JP2009257276A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2009257276A
JP2009257276A JP2008109808A JP2008109808A JP2009257276A JP 2009257276 A JP2009257276 A JP 2009257276A JP 2008109808 A JP2008109808 A JP 2008109808A JP 2008109808 A JP2008109808 A JP 2008109808A JP 2009257276 A JP2009257276 A JP 2009257276A
Authority
JP
Japan
Prior art keywords
vane
cylinder
discharge side
suction
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109808A
Other languages
Japanese (ja)
Inventor
Masao Nakano
雅夫 中野
Daisuke Funakoshi
大輔 船越
Yu Haraki
雄 原木
Tsutomu Tsujimoto
力 辻本
Takeshi Karino
健 苅野
Noboru Iida
飯田  登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008109808A priority Critical patent/JP2009257276A/en
Publication of JP2009257276A publication Critical patent/JP2009257276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve compressor efficiency and reliability, by arranging a swelling part in the moving direction of a discharge side side surface of a vane, since a shape andthe surface roughness are not specified on a vane groove of a mating cylinder only by paying attention to surface roughness of a side surface of a suction side of the vane, and since the surface roughness of a certain degree is secured by generally polishing a vane side surface, in a conventional constitution. <P>SOLUTION: A sliding loss of the vane can be reduced by being characterized by arranging the swelling part 6c in the moving direction of the side surface 6b of the discharge side of the vane 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ルームエアコン、冷蔵庫、空気調和装置に組み込まれるロータリ圧縮機の性能向上および信頼性向上に関する。   The present invention relates to an improvement in performance and reliability of a rotary compressor incorporated in a room air conditioner, a refrigerator, and an air conditioner.

従来のこの種のロータリ圧縮機のベーンはシリンダーのベーン溝に挿入され往復運動を行うように構成されている(例えば、特許文献1参照)。   A conventional vane of this type of rotary compressor is configured to be reciprocated by being inserted into a vane groove of a cylinder (see, for example, Patent Document 1).

図5は、特許文献1に記載された従来のロータリ圧縮機の上軸受け側より見た横断面図である。シリンダー51に設けられたベーン溝52にベーン53が挿入されている。ベーン先端はピストン54の外周に吐出圧力と吸入圧力の圧力差で押しつけられておりピストンの回転に合わせて往復動運動を行っている。また、ベーン53のベーン溝52より飛出した側面の吐出側には圧縮圧力Pc、吸入側には吸入圧力Psが働く。これらの力でベーン先端が吸入側に傾いて往復運動を行うため、ベーン溝52の吸入側側面先端角部とベーンの吸入側側面およびベーン53背面の吐出側角部とベーン溝52の吐出側側面の摺動が厳しく境界摩擦となり入力が増加したり、信頼性に大きな影響を及ぼしたりしていた。
特許第2817395号公報
FIG. 5 is a cross-sectional view seen from the upper bearing side of the conventional rotary compressor described in Patent Document 1. A vane 53 is inserted into a vane groove 52 provided in the cylinder 51. The tip of the vane is pressed against the outer periphery of the piston 54 by a pressure difference between the discharge pressure and the suction pressure, and reciprocates in accordance with the rotation of the piston. Further, the compression pressure Pc acts on the discharge side of the side surface of the vane 53 that has jumped out of the vane groove 52, and the suction pressure Ps acts on the suction side. Because of these forces, the tip of the vane tilts toward the suction side to perform reciprocating motion. Therefore, the tip of the suction side surface of the vane groove 52, the suction side surface of the vane, the discharge side corner of the back of the vane 53, and the discharge side of the vane groove 52 Side sliding was severe and caused boundary friction, which increased input and greatly affected reliability.
Japanese Patent No. 2817395

しかしながら、前記特許文献1の構成ではベーン53の吸入側側面の面粗度に着目しただけで相手のシリンダーベーン溝52の形状および面粗度に関しては特定されていなかった。また一般にベーン側面は研磨加工されているためある程度の面粗度は確保されていた。ベーン溝52の吸入側の先端近辺はベーン53の吸入側側面と摺動し馴染むため面粗度は初期の値よりも小さい値となるため特に研磨加工等の必要はないと考えられる。また、ベーン溝52の吐出側は広い面積でベーン吐出側側面と摺動するため馴染み量は小さく初期の加工面の面粗度が残っている。ベーン53が上死点近辺に達した時にシリンダーのベーン溝52の吐出側側面と衝突し衝突音および振動を発生していた。   However, in the configuration of Patent Document 1, only the surface roughness of the suction side surface of the vane 53 is focused, and the shape and surface roughness of the counterpart cylinder vane groove 52 are not specified. Moreover, since the vane side surface is generally polished, a certain degree of surface roughness was ensured. Since the vicinity of the tip of the vane groove 52 on the suction side slides and becomes familiar with the suction side surface of the vane 53, the surface roughness becomes a value smaller than the initial value, so that it is considered that polishing or the like is not particularly required. Further, since the discharge side of the vane groove 52 slides on the vane discharge side surface with a large area, the familiarity amount is small and the initial surface roughness of the processed surface remains. When the vane 53 reached the vicinity of the top dead center, it collided with the discharge side surface of the vane groove 52 of the cylinder to generate a collision sound and vibration.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、前記ベーンの吐出側側面の移動方向に膨らみ部を設け圧縮機効率の向上と信頼性向上を目的としている。   The present invention has been made in view of such problems of the prior art, and has an object of improving compressor efficiency and reliability by providing a bulging portion in the moving direction of the discharge side surface of the vane.

上記目的を達成するために、本発明のうちで請求項1に記載の発明は、前記ベーンの吐出側側面の移動方向に膨らみ部を設けたことを特徴とする。   In order to achieve the above object, the invention described in claim 1 among the present invention is characterized in that a bulging portion is provided in the moving direction of the discharge side surface of the vane.

このことにより、ベーンの摺動損失を減らし、ベーンの衝突音および振動を減らすことが可能となる。   As a result, the sliding loss of the vanes can be reduced, and the collision noise and vibration of the vanes can be reduced.

本発明のロータリ圧縮機の前記ベーンの吐出側側面の移動方向に膨らみ部を設けたことによりベーン側面の摺動損を減らし圧縮機効率を向上させることが出来、ベーンの衝突音および振動も減らすことが可能となる。また、摺動状態が良くなるため信頼性も向上することが出来る。   By providing a bulging portion in the moving direction of the discharge side surface of the vane of the rotary compressor of the present invention, it is possible to reduce the sliding loss of the vane side surface and improve the compressor efficiency, and to reduce the impingement noise and vibration of the vane. It becomes possible. Further, since the sliding state is improved, the reliability can be improved.

第1の発明は前記ベーンの吐出側側面の移動方向に膨らみ部を設けたことにより、前記ベーンの吐出側側面と前記シリンダーのベーン溝の吐出側側面との衝突音および振動を低減する構成になっている。   In a first aspect of the present invention, a bulging portion is provided in the moving direction of the discharge side surface of the vane, thereby reducing a collision sound and vibration between the discharge side surface of the vane and the discharge side surface of the vane groove of the cylinder. It has become.

第2の発明は前記シリンダーのベーン溝の吸入側側面先端角部にR面取りを施し、ベーンの吸入側側面との摺動損失を軽減する構成になっている。   In the second aspect of the invention, the chamfering of the tip end of the suction side of the vane groove of the cylinder is rounded to reduce sliding loss with the suction side of the vane.

第3の発明は前記ベーン背面の吐出側角部にR面取りを施し、ベーン溝の吐出側側面との摺動損失を軽減する構成になっている。   In the third aspect of the invention, the discharge side corner portion on the back surface of the vane is rounded to reduce sliding loss with respect to the discharge side surface of the vane groove.

第4の発明は前記シリンダーのベーン溝の吐出側側面に加工を行い面粗度Ry値をRy=0.1μmから0.9μmの範囲の適切な値に加工しベーン溝の吸入側側面よりも面粗度Ry値を小さくしたことにより、ベーン側面の摺動損を減らすことができる構成になっている。即ち面粗度Ry値が0.9より大きい場合にはベーンの吐出側側面とシリンダーのベーン溝の吐出側側面との金属同士の接触が強くなり入力が増大する、また面粗度Ry値が0.1より小さい場合にはベーンの吐出側側面とシリンダーのベーン溝の吐出側側面との間の油保持能力が小さくなりそれ以上Ry値を小さくしてもあまり効果が得られない。面粗度Ry値を適切な粗さにすることにより摺動状態が良くなり信頼性も向上することが出来る。   According to a fourth aspect of the present invention, the surface roughness Ry value is processed to an appropriate value in the range of Ry = 0.1 μm to 0.9 μm by processing the discharge side surface of the vane groove of the cylinder and By reducing the surface roughness Ry value, the sliding loss of the vane side surface can be reduced. That is, when the surface roughness Ry value is larger than 0.9, the metal-to-metal contact between the discharge side surface of the vane and the discharge side surface of the vane groove of the cylinder increases, and the input increases. If the ratio is smaller than 0.1, the oil holding capacity between the discharge side surface of the vane and the discharge side surface of the vane groove of the cylinder becomes small, and even if the Ry value is further reduced, the effect is not obtained so much. By setting the surface roughness Ry value to an appropriate roughness, the sliding state is improved and the reliability can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1にかかるロータリ圧縮機のメカ部の縦断面図を示している。
(Embodiment 1)
FIG. 1 shows a longitudinal sectional view of a mechanical part of a rotary compressor according to a first embodiment of the present invention.

図1に示されるように、シリンダー1の上部には上軸受け2、下部には下軸受け3が取り付けられそれぞれに囲まれた空間内にシャフト4により回転するピストン5が設けられている。ベーン6の背後には圧縮された吐出圧力が働くためピストン5の外周に押し付けられた状態でシリンダーのベーン溝7に挿入され往復運動を行う。   As shown in FIG. 1, an upper bearing 2 is attached to the upper portion of the cylinder 1, and a lower bearing 3 is attached to the lower portion, and a piston 5 that rotates by a shaft 4 is provided in a space surrounded by the upper bearing 2. Since the compressed discharge pressure works behind the vane 6, it is inserted into the vane groove 7 of the cylinder while being pressed against the outer periphery of the piston 5, and reciprocates.

図2は、本発明の実施の形態1にかかるロータリ圧縮機の上軸受け2から見たメカ部の横断面図である。シリンダー1のベーン溝7にベーン6が挿入されている。シリンダー1には吸入口8および吐出切り欠き9が設けられている。シリンダー1の内面とピストン5の外周で囲まれたシリンダー室はベーン6により仕切られ吸入室10および圧縮室11が構成されている。   FIG. 2 is a cross-sectional view of the mechanical part viewed from the upper bearing 2 of the rotary compressor according to the first embodiment of the present invention. A vane 6 is inserted into the vane groove 7 of the cylinder 1. The cylinder 1 is provided with a suction port 8 and a discharge notch 9. A cylinder chamber surrounded by the inner surface of the cylinder 1 and the outer periphery of the piston 5 is partitioned by a vane 6 to form a suction chamber 10 and a compression chamber 11.

以上のように構成されたロータリ圧縮機について、以下その動作、作用を説明する。   About the rotary compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、ピストン5がシャフト4の回転に伴って1回転する間に吸入口8より冷媒ガスが吸入室10に吸入される。吸入室10に吸入された冷媒ガスは次ぎのシャフト4の1回転の間に圧縮工程に入り圧縮室11となり冷媒ガスはピストン5の回転と伴に圧縮され吐出切り欠き9を通って吐出口より吐出される。圧縮途中では吸入室10は吸入圧力Ps、圧縮室11は圧縮圧力Pcになっている。また、Pc>Psのためベーン6の先端は圧縮圧力Pcに押されて吸入側に傾いて往復運動をおこなうことになる。   First, the refrigerant gas is sucked into the suction chamber 10 from the suction port 8 while the piston 5 makes one rotation with the rotation of the shaft 4. The refrigerant gas sucked into the suction chamber 10 enters the compression process during one rotation of the next shaft 4 to become the compression chamber 11, and the refrigerant gas is compressed with the rotation of the piston 5 and passes through the discharge notch 9 from the discharge port. Discharged. During the compression, the suction chamber 10 is at the suction pressure Ps, and the compression chamber 11 is at the compression pressure Pc. Further, since Pc> Ps, the tip of the vane 6 is pushed by the compression pressure Pc and tilts toward the suction side to reciprocate.

図3はベーン6近辺の詳細を示す断面図である。シリンダー1のベーン溝7にベーン6が挿入されピストン5の回転に合わせて往復動運動を行う。上記説明のようにベーンの吐出側側面6bには圧縮圧力Pc,吸入側側面6aには吸入圧力Psが作用しているため差
圧(Pc−Ps)による力Fが働きベーン6の先端が吸入側に傾いた状態で往復運動を行っている。図3から分かるようにベーン溝7の吸入側側面先端角部Raとベーン6の吸入側側面6a、ベーン溝7の吐出側側面7bとベーン背面の吐出側角部Rbが厳しい境界摩擦を起こしている。これらの境界摩擦を緩和するためベーン溝7の吸入側側面先端角部RaにR面取りおよびベーン背面の吐出側角部RbにR面取りを構成している。ベーン溝7の吐出側側面7b先端部は角部でありR面取りを施していない。また、ベーン背面の吸入側角部はR面取り施していない。一般にベーン6ははがね鋼のような固い材質で攻撃性があり、シリンダー1は鋳物でできているためベーン6の吐出側側面6bの背面角部RaのRはR1.0以上になっている。ベーン溝7の吸入側側面7aの面粗度値RyはRy=2.2μm程度に加工されている。また、ベーン溝7の吐出側側面7bの摺動損失を低減させるためにベーン溝7の吐出側側面7bは加工を行い面粗度Ry値をRy=0.5μm程度になるように加工されているためベーン溝7の吸入側側面7aの面粗度Ry値よりも小さくなっている。
FIG. 3 is a sectional view showing details in the vicinity of the vane 6. A vane 6 is inserted into the vane groove 7 of the cylinder 1 and reciprocates in accordance with the rotation of the piston 5. As described above, since the compression pressure Pc acts on the discharge side surface 6b of the vane and the suction pressure Ps acts on the suction side surface 6a, the force F due to the differential pressure (Pc-Ps) acts and the tip of the vane 6 sucks. Reciprocating while tilting to the side. As can be seen from FIG. 3, the suction side surface tip corner portion Ra of the vane groove 7 and the suction side surface 6a of the vane 6, the discharge side surface 7b of the vane groove 7 and the discharge side corner portion Rb of the back surface of the vane cause severe boundary friction. Yes. In order to alleviate these boundary frictions, an R chamfer is formed on the suction side side edge corner Ra of the vane groove 7 and an R chamfer is formed on the discharge side corner Rb on the rear surface of the vane. The tip of the discharge side surface 7b of the vane groove 7 is a corner and is not chamfered. Also, the suction side corner on the back of the vane is not rounded. In general, the vane 6 is made of a hard material such as steel and is aggressive, and the cylinder 1 is made of a casting. Therefore, the R of the rear corner Ra of the discharge side surface 6b of the vane 6 is R1.0 or more. Yes. The surface roughness value Ry of the suction side surface 7a of the vane groove 7 is processed to about Ry = 2.2 μm. Further, in order to reduce the sliding loss of the discharge side surface 7b of the vane groove 7, the discharge side surface 7b of the vane groove 7 is processed so as to have a surface roughness Ry value of about Ry = 0.5 μm. Therefore, the surface roughness Ry value of the suction side surface 7a of the vane groove 7 is smaller.

ベーン6の吐出側側面6bにベーン6の移動方向に膨らみ部6cを設けている。このことによりベーン6の吐出側側面6bとベーン溝7の吐出側側面7bとの当りが緩和されベーン6が上死点近辺に来た際のベーン6の吐出側側面6bとベーン溝7の吐出側側面7bの衝突による音および振動を低減できる。図3では膨らみ部6cを大きく描いているが、実際の膨らみは5μmオーダーである。   A bulging portion 6 c is provided on the discharge side surface 6 b of the vane 6 in the moving direction of the vane 6. As a result, the contact between the discharge side surface 6b of the vane 6 and the discharge side surface 7b of the vane groove 7 is alleviated, and the discharge side surface 6b of the vane 6 and the discharge of the vane groove 7 when the vane 6 is near the top dead center. Sound and vibration due to the collision of the side surface 7b can be reduced. In FIG. 3, the bulge portion 6c is drawn large, but the actual bulge is on the order of 5 μm.

図4はシリンダーのベーン溝の吐出側側面のベーン溝面粗度を向上した時の圧縮機の入力低減量を面粗度Ry=2.2μmの入力値を基準に示している。面粗度Ry=2.2μm、1.1μm、0.5μm、0.1μmの入力測定を行い横軸に面粗度値Ry値、縦軸に面粗度Ry=2.2μmの入力値に対する比率%で示している。吐出側側面のベーン溝の面粗度Ry値をRy=0.1μmから0.9μmの範囲の適切な値に加工を行うことにより、圧縮機の入力を低減させることができた。即ち面粗度Ry値が0.9より大きい場合にはベーンの吐出側側面とシリンダーのベーン溝の吐出側側面との金属同士の接触が強くなり入力が増大する傾向にあり、また面粗度Ry値が0.1より小さい場合にはベーンの吐出側側面とシリンダーのベーン溝の吐出側側面との間の油保持能力が小さくなりそれ以上Ry値を小さくしてもあまり効果が得られない傾向になっている。   FIG. 4 shows the input reduction amount of the compressor when the vane groove surface roughness of the discharge side surface of the cylinder vane groove is improved, based on the input value of the surface roughness Ry = 2.2 μm. Surface roughness Ry = 2.2 μm, 1.1 μm, 0.5 μm, 0.1 μm input measurement is performed, and the horizontal axis represents the surface roughness value Ry value, and the vertical axis represents the surface roughness Ry = 2.2 μm input value. It is shown as a percentage. By processing the surface roughness Ry value of the vane groove on the discharge side surface to an appropriate value in the range of Ry = 0.1 μm to 0.9 μm, the input of the compressor could be reduced. That is, when the surface roughness Ry value is larger than 0.9, the metal-to-metal contact between the discharge side surface of the vane and the discharge side surface of the vane groove of the cylinder tends to increase and the input tends to increase. When the Ry value is smaller than 0.1, the oil holding capacity between the discharge side surface of the vane and the discharge side surface of the vane groove of the cylinder becomes small, and even if the Ry value is further reduced, the effect is not obtained so much. It has become a trend.

以上のように、本実施の形態においてはロータリ圧縮機のベーンの吐出側側面の移動方向に膨らみ部を設けたことによりベーン側面の摺動損を減らし圧縮機効率を向上させることが出来、ベーンの衝突音および振動も減らすことが可能となる。また、摺動状態が良くなるため信頼性も向上することが出来る。   As described above, in the present embodiment, by providing the bulging portion in the moving direction of the discharge side surface of the vane of the rotary compressor, the sliding loss of the vane side surface can be reduced, and the compressor efficiency can be improved. It is also possible to reduce the impact sound and vibration of the. Further, since the sliding state is improved, the reliability can be improved.

上述したように、本発明にかかるロータリ圧縮機は、圧縮効率を向上することができるため、給湯器用CO圧縮機、空気圧縮の用途にも適用できる。 As described above, since the rotary compressor according to the present invention can improve the compression efficiency, it can also be applied to CO 2 compressors for hot water heaters and air compression applications.

本発明の実施の形態1にかかるロータリ圧縮機のメカ部の縦断面図1 is a longitudinal sectional view of a mechanical part of a rotary compressor according to a first embodiment of the present invention. 本発明の実施の形態1にかかるロータリ圧縮機の上軸受けから見たメカ部の横断面図The cross-sectional view of the mechanical part seen from the upper bearing of the rotary compressor concerning Embodiment 1 of this invention 本発明の実施の形態1にかかるロータリ圧縮機のベーン近辺の要部詳細断面図Detail sectional drawing of the principal part of vane vicinity of the rotary compressor concerning Embodiment 1 of this invention 本発明の実施の形態1にかかるロータリ圧縮機のシリンダーのベーン溝面粗度と入力低減効果を示す特性図The characteristic view which shows the vane groove surface roughness and input reduction effect of the cylinder of the rotary compressor concerning Embodiment 1 of this invention 従来のロータリ圧縮機の上軸受けから見たメカ部の横断面図Cross section of mechanical part viewed from the upper bearing of a conventional rotary compressor

符号の説明Explanation of symbols

1 シリンダー
2 上軸受け
3 下軸受け
4 シャフト
5 ピストン
6 ベーン
6a 吸入側側面
6b 吐出側側面
6c 膨らみ部
7 ベーン溝
7a 吸入側側面
7b 吐出側側面
8 吸入口
9 吐出切り欠き
10 吸入室
11 圧縮室
Ra ベーン溝の吸入側側面先端角部
Rb ベーン背面の吐出側角部
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Upper bearing 3 Lower bearing 4 Shaft 5 Piston 6 Vane 6a Suction side surface 6b Discharge side surface 6c Swelling part 7 Vane groove 7a Suction side surface 7b Discharge side surface 8 Suction port 9 Discharge notch 10 Suction chamber 11 Compression chamber Ra The corner on the suction side of the vane groove Rb The corner on the discharge side on the back of the vane

Claims (4)

シリンダーの両端面に、上軸受けと下軸受けとを配し前記シリンダー内を回転するピストンと前記ピストンを駆動するシャフトと前記シリンダー内を吸入室と吐出口が開口する圧縮室に仕切るベーンを有し、前記シリンダーのベーン溝に前記ベーンが挿入されベーン背面に圧縮された吐出圧力が作用し、前記ピストンの回転に合わせて前記ベーンをピストン外周に押し付けながら往復運動を行い、前記ピストンの回転に伴って圧縮冷媒ガスの吸入と圧縮を同時に行い、前記ベーンの吐出側側面の移動方向に膨らみ部を設けたロータリ圧縮機。 On both end faces of the cylinder, an upper bearing and a lower bearing are arranged, and a piston that rotates in the cylinder, a shaft that drives the piston, and a vane that partitions the inside of the cylinder into a compression chamber that opens a suction chamber and a discharge port. The vane is inserted into the vane groove of the cylinder and the discharge pressure compressed on the back surface of the vane acts, and reciprocates while pressing the vane against the outer periphery of the piston in accordance with the rotation of the piston. A rotary compressor that simultaneously sucks and compresses the compressed refrigerant gas and has a bulging portion in the moving direction of the discharge side surface of the vane. 前記シリンダーのベーン溝の吸入側側面先端角部にR面取りを施した請求項1記載のロータリ圧縮機。 The rotary compressor according to claim 1, wherein an R chamfer is applied to a suction side side front end corner portion of the vane groove of the cylinder. 前記ピストンの回転と伴に圧縮冷媒ガスの吸入と圧縮を行い、前記ベーン背面の吐出側角部にR面取りを施した請求項1記載のロータリ圧縮機。 The rotary compressor according to claim 1, wherein suction and compression of the compressed refrigerant gas are performed in association with the rotation of the piston, and an R chamfer is applied to a discharge side corner of the back surface of the vane. 前記シリンダーのベーン溝の吐出側側面に加工を行い面粗度Ry値をRy=0.1μmから0.9μmの範囲に加工しベーン溝の吸入側側面よりも面粗度Ry値を小さくした請求項1記載のロータリ圧縮機。 The processing is performed on the discharge side surface of the vane groove of the cylinder so that the surface roughness Ry value is processed in the range of Ry = 0.1 μm to 0.9 μm so that the surface roughness Ry value is smaller than the suction side surface of the vane groove. Item 2. The rotary compressor according to Item 1.
JP2008109808A 2008-04-21 2008-04-21 Rotary compressor Pending JP2009257276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109808A JP2009257276A (en) 2008-04-21 2008-04-21 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109808A JP2009257276A (en) 2008-04-21 2008-04-21 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2009257276A true JP2009257276A (en) 2009-11-05

Family

ID=41384988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109808A Pending JP2009257276A (en) 2008-04-21 2008-04-21 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2009257276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026783A1 (en) * 2017-08-04 2019-02-07 住友電工焼結合金株式会社 Method for manufacturing sintered component, and sintered component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130788U (en) * 1985-02-04 1986-08-15
JPS61258987A (en) * 1985-05-10 1986-11-17 Hitachi Ltd Rotary compressor
JP2003307191A (en) * 2002-04-12 2003-10-31 Toshiba Kyaria Kk Rotary compressor
JP2006258043A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Vane rotary air pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130788U (en) * 1985-02-04 1986-08-15
JPS61258987A (en) * 1985-05-10 1986-11-17 Hitachi Ltd Rotary compressor
JP2003307191A (en) * 2002-04-12 2003-10-31 Toshiba Kyaria Kk Rotary compressor
JP2006258043A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Vane rotary air pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026783A1 (en) * 2017-08-04 2019-02-07 住友電工焼結合金株式会社 Method for manufacturing sintered component, and sintered component
KR20200038247A (en) * 2017-08-04 2020-04-10 스미또모 덴꼬 쇼오께쯔 고오낑 가부시끼가이샤 Method for manufacturing sintered parts, and sintered parts
CN110997190A (en) * 2017-08-04 2020-04-10 住友电工烧结合金株式会社 Method for producing a sintered component and sintered component
JPWO2019026783A1 (en) * 2017-08-04 2020-08-20 住友電工焼結合金株式会社 Sintered part manufacturing method and sintered part
CN110997190B (en) * 2017-08-04 2021-12-10 住友电工烧结合金株式会社 Method for producing a sintered component and sintered component
JP7011767B2 (en) 2017-08-04 2022-02-10 住友電工焼結合金株式会社 Manufacturing method of sintered parts and sintered parts
KR102392936B1 (en) 2017-08-04 2022-05-03 스미또모 덴꼬 쇼오께쯔 고오낑 가부시끼가이샤 Method for manufacturing sintered parts, and sintered parts
US11465206B2 (en) 2017-08-04 2022-10-11 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing sintered component and sintered component

Similar Documents

Publication Publication Date Title
US8157550B2 (en) Scroll compressor having spiral bodies with seal projections
JP5233921B2 (en) Rotary compressor
JP5040934B2 (en) Hermetic compressor
WO2010073426A1 (en) Rotary compressor
JP5071220B2 (en) Rotary compressor
JP2009257276A (en) Rotary compressor
JP2009257275A (en) Rotary compressor
JP2009257274A (en) Rotary compressor
CN107882727B (en) Pump body assembly and compressor
JP6091303B2 (en) Rolling piston compressor
JP2009215894A (en) Hermetic compressor
JP4659427B2 (en) Rolling piston compressor
JP4211871B2 (en) Screw compressor
JP4008471B2 (en) Rotary compressor
JP2007292016A (en) Hermetic compressor
JP2006322414A (en) Vane for rotary type compressor and method for manufacturing same
JP5363486B2 (en) Rotary compressor
JP2010112173A (en) Rotary compressor
KR101095592B1 (en) Valve assembly for hermetic compressor comprising steel groove valve plate
KR20170071048A (en) Swash plate compressor with oil separator
JP5068359B2 (en) Rolling piston compressor
JP2007192035A (en) Vane rotary compressor
JP4640645B2 (en) Compressor
JP5176990B2 (en) Rotary compressor
JP2008014175A (en) Vane rotary type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120