensitized solar cell electrode of the present invention (hereinafter sometimes simply referred to as “electrode”) is composed of a transparent conductive film, it blocks light from the substrate side. And transparent so that light can be transmitted to the porous titanium oxide particle layer, and it is preferable that the light transmittance in the visible light region (about 400 to 700 nm) is 80% or more. Further, it is preferably conductive so that electrons can be collected and supplied to an external circuit, and the conductivity is so high that the resistivity is 1 × 10 −3 Ω · cm or less. Such a transparent conductive film is not particularly limited as long as the above performance is satisfied. For example, tin oxide (fluorine-doped tin oxide; FTO), indium oxide (indium oxide / tin; ITO), zinc oxide (Aluminum-doped zinc oxide; AZO, gallium-doped zinc oxide; GZO) and the like.

本発明の電極における不織布領域は前記透明導電性膜領域と隣接して存在しているため、不織布領域において集電した電子を速やかに透明導電性膜に導電することができる。つまり、不織布と透明導電性膜とは接触している。この接触した状態は不織布と透明導電性膜とが接着した状態にあっても良いし、接着していない状態にあっても良い。しかしながら、導電性という観点からは接着した状態にあるのが好ましい。この接着した状態にある場合であっても、接着していることによって光の透過性を妨げたり、導電性を妨げることは変換効率の低下に繋がるため、透明導電性膜と不織布とは酸化すず化合物によって接着しているのが好ましい。酸化すず化合物は前記要件を満たすためである。このような酸化すず化合物による接着した状態は、例えば、焼結した状態にある。   Since the nonwoven fabric area | region in the electrode of this invention exists adjacent to the said transparent conductive film area | region, the current collected in the nonwoven fabric area | region can be rapidly conduct | electrically_connected to a transparent conductive film. That is, the nonwoven fabric and the transparent conductive film are in contact. This contacted state may be in a state where the nonwoven fabric and the transparent conductive film are bonded or in a state where they are not bonded. However, from the viewpoint of electrical conductivity, it is preferably in a bonded state. Even in this bonded state, the transparent conductive film and the non-woven fabric are not oxidized because blocking the light transmission or blocking the conductivity leads to a decrease in conversion efficiency. It is preferable to adhere by a compound. This is because the tin oxide compound satisfies the above requirements. The state of adhesion by such a tin oxide compound is, for example, a sintered state.

本発明の不織布領域を構成する不織布は、すず化合物を含む曳糸性ゾル溶液を用いて形成した不織布からなる。曳糸性ゾル溶液を用いて紡糸を行っているため、紡糸後に反応が進み、Sn−O−Snネットワークが形成されるため、粒界のない繊維が得られる。しかも多孔質ではない、内部充実した繊維を紡糸できるため、導電性に優れている。   The nonwoven fabric which comprises the nonwoven fabric area | region of this invention consists of a nonwoven fabric formed using the spinnable sol solution containing a tin compound. Since spinning is performed using a spinnable sol solution, the reaction proceeds after spinning and a Sn-O-Sn network is formed, so that fibers without grain boundaries can be obtained. In addition, it is excellent in conductivity because it is possible to spin fibers that are not porous and have a full interior.

本発明の不織布領域を構成する繊維同士は接着しているのが好ましい。電子が繊維の長さ方向だけではなく、繊維同士の接着点を介して導電することもでき、更に導電性に優れているためである。この接着は前記のように導電することができるように、接着剤を介することなく接着している状態である焼結した状態にあるのが好ましい。   The fibers constituting the nonwoven fabric region of the present invention are preferably bonded to each other. This is because electrons can be conducted not only through the length direction of the fibers but also through the adhesion points between the fibers, and further excellent in conductivity. This adhesion is preferably in a sintered state in which the adhesion is performed without using an adhesive so that the adhesion can be conducted as described above.

その結果、不織布の抵抗率は45Ω・cm以下であるのが好ましい。より好ましくは抵抗率が30Ω・cm以下である。抵抗率が小さければ小さい程、導電性に優れていることを意味するため、抵抗率の下限は特に限定するものではない。なお、「抵抗率」は次の手順により得られる値をいう。
(1)不織布から5mm×10mm角の試料Sを採取し、試料Sの厚さ(d:単位=μm)を測定する。この測定は、試料Sの断面の電子顕微鏡写真(倍率:1万倍)を撮り、その電子顕微鏡写真における無作為に選んだ5点における厚さを計測し、その算術平均値を試料Sの厚さとする。
(2)ガラス板G上に銀ペーストPを介して前記試料Sを載せた後、温度60℃で1時間乾燥し、銀ペーストPで接着する。なお、銀ペーストPによる接着は、試料Sの長手方向における各端部から2.5mmの領域に行い、試料Sのみの領域を5mm×5mm角とする(図4参照)。
(3)両端の銀ペーストPに端子を接続した後、抵抗計により抵抗値(R:単位=Ω)を測定する。
(4)この抵抗値から次の式により抵抗率(ρ:単位=Ω・cm)を算出する。
ρ=R/(1×10/d)
(5)3つの試料Sについて抵抗率をそれぞれ算出し、その算術平均値を「抵抗率」とする。
As a result, the nonwoven fabric preferably has a resistivity of 45 Ω · cm or less. More preferably, the resistivity is 30 Ω · cm or less. The smaller the resistivity, the better the conductivity, so the lower limit of the resistivity is not particularly limited. “Resistivity” means a value obtained by the following procedure.
(1) A 5 mm × 10 mm square sample S is collected from the nonwoven fabric, and the thickness (d: unit = μm) of the sample S is measured. In this measurement, an electron micrograph (magnification: 10,000 times) of a cross section of the sample S is taken, the thicknesses at five randomly selected points in the electron micrograph are measured, and the arithmetic average value is calculated as the thickness of the sample S. Say it.
(2) After the sample S is placed on the glass plate G via the silver paste P, the sample S is dried at a temperature of 60 ° C. for 1 hour and adhered with the silver paste P. Note that the adhesion with the silver paste P is performed on a region 2.5 mm from each end in the longitudinal direction of the sample S, and the region of the sample S alone is a 5 mm × 5 mm square (see FIG. 4).
(3) After connecting a terminal to the silver paste P at both ends, the resistance value (R: unit = Ω) is measured with an ohmmeter.
(4) The resistivity (ρ: unit = Ω · cm) is calculated from the resistance value by the following formula.
ρ = R / (1 × 10 4 / d)
(5) The resistivity is calculated for each of the three samples S, and the arithmetic average value is defined as “resistivity”.

なお、不織布領域を構成する繊維の平均繊維径は1μm以下であるのが好ましい。このような平均繊維径であると、表面積が広く、多孔質酸化チタン粒子との接触点が多くなり、集電性能に優れているためである。平均繊維径が小さければ小さい程、多孔質酸化チタン粒子との接触点が多くなり、集電性能が高くなるため、平均繊維径は0.5μm以下であるのがより好ましく、0.4μm以下であるのが更に好ましい。他方、平均繊維径の下限は特に限定するものではないが、取り扱い性に優れているように、50nm以上であるのが好ましい。この「平均繊維径」は繊維の40点における繊維径の算術平均値をいい、「繊維径」は不織布表面を1〜5万倍に拡大した顕微鏡写真を撮り、この写真を元に算出した値を意味し、繊維断面形状が円形でない場合には、円形断面に換算した値を繊維径とする。   In addition, it is preferable that the average fiber diameter of the fiber which comprises a nonwoven fabric area | region is 1 micrometer or less. This is because such an average fiber diameter has a large surface area, increases the number of contact points with the porous titanium oxide particles, and is excellent in current collecting performance. The smaller the average fiber diameter, the more contact points with the porous titanium oxide particles and the higher the current collecting performance. Therefore, the average fiber diameter is more preferably 0.5 μm or less, and 0.4 μm or less. More preferably. On the other hand, the lower limit of the average fiber diameter is not particularly limited, but is preferably 50 nm or more so as to be excellent in handleability. This "average fiber diameter" refers to the arithmetic average value of the fiber diameters at 40 points of the fiber. "Fiber diameter" is a value calculated based on this photograph taken by taking a micrograph of the nonwoven fabric surface magnified 1 to 50,000 times. When the fiber cross-sectional shape is not circular, the value converted into a circular cross-section is taken as the fiber diameter.

また、不織布領域を構成する繊維のアスペクト比は1000以上である。アスペクト比が1000以上であるため、繊維長の長い繊維であり、繊維自体の長さ方向に導電でき、集電性能に優れるためである。つまり、アスペクト比が小さいと、繊維同士の界面、繊維と粒子との界面、及び/又は粒子同士の界面を介して電子が流れることになり、これら界面が抵抗となって内部抵抗が増加し、変換効率が低下するが、本発明においては、繊維長の長い繊維からなり、これら界面が少なく、抵抗が小さいため、結果として変換効率を高くすることができる。アスペクト比が大きければ大きい程、導電性に優れるため、アスペクト比の上限は特に限定するものではない。好ましくは、繊維長が実質的に連続繊維でアスペクト比が無限大である。なお、アスペクト比は平均繊維長(単位:μm)を平均繊維径(単位:μm)で除した商である。この「平均繊維長」は40本の繊維の繊維長の算術平均値をいい、「繊維長」は不織布表面を500〜5万倍に拡大した顕微鏡写真を撮り、この写真を元に算出した値を意味する。   Moreover, the aspect ratio of the fiber which comprises a nonwoven fabric area | region is 1000 or more. This is because, since the aspect ratio is 1000 or more, the fiber has a long fiber length, can conduct in the length direction of the fiber itself, and has excellent current collecting performance. In other words, when the aspect ratio is small, electrons flow through the interface between fibers, the interface between fibers and particles, and / or the interface between particles, and these interfaces become resistance and increase internal resistance. Although conversion efficiency falls, in this invention, it consists of a fiber with a long fiber length, and since these interfaces are few and resistance is small, conversion efficiency can be made high as a result. The higher the aspect ratio, the better the conductivity, so the upper limit of the aspect ratio is not particularly limited. Preferably, the fiber length is substantially continuous and the aspect ratio is infinite. The aspect ratio is a quotient obtained by dividing the average fiber length (unit: μm) by the average fiber diameter (unit: μm). This "average fiber length" refers to the arithmetic average value of the fiber lengths of 40 fibers, and "fiber length" is a value calculated based on this photograph taken by taking a micrograph of the nonwoven fabric surface magnified 500 to 50,000 times. Means.

本発明の不織布はすず化合物を含む曳糸性ゾル溶液を用いて形成されているため、不織布構成繊維は酸化すず含有繊維からなる。しかしながら、酸化すず含有繊維の導電性及び透明性を損なわない範囲内で他の物質を含むことができる。例えば、カーボンナノチューブを含んでいることができる。カーボンナノチューブの場合、1mass%以下含むことができる。   Since the nonwoven fabric of the present invention is formed using a spinnable sol solution containing a tin compound, the nonwoven fabric constituting fiber is composed of tin oxide-containing fibers. However, other substances can be included as long as the conductivity and transparency of the tin oxide-containing fiber are not impaired. For example, carbon nanotubes can be included. In the case of carbon nanotubes, it can be contained in an amount of 1 mass% or less.

本発明の不織布は見掛密度が0.1g/cm以上であるのが好ましい。このような見掛密度であることによって、不織布構成繊維である酸化すず含有繊維同士の接点が多く、導電性に優れているためである。より好ましくは0.15g/cm以上であり、更に好ましくは0.2g/cm以上である。なお、不織布の見掛密度が高ければ高いほど、酸化すず含有繊維同士の接点が多く、導電性に優れているため、見掛密度の上限は特に限定するものではない。この「見掛密度」は目付(g/cm)を厚さ(cm)で除した商である。「目付」は不織布からクラックのない領域の試料を採取し、この試料の重量から1mあたりの重量を算出した値であり、「厚さ」は不織布の断面の電子顕微鏡写真(倍率:1万倍)を撮り、その電子顕微鏡写真における無作為に選んだ5点における厚さを計測し、算術平均した値をいう。なお、目付は特に限定するものではないが、取り扱い性、生産性の点から0.5〜20g/mであるのが好ましく、0.5〜10g/mであるのがより好ましい。また、厚さも特に限定するものではないが、1〜100μmであるのが好ましく、1〜50μmであるのが更に好ましい。 The nonwoven fabric of the present invention preferably has an apparent density of 0.1 g / cm 3 or more. This is because such an apparent density has many contacts between tin oxide-containing fibers which are nonwoven fabric constituting fibers, and is excellent in conductivity. More preferably, it is 0.15 g / cm 3 or more, and still more preferably 0.2 g / cm 3 or more. In addition, since the higher the apparent density of the nonwoven fabric, the more the contacts between the tin-containing fibers and the better the conductivity, the upper limit of the apparent density is not particularly limited. This “apparent density” is a quotient obtained by dividing the basis weight (g / cm 2 ) by the thickness (cm). “Weight” is a value obtained by taking a sample of a non-cracked area from a nonwoven fabric, and calculating the weight per 1 m 2 from the weight of this sample. “Thickness” is an electron micrograph of a cross section of the nonwoven fabric (magnification: 10,000). Is the arithmetic average of the thickness at five randomly selected points in the electron micrograph. The weight per unit area is not particularly limited, but is preferably 0.5 to 20 g / m 2 and more preferably 0.5 to 10 g / m 2 from the viewpoint of handleability and productivity. Moreover, although thickness is not specifically limited, It is preferable that it is 1-100 micrometers, and it is still more preferable that it is 1-50 micrometers.

本発明の「曳糸性ゾル溶液」であるかどうかは次の手順により判断できる。つまり、アースしたアルミ板に対し、水平方向に配置した金属ノズル(内径:0.4mm)から曳糸性を判断する溶液(固形分濃度:20〜50wt%)を押し出す(押出量:0.5〜1.0g/hr)と共に、ノズルに電圧を印加(電界強度:1〜3kV/cm、極性:プラス印加又はマイナス印加)し、ノズル先端に溶液の固化を生じさせることなく、1分間以上、連続して紡糸し、アルミ板上に繊維を集積させて不織布を形成する。この集積した繊維の電子顕微鏡写真を撮り、観察し、液滴がなく、繊維の平均繊維径(40点の算術平均値)が1μm以下、アスペクト比が1000以上の不織布を製造できる条件が存在する場合には、その溶液は「曳糸性あり」と判断する。これに対して、前記条件(すなわち、固形分濃度、押出量、電界強度、及び/又は極性)を変え、いかに組み合わせても、液滴がある場合、オイル状で一定した繊維形態でない場合、平均繊維径が5μmを超える場合、あるいは、アスペクト比が1000未満(例えば、粒子状)で、不織布を製造できる条件が存在しない場合には、その溶液は「曳糸性なし」と判断する。   Whether it is the “spinning sol solution” of the present invention can be determined by the following procedure. That is, a solution (solid content concentration: 20 to 50 wt%) for judging the spinnability is extruded from a metal nozzle (inner diameter: 0.4 mm) arranged in a horizontal direction against a grounded aluminum plate (extrusion amount: 0.5). -1.0 g / hr) and a voltage applied to the nozzle (electric field strength: 1 to 3 kV / cm, polarity: positive application or negative application) for 1 minute or more without causing solidification of the solution at the nozzle tip, Spinning continuously, fibers are accumulated on an aluminum plate to form a nonwoven fabric. Electron micrographs of the accumulated fibers are taken and observed, and there are conditions under which there can be produced a non-woven fabric having no droplets, an average fiber diameter of 40 fibers (arithmetic average value of 40 points) and an aspect ratio of 1000 or more. In some cases, the solution is judged to be “threadable”. On the other hand, if the conditions (that is, the solid content concentration, the extrusion amount, the electric field strength, and / or the polarity) are changed and they are combined in any way, when there are droplets, when the oil form is not a constant fiber form, the average When the fiber diameter exceeds 5 μm, or when the aspect ratio is less than 1000 (for example, in the form of particles) and there is no condition for producing a nonwoven fabric, the solution is judged to be “no spinnability”.

このようなすず化合物を含む曳糸性ゾル溶液は、例えば、一般式SnX・bHO(XはCl原子、Br原子、I原子、F原子、OH基、SO基、NO基またはCHCOO基を表し、aは1〜4の整数を、bは0〜6の整数を表す)で表わされるすず化合物を、すず化合物を溶解可能な溶媒に溶解させて調製できる。より具体的には、すず化合物として、SnCl、SnCl・2HO、SnBr、SnI、SnF、SnSO、Sn(CHCOO)、Sn(NO等を挙げることができ、これらの中でも、SnCl・2HO、SnCl、SnBrは反応性、溶解性の点から好適に使用できる。なお、Sn(CHClなどの有機化合物で化学修飾したものであっても使用することができる。 The spinnable sol solution containing such a tin compound has, for example, a general formula SnX a · bH 2 O (where X is a Cl atom, a Br atom, an I atom, an F atom, an OH group, a SO 4 group, a NO 3 group, or It can be prepared by dissolving a tin compound represented by CH 3 COO group, a being an integer of 1 to 4 and b being an integer of 0 to 6 in a solvent capable of dissolving the tin compound. More specifically, examples of tin compounds include SnCl 2 , SnCl 2 .2H 2 O, SnBr 2 , SnI 2 , SnF 2 , SnSO 4 , Sn (CH 3 COO) 2 , Sn (NO 3 ) 2 and the like. Among these, SnCl 2 .2H 2 O, SnCl 2 , and SnBr 2 can be preferably used from the viewpoint of reactivity and solubility. Incidentally, it is possible to use even those chemically modified with an organic compound such as Sn (CH 3) 2 Cl 2 .

また、曳糸性ゾル溶液として、例えば、一般式Sn(OR)、Sn(OR)(R=メチル基、エチル基、プロピル基、ブチル基など)で表されるアルコキシドを用いることもできる。 Further, as the spinnable sol solution, for example, an alkoxide represented by the general formula Sn (OR) 2 or Sn (OR) 4 (R = methyl group, ethyl group, propyl group, butyl group, etc.) can be used. .

なお、曳糸性ゾル溶液は導電性を向上させるために、フッ素系化合物を含んでいても良い。このフッ素系化合物は、通常、ドーパントとして使用されているものを使用することができ、例えば、フッ化アンモニウム、フッ化水素などを用いることができる。   The spinnable sol solution may contain a fluorine-based compound in order to improve conductivity. As this fluorine-based compound, those usually used as a dopant can be used, and for example, ammonium fluoride, hydrogen fluoride, and the like can be used.

すず化合物を溶解可能な溶媒はすず化合物を溶解できるものであれば良く、特に限定するものではないが、アルコールを使用することができる。より具体的には、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、オクチルアルコール、2−メトキシエタノール、2−エトキシエタノール、エチレングリコール、1−メトキシ−2−プロピルアルコール、メトキシエトキシエタノール、2−フェニルエチルアルコール、ベンジルアルコール、アリルアルコール、2−メチル−2−プロペン−1−オール、3−メチル−3−ブテン−1−オール、フェノール、メトキシフェノール、エトキシフェノール、クレゾール、エチルフェノールなどを使用することができる。   The solvent capable of dissolving the tin compound is not particularly limited as long as it can dissolve the tin compound, and alcohol can be used. More specifically, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, octyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, ethylene glycol, 1-methoxy-2-propyl alcohol, methoxyethoxyethanol, 2-phenyl Use ethyl alcohol, benzyl alcohol, allyl alcohol, 2-methyl-2-propen-1-ol, 3-methyl-3-buten-1-ol, phenol, methoxyphenol, ethoxyphenol, cresol, ethylphenol, etc. Can do.

曳糸性ゾル溶液の粘度は50〜1000cP(センチポイズ)であるのが好ましく、70〜700cP(センチポイズ)であるのがより好ましい。粘度が50cP未満であると曳糸性ではない傾向があり、粘度が1000cPを超えると繊維径が大きくなる傾向があるためである。曳糸性ゾル溶液をこのような粘度とするために、前記すず化合物の溶解液を加熱しても良い。   The viscosity of the spinnable sol solution is preferably 50 to 1000 cP (centipoise), and more preferably 70 to 700 cP (centipoise). This is because if the viscosity is less than 50 cP, there is a tendency not to be spinnable, and if the viscosity exceeds 1000 cP, the fiber diameter tends to increase. In order to make the spinnable sol solution have such a viscosity, the tin compound solution may be heated.

なお、ゾル溶液が曳糸性で、不織布の導電性に悪影響を及ぼさなければ、カーボンナノチューブのような固形物を含むことができる。この場合、曳糸性ゾル溶液を調製した後に固形物を添加して調製することができる。   If the sol solution is spinnable and does not adversely affect the conductivity of the nonwoven fabric, it can contain solids such as carbon nanotubes. In this case, it can be prepared by preparing a spinnable sol solution and then adding a solid.

本発明の不織布領域を構成する不織布は前記曳糸性ゾル溶液を用いて形成したものである。例えば、静電紡糸法、乾式法により紡糸したゲル繊維を巻き取ることなく、集積することによって製造することができる。これらの中でも静電紡糸法によれば、前記平均繊維径が1μm以下及び/又はアスペクト比が1000以上(特には連続繊維)を製造しやすいため好適である。   The nonwoven fabric constituting the nonwoven fabric region of the present invention is formed using the spinnable sol solution. For example, it can be produced by collecting gel fibers spun by an electrostatic spinning method or a dry method without winding them. Among these, the electrospinning method is preferable because the average fiber diameter is 1 μm or less and / or the aspect ratio is 1000 or more (particularly continuous fiber).

好適である静電紡糸法について説明すると、曳糸性ゾル溶液を紡糸空間へ供給するとともに、供給した曳糸性ゾル溶液に電界を作用させることにより繊維化させ、すず化合物ゲル状繊維を形成する。より具体的には、ノズル、ワイヤー、ブラシ等の供給手段によって、曳糸性ゾル溶液を紡糸空間へ供給する。例えば、ノズルを使用する場合、内径が0.1〜3mmのものを使用すると平均繊維径1μm以下のすず化合物ゲル状繊維を製造しやすい。なお、供給手段が金属製であると、一方の電極として使用できる。   The electrospinning method that is suitable will be described. The spinnable sol solution is supplied to the spinning space, and the supplied spinnable sol solution is fiberized by applying an electric field to form a tin compound gel fiber. . More specifically, the spinnable sol solution is supplied to the spinning space by supply means such as a nozzle, a wire, and a brush. For example, when a nozzle is used, a tin compound gel-like fiber having an average fiber diameter of 1 μm or less can be easily produced by using a nozzle having an inner diameter of 0.1 to 3 mm. In addition, when a supply means is metal, it can be used as one electrode.

なお、曳糸性ゾル溶液に作用させる電界は、すず化合物ゲル状繊維の繊維径、供給手段と支持体との距離、曳糸性ゾル溶液の溶媒、曳糸性ゾル溶液の粘度などによって変化するため、特に限定するものではないが、0.5〜5kV/cmであるのが好ましい。5kV/cmを超えると、空気の絶縁破壊が生じやすく、他方で、0.5kV/cm未満であると、繊維形状となりにくいためである。このように電界を作用させることにより、曳糸性ゾル溶液に静電荷が蓄積され、支持体側の電極によって電気的に引っ張られ、引き伸ばされて繊維化する。電気的に引き伸ばしているため、繊維が支持体に近づくにしたがって繊維の速度が加速され、細径化する。また、溶媒の蒸発によって細くなり、曳糸性ゾル中の静電気密度が高まり、その電気的反発力によって***して更に細くなるのではないかと考えている。   The electric field applied to the spinnable sol solution varies depending on the fiber diameter of the tin compound gel fiber, the distance between the supply means and the support, the solvent of the spinnable sol solution, the viscosity of the spinnable sol solution, and the like. Therefore, although not particularly limited, it is preferably 0.5 to 5 kV / cm. If it exceeds 5 kV / cm, air breakdown tends to occur, and if it is less than 0.5 kV / cm, it is difficult to form a fiber shape. By applying an electric field in this way, an electrostatic charge is accumulated in the spinnable sol solution, which is electrically pulled by the electrode on the support side, and stretched to be fiberized. Since the fibers are electrically stretched, the speed of the fibers is accelerated and the diameter is reduced as the fibers approach the support. In addition, it is thought that it becomes thinner by evaporation of the solvent, the electrostatic density in the spinnable sol increases, and it is split by the electric repulsive force and further thinned.

このような電界は、例えば、供給手段(例えば、ノズル)と支持体との間に電位差を設けることによって作用させることができる。例えば、供給手段に電圧を印加するとともに支持体をアースすることによって電位差を設けることができるし、逆に、支持体に電圧を印加するとともに供給手段をアースすることによって電位差を設けることもできる。   Such an electric field can be applied, for example, by providing a potential difference between the supply means (for example, a nozzle) and the support. For example, a potential difference can be provided by applying a voltage to the supply means and grounding the support, and conversely, a potential difference can be provided by applying a voltage to the support and grounding the supply means.

次いで、前記すず化合物ゲル状繊維を支持体上に集積させるが、この時に、支持体を300〜750℃に維持することによって、すず化合物ゲル状繊維を集積させるだけではなく、すず化合物ゲル状繊維を焼成し、酸化すず含有繊維とするのが好ましい。このように、集積と同時に300〜750℃で焼成することによって、酸化すず化合物の結晶化が進行し、導電性が高くなり、また、繊維の収縮を抑え、クラックを生じることなく不織布を製造できるためである。更に、すず化合物ゲル状繊維を焼成することによって、酸化すず含有繊維同士が接着(焼結)するため、導電性の優れる不織布とすることができる。この場合の支持体はすず化合物ゲル状繊維を焼成できる温度に維持しても使用できるものであれば良く、特に限定するものではないが、例えば、金属製、セラミックス製、カーボン製のロール又はコンベアを使用できる。なお、セラミックス製のように、導電性のない場合には、別途金属等の導電性材料を電極として設置する。例えば、コンベアの供給手段側と反対側に、コンベアと接触して又は離間させて導電性材料を設置する。また、支持体は多孔性であっても良いし、無孔性であっても良い。   Next, the tin compound gel fibers are accumulated on the support. At this time, the tin compound gel fibers are not only accumulated by maintaining the support at 300 to 750 ° C., but also the tin compound gel fibers. Is preferably fired to form tin oxide-containing fibers. Thus, by firing at 300 to 750 ° C. at the same time as the accumulation, crystallization of the tin oxide compound proceeds, the conductivity becomes high, the shrinkage of the fibers is suppressed, and the nonwoven fabric can be produced without causing cracks. Because. Furthermore, since the tin-containing fibers are bonded (sintered) by firing the tin compound gel-like fibers, a nonwoven fabric having excellent conductivity can be obtained. The support in this case is not particularly limited as long as it can be used even if it is maintained at a temperature at which the tin compound gel fiber can be fired. For example, a metal roll, ceramic roll, or carbon roll or conveyor Can be used. In addition, when it is not conductive like ceramics, a conductive material such as metal is separately provided as an electrode. For example, the conductive material is placed on the side opposite to the supply means side of the conveyor in contact with or away from the conveyor. The support may be porous or non-porous.

このように支持体を300〜750℃に維持することによって、酸化すず化合物の結晶化が進行し、導電性が高くなるばかりでなく、溶媒などの有機成分も除去される。300℃未満では酸化すず化合物の結晶化が十分に進行せず、導電性の付与が不十分となり、750℃を超えると酸化すず化合物の結晶の分解、昇華、クラックの発生などにより、導電性の付与が不十分となるためで、好ましくは350〜700℃であり、より好ましくは400〜650℃であり、更に好ましくは450〜600℃である。支持体をこのような温度とするには、例えば、支持体の内部又は外部にヒーターを設置し、加熱することによって実施できる。なお、支持体によるすず化合物ゲル状繊維の加熱焼成時間は、すず化合物ゲル状繊維の結晶化が進行し、導電性に優れる酸化すず含有繊維となる時間であれば良く、支持体の維持温度によって異なるため特に限定するものではないが、10秒以上であるのが好ましい。   By maintaining the support at 300 to 750 ° C. in this manner, the crystallization of the tin oxide compound proceeds and the conductivity becomes high, and organic components such as a solvent are also removed. If the temperature is lower than 300 ° C., the crystallization of the tin oxide compound does not proceed sufficiently and the conductivity is not sufficiently imparted. If the temperature exceeds 750 ° C., the conductivity of the tin oxide compound is degraded due to decomposition, sublimation, generation of cracks, etc. Since application | coating becomes inadequate, Preferably it is 350-700 degreeC, More preferably, it is 400-650 degreeC, More preferably, it is 450-600 degreeC. The temperature of the support can be set, for example, by installing a heater inside or outside the support and heating it. The heating and firing time of the tin compound gel-like fibers by the support may be any time as long as the crystallization of the tin compound gel-like fibers proceeds and becomes tin oxide-containing fibers having excellent conductivity, depending on the maintenance temperature of the support. Although it does not specifically limit since it differs, it is preferable that it is 10 seconds or more.

このすず化合物ゲル状繊維の集積と焼成を同時に行なう段階は、すず化合物を酸化すず化合物とし、導電性を付与する段階であるため、効率的に酸化すず化合物とすることができるように、酸素存在下、特に空気雰囲気下で実施するのが好ましい。   The stage of simultaneous accumulation and firing of this tin compound gel fiber is a stage where the tin compound is oxidized and imparted with conductivity, so that there is oxygen present so that it can be efficiently converted into a tin oxide. It is preferable to carry out under an air atmosphere.

以上は支持体ですず化合物ゲル状繊維の集積と焼成を同時に行う製造方法であるが、支持体上にすず化合物ゲル状繊維を集積して繊維ウエブを形成した後に、焼成する方法によっても酸化すず含有繊維からなる不織布を製造することができる。なお、この場合の焼成条件は前述の同時に焼成する場合と同様の条件で実施できる。   The above is a manufacturing method in which the compound gel fiber is accumulated and fired simultaneously with the support, but tin oxide is also oxidized by the method of firing the tin compound gel fiber on the support to form a fiber web. A nonwoven fabric made of the contained fibers can be produced. The firing conditions in this case can be carried out under the same conditions as in the case of simultaneous firing described above.

以上のような方法により、本発明の不織布を製造することができるが、平均繊維径が1μm以下の酸化すず含有繊維は、供給手段による曳糸性ゾル溶液の供給量、電界強度、ゾル溶液の濃度、及び/又はゾル溶液の粘度等を調整することによって得ることができる。また、見掛密度の高い(特には0.1g/cm以上)不織布は曳糸性ゾル溶液とは反対極性のイオンを照射することなく紡糸することによって製造できる。 The nonwoven fabric of the present invention can be produced by the method as described above, but the tin oxide-containing fibers having an average fiber diameter of 1 μm or less are supplied with the supply amount of the spinnable sol solution by the supply means, the electric field strength, It can be obtained by adjusting the concentration and / or the viscosity of the sol solution. Moreover, a nonwoven fabric with a high apparent density (especially 0.1 g / cm 3 or more) can be produced by spinning without irradiating ions having a polarity opposite to that of the spinnable sol solution.

本発明の不織布の製造方法を、製造装置の模式的断面図の一例である図3をもとに簡単に説明する。   The manufacturing method of the nonwoven fabric of this invention is demonstrated easily based on FIG. 3 which is an example of typical sectional drawing of a manufacturing apparatus.

まず、前述のように調製された曳糸性ゾル溶液はゾル溶液貯留部1から定量ポンプ等によって、ノズル群2〜211へと供給され、ノズル群2〜211から紡糸空間へ押し出される。一方、ゾル溶液貯留部1からノズル群2〜211へ曳糸性ゾル溶液を供給する金属製供給管3に電圧が印加されるとともに、支持体4はアースされているため、曳糸性ゾル溶液に電界が作用し、前記押し出された曳糸性ゾル溶液は繊維化し、すず化合物ゲル状繊維となり、支持体4へ向かって飛翔する。なお、ノズル群2〜211は不織布の地合いを向上させるために、揺動(特には、支持体4の幅方向に揺動)させても良い。このすず化合物ゲル状繊維は支持体4に到達し、集積して不織布となるが、支持体4はヒーター5によって300〜750℃に加熱され、維持されているため、すず化合物ゲル状繊維は焼成され、酸化すず含有繊維となる。つまり、酸化すず含有繊維からなる不織布となる。なお、支持体4はコンベアであり、その移動速度を調節することにより、焼結時間及び不織布の目付を調節することができる。 First, the spinnable sol solution prepared as described above is supplied from the sol solution storage unit 1 to the nozzle groups 2 1 to 2 11 by a metering pump or the like, and pushed out from the nozzle groups 2 1 to 2 11 to the spinning space. It is. On the other hand, since a voltage is applied to the metal supply pipe 3 that supplies the spinnable sol solution from the sol solution storage unit 1 to the nozzle groups 2 1 to 2 11 , and the support 4 is grounded, the spinnability is increased. An electric field acts on the sol solution, and the extruded spinnable sol solution becomes a fiber, becomes a tin compound gel fiber, and flies toward the support 4. The nozzle groups 2 1 to 2 11 may be swung (in particular, swung in the width direction of the support 4) in order to improve the texture of the nonwoven fabric. The tin compound gel fibers reach the support 4 and accumulate to form a nonwoven fabric. However, since the support 4 is heated and maintained at 300 to 750 ° C. by the heater 5, the tin compound gel fibers are fired. And becomes tin oxide-containing fibers. That is, it becomes a nonwoven fabric made of tin oxide-containing fibers. In addition, the support body 4 is a conveyor, and the sintering time and the fabric weight of a nonwoven fabric can be adjusted by adjusting the moving speed.

図3の製造装置においては、加熱された支持体4によって発生する気流によってすず化合物ゲル状繊維の均一な飛翔が乱れないように、気体供給装置6をノズル群2〜211よりも上流側に配置し、ノズル群2〜211から支持体4へ向かう気体(特には空気)の流れを形成している。同時に、支持体4よりも下流側に排気装置7を配置し、供給された気体を排気している。また、図3の製造装置においては、前記加熱された支持体4によって発生する気流の影響を更に少なくするために、支持体4を垂直に配置し、この支持体4に対して直角方向にノズル群2〜211を配置している。なお、支持体4の重力の作用方向上方にノズル群2〜211を配置しなければ、同様の効果が得られる。更に、図3の製造装置においては、揮発した曳糸性ゾル溶液の溶媒が分散しないように、容器8にノズル群2〜211、支持体4等が収納されている。 In the manufacturing apparatus of FIG. 3, the gas supply device 6 is located upstream of the nozzle groups 2 1 to 2 11 so that the uniform flight of the tin compound gel fibers is not disturbed by the air flow generated by the heated support 4. And a flow of gas (particularly air) from the nozzle groups 2 1 to 2 11 toward the support 4 is formed. At the same time, an exhaust device 7 is arranged downstream of the support 4 to exhaust the supplied gas. Further, in the manufacturing apparatus of FIG. 3, in order to further reduce the influence of the air flow generated by the heated support 4, the support 4 is arranged vertically, and the nozzle is perpendicular to the support 4. Groups 2 1 to 2 11 are arranged. The same effect can be obtained if the nozzle groups 2 1 to 2 11 are not arranged above the gravity direction of the support 4. Further, in the manufacturing apparatus of FIG. 3, the nozzle groups 2 1 to 2 11 , the support 4 and the like are accommodated in the container 8 so that the solvent of the volatilized spinnable sol solution is not dispersed.

本発明の電極は前述のような透明導電性膜領域と不織布領域とを有するが、前述の通り、透明導電性膜と不織布とは酸化すず化合物によって接着しているのが好ましい。この透明導電性膜と不織布との酸化すず化合物による接着は、透明導電性膜及び/又は不織布にすず化合物を含むゾル溶液を付与し、これらを積層した状態で乾燥し、続いて接着性及び導電性を高めるために焼結することによって実施できる。この焼結は通常、加熱処理により行うが、再表2003―031673号公報に開示されているように、高周波電界中で低温プラズマに暴露する方法によれば、積極的な加熱処理を行うことなく低温で焼結できるため、プラスチック基材のような低融点の基材上の透明導電性膜と不織布とを接着することができる。   The electrode of the present invention has the transparent conductive film region and the nonwoven fabric region as described above. As described above, the transparent conductive film and the nonwoven fabric are preferably bonded with a tin oxide compound. The adhesion between the transparent conductive film and the non-woven fabric by the tin oxide compound is performed by applying a sol solution containing a tin compound to the transparent conductive film and / or the non-woven fabric and drying them in a laminated state, followed by adhesion and electroconductivity. It can be carried out by sintering to enhance the properties. This sintering is usually performed by heat treatment. However, as disclosed in Table 2003-031673, according to the method of exposing to low-temperature plasma in a high-frequency electric field, aggressive heat treatment is not performed. Since it can be sintered at a low temperature, the transparent conductive film and the nonwoven fabric on the low melting point base material such as the plastic base material can be bonded.

なお、このゾル溶液は前述と同様の曳糸性ゾル溶液であるのが好ましい。焼結した時に粒界が形成されず、導電性に優れているためである。また、ゾル溶液の固形分濃度は0.5〜10%であるのが好ましい。これは透明導電性膜領域と不織布領域を接着し、さらに不織布領域における繊維同士を接着することができるためである。濃度が0.5%未満であると接着が不十分になる傾向があり、また10%を超えると焼結の際の収縮によりクラックが入りやすくなり、導電性が悪くなる傾向があるためである。また、透明導電性膜と不織布とを焼結する場合には、透明導電膜の耐熱温度を考慮して焼結する。例えば、透明導電膜がフッ素ドープ酸化すず膜(FTO膜)からなる場合、焼結温度は300〜450℃であるのが好ましい。   The sol solution is preferably a spinnable sol solution similar to that described above. This is because grain boundaries are not formed when sintered and the conductivity is excellent. The solid content concentration of the sol solution is preferably 0.5 to 10%. This is because the transparent conductive film region and the nonwoven fabric region can be bonded, and the fibers in the nonwoven fabric region can be bonded together. If the concentration is less than 0.5%, the adhesion tends to be insufficient, and if it exceeds 10%, cracking tends to occur due to shrinkage during sintering, and the conductivity tends to deteriorate. . Moreover, when sintering a transparent conductive film and a nonwoven fabric, it considers the heat-resistant temperature of a transparent conductive film, and sinters. For example, when the transparent conductive film is made of a fluorine-doped tin oxide film (FTO film), the sintering temperature is preferably 300 to 450 ° C.

本発明の電極は基材上に上述のような透明導電性膜領域と不織布領域を有することができる。この基材は特に限定するものではないが、例えば、ガラス、プラスチックフィルムなどの透明な材料から構成することができる。   The electrode of the present invention can have a transparent conductive film region and a nonwoven fabric region as described above on a substrate. Although this base material is not specifically limited, For example, it can comprise from transparent materials, such as glass and a plastic film.

本発明の色素増感型太陽電池(以下、単に「太陽電池」と表記することがある)について、模式的断面図である図2をもとに説明する。本発明の太陽電池は正極21、前述の本発明の電極からなる負極20、負極の不織布領域20cに存在する色素を吸着した多孔質酸化チタン粒子層22、及び電解液23を備えた構造を有する。本発明の太陽電池においては、本発明の電極を負極20としており、本発明の電極は不織布領域20cを備えており、この不織布領域20cに色素を吸着した多孔質酸化チタン粒子層22を備えているため、色素が光を吸収し、放出した電子は多孔質酸化チタン粒子層22、不織布領域20cを構成する酸化すず含有繊維と順に導電し、透明導電性膜20bに速やかに到達する。そのため、変換効率の高い太陽電池である。つまり、従来の負極のように不織布領域を備えていない場合、電子は多孔質酸化チタン粒子を伝って導電するが、多孔質酸化チタンにおける電子移動距離は10〜15μmといわれていたため、取り出すことのできる電子量が少なく、変換効率の悪いものであったが、本発明においては、多孔質酸化チタン粒子が酸化すず含有繊維と接触した状態にあることができるため、電子は多孔質酸化チタン粒子を伝い、酸化すず含有繊維からなる不織布20cによって速やかに集電されるため、変換効率の高い太陽電池である。   The dye-sensitized solar cell of the present invention (hereinafter sometimes simply referred to as “solar cell”) will be described with reference to FIG. 2 which is a schematic cross-sectional view. The solar cell of the present invention has a structure including a positive electrode 21, a negative electrode 20 composed of the above-described electrode of the present invention, a porous titanium oxide particle layer 22 that adsorbs a pigment present in the nonwoven fabric region 20 c of the negative electrode, and an electrolytic solution 23. . In the solar cell of the present invention, the electrode of the present invention is the negative electrode 20, and the electrode of the present invention is provided with a nonwoven fabric region 20c, and the nonwoven fabric region 20c is provided with a porous titanium oxide particle layer 22 adsorbing a dye. Therefore, the dye absorbs light, and the emitted electrons are sequentially conducted in the order of the porous titanium oxide particle layer 22 and the tin oxide-containing fiber constituting the nonwoven fabric region 20c, and quickly reach the transparent conductive film 20b. Therefore, it is a solar cell with high conversion efficiency. That is, when the nonwoven fabric area is not provided as in the conventional negative electrode, electrons are conducted through the porous titanium oxide particles, but the electron moving distance in the porous titanium oxide was said to be 10 to 15 μm. In the present invention, the porous titanium oxide particles can be in contact with the tin oxide-containing fibers, so that the electrons are the porous titanium oxide particles. It is a solar cell with high conversion efficiency because it is quickly collected by the non-woven fabric 20c made of tin oxide-containing fibers.

本発明の太陽電池は本発明の電極を用いていること以外は従来の太陽電池と同じ構成からなることができる。例えば、正極21はガラス等の基材21a上に酸化インジュウムスズ(ITO)などの透明導電性膜21b、白金21cを順に有する電極からなる。この正極は市販されているため入手可能である。負極20の不織布領域20cに存在する色素を吸着した多孔質酸化チタン粒子層22は、例えば、酸化チタンを含有するペーストを調製し、このペーストを本発明の電極の不織布領域20cに塗布し、焼成した後に、色素を吸着させることによって形成することができる。電解液23としてのヨウ素溶液は試薬として市販されているため入手可能である。このような正極21と色素を吸着した多孔質酸化チタン粒子層22を備えた負極20との間にスペーサーを介在させて空隙を形成し、この空隙に電解液23を注液することにより、本発明の太陽電池を製造することができる。   The solar cell of the present invention can have the same configuration as the conventional solar cell except that the electrode of the present invention is used. For example, the positive electrode 21 is composed of an electrode having a transparent conductive film 21b such as indium tin oxide (ITO) and platinum 21c in this order on a base material 21a such as glass. This positive electrode is available because it is commercially available. The porous titanium oxide particle layer 22 adsorbing the pigment present in the nonwoven fabric region 20c of the negative electrode 20 is prepared, for example, by preparing a paste containing titanium oxide, applying this paste to the nonwoven fabric region 20c of the electrode of the present invention, and firing. Then, it can be formed by adsorbing the dye. Since the iodine solution as the electrolytic solution 23 is commercially available as a reagent, it can be obtained. By forming a void between such a positive electrode 21 and the negative electrode 20 provided with the porous titanium oxide particle layer 22 adsorbing the dye, and by injecting an electrolytic solution 23 into the void, The solar cell of the invention can be manufactured.

以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
(1)不織布の作製;
(1)−1 曳糸性ゾルの調製;
100mlの反応容器に塩化第1すず(SnCl)10gとメタノール100mlを加え、撹拌して溶解させた。この反応容器の開口部を、溶媒の蒸散のために穴を開けた蓋で蓋をした状態で、温度40℃に設定したオーブン中に一日放置した。その後、この溶液をエバポレーターで濃縮し、粘度120cPの曳糸性ゾル溶液(濃度:47%)を得た。
(Example 1)
(1) Production of nonwoven fabric;
(1) -1 preparation of spinnable sol;
10 g of first tin chloride (SnCl 2 ) and 100 ml of methanol were added to a 100 ml reaction vessel, and dissolved by stirring. The opening of the reaction vessel was left in an oven set at a temperature of 40 ° C. for one day with the lid covered with a hole pierced for solvent evaporation. Thereafter, this solution was concentrated by an evaporator to obtain a spinnable sol solution (concentration: 47%) having a viscosity of 120 cP.

(1)−2 不織布の製造;
上記調製した曳糸性ゾル溶液を、金属ノズル(内径:0.4mm)を備えたプラスチックシリンジに2ml入れ、押し出し量0.3g/時間の速度で金属ノズルから押し出すとともに、金属ノズルに電圧12kV印加し、金属ノズルの先端から6cm離れた金属ドラム(アース)上に集積し、すず化合物ゲル状繊維の繊維ウエブを形成した。
(1) -2 Production of nonwoven fabric;
2 ml of the prepared spinnable sol solution is put into a plastic syringe equipped with a metal nozzle (inner diameter: 0.4 mm), extruded from the metal nozzle at a rate of 0.3 g / hour of extrusion, and a voltage of 12 kV is applied to the metal nozzle. Then, they were accumulated on a metal drum (earth) 6 cm away from the tip of the metal nozzle to form a fiber web of tin compound gel fibers.

次いで、この繊維ウエブを電気炉に入れ、室温から10℃/min.の速度で450℃まで昇温し、温度450℃で30分間維持することにより焼成し、内部充実の酸化すず含有繊維同士が焼結した不織布(平均繊維径:0.1μm、目付:3.8g/m、厚さ:16μm、見掛密度:0.24g/cm、抵抗率:25Ω・cm)を製造した。この不織布を電子顕微鏡で観察したところ、アスペクト比が1000以上で、実質的に連続した繊維からなっていた。 Subsequently, this fiber web was put into an electric furnace and from room temperature to 10 ° C./min. The non-woven fabric (average fiber diameter: 0.1 μm, basis weight: 3.8 g) fired by heating at 450 ° C. at a rate of 450 ° C. and maintained for 30 minutes at a temperature of 450 ° C. / M 2 , thickness: 16 μm, apparent density: 0.24 g / cm 3 , resistivity: 25 Ω · cm). When this nonwoven fabric was observed with an electron microscope, it was composed of substantially continuous fibers having an aspect ratio of 1000 or more.

(2)太陽電池の作製;
(2)−1 酸化チタンペーストの調製;
酸化チタン(日本アエロジル社製、P−25)2.1g、ポリエチレングリコール(分子量:50万)0.105g、硝酸水(pH:0.7)4.9g、アセチルアセトン0.210g、Triton−X100(水で100倍希釈)0.105g、ジルコニアビーズ(3mm径)20gを混合し、酸化チタンペーストを調製した。
(2) Production of solar cell;
(2) -1 Preparation of titanium oxide paste;
Titanium oxide (Nippon Aerosil Co., Ltd., P-25) 2.1 g, polyethylene glycol (molecular weight: 500,000) 0.105 g, nitrate water (pH: 0.7) 4.9 g, acetylacetone 0.210 g, Triton-X100 ( 0.105 g diluted 100 times with water) and 20 g of zirconia beads (3 mm diameter) were mixed to prepare a titanium oxide paste.

(2)−2 負極の作製;
15mm角のフッ素ドープ酸化すず膜被覆ガラス(FTOガラス、旭硝子ファブリテック社製、TCOガラス、タイプDU A−110U80)を用意し、エタノール及びアセトンで透明導電性膜(フッ素ドープ酸化すず膜)表面を洗浄した後、紫外線を5分間照射して更に洗浄した。
(2) -2 Production of negative electrode;
Prepare 15mm square fluorine-doped tin oxide film-coated glass (FTO glass, manufactured by Asahi Glass Fabrictech Co., Ltd., TCO glass, type DU A-110U80), and surface the transparent conductive film (fluorine-doped tin oxide film) with ethanol and acetone. After washing, the substrate was further washed by irradiating with ultraviolet rays for 5 minutes.

前記(1)−2で製造した不織布(5mm角)をFTOガラスのフッ素ドープ酸化すず膜の上に載せ、(1)−1で調製した曳糸性ゾル溶液を10倍に薄めたゾル溶液(濃度約5%)を不織布側から塗布(塗布量:約2mg)した後に電気炉に入れ、室温から20℃/min.の速度で450℃まで昇温し、温度450℃で30分間維持することにより焼成し、不織布をFTOガラスの透明導電性膜(フッ素ドープ酸化すず膜)と酸化すず化合物により焼結し、負極を作製した。   The non-woven fabric (5 mm square) produced in the above (1) -2 was placed on a fluorine-doped tin oxide film of FTO glass, and the spinnable sol solution prepared in (1) -1 was diluted 10 times ( (Concentration of about 5%) was applied from the nonwoven fabric side (application amount: about 2 mg), and then placed in an electric furnace, and from room temperature to 20 ° C./min. The temperature is raised to 450 ° C. at a rate of 450 ° C., and is baked by maintaining the temperature at 450 ° C. for 30 minutes. The nonwoven fabric is sintered with a transparent conductive film (fluorine-doped tin oxide film) of FTO glass and a tin oxide compound, and the negative electrode is Produced.

(2)−3 負極と多孔質酸化チタン粒子層との複合;
負極の不織布の存在しない場所にマスキング(厚さ:約70μm)を施し、(2)−1で調製した酸化チタンペーストを不織布に塗布し、温度100℃で30分間乾燥した後、20℃/min.の速度で温度450℃まで昇温し、450℃で30分間維持することにより焼成し、不織布層中にチタニア多孔質体を混在させた。
(2) -3 Composite of negative electrode and porous titanium oxide particle layer;
Masking (thickness: about 70 μm) is applied to the non-woven fabric of the negative electrode, the titanium oxide paste prepared in (2) -1 is applied to the non-woven fabric, dried at 100 ° C. for 30 minutes, and then 20 ° C./min. . The temperature was raised to 450 ° C. at a rate of 5 ° C., and the mixture was baked by maintaining at 450 ° C. for 30 minutes to mix the titania porous body in the nonwoven fabric layer.

次いで、色素N719(0.05984g)をt−ブタノール50ml、アセトニトリル50mlに溶解させた色素溶液中に、前記チタニア多孔質体の混在する負極を室温下、一日浸漬し、チタニア多孔質体に色素を吸着させた後、脱水したアセトニトリルで洗浄し、負極と多孔質酸化チタン粒子層との複合体を製造した。   Next, the negative electrode mixed with the titania porous material is immersed for one day at room temperature in a dye solution in which the dye N719 (0.05984 g) is dissolved in 50 ml of t-butanol and 50 ml of acetonitrile. Was adsorbed and then washed with dehydrated acetonitrile to produce a composite of a negative electrode and a porous titanium oxide particle layer.

(2)−4 電解液の調製;
遮光性のビンに3−メトキシプロピオンニトリル(10ml)、LiI(0.13358g)、I(0.1269g)、4TBP(4−tert−butylpyridine(0.67605g))、DMPr2−I(1,2−Dimetyl−3−n−propylimdazoliumiodide(1.3572g)を入れ、撹拌して溶解させ、電解液を調製した。
(2) -4 Preparation of electrolyte solution;
In a light-shielding bottle, 3-methoxypropiononitrile (10 ml), LiI (0.13358 g), I 2 (0.1269 g), 4TBP (4-tert-butylpyridine (0.67605 g)), DMPr2-I (1,2 -Dimethyl-3-n-propylimidazoliumiodide (1.3572 g) was added and dissolved by stirring to prepare an electrolytic solution.

(2)−5 正極の作製;
15mm角のすずドープ酸化インジウム(ITO)膜被覆ネサガラス(フルウチ化学社製)を用意し、エタノール及びアセトンでITO膜表面を洗浄した後、紫外線を5分間照射して更に洗浄した。
(2) -5 Production of positive electrode;
A 15 mm square tin-doped indium oxide (ITO) film-coated Nesa glass (manufactured by Furuuchi Chemical Co., Ltd.) was prepared, and the ITO film surface was washed with ethanol and acetone, and then further washed by irradiating with ultraviolet rays for 5 minutes.

次いで、スパッタリング装置(JEOL JFC−1600)を用い、電流40mAで2分間の蒸着処理を2回(白金の厚みの狙い値:60nm)行い、前記ITO膜表面に白金を蒸着し、正極を作製した。   Next, using a sputtering apparatus (JEOL JFC-1600), vapor deposition was performed twice for 2 minutes at a current of 40 mA (target value of platinum thickness: 60 nm), and platinum was deposited on the surface of the ITO film to produce a positive electrode. .

(2)−6 太陽電池の組み立て;
負極と多孔質酸化チタン粒子層との複合体、正極のそれぞれに銀ペースト(藤倉化成製、ドータイトD−500)をL字型に塗り、端子をとった(図5参照)。
(2) -6 assembly of solar cell;
A silver paste (Fujikura Kasei Co., Ltd., Dotite D-500) was applied in an L shape to each of the composite of the negative electrode and the porous titanium oxide particle layer and the positive electrode to take terminals (see FIG. 5).

次いで、スペーサー(タマポリ製、HM−52、厚さ:30μm)を用いて、負極と多孔質酸化チタン粒子層との複合体と正極を組み合わせ、(2)−4で調製した電解液を封入し、クリップで固定して、色素増感型太陽電池を組み立てた。   Next, using a spacer (manufactured by Tamapoly, HM-52, thickness: 30 μm), the composite of the negative electrode and the porous titanium oxide particle layer and the positive electrode are combined, and the electrolytic solution prepared in (2) -4 is enclosed. The dye-sensitized solar cell was assembled by fixing with a clip.

(実施例2)
実施例1と同様にして、不織布を製造した。
(Example 2)
A nonwoven fabric was produced in the same manner as in Example 1.

また、実施例1と同様にして、酸化チタンペーストを調製した。   Further, a titanium oxide paste was prepared in the same manner as in Example 1.

次いで、15mm角のフッ素ドープ酸化すず膜被覆ガラス(FTOガラス、旭硝子ファブリテック社製、TCOガラス、タイプDU A−110U80)を用意し、エタノール及びアセトンで透明導電性膜(フッ素ドープ酸化すず膜)表面を洗浄した後、紫外線を5分間照射して更に洗浄した。   Next, a 15 mm square fluorine-doped tin oxide film-coated glass (FTO glass, manufactured by Asahi Glass Fabrictech Co., Ltd., TCO glass, type DU A-110U80) is prepared, and a transparent conductive film (fluorine-doped tin oxide film) with ethanol and acetone. After the surface was washed, it was further washed by irradiating with ultraviolet rays for 5 minutes.

次いで、5mm角の穴を開けたマスキングテープ(厚さ:約70μm)を前記透明導電性膜(フッ素ドープ酸化すず膜)面に施した後、前記不織布(5mm角)を載せ、負極(透明導電性膜と不織布とを焼結せず)とした。   Next, after applying a masking tape (thickness: about 70 μm) with a 5 mm square hole on the surface of the transparent conductive film (fluorine-doped tin oxide film), the nonwoven fabric (5 mm square) is placed on the negative electrode (transparent conductive film). The non-sintering film and the non-woven fabric).

そして、前記酸化チタンペーストを不織布に塗布し、温度100℃で30分間乾燥した後、20℃/min.の速度で温度450℃まで昇温し、450℃で30分間維持することにより焼成し、不織布中にチタニア多孔質体を混在させた。   And after apply | coating the said titanium oxide paste to a nonwoven fabric and drying for 30 minutes at the temperature of 100 degreeC, 20 degreeC / min. The temperature was raised to 450 ° C. at a rate of 450 ° C. and the mixture was baked by maintaining at 450 ° C. for 30 minutes to mix the titania porous body in the nonwoven fabric.

続いて、実施例1と同様に、色素の吸着、電解液の調製、正極の作製及び太陽電池の組み立てを行い、色素増感型太陽電池を組み立てた。   Subsequently, as in Example 1, dye adsorption, electrolyte preparation, positive electrode production, and solar cell assembly were performed to assemble a dye-sensitized solar cell.

(比較例1)
実施例1と同様にして、不織布を製造した。
(Comparative Example 1)
A nonwoven fabric was produced in the same manner as in Example 1.

次いで、この不織布を乳鉢で磨り潰すことにより、短繊維(平均繊維長:20μm、平均繊維径:0.1μm、アスペクト比:200)を得た。この短繊維3gと酸化チタン(日本アエロジル社製、P−25、粒子径:約20nm)3gを、水10ml、アセチルアセトン0.2ml、トリトン−X0.2mlと混合し、酸化すず含有短繊維、酸化チタン混合ペーストを調製した。   Next, the nonwoven fabric was ground with a mortar to obtain short fibers (average fiber length: 20 μm, average fiber diameter: 0.1 μm, aspect ratio: 200). 3 g of this short fiber and 3 g of titanium oxide (manufactured by Nippon Aerosil Co., Ltd., P-25, particle size: about 20 nm) are mixed with 10 ml of water, 0.2 ml of acetylacetone, and 0.2 ml of Triton-X to produce a tin fiber containing tin oxide, oxidized A titanium mixed paste was prepared.

次いで、15mm角のフッ素ドープ酸化すず膜被覆ガラス(FTOガラス、旭硝子ファブリテック社製、TCOガラス、タイプDU A−110U80)を用意し、エタノール及びアセトンで透明導電性膜(フッ素ドープ酸化すず膜)表面を洗浄した後、紫外線を5分間照射して更に洗浄した。   Next, a 15 mm square fluorine-doped tin oxide film-coated glass (FTO glass, manufactured by Asahi Glass Fabrictech Co., Ltd., TCO glass, type DU A-110U80) is prepared, and a transparent conductive film (fluorine-doped tin oxide film) with ethanol and acetone. After the surface was washed, it was further washed by irradiating with ultraviolet rays for 5 minutes.

次いで、5mm角の穴を開けたマスキングテープ(厚さ:約70μm)を前記透明導電性膜(フッ素ドープ酸化すず膜)面に施した後、前記酸化すず短繊維、酸化チタン混合ペーストを塗布した。   Next, a masking tape (thickness: about 70 μm) with a 5 mm square hole was applied to the surface of the transparent conductive film (fluorine-doped tin oxide film), and then the tin oxide short fiber and titanium oxide mixed paste were applied. .

そして、温度100℃で30分間乾燥した後、20℃/min.の速度で温度450℃まで昇温し、450℃で30分間維持することにより焼成し、FTO膜上に、酸化すず含有短繊維とチタニア多孔質体とが混在する複合層を形成した。   And after drying for 30 minutes at the temperature of 100 degreeC, 20 degreeC / min. The mixture was heated to 450 ° C. at a rate of 450 ° C. and maintained at 450 ° C. for 30 minutes, and then fired to form a composite layer in which tin oxide-containing short fibers and a titania porous material were mixed on the FTO film.

続いて、実施例1と同様に、色素の吸着、電解液の調製、正極の作製及び太陽電池の組み立てを行い、色素増感型太陽電池を組み立てた。   Subsequently, as in Example 1, dye adsorption, electrolyte preparation, positive electrode production, and solar cell assembly were performed to assemble a dye-sensitized solar cell.

(比較例2)
チタンテトラノルマルブトキシド(和光純薬工業株式会社製、一級)1重量部に、酢酸(和光純薬工業株式会社製、特級)1.3重量部を添加した溶液に、イオン交換水1重量部を攪拌しながら添加することにより溶液中にゲルを生成した。更に攪拌を続け、透明な溶液とした。次いで、この溶液にポリエチレングリコール(和光純薬工業株式会社製、一級、平均分子量300,000〜500,000)0.016重量部混合し紡糸溶液を調製した。
(Comparative Example 2)
1 part by weight of ion-exchanged water is added to a solution obtained by adding 1.3 parts by weight of acetic acid (made by Wako Pure Chemical Industries, Ltd., special grade) to 1 part by weight of titanium tetranormal butoxide (manufactured by Wako Pure Chemical Industries, Ltd., first grade). A gel was formed in the solution by adding with stirring. Stirring was continued to obtain a transparent solution. Next, 0.016 parts by weight of polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., first grade, average molecular weight 300,000 to 500,000) was mixed with this solution to prepare a spinning solution.

上記調製した紡糸溶液を、実施例1と同じ条件で紡糸し、繊維ウエブを形成した。   The spinning solution prepared above was spun under the same conditions as in Example 1 to form a fiber web.

次いで、この繊維ウエブを電気炉に入れ、室温から10℃/min.の速度で600℃まで昇温し、温度600℃で2時間維持することにより焼成し、多孔質酸化チタン繊維からなる不織布(平均繊維径:0.3μm、目付:4.0g/m、厚さ:18μm、見掛密度:0.22g/cm、抵抗率:1×10Ω・cm)を製造した。 Subsequently, this fiber web was put into an electric furnace and from room temperature to 10 ° C / min. The temperature was raised to 600 ° C. at a rate of 600 ° C. and fired by maintaining at a temperature of 600 ° C. for 2 hours, and a nonwoven fabric composed of porous titanium oxide fibers (average fiber diameter: 0.3 μm, basis weight: 4.0 g / m 2 , thickness The thickness was 18 μm, the apparent density was 0.22 g / cm 3 , and the resistivity was 1 × 10 6 Ω · cm.

次いで、15mm角のフッ素ドープ酸化すず膜被覆ガラス(FTOガラス、旭硝子ファブリテック社製、TCOガラス、タイプDU A−110U80)を用意し、エタノール及びアセトンで透明導電性膜(フッ素ドープ酸化すず膜)表面を洗浄した後、紫外線を5分間照射して更に洗浄した。   Next, a 15 mm square fluorine-doped tin oxide film-coated glass (FTO glass, manufactured by Asahi Glass Fabrictech Co., Ltd., TCO glass, type DU A-110U80) is prepared, and a transparent conductive film (fluorine-doped tin oxide film) with ethanol and acetone. After the surface was washed, it was further washed by irradiating with ultraviolet rays for 5 minutes.

次いで、前記不織布(5mm角)前記FTOガラスの透明導電性膜面に載せた後、エタノールで酸化チタン水分散液(SP−210、昭和電工製)を希釈し、5重量%とし、前記不織布に塗布した。そして、温度180℃で5分間熱処理を行って、不織布と多孔質酸化チタン不織布との複合層を形成した。   Next, after placing the nonwoven fabric (5 mm square) on the transparent conductive film surface of the FTO glass, a titanium oxide aqueous dispersion (SP-210, manufactured by Showa Denko) is diluted with ethanol to 5 wt%, Applied. And it heat-processed for 5 minutes at the temperature of 180 degreeC, and formed the composite layer of a nonwoven fabric and a porous titanium oxide nonwoven fabric.

続いて、実施例1と同様に、色素の吸着、電解液の調製、正極の作製及び太陽電池の組み立てを行い、色素増感型太陽電池を組み立てた。   Subsequently, as in Example 1, dye adsorption, electrolyte preparation, positive electrode production, and solar cell assembly were performed to assemble a dye-sensitized solar cell.

(比較例3)
酸化スズのコロイド溶液(多木化学製セラメースS−8、濃度8%、平均粒子径:2nm)と完全ケン化ポリビニルアルコール(重合度:2800)の15%水溶液を1:1の質量比で混合し、透明な紡糸溶液(粘度:780cP)を調製した。
(Comparative Example 3)
A colloidal solution of tin oxide (Cerames S-8, manufactured by Taki Chemical Co., Ltd., concentration 8%, average particle size: 2 nm) and a 15% aqueous solution of completely saponified polyvinyl alcohol (degree of polymerization: 2800) are mixed at a mass ratio of 1: 1. A transparent spinning solution (viscosity: 780 cP) was prepared.

次いで、この紡糸溶液を実施例1と同様に紡糸して繊維ウエブを形成した後に焼成し、多孔性の酸化すず含有繊維からなる不織布(平均繊維径:0.2μm、目付:3.9g/m、厚さ:20μm、見掛密度:0.20g/cm、抵抗率:5000Ω・cm)を製造した。 Next, the spinning solution was spun in the same manner as in Example 1 to form a fiber web, which was then fired, and a nonwoven fabric composed of porous tin oxide-containing fibers (average fiber diameter: 0.2 μm, basis weight: 3.9 g / m) 2 , thickness: 20 μm, apparent density: 0.20 g / cm 3 , resistivity: 5000 Ω · cm).

次いで、比較例2と同様に、FTOガラスの洗浄、不織布と多孔質酸化すず不織布との複合層の形成、色素の吸着、電解液の調製、正極の作製及び太陽電池の組み立てを行い、色素増感型太陽電池を組み立てた。   Next, as in Comparative Example 2, washing of the FTO glass, formation of a composite layer of the nonwoven fabric and the porous tin oxide nonwoven fabric, adsorption of the dye, preparation of the electrolytic solution, preparation of the positive electrode, and assembly of the solar cell were performed, and the dye increased. A sensitive solar cell was assembled.

(太陽電池の評価)
(1)光量の校正;
予め、擬似太陽光(擬似太陽光照射装置:セリック製、SXL−500V2形)の光量の校正を行った。
(Evaluation of solar cells)
(1) Light quantity calibration;
In advance, the amount of light of simulated sunlight (simulated sunlight irradiation device: manufactured by Celic, SXL-500V2 type) was calibrated.

次いで、10分間、擬似太陽光を照射し、擬似太陽光照射装置の光源をウォームアップした。   Subsequently, simulated sunlight was irradiated for 10 minutes, and the light source of the simulated sunlight irradiation apparatus was warmed up.

次いで、フォトダイオード(分光計器製、シリコン系フォトダイオード、BS−520)に擬似太陽光を照射し、出力電流値が0.606mAを示すように試料台の高さを調節した。これによりAM1.5(100mW/cm)の太陽光が試料に照射できているものとした。 Next, simulated sunlight was irradiated to a photodiode (manufactured by Spectrometer Co., Ltd., silicon photodiode, BS-520), and the height of the sample stage was adjusted so that the output current value was 0.606 mA. Thus, it was assumed that AM1.5 (100 mW / cm 2 ) sunlight could be irradiated to the sample.

(2)変換効率の測定;
ケースレー社2400型ソースメータを用いて、変換効率を測定した。つまり、電流−電圧特性の測定を−0.1〜+0.8Vの範囲で電圧を変化させ、電圧値及び電流値を読み取って測定を行い、変換効率を見積もった。この結果は表1に示す通りであった。
(2) Measurement of conversion efficiency;
Conversion efficiency was measured using a Keithley Model 2400 source meter. That is, the measurement of current-voltage characteristics was performed by changing the voltage in the range of −0.1 to +0.8 V, reading the voltage value and the current value, and estimating the conversion efficiency. The results are shown in Table 1.

Figure 2009259733
Figure 2009259733

表1の結果から、すず化合物を含む曳糸性ゾル溶液を用いて形成した不織布領域を有すると、導電性に優れる結果、変換効率が優れていることがわかった。実施例1と実施例2との比較から、透明導電性膜と不織布とが酸化すず化合物によって接着(焼結)していると、更に導電性に優れる結果、変換効率が優れていることがわかった。実施例1と比較例1との比較から、アスペクト比が1000以上の長繊維からなると、内部抵抗が小さく、変換効率が優れていることがわかった。実施例1と比較例2、3との比較から、曳糸性ゾル溶液を用いて形成した酸化すず含有繊維は粒界が存在せず、内部抵抗が低い結果、変換効率が優れていることがわかった。   From the results shown in Table 1, it was found that having a non-woven fabric region formed using a spinnable sol solution containing a tin compound is excellent in conductivity and conversion efficiency. From a comparison between Example 1 and Example 2, it is found that when the transparent conductive film and the nonwoven fabric are bonded (sintered) with a tin oxide compound, the conversion efficiency is excellent as a result of further excellent conductivity. It was. From a comparison between Example 1 and Comparative Example 1, it was found that when long fibers having an aspect ratio of 1000 or more were used, the internal resistance was small and the conversion efficiency was excellent. From the comparison between Example 1 and Comparative Examples 2 and 3, the tin oxide-containing fiber formed using the spinnable sol solution has no grain boundary, and as a result of low internal resistance, conversion efficiency is excellent. all right.

従来の色素増感型太陽電池の模式的断面図Schematic cross-sectional view of a conventional dye-sensitized solar cell 本発明の色素増感型太陽電池の模式的断面図Schematic sectional view of the dye-sensitized solar cell of the present invention 本発明の不織布を製造できる製造装置の模式的断面図Typical sectional drawing of the manufacturing apparatus which can manufacture the nonwoven fabric of this invention 不織布の抵抗率の測定方法を示す図The figure which shows the measuring method of the resistivity of the nonwoven fabric 負極と多孔質酸化チタン粒子層との複合体に銀ペースト塗った状態を表す平面図Plan view showing a state in which a silver paste is applied to a composite of a negative electrode and a porous titanium oxide particle layer

符号の説明Explanation of symbols

1 ゾル溶液貯留部
、・・、211 ノズル群
3 供給管
4 支持体
5 ヒーター
6 気体供給装置
7 排気装置
8 容器
G ガラス板
S 試料
P 銀ペースト
10 負極
10a 基材
10b 透明導電膜
11 正極
11a 基材
11b 透明導電膜
11c 白金
12 多孔質酸化チタン粒子層
13 電解液
20 負極
20a 基材
20b 透明導電性膜
20c 不織布
21 正極
21a 基材
21b 透明導電膜
21c 白金
22 多孔質酸化チタン粒子層
23 電解液
FG FTOガラス
C 不織布と多孔質酸化チタン粒子層との複合体
DESCRIPTION OF SYMBOLS 1 Sol solution storage part 2 1 ... 2 11 Nozzle group 3 Supply pipe 4 Support body 5 Heater 6 Gas supply apparatus 7 Exhaust apparatus 8 Container G Glass plate S Sample P Silver paste 10 Negative electrode 10a Base material 10b Transparent conductive film 11 Positive electrode 11a Base material 11b Transparent conductive film 11c Platinum 12 Porous titanium oxide particle layer 13 Electrolytic solution 20 Negative electrode 20a Base material 20b Transparent conductive film 20c Non-woven fabric 21 Positive electrode 21a Base material 21b Transparent conductive film 21c Platinum 22 Porous titanium oxide particle layer 23 Electrolytic solution FG FTO glass C Composite of nonwoven fabric and porous titanium oxide particle layer

Claims (6)

透明導電性膜領域と、前記膜領域と隣接する、すず化合物を含む曳糸性ゾル溶液を用いて形成したアスペクト比が1000以上の酸化すず含有繊維からなる不織布領域とを有することを特徴とする、色素増感型太陽電池用電極。 It has a transparent conductive film region, and a non-woven region made of tin oxide-containing fibers having an aspect ratio of 1000 or more, which is formed using a spinnable sol solution containing a tin compound, adjacent to the film region. , Electrode for dye-sensitized solar cell. 透明導電性膜領域と不織布領域とが酸化すず化合物によって接着していることを特徴とする、請求項1に記載の色素増感型太陽電池用電極。 2. The dye-sensitized solar cell electrode according to claim 1, wherein the transparent conductive film region and the non-woven fabric region are adhered by a tin oxide compound. 不織布領域における繊維同士が接着していることを特徴とする、請求項1又は請求項2に記載の色素増感型太陽電池用電極。 The dye-sensitized solar cell electrode according to claim 1 or 2, wherein fibers in the non-woven fabric region are bonded to each other. 不織布領域における平均繊維径が1μm以下であることを特徴とする、請求項1〜請求項3のいずれかに記載の色素増感型太陽電池用電極。 The average fiber diameter in a nonwoven fabric area | region is 1 micrometer or less, The electrode for dye-sensitized solar cells in any one of Claims 1-3 characterized by the above-mentioned. 不織布領域が静電紡糸法により形成された領域であることを特徴とする、請求項1〜請求項4のいずれかに記載の色素増感型太陽電池用電極。 The dye-sensitized solar cell electrode according to any one of claims 1 to 4, wherein the nonwoven fabric region is a region formed by an electrostatic spinning method. 請求項1〜請求項5のいずれかに記載の色素増感型太陽電池用電極を備えた色素増感型太陽電池。 A dye-sensitized solar cell comprising the dye-sensitized solar cell electrode according to any one of claims 1 to 5.
JP2008109884A 2008-04-21 2008-04-21 Dye-sensitized solar cell electrode and dye-sensitized solar cell Expired - Fee Related JP5191266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109884A JP5191266B2 (en) 2008-04-21 2008-04-21 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109884A JP5191266B2 (en) 2008-04-21 2008-04-21 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2009259733A true JP2009259733A (en) 2009-11-05
JP5191266B2 JP5191266B2 (en) 2013-05-08

Family

ID=41386885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109884A Expired - Fee Related JP5191266B2 (en) 2008-04-21 2008-04-21 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5191266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018592A (en) * 2009-07-10 2011-01-27 Japan Vilene Co Ltd Manufacturing method of electrode for dye-sensitized solar cell, electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2011233312A (en) * 2010-04-27 2011-11-17 Japan Vilene Co Ltd Electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2011257474A (en) * 2010-06-07 2011-12-22 Ricoh Co Ltd Dispersion liquid, forming method of film, and manufacturing method of electrochemical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334646B2 (en) * 2009-03-31 2013-11-06 日本バイリーン株式会社 Dye-sensitized solar cell electrode and dye-sensitized solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288822A (en) * 1990-04-06 1991-12-19 I C I Japan Kk Liquid crystal display element and its device and production
JPH0995824A (en) * 1995-10-02 1997-04-08 Tokuyama Corp Spinning liquid for tin oxide fiber and production of tin oxide fiber
JP2002280084A (en) * 2001-03-15 2002-09-27 Canon Inc Photoelectric conversion device and manufacturing method therefor
JP2006286257A (en) * 2005-03-31 2006-10-19 Nisshinbo Ind Inc Electrolyte composition and photoelectrochemical battery
JP2007048659A (en) * 2005-07-15 2007-02-22 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell
JP2009059698A (en) * 2007-08-29 2009-03-19 Korea Inst Of Science & Technology Dye-sensitized solar cell having metal oxide layer including nano-particles of metal oxide produced by spinning and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288822A (en) * 1990-04-06 1991-12-19 I C I Japan Kk Liquid crystal display element and its device and production
JPH0995824A (en) * 1995-10-02 1997-04-08 Tokuyama Corp Spinning liquid for tin oxide fiber and production of tin oxide fiber
JP2002280084A (en) * 2001-03-15 2002-09-27 Canon Inc Photoelectric conversion device and manufacturing method therefor
JP2006286257A (en) * 2005-03-31 2006-10-19 Nisshinbo Ind Inc Electrolyte composition and photoelectrochemical battery
JP2007048659A (en) * 2005-07-15 2007-02-22 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell
JP2009059698A (en) * 2007-08-29 2009-03-19 Korea Inst Of Science & Technology Dye-sensitized solar cell having metal oxide layer including nano-particles of metal oxide produced by spinning and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018592A (en) * 2009-07-10 2011-01-27 Japan Vilene Co Ltd Manufacturing method of electrode for dye-sensitized solar cell, electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2011233312A (en) * 2010-04-27 2011-11-17 Japan Vilene Co Ltd Electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2011257474A (en) * 2010-06-07 2011-12-22 Ricoh Co Ltd Dispersion liquid, forming method of film, and manufacturing method of electrochemical element

Also Published As

Publication number Publication date
JP5191266B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
TWI274424B (en) Electrode, photoelectric conversion element, and dye-sensitized solar cell
US20070095390A1 (en) Solar cell and manufacturing method thereof
JP2007134328A (en) Solar cell and its manufacturing method
JP2008218394A (en) Dye-sensitized solar cell and method of manufacturing the same
EP2530691A2 (en) Method of manufacturing a photoelectrode structure and the resulting photoelectrode structure
KR101480779B1 (en) Dye-sensitized solar cell having Graphene coated Carbon Nano Web
KR101635758B1 (en) Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same
JP5191266B2 (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
US20110174368A1 (en) Composite electrolyte and the preparation method thereof, and dye-sensitized solar cell using the same
KR101381705B1 (en) Dye-sensitized solar cell comprising hybrid nano fibers by electrospinning and sprayng as a polymer electrolyte, and the fabrication method thereof
JP2008010237A (en) Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2006331790A (en) Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
TWI455334B (en) Method of fabricating photoanode for dye-sensitized solar cell
EP2078310A1 (en) A preparation method of oxide electrode for sensitized solar cell and sensitized solar cell using the same
KR101448923B1 (en) Dye-sensitized solar cell comprising hybrid nano fibers by electrospinning as a polymer electrolyte, and the fabrication method thereof
KR101195761B1 (en) Manufacturing method of dye-sensitizes solar cell with cnt and pt counter electrodes
JP4497999B2 (en) Dye-sensitized solar cell
JP5334646B2 (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
KR101369731B1 (en) Dye-adsorption method for dye-sensitized solar cells, working electrode and dye-sensitized solar cells using the same
JP4684572B2 (en) Carbon electrode and manufacturing method thereof, carbon electrode manufacturing material, and dye-sensitized solar cell provided with carbon electrode
KR20100072784A (en) High efficient semiconductor electrode for dye-sensitized solar cell and dye-sensitized solar cell comprising them
US20120305067A1 (en) Method of manufacturing photoelectrode structure and the resulting photoelectrode structure
JP5332739B2 (en) Photoelectric conversion element and solar cell
EP1697999A1 (en) Method for electrolytic engineering of nano-particulate layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees