JP2009255141A - High-efficiency hydrogen-storing metallic material and method for manufacturing the same - Google Patents

High-efficiency hydrogen-storing metallic material and method for manufacturing the same Download PDF

Info

Publication number
JP2009255141A
JP2009255141A JP2008108630A JP2008108630A JP2009255141A JP 2009255141 A JP2009255141 A JP 2009255141A JP 2008108630 A JP2008108630 A JP 2008108630A JP 2008108630 A JP2008108630 A JP 2008108630A JP 2009255141 A JP2009255141 A JP 2009255141A
Authority
JP
Japan
Prior art keywords
periodic structure
hydrogen storage
fine periodic
femtosecond laser
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008108630A
Other languages
Japanese (ja)
Inventor
Akira Kobayashi
明 小林
Masahiro Tsukamoto
雅裕 塚本
Yoshiaki Arata
吉明 荒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2008108630A priority Critical patent/JP2009255141A/en
Publication of JP2009255141A publication Critical patent/JP2009255141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for subjecting the surface of a metallic material having a hydrogen-storing function to nanometer-order microfabrication in a short time and at low cost, and a simple method for manufacturing a high-efficiency hydrogen-storing metallic material. <P>SOLUTION: In the invented method for manufacturing the high-efficiency hydrogen-storing metallic material, the surface of the metallic material having the hydrogen-storing function is irradiated with femtosecond laser whereby a microperiodic structure is formed on the surface of the metallic material having the hydrogen-storing function. A large volume of hydrogen can be efficiently stored by the formation of the microperiodic structure on the surface of the metallic material having the hydrogen-storing function. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は高効率水素吸蔵金属材およびその製造方法に関し、特に、フェムト秒レーザを用いた高効率水素吸蔵金属材の有利な製造方法に関する。   The present invention relates to a high-efficiency hydrogen storage metal material and a method for manufacturing the same, and more particularly to an advantageous method for manufacturing a high-efficiency hydrogen storage metal material using a femtosecond laser.

近年、低環境負荷なエネルギーシステムとして水素を用いたエネルギーシステムが注目されており、小は水素電池から大は水素を燃やす内燃機関まで、幅広い研究が遂行されている。水素エネルギーを有効に利用するためには、水素を効率よく貯蔵する技術が必要不可欠であり、その一翼を担っているのが水素吸蔵機能を有する材料である。   In recent years, an energy system using hydrogen has attracted attention as an energy system with a low environmental load, and a wide range of research has been carried out from small hydrogen batteries to large internal combustion engines that burn hydrogen. In order to effectively use hydrogen energy, a technique for efficiently storing hydrogen is indispensable, and a material having a hydrogen storage function plays a part in the technology.

水素を用いたエネルギーシステムに関する従来の技術では、水素吸蔵機能を有する材料としてバルク材を用いている(特許文献1および2参照)。水素吸蔵機能を有する材料としてバルク材を用いた場合は水素吸蔵量に限界(水素吸蔵機能を有する材料の格子間間隙数の80%程度)がある。これに対し、水素吸蔵機能を有する材料としてナノ粒子を用いることによって、水素吸蔵量を格子間間隙数の400%程度にまで高める方法が提案されている(非特許文献1および2参照)。   In the conventional technology related to an energy system using hydrogen, a bulk material is used as a material having a hydrogen storage function (see Patent Documents 1 and 2). When a bulk material is used as a material having a hydrogen storage function, the amount of hydrogen storage is limited (about 80% of the number of interstitial gaps of the material having a hydrogen storage function). On the other hand, a method has been proposed in which nanoparticles are used as a material having a hydrogen storage function to increase the hydrogen storage amount to about 400% of the number of interstitial gaps (see Non-Patent Documents 1 and 2).

特開2005−23341号公報JP-A-2005-23341 特開2003−303616号公報JP 2003-303616 A Discovery of Pycnodeuterium−lumps and Intense Solid−state Nuclear Fusion in Highly Deuterated Nano−particles, 固体物理, 38−1 (2003) 83.Discovery of Pycnodeuterium-lumps and Intense Solid-state Nuclear Fusion in Highly Deuterated Nano-particles, Solid Physics, 38-1 (2003) 83. Discovery of solid deuterium nuclear fusion of pycnodeuterium−lumps solidified locally within nano−pd particles, 高温学会誌, 29−2(2003)68.Discovery of solid deuterium nuclear fusion of pynodeuterium-lumps solidified within nano-pd particles, 29-2 (2003) 68.

水素吸蔵機能を有する材料としてナノ粒子を用いることが水素吸蔵量の観点から効果的であるのは上述の通りであるが、ナノ粒子は製法が複雑であり、大量生産が困難である。また、ナノ粒子が極めて高コストであることが実用化にとって大きな障害となっている。   As described above, it is effective to use nanoparticles as a material having a hydrogen storage function from the viewpoint of the amount of hydrogen storage. However, the manufacturing method of the nanoparticles is complicated, and mass production is difficult. In addition, the extremely high cost of nanoparticles is a major obstacle to commercialization.

ここで、水素吸蔵機能を有するバルク材の表面をナノ構造化することができれば、該バルク材の水素吸蔵量を大幅に増加させることができるものと思われる。しかしながら、水素吸蔵機能を有するバルク材の表面を簡便にナノ構造化する技術は未だ確立されていないのが現状である。   Here, if the surface of the bulk material having a hydrogen storage function can be nanostructured, it is considered that the hydrogen storage amount of the bulk material can be greatly increased. However, at present, a technology for easily nano-structuring the surface of a bulk material having a hydrogen storage function has not yet been established.

本発明は上記課題に鑑みなされたものであり、フェムト秒レーザを利用して、短時間かつ低コストで水素吸蔵機能を有する金属材の表面にナノメートルオーダーの微細加工を施す方法を提供するものであり、高効率水素吸蔵金属材の簡便な製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a method for performing micromachining on the surface of a metal material having a hydrogen storage function in a short time and at a low cost using a femtosecond laser. It is an object of the present invention to provide a simple method for producing a highly efficient hydrogen storage metal material.

本発明の高効率水素吸蔵金属材の製造方法は、水素吸蔵機能を有する金属材の表面にフェムト秒レーザを照射し、該照射によって水素吸蔵機能を有する金属材の表面に微細周期構造を形成させるものである。水素吸蔵機能を有する金属材としてはパラジウムを用いることが好ましく、微細周期構造の周期は1nm〜800nmであることが好ましい。   The method for producing a high-efficiency hydrogen storage metal material according to the present invention irradiates the surface of a metal material having a hydrogen storage function with a femtosecond laser and forms a fine periodic structure on the surface of the metal material having a hydrogen storage function by the irradiation. Is. Palladium is preferably used as the metal material having a hydrogen storage function, and the period of the fine periodic structure is preferably 1 nm to 800 nm.

本発明の高効率水素吸蔵金属材は、水素吸蔵機能を有する金属材の表面に微細周期構造が形成されているものである。水素吸蔵機能を有する金属材はパラジウムであることが好ましく、微細周期構造の周期は1nm〜800nmであることが好ましい。 The highly efficient hydrogen storage metal material of the present invention has a fine periodic structure formed on the surface of a metal material having a hydrogen storage function. The metal material having a hydrogen storage function is preferably palladium, and the period of the fine periodic structure is preferably 1 nm to 800 nm.

本発明の高効率水素吸蔵金属材の製造方法は、水素吸蔵機能を有する金属材のレーザ誘起構造変化を利用しているため、短時間、低コストで水素吸蔵機能を有する金属材の表面に微細周期構造を形成することができる。また、本発明の高効率水素吸蔵金属材は、表面にナノメートルオーダーの微細周期構造を有しているため、効率的に水素を吸蔵することができる。   Since the method for producing a highly efficient hydrogen storage metal material according to the present invention utilizes the laser-induced structural change of a metal material having a hydrogen storage function, the surface of the metal material having a hydrogen storage function is finely formed in a short time and at a low cost. Periodic structures can be formed. Moreover, since the highly efficient hydrogen storage metal material of this invention has the fine periodic structure of a nanometer order on the surface, it can occlude hydrogen efficiently.

図1は本発明の高効率水素吸蔵金属材の製造方法の概略図である。フェムト秒レーザ発振器10で発生したフェムト秒レーザは減衰器12、反射ミラー14、シャッター16を経由して、プロセスチャンバー30に入射される。プロセスチャンバー30に入射したフェムト秒レーザはハーフミラー18で二つに分けられ、一方のフェムト秒レーザはレンズ20によってXYステージ24に固定された水素吸蔵能を有する金属材22の表面に集光される。他方のフェムト秒レーザは反射ミラー14を経由して、モニタリングシステム26に入射される。なお、プロセスチャンバー30内はロータリーポンプ等により、適当な減圧状態となっている。 FIG. 1 is a schematic view of a method for producing a highly efficient hydrogen storage metal material of the present invention. The femtosecond laser generated by the femtosecond laser oscillator 10 is incident on the process chamber 30 via the attenuator 12, the reflection mirror 14, and the shutter 16. The femtosecond laser incident on the process chamber 30 is divided into two by the half mirror 18, and one of the femtosecond lasers is focused on the surface of the metal material 22 having a hydrogen occlusion ability fixed to the XY stage 24 by the lens 20. The The other femtosecond laser is incident on the monitoring system 26 via the reflecting mirror 14. The process chamber 30 is appropriately decompressed by a rotary pump or the like.

水素吸蔵能を有する金属材22の表面は集光したフェムト秒レーザパルスによって加工され、微細周期構造が形成される。水素吸蔵能を有する金属材22の位置は適宜XYステージ24によって制御されるため、水素吸蔵能を有する金属材22の必要な領域に微細周期構造を形成することができる。また、フェムト秒レーザの状況は随時モニタリングシステム26によって観測される。   The surface of the metal material 22 having a hydrogen storage capacity is processed by a focused femtosecond laser pulse to form a fine periodic structure. Since the position of the metal material 22 having hydrogen storage capability is appropriately controlled by the XY stage 24, a fine periodic structure can be formed in a necessary region of the metal material 22 having hydrogen storage capability. Further, the status of the femtosecond laser is observed by the monitoring system 26 as needed.

フェムト秒レーザパルスの照射によって生じる、水素吸蔵能を有する金属材22の表面のアブレーションおよび原子配列構造変化等により、該表面に微細周期構造が形成される。微細周期構造の形状および周期は、照射に用いるフェムト秒レーザの波長、フルエンスおよびパルス数等によって制御することができる。なお、微細周期構造の周期は、照射するフェムト秒レーザの波長と同程度になることが知られており、ナノメートルオーダーの波長を有するフェムト秒レーザを用いることで、ナノメートルオーダーの微細周期構造を得ることができる。   A fine periodic structure is formed on the surface by ablation of the surface of the metal material 22 having a hydrogen storage capacity, change in atomic arrangement structure, and the like caused by irradiation with the femtosecond laser pulse. The shape and period of the fine periodic structure can be controlled by the wavelength, fluence, number of pulses, and the like of the femtosecond laser used for irradiation. The period of the fine periodic structure is known to be approximately the same as the wavelength of the femtosecond laser to be irradiated. By using a femtosecond laser having a wavelength of the nanometer order, the fine periodic structure of the nanometer order is used. Can be obtained.

フェムト秒レーザを用いた微細周期構造の形成に関し、原子番号、原子量、比熱、融点等が近い金属については、ほぼ同一のレーザ条件で同様の加工が達成される。例えば、1668℃の融点を有するチタンと1555℃の融点を有するパラジウムとは、ほぼ同一のレーザ条件で同様の周期構造が形成されることが予想される。   Regarding the formation of a fine periodic structure using a femtosecond laser, the same processing can be achieved under substantially the same laser conditions for metals having similar atomic numbers, atomic weights, specific heats, melting points, and the like. For example, titanium having a melting point of 1668 ° C. and palladium having a melting point of 1555 ° C. are expected to form a similar periodic structure under almost the same laser conditions.

水素吸蔵能を有する金属材22としては、種々の水素吸蔵合金を用いることができる。水素吸蔵合金にはAB2型(チタン、マンガン、ジルコニウム、ニッケル等の遷移元素の合金をベースとしたもの)、AB5型(希土類元素、ニオブ、ジルコニウム1に対して触媒効果を持つ遷移元素(ニッケル、コバルト、アルミニウムなど)5を含む合金をベースとしたもの)、チタン−鉄系、バナジウム系、マグネシウム合金、パラジウム系、カルシウム系合金等が知られているが、パラジウムを用いることが好ましい。   As the metal material 22 having hydrogen storage ability, various hydrogen storage alloys can be used. Hydrogen storage alloys include AB2 type (based on alloys of transition elements such as titanium, manganese, zirconium, nickel), AB5 type (transition elements having a catalytic effect on rare earth elements, niobium, zirconium 1 (nickel, nickel, Cobalt, aluminum, etc.) based on alloys containing 5), titanium-iron-based, vanadium-based, magnesium alloys, palladium-based, calcium-based alloys, etc. are known, but palladium is preferably used.

従来、パラジウム固体内への水素原子の侵入は、パラジウム格子間に0.8個が入るとされていた。これに対し、パラジウム材がナノメートルオーダーの形状を有している場合、2個以上の水素原子がパラジウム格子間に入り、水素吸収効率が圧倒的に高くなることが報告されている。つまり、パラジウム材の表面にナノメートルオーダーの微細周期構造を形成することができれば、高効率な水素吸蔵材を得ることができる。なお、効率的な水素の吸蔵および放出の観点から、水素吸蔵能を有する金属材22の表面に形成させる微細周期構造の周期は1nm〜800nmであることが好ましい。   Conventionally, it has been assumed that 0.8 atoms of hydrogen atoms enter the palladium solid between the palladium lattices. On the other hand, when the palladium material has a shape of nanometer order, it has been reported that two or more hydrogen atoms enter between the palladium lattices, and the hydrogen absorption efficiency is overwhelmingly high. That is, if a fine periodic structure of nanometer order can be formed on the surface of the palladium material, a highly efficient hydrogen storage material can be obtained. In addition, from the viewpoint of efficient occlusion and release of hydrogen, it is preferable that the period of the fine periodic structure formed on the surface of the metal material 22 having hydrogen occlusion capacity is 1 nm to 800 nm.

以下に本発明の実施例及び比較例を図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
フェムト秒レーザの発振子としてチタン:サファイヤを用いたフェムト秒レーザ加工システムを使用し、チタン板材の表面に微細周期構造を形成させた(チタン板材は高価なパラジウム板材の代替として用いた)。フェムト秒レーザの波長、パルス長、繰り返し速度、ビーム径はそれぞれ800nm、100fsec、1kHz、4mmとした。フェムト秒レーザは焦点距離が100mmのレンズによって、チタン板材の表面に集光された。被加工材として用いたチタン板材の厚さは100μm、表面粗さは0.05μmである。チタン板材の表面におけるフェムト秒レーザのフルエンスは減衰器によって制御され、0.25、0.75、1.5J/cmとし、加工には10パルスを用いた。なお、加工は13.3paの減圧下で行った。
EXAMPLES Examples and comparative examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples.
Example 1
A femtosecond laser processing system using titanium: sapphire as a femtosecond laser oscillator was used to form a fine periodic structure on the surface of the titanium plate (the titanium plate was used as an alternative to the expensive palladium plate). The wavelength, pulse length, repetition rate, and beam diameter of the femtosecond laser were 800 nm, 100 fsec, 1 kHz, and 4 mm, respectively. The femtosecond laser was focused on the surface of the titanium plate by a lens having a focal length of 100 mm. The titanium plate used as the workpiece has a thickness of 100 μm and a surface roughness of 0.05 μm. The fluence of the femtosecond laser on the surface of the titanium plate was controlled by an attenuator, which was 0.25, 0.75, 1.5 J / cm 2, and 10 pulses were used for processing. The processing was performed under reduced pressure of 13.3 pa.

図2および図3にフルエンス0.25J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(低倍率)およびフルエンス0.25J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(高倍率)を示す。約700nmの周期を有する微細周期構造が形成されていることが確認された。 2 and SEM photographs of the fine periodic structure formed by the femtosecond laser 10 pulse fluence 0.25 J / cm 2 in FIG. 3 (low magnification) and fluence 0.25 J / cm fine formed by two femtosecond laser 10 pulse The SEM photograph (high magnification) of a periodic structure is shown. It was confirmed that a fine periodic structure having a period of about 700 nm was formed.

図4および図5にフルエンス0.75J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(低倍率)およびフルエンス0.75J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(高倍率)を示す。図4において、異なった形状を有する2つの領域(中心部および外側部)が確認できる。図5は図4の中心部の拡大であるが、微細周期構造に対して垂直方向に、より大きな周期を有する周期構造が形成されている。 4 and finely formed with fluence 0.75 J / cm SEM photograph of the fine periodic structure formed of two femtosecond laser 10 pulse (low magnification) and fluence 0.75 J / cm 2 of the femtosecond laser 10 pulse in FIG. 5 The SEM photograph (high magnification) of a periodic structure is shown. In FIG. 4, two regions (a central portion and an outer portion) having different shapes can be confirmed. FIG. 5 is an enlargement of the central portion of FIG. 4, but a periodic structure having a larger period is formed in a direction perpendicular to the fine periodic structure.

図6および図7にフルエンス1.50J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(低倍率)およびフルエンス1.50J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(高倍率)を示す。図6において、異なった形状を有する3つの領域(中心部、中間部、外側部)が確認できる。外側部には微細周期構造、中間部には微細周期構造および微細周期構造に対して垂直方向に形成されたより大きな周期を有する周期構造が確認される。図7は図6の中心部の拡大であるが、微細周期構造が形成されていない。 6 and 7 show an SEM photograph (low magnification) of a fine periodic structure formed with 10 pulses of a femtosecond laser with a fluence of 1.50 J / cm 2 and a fine structure formed with 10 pulses of a femtosecond laser with a fluence of 1.50 J / cm 2. The SEM photograph (high magnification) of a periodic structure is shown. In FIG. 6, three regions (center portion, intermediate portion, and outer portion) having different shapes can be confirmed. A fine periodic structure is confirmed in the outer portion, and a fine periodic structure and a periodic structure having a larger period formed in a direction perpendicular to the fine periodic structure are confirmed in the intermediate portion. FIG. 7 is an enlargement of the center of FIG. 6, but no fine periodic structure is formed.

図2〜図7より、フェムト秒レーザの照射によって、チタン板材の表面にナノメートルオーダーの周期を有する微細周期構造が形成されることが明らかとなった。また、照射するフェムト秒レーザのフルエンスを変化させることによって、材料表面に形成される微細周期構造を制御し得ることが確認された。   2-7, it became clear that the fine periodic structure which has a period of a nanometer order was formed in the surface of a titanium plate material by irradiation of femtosecond laser. It was also confirmed that the fine periodic structure formed on the material surface can be controlled by changing the fluence of the femtosecond laser to be irradiated.

実施例2
フェムト秒レーザの発振子としてチタン:サファイヤを用いたフェムト秒レーザ加工システムを使用し、チタン板材の表面に微細周期構造を形成させた(チタン板材は高価なパラジウム板材の代替として用いた)。フェムト秒レーザの波長、パルス長、繰り返し速度、ビーム径はそれぞれ800nm、100fsec、1kHz、4mmとした。フェムト秒レーザは焦点距離が100mmのレンズによって、チタン板材の表面に集光された。被加工材として用いたチタン板材の厚さは100μm、表面粗さは0.05μmである。チタン板材の表面におけるフェムト秒レーザのフルエンスは減衰器によって0.75J/cmに制御し、加工には10〜110パルスを用いた。なお、加工は13.3paの減圧下で行った。
Example 2
A femtosecond laser processing system using titanium: sapphire as a femtosecond laser oscillator was used to form a fine periodic structure on the surface of the titanium plate (the titanium plate was used as an alternative to the expensive palladium plate). The wavelength, pulse length, repetition rate, and beam diameter of the femtosecond laser were 800 nm, 100 fsec, 1 kHz, and 4 mm, respectively. The femtosecond laser was focused on the surface of the titanium plate by a lens having a focal length of 100 mm. The titanium plate used as the workpiece has a thickness of 100 μm and a surface roughness of 0.05 μm. The fluence of the femtosecond laser on the surface of the titanium plate was controlled to 0.75 J / cm 2 by an attenuator, and 10 to 110 pulses were used for processing. The processing was performed under reduced pressure of 13.3 pa.

図8にフルエンス0.75J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真を示す。微細周期構造および微細周期構造に対して垂直方向に形成されたより大きな周期を有する周期構造が確認される。 FIG. 8 shows an SEM photograph of a fine periodic structure formed with 10 pulses of a femtosecond laser with a fluence of 0.75 J / cm 2 . A fine periodic structure and a periodic structure having a larger period formed in a direction perpendicular to the fine periodic structure are confirmed.

図9にフルエンス0.75J/cmのフェムト秒レーザ25パルスで形成した微細周期構造のSEM写真を示す。微細周期構造および微細周期構造に対して垂直方向に形成されたより大きな周期を有する周期構造が確認される。 FIG. 9 shows an SEM photograph of a fine periodic structure formed by 25 femtosecond laser pulses with a fluence of 0.75 J / cm 2 . A fine periodic structure and a periodic structure having a larger period formed in a direction perpendicular to the fine periodic structure are confirmed.

図10にフルエンス0.75J/cmのフェムト秒レーザ50パルスで形成した微細周期構造のSEM写真を示す。微細周期構造および微細周期構造に対して垂直方向に形成されたより大きな周期を有する周期構造が確認されるが、より大きな周期を有する周期構造を構成する凸部には微細周期構造が存在しない。また、該凸部に小さな球形の領域が形成されている。 FIG. 10 shows an SEM photograph of a fine periodic structure formed by 50 femtosecond laser pulses with a fluence of 0.75 J / cm 2 . Although the fine periodic structure and the periodic structure having a larger period formed in a direction perpendicular to the fine periodic structure are confirmed, the fine periodic structure does not exist on the convex portion constituting the periodic structure having a larger period. A small spherical region is formed on the convex portion.

図11にフルエンス0.75J/cmのフェムト秒レーザ70パルスで形成した微細周期構造のSEM写真を示す。微細周期構造および微細周期構造に対して垂直方向に形成された、より大きな周期を有する周期構造が確認されるが、より大きな周期を有する周期構造を構成する凸部には微細周期構造が存在しない。また、該凸部に小さな球形の領域が形成されており、該球形の領域同士が連結されている領域も存在する。 FIG. 11 shows an SEM photograph of a fine periodic structure formed by a femtosecond laser 70 pulse having a fluence of 0.75 J / cm 2 . Although the periodic structure having a larger period formed in the direction perpendicular to the fine periodic structure and the fine periodic structure is confirmed, the fine periodic structure does not exist on the convex portion constituting the periodic structure having the larger period. . Moreover, a small spherical region is formed on the convex portion, and there is a region where the spherical regions are connected to each other.

図12にフルエンス0.75J/cmのフェムト秒レーザ90パルスで形成した微細周期構造のSEM写真を示す。微細周期構造および微細周期構造に対して垂直方向に形成されたより大きな周期を有する周期構造が確認されるが、より大きな周期を有する周期構造を構成する凸部には微細周期構造が存在しない。また、該凸部に小さな球形の領域が形成されており、該球形の領域同士が連結されている領域が多く存在する。 FIG. 12 shows an SEM photograph of a fine periodic structure formed by 90 femtosecond laser pulses with a fluence of 0.75 J / cm 2 . Although the fine periodic structure and the periodic structure having a larger period formed in a direction perpendicular to the fine periodic structure are confirmed, the fine periodic structure does not exist on the convex portion constituting the periodic structure having a larger period. In addition, a small spherical region is formed on the convex portion, and there are many regions where the spherical regions are connected to each other.

図13にフルエンス0.75J/cmのフェムト秒レーザ110パルスで形成した微細周期構造のSEM写真を示す。微細周期構造および微細周期構造に対して垂直方向に形成されたより大きな周期を有する周期構造が確認されるが、より大きな周期を有する周期構造を構成する凸部には微細周期構造が存在しない。また、該凸部に小さな球形の領域およびより大きな球形の領域が形成されている。 FIG. 13 shows an SEM photograph of a fine periodic structure formed by 110 pulses of a femtosecond laser with a fluence of 0.75 J / cm 2 . Although the fine periodic structure and the periodic structure having a larger period formed in a direction perpendicular to the fine periodic structure are confirmed, the fine periodic structure does not exist on the convex portion constituting the periodic structure having a larger period. In addition, a small spherical region and a larger spherical region are formed on the convex portion.

本発明の高効率水素吸蔵金属材の製造方法の概略図である。It is the schematic of the manufacturing method of the highly efficient hydrogen storage metal material of this invention. フルエンス0.25J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(低倍率)である。It is a SEM photograph (low magnification) of the fine periodic structure formed with 10 pulses of femtosecond lasers with a fluence of 0.25 J / cm 2 . フルエンス0.25J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(高倍率)である。It is a SEM photograph (high magnification) of a fine periodic structure formed with 10 pulses of a femtosecond laser with a fluence of 0.25 J / cm 2 . フルエンス0.75J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(低倍率)である。It is a SEM photograph (low magnification) of a fine periodic structure formed with 10 pulses of a femtosecond laser with a fluence of 0.75 J / cm 2 . フルエンス0.75J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(高倍率)である。It is a SEM photograph (high magnification) of a fine periodic structure formed with 10 pulses of a femtosecond laser with a fluence of 0.75 J / cm 2 . フルエンス1.50J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(低倍率)である。It is a SEM photograph (low magnification) of the fine periodic structure formed with 10 pulses of femtosecond lasers with a fluence of 1.50 J / cm 2 . フルエンス1.50J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真(高倍率)である。It is a SEM photograph (high magnification) of the fine periodic structure formed with the femtosecond laser 10 pulses of fluence 1.50J / cm < 2 >. フルエンス0.75J/cmのフェムト秒レーザ10パルスで形成した微細周期構造のSEM写真である。It is a SEM photograph of the fine periodic structure formed by 10 pulses of femtosecond lasers having a fluence of 0.75 J / cm 2 . フルエンス0.75J/cmのフェムト秒レーザ25パルスで形成した微細周期構造のSEM写真である。Is a SEM photograph of the fine periodic structure formed by the femtosecond laser 25 pulse fluence 0.75 J / cm 2. フルエンス0.75J/cmのフェムト秒レーザ50パルスで形成した微細周期構造のSEM写真である。It is a SEM photograph of a fine periodic structure formed with 50 pulses of a femtosecond laser with a fluence of 0.75 J / cm 2 . フルエンス0.75J/cmのフェムト秒レーザ70パルスで形成した微細周期構造のSEM写真である。It is a SEM photograph of the fine periodic structure formed with 70 pulses of femtosecond lasers with a fluence of 0.75 J / cm 2 . フルエンス0.75J/cmのフェムト秒レーザ90パルスで形成した微細周期構造のSEM写真である。It is a SEM photograph of a fine periodic structure formed with 90 pulses of a femtosecond laser with a fluence of 0.75 J / cm 2 . フルエンス0.75J/cmのフェムト秒レーザ110パルスで形成した微細周期構造のSEM写真である。It is a SEM photograph of the fine periodic structure formed with the femtosecond laser 110 pulse of fluence 0.75J / cm < 2 >.

符号の説明Explanation of symbols

10…フェムト秒レーザ発振器
12…減衰器
14…反射ミラー
16…シャッター
18…ハーフミラー
20…レンズ
22…水素吸蔵機能を有する金属材
24…XYステージ
26…モニタリングシステム
30…プロセスチャンバー
DESCRIPTION OF SYMBOLS 10 ... Femtosecond laser oscillator 12 ... Attenuator 14 ... Reflection mirror 16 ... Shutter 18 ... Half mirror 20 ... Lens 22 ... Metal material 24 which has a hydrogen occlusion function ... XY stage 26 ... Monitoring system 30 ... Process chamber

Claims (6)

水素吸蔵機能を有する金属材の表面にフェムト秒レーザを照射し、
前記照射によって前記水素吸蔵機能を有する金属材の表面に微細周期構造を形成することを特徴とする高効率水素吸蔵金属材の製造方法。
Irradiate the surface of the metal material with hydrogen storage function with femtosecond laser,
A method for producing a highly efficient hydrogen storage metal material, wherein a fine periodic structure is formed on the surface of the metal material having the hydrogen storage function by the irradiation.
前記水素吸蔵機能を有する金属材がパラジウムであることを特徴とする請求項1に記載の高効率水素吸蔵金属材の製造方法。 2. The method for producing a high-efficiency hydrogen storage metal material according to claim 1, wherein the metal material having a hydrogen storage function is palladium. 前記微細周期構造の周期が1nm〜800nmであることを特徴とする請求項1〜2いずれか1項に記載の高効率水素吸蔵金属材の製造方法。   3. The method for producing a high-efficiency hydrogen storage metal material according to claim 1, wherein a period of the fine periodic structure is 1 nm to 800 nm. 水素吸蔵機能を有する金属材の表面に微細周期構造が形成されていることを特徴とする高効率水素吸蔵金属材。 A highly efficient hydrogen storage metal material characterized in that a fine periodic structure is formed on the surface of a metal material having a hydrogen storage function. 前記水素吸蔵機能を有する金属材がパラジウムであることを特徴とする請求項4に記載の高効率水素吸蔵金属材。   The high efficiency hydrogen storage metal material according to claim 4, wherein the metal material having a hydrogen storage function is palladium. 前記微細周期構造の周期が1nm〜800nmであることを特徴とする請求項4〜5いずれか1項に記載の高効率水素吸蔵金属材。   The highly efficient hydrogen storage metal material according to any one of claims 4 to 5, wherein the period of the fine periodic structure is 1 nm to 800 nm.
JP2008108630A 2008-04-18 2008-04-18 High-efficiency hydrogen-storing metallic material and method for manufacturing the same Pending JP2009255141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108630A JP2009255141A (en) 2008-04-18 2008-04-18 High-efficiency hydrogen-storing metallic material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108630A JP2009255141A (en) 2008-04-18 2008-04-18 High-efficiency hydrogen-storing metallic material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009255141A true JP2009255141A (en) 2009-11-05

Family

ID=41383251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108630A Pending JP2009255141A (en) 2008-04-18 2008-04-18 High-efficiency hydrogen-storing metallic material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009255141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087482A1 (en) * 2013-12-09 2015-06-18 株式会社デンソー Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
WO2015125950A1 (en) * 2014-02-24 2015-08-27 イーグル工業株式会社 Sliding member and sliding member processing method
JP2015530925A (en) * 2012-08-06 2015-10-29 リヴァス,ヴィクター,エイ. Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530925A (en) * 2012-08-06 2015-10-29 リヴァス,ヴィクター,エイ. Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation
WO2015087482A1 (en) * 2013-12-09 2015-06-18 株式会社デンソー Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
CN105722633A (en) * 2013-12-09 2016-06-29 株式会社电装 Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
US9517532B2 (en) 2013-12-09 2016-12-13 Denso Corporation Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
CN105722633B (en) * 2013-12-09 2017-08-15 株式会社电装 Hardware and its method of surface finish, semiconductor device and its manufacture method, composite shaped body
WO2015125950A1 (en) * 2014-02-24 2015-08-27 イーグル工業株式会社 Sliding member and sliding member processing method
US9863473B2 (en) 2014-02-24 2018-01-09 Eagle Industry Co., Ltd. Sliding parts and processing method of sliding parts

Similar Documents

Publication Publication Date Title
Theerthagiri et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo-and electrocatalytic applications
Yan et al. Pulsed laser ablation in liquid for micro-/nanostructure generation
Xiao et al. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly
US9770760B2 (en) Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser
Zhang et al. Laser synthesis and processing of colloids: fundamentals and applications
Niu et al. Morphology control of nanostructures via surface reaction of metal nanodroplets
CN103627883B (en) Method of regulating and controlling light absorption property of metal surface by picosecond pulse laser
JP2020097790A (en) Shape memory material
Anoop et al. Direct femtosecond laser ablation of copper with an optical vortex beam
Hakamada et al. Thermal coarsening of nanoporous gold: Melting or recrystallization
WO2005115914A1 (en) Method of decomposing carbon dioxide and method of forming carbon-particle structure
JP2008207152A (en) Porous metal body with reaction efficiency enhanced and its production method
CN113290242A (en) Micro-nano porous functional device, additive manufacturing method and application thereof
JP2009255141A (en) High-efficiency hydrogen-storing metallic material and method for manufacturing the same
Kumar et al. Significance of continuous wave and pulsed wave laser in direct metal deposition
Singh et al. Processability of pure Cu by LPBF using a ns-pulsed green fiber laser
JP2010144246A (en) Methods for producing micropore nickel porous body and micropore nickel-copper alloy porous body, and product obtained thereby
Nakhoul et al. Boosted spontaneous formation of high‐aspect ratio nanopeaks on ultrafast laser‐irradiated Ni surface
Shafeev Formation of nanoparticles under laser ablation of solids in liquids
Nath High power lasers in material processing applications: an overview of recent developments
Lasemi et al. Femtosecond laser-assisted synthesis of Ni/Au BONs in various alcoholic solvents
Attallah et al. Effect of liquid and laser parameters on fabrication of nanoparticles via pulsed laser ablation in liquid with their applications: a review
JP5542672B2 (en) Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof
Ali Preparation of gold nanoparticles by pulsed laser ablation in NaOH solution
Mirza et al. Non-thermal regimes of laser annealing of semiconductor nanostructures: Crystallization without melting