JP2009257898A - Non-contact torque sensor - Google Patents

Non-contact torque sensor Download PDF

Info

Publication number
JP2009257898A
JP2009257898A JP2008106349A JP2008106349A JP2009257898A JP 2009257898 A JP2009257898 A JP 2009257898A JP 2008106349 A JP2008106349 A JP 2008106349A JP 2008106349 A JP2008106349 A JP 2008106349A JP 2009257898 A JP2009257898 A JP 2009257898A
Authority
JP
Japan
Prior art keywords
magnetic flux
torque
steel shaft
magnetic
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008106349A
Other languages
Japanese (ja)
Inventor
Kazuaki Tabata
田畑和明
Haruhide Kyo
東英 巨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008106349A priority Critical patent/JP2009257898A/en
Publication of JP2009257898A publication Critical patent/JP2009257898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact torque sensor which is adapted for the high-speed rotation and impulsive twist of a steel shaft. <P>SOLUTION: Torque is measured by a magnetic flux detecting element in which exciting and detecting coils are wound around an amorphous sheet. A ring-shaped sensor as shown in Fig. 6 is attached to the steel shaft in a non-contact manner. The exciting coil and detecting coil of a magnetic pole embedded in the ring are arranged in the 90-degree direction. A change in magnetic permeability caused by the torque of the steel shaft is thus measured by the magnetic flux detecting element, thereby calculating and displaying the torque. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

鋼軸にトルクが加わると、磁歪の逆効果によって鋼軸の透磁率が変化する。当該非接触トルクセンサは、この原理を用いて鋼軸に加わるトルクを非接触で測るセンサであって、いわゆる磁気ヘッド式センサに関し、薄型磁束センサを用いるトルク測定に関するものである。ここで薄型磁束センサとは文献1のような薄板型磁束センサのように、鋼軸表面トルクを測定するために、厚さ0.1mm以下のように薄いアモルファス等高透磁率材をコアとしてコイルを巻かれた磁束センサを以下、薄型磁束センサと呼ぶ。   When torque is applied to the steel shaft, the permeability of the steel shaft changes due to the inverse effect of magnetostriction. The non-contact torque sensor is a sensor that measures the torque applied to the steel shaft in a non-contact manner using this principle, and relates to a so-called magnetic head type sensor and relates to torque measurement using a thin magnetic flux sensor. Here, the thin magnetic flux sensor is a coil that uses a thin amorphous constant magnetic permeability material as a core with a thickness of 0.1 mm or less in order to measure the surface torque of the steel shaft, as in the thin plate type magnetic flux sensor as in Reference 1. Hereinafter, a magnetic flux sensor wound with a thin film is referred to as a thin magnetic flux sensor.

鋼軸に加わるトルクを測るトルクセンサには大別して接触式と非接触式があるが、回転している軸に加わるトルクを測るには系の慣性モーメントに影響を与えない非接触式が望ましく、また、インパクトレンチによるボルトの締結トルクのように瞬間的な衝撃トルクのように高速のトルクを測定すべき要求は多い。   Torque sensors that measure the torque applied to the steel shaft can be broadly divided into contact type and non-contact type, but the non-contact type that does not affect the moment of inertia of the system is desirable to measure the torque applied to the rotating shaft, Further, there are many demands for measuring high-speed torque such as instantaneous impact torque such as bolt fastening torque by impact wrench.

特願2007-201869Japanese Patent Application 2007-201869

特許第2905561Patent No.2905561

特許公開2005-208008Patent Publication 2005-208008

従来トルクセンサにはアモルファス薄帯トソレノイドコイルを用いた方式が知られている。しかしながら、この方法は鋼軸表面へのアモルファス薄帯を埋め込み、あるいは蒸着などによって付けられるため、被測定対象である鋼軸の慣性モーメントを変化させるため厳密な意味で非接触とは言えない。非接触にトルクを測る方法としては文献2、3などが知られる。   A conventional torque sensor using an amorphous ribbon solenoid coil is known. However, this method cannot be said to be non-contact in a strict sense because it changes the moment of inertia of the steel shaft to be measured because it embeds an amorphous ribbon on the surface of the steel shaft or is attached by vapor deposition. Documents 2 and 3 are known as methods for measuring torque without contact.

文献1の薄板型磁束センサは図1のようなアモルファスなどの高透磁率材をコアとし、励磁コイルと検出コイルが巻かれた複数の検出素子をブリッジとし、そのインピーダンス変化から鋼軸のトルクを検出するセンサであり、磁束センサのコアを薄くすることによって、磁路を鋼軸表面に形成させることができるため、表面に近いほど大きくなるトルクによる歪の効果を測定するのに適した磁束センサである。一般鋼軸をそのままでトルクを測定しようとする場合、軸表面の組成や磁区構造などのムラにより、ヒステリシスが大きな問題となる。それを解決する方法として、文献2のように、トルク検出磁界と直交方向に振幅の大きな交流磁界を連続的に重畳する方式も提案されているが、この方法では直交方向への大きな磁化電流が必要であるので、小型電池機器のようなものには適さないことが難点であった。   The thin plate type magnetic flux sensor of Document 1 has a high permeability material such as amorphous as a core as shown in FIG. 1 and a plurality of detection elements wound with an excitation coil and a detection coil as a bridge, and the torque of the steel shaft is calculated from the impedance change. A magnetic flux sensor suitable for measuring the effect of distortion caused by torque that becomes larger as it is closer to the surface because the magnetic path can be formed on the steel shaft surface by thinning the core of the magnetic flux sensor. It is. When attempting to measure torque with a general steel shaft as it is, hysteresis becomes a major problem due to unevenness in the composition of the shaft surface, magnetic domain structure, and the like. As a method for solving this, a method of continuously superimposing an alternating magnetic field having a large amplitude in the direction orthogonal to the torque detection magnetic field has been proposed as in Reference 2, but in this method, a large magnetization current in the orthogonal direction is generated. Since it is necessary, it was difficult to be suitable for a small battery device.

図1は当該トルクセンサに使われる磁束センサのひとつである薄板型磁束センサである。1はアモルファスなどの高透磁率材をコアであり、2は励磁コイル、3は検出コイルである。このような、磁束センサを2個使う場合、一方を磁化容易軸に他方を磁化困難難軸においた場合、磁化容易軸での磁束検出のための励磁によって磁壁移動や磁壁回転など、磁化過程と呼ばれる磁区の運動がおこる。急激にトルクを反転させると、それまでの磁化容易軸が磁化困難軸となり、磁化困難軸が磁化容易軸となるため、磁化には早く、消磁には遅くなるため、磁化過程の磁気履歴が残留してトルク測定におけるヒステリシスの原因となっていた。この問題を解決する方法として励磁による磁界を徐々に回転させながら磁化の方向を変えることで、磁化過程を分散させ、トルク測定のヒステリシスの効果を低減させる方法を考案した。   FIG. 1 shows a thin plate type magnetic flux sensor which is one of magnetic flux sensors used for the torque sensor. 1 is a core made of a high permeability material such as amorphous, 2 is an exciting coil, and 3 is a detection coil. When two magnetic flux sensors are used, when one is placed on the easy magnetization axis and the other is placed on the hard magnetization axis, the magnetization process such as domain wall movement and domain wall rotation by excitation for magnetic flux detection on the easy magnetization axis The movement of the called magnetic domain occurs. If the torque is reversed rapidly, the previous easy magnetization axis becomes the hard magnetization axis, and the hard magnetization axis becomes the easy magnetization axis, so the magnetization is fast and the demagnetization is slow, so the magnetic history of the magnetization process remains. As a result, it was a cause of hysteresis in torque measurement. As a method for solving this problem, a method has been devised in which the magnetization process is dispersed by gradually changing the direction of magnetization while gradually rotating the magnetic field by excitation, thereby reducing the hysteresis effect of torque measurement.

従来の磁歪材を埋め込んだ磁歪式トルクセンサなどの磁歪式トルクセンサは厳密な意味で非接触といえないが、当該センサは軸の周囲に置かれた磁束センサの励磁検出素子を配置しているので、完全に非接触のトルクセンサであり、鋼軸のトルクを非接触で測るセンサである。自動車、機械など鋼軸の瞬間的なトルクを非接触で測る場合、ヒステリシスが大きな問題であったが、鋼軸の表面近傍に回転磁界を発生させ、ヒステリシスを低減させることで、感度の向上を実現でき、なお簡単な構造であるので、低コストで鋼軸のトルクを測ることもできる。   A magnetostrictive torque sensor such as a conventional magnetostrictive torque sensor embedded with a magnetostrictive material cannot be said to be non-contact in a strict sense, but the sensor has an excitation detecting element of a magnetic flux sensor placed around the shaft. Therefore, it is a completely non-contact torque sensor, and is a sensor that measures the torque of a steel shaft in a non-contact manner. When measuring the instantaneous torque of a steel shaft such as an automobile or machine in a non-contact manner, hysteresis has been a major problem. However, by generating a rotating magnetic field near the surface of the steel shaft and reducing the hysteresis, the sensitivity can be improved. Since this is a simple structure, the torque of the steel shaft can be measured at a low cost.

図2にクロス型の薄型磁束センサの例を示す。8はアモルファスなどの高透磁率材を磁芯であり、4はX軸励磁コイル、5はY軸励磁コイル、6,7はX,Y軸の検出コイルである。直交する2極にそれぞれ励磁と検出コイルが巻かれており、鋼軸に対し、概45度の方向をX軸の方向となるように配置される。X方向の磁極の励磁コイルに最大電流をI0、ωは各周波数、時間をtとして、I=Isinωtなる交流電流を、Y方向の励磁コイルにはI=Icosωtなる励磁電流を流す。そのとき発生する磁界Hは時間とともに回転する。両軸に巻かれたコイルの巻数を等しくNとすれば、磁極の中心部分で、X方向にH=NIcosωt、Y方向にH=NIsinωtなる軸方向の磁界を合成した磁界H=(Hx,Hy)が発生する。Hは時間とともに回転する回転磁界のベクトルである。回転磁界の回転周波数はf=2πωである。X、Y軸に巻かれた検出コイルの出力電圧をオシロスコープ上にリサージュを描くと鋼軸にトルクが加わらないとき図3(a)のような円を描く。 FIG. 2 shows an example of a cross-type thin magnetic flux sensor. 8 is a magnetic core made of a high permeability material such as amorphous, 4 is an X-axis excitation coil, 5 is a Y-axis excitation coil, and 6 and 7 are X and Y axis detection coils. Excitation and detection coils are wound around two orthogonal poles, respectively, and are arranged so that the direction of about 45 degrees is the direction of the X axis with respect to the steel axis. The maximum current is I 0, ω is each frequency and time is t in the excitation coil of the magnetic pole in the X direction, the alternating current is I x = I 0 sin ωt, and the excitation current in the Y direction is I y = I 0 cos ωt. Apply current. The magnetic field H generated at that time rotates with time. If equal N the number of turns of the coils wound in both axes, in the central portion of the pole, H in the X direction x = NIcosωt, magnetic fields were synthesized magnetic field H y = NIsinωt made axially in the Y direction H = (Hx Hy) occurs. H is a vector of a rotating magnetic field that rotates with time. The rotation frequency of the rotating magnetic field is f = 2πω. When the output voltage of the detection coil wound around the X and Y axes is drawn on the oscilloscope, a circle as shown in FIG. 3A is drawn when no torque is applied to the steel shaft.

鋼軸にトルクが加わると、鋼軸の磁気異方性のために、磁歪の逆効果から回転磁界の方向が時間tにおいて、θ=ωtなる方向が、鋼軸表面の磁化容易軸と一致するとき、リサージュループは図3(b)のように右上がりの楕円となり、逆方向のトルクではリサージュ波形は図3(c)に示すように右下がりとなる。ここでリサージュの長軸の長さはトルクによる透磁率の変化と比例する。   When torque is applied to the steel shaft, due to the magnetic anisotropy of the steel shaft, the direction of the rotating magnetic field at time t is coincident with the easy magnetization axis on the surface of the steel shaft due to the inverse effect of magnetostriction. At this time, the Lissajous loop becomes an ellipse that rises to the right as shown in FIG. 3B, and the Lissajous waveform becomes lower as shown in FIG. Here, the length of the major axis of the Lissajous is proportional to the change in permeability due to the torque.

検出コイルの出力を図4のような実施回路ではマイクロコンピュータ9よりアンプ10を介しY軸の励磁コイルにはサイン波を、X軸にはコサイン波を発生させて励磁し、鋼軸表面に発生する磁界を回転させる。2軸の検出コイルの出力電圧をA/Dコンバータ11により取り込み、リサージュで言えば楕円の傾きφmと長径Lmをもとめ、Lmより、これからトルクを求める。実際は取り付け誤差などがあり、概45度方向で長径が最大となるが、取り付け誤差をφεとすれば、φm−φεが最大方向である、磁界容易軸の方向との誤差を補正して求められた真のLmとφmからトルクを算出する。   In the implementation circuit as shown in FIG. 4, the output of the detection coil is generated on the surface of the steel shaft by exciting the sine wave on the Y-axis excitation coil and the cosine wave on the X-axis from the microcomputer 9 via the amplifier 10. Rotate the magnetic field. The output voltage of the biaxial detection coil is taken in by the A / D converter 11, and in terms of Lissajous, the elliptical inclination φm and the major axis Lm are obtained, and the torque is obtained from Lm. Actually, there is an installation error, etc., and the major axis is the maximum in the direction of about 45 degrees. Torque is calculated from true Lm and φm.

図5は薄型磁束センサをC字型に曲げたものである。13は励磁及び検出コイルである。このギャップ部分を軸表面にほぼ平行面に配置してもよい、ギャップ14を設けることによって、センサコア12と軸表面の磁気回路を閉回路とし、軸方向への漏洩磁束を減らすことができる。鋼軸の周辺金属による影響を低減させることができる。   FIG. 5 shows a thin magnetic flux sensor bent in a C shape. Reference numeral 13 denotes an excitation and detection coil. By providing the gap 14 in which the gap portion may be arranged in a plane substantially parallel to the shaft surface, the magnetic circuit on the sensor core 12 and the shaft surface can be closed, and the leakage magnetic flux in the axial direction can be reduced. The influence of the surrounding metal of the steel shaft can be reduced.

磁束センサは図1のように板状でなくても、図6のようにリング状に薄型センサが配置された構造でもよい。リングは非磁性ステンレス(図6の15)でつくられ、リングの溝(図6の16)にはアモルファス等高透磁率材などに巻かれた薄型磁束センサが、上下に1対、左右に1対配置され、それぞれ磁界を回転させる。その平均をとることで軸の上下と左右の偏芯をキャンセルすることができる。   The magnetic flux sensor may not have a plate shape as shown in FIG. 1, but may have a structure in which thin sensors are arranged in a ring shape as shown in FIG. The ring is made of non-magnetic stainless steel (15 in FIG. 6), and a thin magnetic flux sensor wound around a high permeability material such as amorphous is provided in the ring groove (16 in FIG. 6). They are arranged in pairs and each rotate a magnetic field. By taking the average, it is possible to cancel the vertical and lateral eccentricity of the shaft.

薄板型磁束センサの構造図Structure diagram of thin plate type magnetic flux sensor 一体型磁束センサの構造図Structure diagram of integrated magnetic flux sensor 回転磁界Rotating magnetic field センサ回路Sensor circuit C字型磁束センサC-shaped magnetic flux sensor リング型磁束センサRing type magnetic flux sensor

Claims (3)

鋼軸表面近傍に配置された磁束センサによって鋼軸表面の磁束を非接触に測定する磁束センサを用いてトルクを測る非接触トルクセンサに関し、磁気ヘッド部分の磁束センサが高透磁率材のコアに励磁コイルと検出コイルが巻かれた磁束センサを直交する2軸に配置、もしくは図2のような十字型のように直交する2軸を一体化された構造を有する磁気ヘッドを用いて、2軸方向に励磁され、発生する磁界を鋼軸表面において時間とともに回転させることにより、固定方向への励磁により残留していた磁気履歴を分散させ、ヒステリシスを低減させる非接触トルクセンサ。   A non-contact torque sensor that measures torque using a magnetic flux sensor that measures the magnetic flux on the surface of a steel shaft in a non-contact manner by a magnetic flux sensor arranged near the surface of the steel shaft. A magnetic head having a structure in which a magnetic flux sensor wound with an excitation coil and a detection coil is arranged on two orthogonal axes, or two orthogonal axes are integrated like a cross shape as shown in FIG. A non-contact torque sensor that reduces the hysteresis by dispersing the magnetic history remaining by excitation in the fixed direction by rotating the generated magnetic field with time on the surface of the steel shaft. 磁束センサに0.1mm以下と極めて薄くした高透磁率材のコアに励磁コイルと検出コイルが巻かれた磁束センサを用いる請求項1のトルクセンサ。   The torque sensor according to claim 1, wherein the magnetic flux sensor is a magnetic flux sensor in which an excitation coil and a detection coil are wound around a core of a high permeability material extremely thin as 0.1 mm or less. 請求項1、2に用いられる磁束センサを図6のような非磁性リングの上下に1対、左右に1対、軸に対し45度方向に傾いた溝に埋め込まれ、鋼軸とリングの軸とを一致させ鋼軸の周りに非接触で配置させられるリング状の磁気ヘッドとした請求項1の非接触トルクセンサ。   The magnetic flux sensor used in claims 1 and 2 is embedded in a groove inclined in a direction of 45 degrees with respect to the axis, with a pair of nonmagnetic rings as shown in FIG. The non-contact torque sensor according to claim 1, wherein the magnetic head is a ring-shaped magnetic head that is arranged in a non-contact manner around the steel shaft.
JP2008106349A 2008-04-16 2008-04-16 Non-contact torque sensor Pending JP2009257898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106349A JP2009257898A (en) 2008-04-16 2008-04-16 Non-contact torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106349A JP2009257898A (en) 2008-04-16 2008-04-16 Non-contact torque sensor

Publications (1)

Publication Number Publication Date
JP2009257898A true JP2009257898A (en) 2009-11-05

Family

ID=41385509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106349A Pending JP2009257898A (en) 2008-04-16 2008-04-16 Non-contact torque sensor

Country Status (1)

Country Link
JP (1) JP2009257898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218845A (en) * 2014-08-14 2014-12-17 北京航空航天大学 Reversing motion mechanism based on magnetostrictive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218845A (en) * 2014-08-14 2014-12-17 北京航空航天大学 Reversing motion mechanism based on magnetostrictive material

Similar Documents

Publication Publication Date Title
JP2992351B2 (en) Circumferential magnetization non-contact torque / power detection device and torque / power measurement method using the same
US8635917B2 (en) Magnetic torque sensor for transmission converter drive plate
US9046430B2 (en) Method of reducing rotation noise in a magnetoelastic torque sensing device
US20130091959A1 (en) Magnetic torque sensor for transmission converter drive plate
US9291599B2 (en) Magnetic testing method and apparatus
JP6420943B2 (en) Magnetic torque sensor for transmission converter drive plate
US20200158538A1 (en) Device, arrangement and method for characterising the torsion, rotation and/or positioning of a shaft
US10254181B2 (en) Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
JP2009257898A (en) Non-contact torque sensor
US8844375B2 (en) Mechanical force components sensing system and an associated method thereof for a magnetically encoded device
JP2005321272A (en) Magnetostrictive torque sensor
JPH09304345A (en) Magnetic head device
AU2015235980B2 (en) Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
JPH04331392A (en) Detection method for magnetic anisotropy of steel plate
JP7502867B2 (en) Apparatus and method for detecting orientation of unmagnetized magnet
JP5006010B2 (en) Rotation angle detector
JP2020041803A (en) Strain sensor structure
JP4305140B2 (en) Magnetic sensor mechanism and rotational state detection apparatus using the magnetic sensor mechanism
JP2018048945A (en) Angle detector