JP2009256742A - Copper electro-refining method in which planned blackout is carried out - Google Patents

Copper electro-refining method in which planned blackout is carried out Download PDF

Info

Publication number
JP2009256742A
JP2009256742A JP2008108945A JP2008108945A JP2009256742A JP 2009256742 A JP2009256742 A JP 2009256742A JP 2008108945 A JP2008108945 A JP 2008108945A JP 2008108945 A JP2008108945 A JP 2008108945A JP 2009256742 A JP2009256742 A JP 2009256742A
Authority
JP
Japan
Prior art keywords
copper
electrolytic
refining
current
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008108945A
Other languages
Japanese (ja)
Inventor
Kunio Watanabe
邦男 渡辺
Akira Ueno
明 上野
Toshifumi Ishii
敏文 石井
Masaomi Kanazawa
聖臣 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2008108945A priority Critical patent/JP2009256742A/en
Publication of JP2009256742A publication Critical patent/JP2009256742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To avoid the difficulty of peeling-off of electrodeposited copper after planned blackout in an copper electro-refining plant using a permanent cathode (PC) system. <P>SOLUTION: In the copper electro-refining method by carrying out the planned blackout in the copper electro-refining plant for the electro-refining of copper by the PC system and after the periodical inspection, performing power recovery for returning current caused to flow in a copper electro-refining vessel to a normal operation value and starting the electro-refining again, the power recovery after the blackout is carried out by gradually increasing the current in multistage of two or more stages. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、銅の電解精製方法に関するものであり、さらに詳しく述べるならば計画停電を行うPC(Permanent Cathode)法による銅の電解精製方法に関するものである。     The present invention relates to a method for electrolytic purification of copper. More specifically, the present invention relates to a method for electrolytic purification of copper by a PC (Permanent Cathode) method in which a planned power failure occurs.

本出願人の日立精銅工場では種板を使用する方法により電気銅の生産を行ってきたが、従来の方法では、生産性と品質の向上を同時に達成することは困難な状況にあった。また、種板を使用する銅の電解精製法において、課題となっているカソード板の懸垂性について抜本的な改善を図るべく2002年にPC法を導入した(非特許文献1:JOURNAL OF MMJ, 2007(12),Vol.123『日立精銅工場における最近の操業』第605〜606頁)。また、本出願人の佐賀関製錬所でも2006年にPC法を導入した(非特許文献2:JOURNAL OF MMJ, 2007(12),Vol.123『佐賀関製錬所の銅製錬』第626〜627頁)。佐賀関製錬所における電解精製の電流密度は現在300A/m2であり、将来は320A/m2までの引上げが予定されている。なお、カソード面積(片側)は1.0m2/枚である。 The Hitachi Copper Factory of the present applicant has produced electrolytic copper by a method using a seed plate, but it has been difficult to achieve improvement in productivity and quality at the same time by the conventional method. Also, in 2002, the PC method was introduced in order to drastically improve the suspension property of the cathode plate, which is a problem in the copper electrolytic purification method using a seed plate (Non-patent Document 1: JOURNAL OF MMJ, 2007 (12), Vol.123, “Recent Operations at Hitachi Copper,” pages 605-606). The PC method was also introduced in 2006 by the applicant's Sagaseki Smelter (Non-Patent Document 2: JOURNAL OF MMJ, 2007 (12), Vol.123, Copper Smelting of Sagaseki Smelter) No. 626 ~ 627 pages). The current density of the electrolytic purification in Saganoseki smelter is currently 300A / m 2, the future is scheduled pulled up 320A / m 2. The cathode area (one side) is 1.0 m 2 / sheet.

当該PC法は、ISA方式でマスキング剤(ワックス)を使用しないタイプであり、カソード板から電着銅を効率良く剥取るため、カソード板側面部には樹脂によるマスキングを、カソード板底部にV字型の溝加工が施されている。   The PC method is a type that does not use a masking agent (wax) in the ISA method. In order to efficiently strip the electrodeposited copper from the cathode plate, masking with resin is applied to the side of the cathode plate and V-shaped is applied to the bottom of the cathode plate. The groove of the mold is applied.

日立精銅工場では銅の電解精製槽に通電を行う整流器は37KA/150V、37KA/90V、37KA/30Vの3基を備えており、電解槽1槽当たりカソード板56枚を装入させた644基の電解槽に通電している。佐賀関製錬所では、整流器を35KA/240V,35KA/120Vの2基を備えており、電解槽1槽当たりカソード板49枚を装入させた768槽の電解槽に通電している。このように、多数の電解槽にて大電流大規模処理が銅電解精製工場の特徴である。   Hitachi Precision Copper Factory has three rectifiers 37KA / 150V, 37KA / 90V, and 37KA / 30V for energizing the copper electrolytic refining tank, and 644 with 56 cathode plates per electrolytic cell. The basic electrolyzer is energized. The Sagaseki Smelter has two rectifiers, 35KA / 240V and 35KA / 120V, and energizes 768 electrolytic cells with 49 cathode plates per electrolytic cell. Thus, a large current and large-scale treatment in a large number of electrolytic cells is a feature of a copper electrolytic refining plant.

また、電気銅板の製造設備は、通常年に1回の定期点検が必要であるので、計画通電の際には製造設備を停止し、またすべての銅電解槽への通電を一斉に停止する必要がある。計画停電時間は8〜12時間程度である。このように、大規模・一斉停電が行われることも銅電解精製工場の特徴である。   In addition, the electrical copper plate manufacturing facility usually requires periodic inspection once a year. Therefore, it is necessary to stop the manufacturing facility during planned energization and to stop energization of all copper electrolyzers at the same time. There is. The planned power outage time is about 8-12 hours. In this way, a large-scale, simultaneous power outage is also a feature of the copper electrolytic refining plant.

特許文献1:特開2006-265699号公報は、PC法におけるエッジストリップとカソード板の接着方法について提案しているが、停電時の対策についてはまったく触れていない。
特許文献2:特開2005-240146号公報は、PC法における電気銅板回収方法について、電着銅板をSUS板と一体のまま合板搬入部に搬入し、洗浄を経て剥取り装置において、電着銅板とSUS板を分離する方法を説明しているが、停電時の対策についはまったく触れていない。
特開2006-265699号公報 特開2005-240146号公報 特願2007−088041号 JOURNAL OF MMJ, 2007(12),Vol.123『日立精銅工場における最近の操業』第605〜606頁 :JOURNAL OF MMJ, 2007(12),Vol.123『佐賀関製錬所における銅製錬』第626〜627頁
Patent Document 1: Japanese Patent Application Laid-Open No. 2006-265699 proposes a method for bonding an edge strip and a cathode plate in the PC method, but does not mention any countermeasures in the event of a power failure.
Patent Document 2: Japanese Patent Laid-Open No. 2005-240146 discloses a method for recovering an electrolytic copper plate in the PC method, in which an electrodeposited copper plate is carried into a plywood carry-in portion while being integrated with a SUS plate Explains how to separate the SUS plate, but does not mention any countermeasures in case of power failure.
JP 2006-265699 A JP 2005-240146 A Japanese Patent Application No. 2007-088041 JOURNAL OF MMJ, 2007 (12), Vol.123 “Recent Operations at Hitachi Copper Works” pp. 605-606 : JOURNAL OF MMJ, 2007 (12), Vol.123 “Copper Smelting at Sagaseki Smelter” pp.626-627

電解精製工場では、変電所整備のために年一回程度の計画停電が行われ、この停電時間は8〜12時間である。さらに、導体工事、配管工事、電解槽整備などのため約8時間の停電がなされることがある。停電中には電気銅板は電解液中に浸漬された状態におかれているために、銅が電解液中に溶解する。
停電後、通電を再開すると、図1に示すように、停電前に電着した電気銅2の上に再電着銅3が積層される。なお、1はカソード板、1aはカソード板の底部に設けられたV字型の溝である。停電前後の電気銅層2,3の間には線状模様が発生する。
In the electrolytic refining plant, a planned power outage is carried out once a year for substation maintenance, and this power outage time is 8-12 hours. In addition, about 8 hours of power outage may occur due to conductor work, piping work, electrolytic cell maintenance, etc. Since the electric copper plate is immersed in the electrolytic solution during a power failure, the copper is dissolved in the electrolytic solution.
When the energization is resumed after the power failure, as shown in FIG. 1, the re-electrodeposited copper 3 is laminated on the electric copper 2 electrodeposited before the power failure. In addition, 1 is a cathode plate, 1a is a V-shaped groove | channel provided in the bottom part of the cathode plate. A linear pattern is generated between the copper layers 2 and 3 before and after the power failure.

PC法では、剥取り機によりSUS板から電着銅板を剥取るが、下部の電着銅形状を、計画停電がない、正常操業の場合に関しては図2に示す。
本出願人は、特許文献3:特願2007−088041号(平成19年3月29日出願;以下「先願」という)において、銅の電解精製の計画停電を行い、その後電解を再開したときに起こる電着銅の剥取り性悪化対策のために付設された補助整流器を用いて、計画停電中に10〜40A/m2程度の微弱電流を流すこと提案した。即ち、先願の請求項1は、パーマネントカソード法による銅の電解精製において、電解精製工場の計画停電時に、該電解精製工場に常設された主整流器より電解槽へ通電される電流を穏やかに落とし、次に、該電解精製工場に付設された補助整流器により、低電流にて停電復旧まで通電を行う方法である。
In the PC method, the electrodeposited copper plate is peeled from the SUS plate by a stripper, but the lower electrodeposited copper shape is shown in FIG. 2 in the case of normal operation with no planned power outage.
In the case of Patent Document 3: Japanese Patent Application No. 2007-088041 (filed on March 29, 2007; hereinafter referred to as “prior application”), the applicant made a planned power outage for electrolytic refining of copper and then resumed electrolysis. It was proposed that a weak current of about 10 to 40 A / m 2 should be applied during a planned power outage using an auxiliary rectifier provided as a countermeasure against deterioration of the stripping property of electrodeposited copper. That is, claim 1 of the prior application claims that in the electrolytic refining of copper by the permanent cathode method, the current supplied to the electrolytic cell from the main rectifier permanently installed in the electrolytic refining factory is gently reduced during a planned power outage at the electrolytic refining factory. Next, the auxiliary rectifier attached to the electrolytic refining factory is a method of energizing at low current until power failure recovery.

本発明は、先願の方法と同様に、PC法の銅電解精製工場において計画停電を実行した後の電着銅剥取りへの影響をできるだけ少なくすることを目的とする。特に、本発明は補助整流器を使用しなくとも、電着銅剥取悪化を低減する方法を提供することを目的とする。   The object of the present invention is to minimize the influence on the electrodeposited copper stripping after the planned power outage is performed in the PC method copper electrolytic refinery as in the method of the prior application. In particular, an object of the present invention is to provide a method of reducing the deterioration of electrodeposited copper stripping without using an auxiliary rectifier.

本発明の方法は、PC法による銅の電解精製を行う電解精製工場を計画停電し、定期点検後、銅の電解精製槽に流す電流を正常操業値に戻す復電を行い、電解精製を再開する銅の電解精製法において、前記復電を、2段階以上の多段で電流値を増加させる操作により行うことを特徴とする。以下、本発明を詳しく説明する。   In the method of the present invention, the electrolytic refinery factory that performs electrolytic purification of copper by the PC method is scheduled for blackout, and after periodic inspection, the current flowing through the copper electrolytic purification tank is restored to the normal operating value, and the electrolytic purification is resumed. In the copper electrolytic purification method, the power recovery is performed by an operation of increasing the current value in two or more stages. The present invention will be described in detail below.

上述したように、銅の電解精製は250〜320A/m2程度の電流密度で行われる(定常通電)。停電が起こると電解槽の電流密度は一挙にゼロになり、電気銅は硫酸系電解液に8〜12時間さらされることになる。その後、定常通電を再開して、電流値を一挙に正常操業値に上げて積層した電着銅の断面組織を観察すると、中断した電解析出の界面に筋のような模様が観察され、停電時間が長いほど筋状模様が明瞭になり、結晶成長が停電前の履歴を引継がないことが分かった。また、予期できない停電の場合は、最長でも4時間程度で復旧するが、この場合は特に剥取り不良などの問題は特に起こっていない。 As described above, electrolytic refining of copper is performed at a current density of about 250 to 320 A / m 2 (steady current application). When a power failure occurs, the current density of the electrolytic cell becomes zero at a stroke, and the electrolytic copper is exposed to the sulfuric acid electrolyte for 8 to 12 hours. After that, restarting steady energization, raising the current value to normal operation at once, and observing the cross-sectional structure of the electrodeposited copper, a streak-like pattern was observed at the interface of the suspended electrodeposition, causing a power outage. The longer the time, the clearer the streak pattern, and it was found that the crystal growth did not take over the history before the power failure. In the case of an unforeseen power outage, it can be recovered in a maximum of about 4 hours. In this case, however, there is no particular problem such as bad peeling.

先願の方法により微弱電流を計画停電中に流すことにより上記した筋状の模様を薄くして、電着銅の剥取り性悪化を防止することができるが、さらに、現場操業実験を行ったところ、停電時には一切電流を流さなくとも、復電時に電流値を複数段階に分けて増加し、各段階で保持を行うと、剥取り性が良好になることが分かった。即ち、剥取りにおいては、カソード板1(図1)と電着銅2の界面10にチゼルを挿入し、カソード板から電着銅を剥がした後、グリップで電着銅を掴み、スウィング部で電着銅をカソード板から引き剥がす。この際、カソード板下部V字型部(図1-1a)に電着している箇所が電着銅に亀裂を生じさせる起点(図2-2a)になる。
復電処理を従来法に従い一段で行うと、カソード板下部V字型を起点に起こる亀裂が電着銅積層箇所(図1−2と3の間)で止まってしまい、電着銅を引剥がすことができなくなるため、スウィングを何度も行い、電着銅下部に金属疲労を起こさせることで、剥取る必要があった。このスウィングを何度も行うと、剥取り時間に影響を与え、処理能力低下が発生する。
これに対して、本発明による多段階復電処理を行うと、高速かつ1回操作での剥取りが可能になり、しかも剥取り後の電着銅の形状は図2に示すように、ほぼ対称形でかつ一体化している。本出願人の佐賀関製錬所で2年間操業実験(即ち、2回の計画停電及び復電)を行い、多段復電処理は剥取り性向上に効果があることを確かめた。
Although the streaky pattern described above can be made thin by flowing a weak current during the planned power outage by the method of the prior application, it is possible to prevent deterioration of the peelability of the electrodeposited copper. However, it has been found that, even if no current is supplied during a power failure, the current value is increased in several stages at the time of power recovery, and if the holding is performed at each stage, the peelability is improved. That is, in stripping, a chisel is inserted into the interface 10 between the cathode plate 1 (FIG. 1) and the electrodeposited copper 2, the electrodeposited copper is peeled off from the cathode plate, and then the electrodeposited copper is grasped with a grip, Strip the electrodeposited copper from the cathode plate. At this time, the portion electrodeposited on the cathode plate lower V-shaped portion (FIG. 1-1a) becomes a starting point (FIG. 2-2a) that causes the electrodeposited copper to crack.
When the power recovery process is performed in one step according to the conventional method, cracks that originate from the lower V-shaped cathode plate stop at the electrodeposited copper stack (between Figs. 1-2 and 3) and peel the electrodeposited copper. Therefore, it was necessary to perform the swing many times and cause metal fatigue at the lower part of the electrodeposited copper to be removed. If this swing is performed many times, the stripping time is affected, and the processing capacity is reduced.
On the other hand, when the multistage power recovery process according to the present invention is performed, stripping can be performed at a high speed and once, and the shape of the electrodeposited copper after stripping is almost as shown in FIG. It is symmetrical and integrated. A two-year operation experiment (that is, two planned power failures and power recovery) was conducted at the applicant's Sagaseki Smelter, and it was confirmed that the multistage power recovery process was effective in improving stripping.

本発明において、多段とは、停電中の電流(0A)と正常電解精製の中間の電流で1回以上保持を行うことであり、好ましくは10A/m2 (佐賀関製錬所の電解工場では約1000A相当)〜250A/m2 (同様に約25000A相当)の範囲の電流値での保持段階で、1時間以上の保持を1回以上行う。この好ましい保持段階を例にとって、多段階復電処理における電流値の変化及び結晶成長を説明する。 In the present invention, “multistage” means holding at least once with a current during power outage (0 A) and a current intermediate between normal electrolytic refining, and preferably 10 A / m 2 (in the electrolytic plant of Sagaseki Smelter). In the holding stage at a current value in the range of about 1000 A) to 250 A / m 2 (similarly about 25000 A), hold for at least one hour at least once. Taking this preferable holding stage as an example, the change in the current value and the crystal growth in the multistage power recovery process will be described.

従来法により、復電において一挙に電流を正常操業値まで回復すると、先願の図4(本願において図3として引用)に示されるように、復電後の電気銅の結晶成長は、停電前の結晶成長とは、結晶粒の大きさや成長方向に関して、かなり異なっている。このような、結晶成長履歴が電気銅の剥取り性に影響を及ぼすので、本発明においては復電を多段で行うことにより剥取り性悪化を避けることを提案する。   When the current is recovered to the normal operating value at once in the power recovery by the conventional method, as shown in FIG. 4 (cited as FIG. 3 in the present application) of the prior application, the crystal growth of the electrolytic copper after the power recovery is performed before the power failure. The crystal growth is considerably different from the crystal grain size and growth direction. Since such a crystal growth history affects the stripping property of electrolytic copper, the present invention proposes to avoid stripping deterioration by performing power recovery in multiple stages.

なお、電解精製は大電流を流すために、小刻みに電流値を増加させかつ短時間保持することは電気制御の面で簡単ではなく、しかも刻々と成長条件が変化するから電気銅結晶が充分に柱状結晶として発達することが困難になる。しかしながら、柱状結晶が成長する条件では小刻みに電流値を変化させても同様の効果が期待できる。   In addition, since electrolytic refining allows a large current to flow, increasing the current value in small increments and holding it for a short time is not easy in terms of electrical control, and the growth conditions change from moment to moment, so that the electrolytic copper crystal is sufficient. It becomes difficult to develop as a columnar crystal. However, the same effect can be expected even if the current value is changed in small increments under the condition where the columnar crystal grows.

以上の説明のとおり、本発明の好ましい実施態様は次のとおりである。
(1)10〜250A/m2の範囲の電流密度で1時間以上の保持を1回以上行う方法。
(2) 計画停電時間が8〜12時間である(1)〜(2)の方法。
As described above, preferred embodiments of the present invention are as follows.
(1) A method of holding at least once at a current density in the range of 10 to 250 A / m 2 for one hour or more.
(2) The method according to (1) to (2), wherein the planned power outage time is 8 to 12 hours.

計画停電後には一刻も早く正常生産に復帰する必要があるにも拘わらず、従来法では、多量の電気銅板の剥取りに手間取るために、益々生産性が低下してしまう。ちなみに、日立工場の電解設備の例をとると644×55=9660枚もの多量の電気銅板のほとんど全部が剥取り困難となる。これに対して、本発明方法によると、銅の電解精製工場の計画停電による電着銅の剥取り速度低下を防止し、速やかに正常操業に復帰することができる。   In spite of the necessity of returning to normal production as soon as possible after a planned power outage, the conventional method takes more time to remove a large amount of the copper electroplating plate, so that productivity is further reduced. By the way, taking the example of the electrolytic facility at the Hitachi factory, almost all of the large amount of 644 × 55 = 9660 copper sheets is difficult to remove. On the other hand, according to the method of the present invention, it is possible to prevent a decrease in the rate of stripping of electrodeposited copper due to a planned power outage at a copper electrolytic refining plant, and to quickly return to normal operation.

本発明法では、計画停電時には電解槽に一切通電する必要がないために、操業が簡単である。但し、先願の方法により計画停電中に微弱電流を流す場合も、先の段落で説明した効果は実現される。   According to the method of the present invention, it is not necessary to energize the electrolytic cell at the time of planned power outage, so that the operation is simple. However, the effect described in the previous paragraph is also realized when a weak current is applied during a planned power outage by the method of the prior application.

本発明法では、剥取り悪化を低減することができるため、剥取り不良によるスウィング部への負荷を軽減でき、電解設備のメンテナンスコストを低くすることができる。   In the method of the present invention, exfoliation deterioration can be reduced, so that the load on the swing part due to defective exfoliation can be reduced, and the maintenance cost of the electrolytic equipment can be reduced.

実施例
本出願人の佐賀関製錬所でのPC電解法操業結果を説明する。10時間50分の停電期間中電流は一切流さず、その後1000Aで1時間保持、5000Aで1時間30分保持、25000Aで2時間30分保持の復電を行い、その後定常操業電流の32500Aに電流を上昇した。なお、上述したようにカソードの面積は1.0m2である。通電時の電流値より、電流密度を計算する場合、カソード板の面積は1.0 m2であり、電流はカソード板の表裏2面より流れるため、カソード板1枚当たりの電流の通電面積は2.0 m2となる。また電解槽1槽当たり49枚のカソード板が挿入されているので、総通電面積は98 m2となる。したがって、電流値を電流密度に換算する場合、各電流値を98 m2で割り返すことで換算できる。使用した剥取り機は、MESCO製であり、チゼルをカソード1と電着銅2の界面10(図1)に沿って入れ、グリップ部でカソード板から剥がれた電着銅を挟み込み、スウィングにより下方向へ引き剥がしながらカソード板下部V字型部を起点に電着銅に亀裂を生じさせ、約7.2m/sの速度でカソード板から電着銅を引き剥がす。この結果剥取り速度は13.5秒/枚となった。
図4に電着銅の顕微鏡組織写真を示す。
Example The results of the PC electrolysis process at Sagaseki Smelter of the present applicant will be described. During the power failure period of 10 hours and 50 minutes, no current flows, then power is restored at 1000A for 1 hour, at 5000A for 1 hour and 30 minutes, at 25000A for 2 hours and 30 minutes, and then at a steady operating current of 32500A Rose. As described above, the area of the cathode is 1.0 m 2 . When calculating the current density from the current value at the time of energization, the area of the cathode plate is 1.0 m 2 and the current flows from the front and back surfaces of the cathode plate, so the current energization area per cathode plate is 2.0 m 2 Moreover, since 49 cathode plates are inserted per electrolytic cell, the total energization area is 98 m 2 . Therefore, when converting the current value into the current density, it can be converted by dividing each current value by 98 m 2 . The stripping machine used was made by MESCO. The chisel was inserted along the interface 10 (Fig. 1) between the cathode 1 and the electrodeposited copper 2 and the electrodeposited copper peeled off from the cathode plate was sandwiched between the grips. The electrodeposited copper is cracked starting from the lower V-shaped part of the cathode plate while peeling in the direction, and the electrodeposited copper is peeled off from the cathode plate at a speed of about 7.2 m / s. As a result, the stripping speed was 13.5 seconds / sheet.
FIG. 4 shows a micrograph of the electrodeposited copper.

近年銅の需要が逼迫しているために、本発明法が銅電解製錬業界に貢献するところが大である。また、銅の需給が緩むような経済情勢になり、設備保全を徹底して行うような状況になっても本発明の有用性は高い。 In recent years, the demand for copper is tight, and the method of the present invention greatly contributes to the copper electrolytic smelting industry. Further, the present invention is highly useful even when the economic situation is such that the supply and demand of copper is sluggish and the equipment is thoroughly maintained.

停電前後で成長した銅が層を形成していることを示す模式図である。It is a schematic diagram which shows that the copper grown before and after the power failure forms a layer. カソードから引剥がされた電着銅の説明図である。It is explanatory drawing of the electrodeposited copper peeled off from the cathode. 復電を1段階で行う従来法による電着銅の金属組織を示す写真である。It is a photograph which shows the metal structure of the electrodeposited copper by the conventional method which performs a power recovery in one step. 実施例により得られた電着銅の金属組織を示す写真であって、左側は電着銅のマクロ写真、右側は顕微鏡写真である。It is the photograph which shows the metal structure of the electrodeposited copper obtained by the Example, The left side is a macro photograph of electrodeposited copper, and the right side is a microscope picture.

符号の説明Explanation of symbols

1−電着銅
2−電着銅
3−カソード板
1-Electrodeposited copper 2-Electrodeposited copper 3-Cathode plate

Claims (3)

PC法による銅の電解精製を行う電解精製工場を計画停電し、定期点検後、銅の電解精製槽に流す電流を正常操業値に戻す復電を行い、電解精製を再開する銅の電解精製法において、前記復電を、2段階以上の多段で電流値を増加させる操作により行うことを特徴とする銅の電解精製方法。 The copper electrolytic refining method, in which the electrolytic refining plant that performs the electrolytic refining of copper by the PC method is scheduled for blackout, and after periodic inspections, the current flowing through the copper refining tank is restored to the normal operating value and the electrolytic refining is resumed. The method of electrolytic purification of copper, wherein the power recovery is performed by an operation of increasing the current value in two or more stages. 前記復電操作において、10〜250A/mの電流密度範囲において1時間以上保持する操作を1回以上行うことを特徴とする請求項1記載の銅の電解精製方法。 2. The method for electrolytic purification of copper according to claim 1, wherein in the power recovery operation, the operation of holding for 1 hour or more in a current density range of 10 to 250 A / m 2 is performed once or more. 前記計画停電時間が8〜12時間である請求項1又は2記載の銅の電解精製方法。 The method for electrolytic purification of copper according to claim 1 or 2, wherein the planned power outage time is 8 to 12 hours.
JP2008108945A 2008-04-18 2008-04-18 Copper electro-refining method in which planned blackout is carried out Pending JP2009256742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108945A JP2009256742A (en) 2008-04-18 2008-04-18 Copper electro-refining method in which planned blackout is carried out

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108945A JP2009256742A (en) 2008-04-18 2008-04-18 Copper electro-refining method in which planned blackout is carried out

Publications (1)

Publication Number Publication Date
JP2009256742A true JP2009256742A (en) 2009-11-05

Family

ID=41384522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108945A Pending JP2009256742A (en) 2008-04-18 2008-04-18 Copper electro-refining method in which planned blackout is carried out

Country Status (1)

Country Link
JP (1) JP2009256742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157574A (en) * 2010-01-29 2011-08-18 Pan Pacific Copper Co Ltd Electrolytic refining method for copper
JP2013119641A (en) * 2011-12-06 2013-06-17 Pan Pacific Copper Co Ltd Method for electrowinning metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157574A (en) * 2010-01-29 2011-08-18 Pan Pacific Copper Co Ltd Electrolytic refining method for copper
JP2013119641A (en) * 2011-12-06 2013-06-17 Pan Pacific Copper Co Ltd Method for electrowinning metal

Similar Documents

Publication Publication Date Title
JP6111931B2 (en) Electrolyte supply method
JP5770575B2 (en) Formation method of oxide film
JP2009102721A (en) Surface treatment method
JP2009256742A (en) Copper electro-refining method in which planned blackout is carried out
JP4343969B2 (en) Measures for power outage of copper electrolytic refining method
JP5605530B2 (en) Electrolysis method
CN106521562A (en) Recovery method of copper electrolysis permanent stainless steel cathode
TWI534303B (en) Highly pure copper anode for electroplating, method for producing the same, and method for copper electroplating
JP5606747B2 (en) Method for electrolytic purification of copper
JP5213828B2 (en) Method for electrolytic purification of copper
TWI725345B (en) Method for peeling attached metal from metal plate
FI125980B (en) Procedure for maintenance of used cathode plates
KR101297953B1 (en) Method for electrowinning of cobalt
CN111676508B (en) Electrolytic corrosion solution and application thereof
JP6003788B2 (en) Stainless steel mother board and method for producing seed plate for copper electrolytic purification
JP2010235974A (en) Production method of nickel alloy electroformed film, and nickel alloy electroformed film
JP4465084B2 (en) Copper foil manufacturing method and manufacturing apparatus
CN101445950A (en) Constant current anode oxidation treatment method for surfaces of aluminum and aluminum alloy materials
JPWO2004074545A1 (en) Component for film forming apparatus and cleaning method thereof
JP5804920B2 (en) Electrolytic extraction of metals
TWI712709B (en) Metal plate, plated plate, method for manufacturing plated plate and method for manufacturing plated member
JP2010236028A (en) Electrolytic degreasing apparatus and electrolytic degreasing method
JP2011168811A (en) Crack preventing method of electrowinning cathode
JP6041915B2 (en) Surface treatment method for aluminum and aluminum alloy and electrolytic solution used for the surface treatment method
EP0255451B1 (en) Process for shutting down and restarting an electrolytic refining plant