JP2009254935A - 気体溶解膜装置及び気体溶解液の製造方法 - Google Patents

気体溶解膜装置及び気体溶解液の製造方法 Download PDF

Info

Publication number
JP2009254935A
JP2009254935A JP2008104819A JP2008104819A JP2009254935A JP 2009254935 A JP2009254935 A JP 2009254935A JP 2008104819 A JP2008104819 A JP 2008104819A JP 2008104819 A JP2008104819 A JP 2008104819A JP 2009254935 A JP2009254935 A JP 2009254935A
Authority
JP
Japan
Prior art keywords
gas
valve
condensed water
phase chamber
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104819A
Other languages
English (en)
Inventor
Hiroto Tokoshima
裕人 床嶋
Shigeji Kametani
茂二 亀谷
Hiroshi Morita
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008104819A priority Critical patent/JP2009254935A/ja
Publication of JP2009254935A publication Critical patent/JP2009254935A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Accessories For Mixers (AREA)

Abstract

【課題】長期間にわたって連続的かつ安定的に運転することが可能な気体溶解膜装置及び気体溶解液の製造方法を提供する。
【解決手段】気体溶解水の製造運転中に、第1の弁31を開弁する。気相室13で凝縮した凝縮水は、第1の弁31を通って貯留部34に貯留される(凝縮水貯留工程)。凝縮水検出手段35によって測定された凝縮水量が所定値を超えると、第1の弁31が閉弁し、第2の弁32、第3の弁33及び弁42が開弁する。スイープガスが配管41を介して貯留部34の上流側に供給され、凝縮水が貯留部34の流出部から排出される(凝縮水排出工程)。その後、弁42及び第3の弁33を閉弁し、排気装置52を作動させ、弁53を開弁して、圧力計54と圧力計54で測定される圧力が同一になるまで貯留部34内の排気を行う(圧力調節工程)。その後、凝縮水貯留工程に復帰する。
【選択図】図1

Description

本発明は気体溶解膜装置及び気体溶解液の製造方法に係り、詳しくは、気体透過膜によって内部が液相室と気相室に区画された気体透過膜モジュールを有しており、該液相室に水を供給し、該気相室にガスを供給し、該気体透過膜を経由して該気相室内のガスを該液相室内の水に溶解させることにより、ガス溶解水を製造する気体溶解膜装置及び気体溶解液の製造方法に関する。
従来、半導体用シリコン基板、液晶用ガラス基板などの洗浄は、主として、過酸化水素水と硫酸の混合液、過酸化水素水と塩酸と水の混合液、過酸化水素水とアンモニア水と水の混合液など、過酸化水素をベースとする濃厚な薬液を用いて高温で洗浄した後に超純水で濯ぐ、いわゆるRCA洗浄法によって行われている。しかし、このRCA洗浄法では、過酸化水素水、高濃度の酸、アルカリなどを多量に使用するために薬液コストが高く、さらにリンス用の超純水のコスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を調製する空調コストなど、多大なコストを要する。
これに対し、洗浄工程におけるコストの低減や、環境への負荷の低減を目的とした様々な取り組みがなされ、成果を挙げている。その代表が、特定の気体を溶解した気体溶解水を用い、超音波洗浄等によって被処理物を洗浄する技術である。この特定気体としては、酸素ガス、オゾン、炭酸ガス、希ガス、不活性ガス、水素ガスなどが用いられる。
このような気体溶解水を製造する方法として、気体透過膜を内蔵した膜モジュールを用いる方法が知られている。この方法では、気体透過膜の液相側に水を供給すると共に気相側に特定気体を供給し、この気体透過膜を介して気相側のガスを液相側の水に溶解させることにより、気体溶解水を製造する。
例えば、特開平11−077023号には、超純水を脱気して溶存気体の飽和度を低下させたのち、この超純水に水素ガスを溶解させることが記載されている。
第4図は、同号公報の工程系統図である。超純水は、流量計1を経由して脱気膜モジュール2に送られる。脱気膜モジュール2は、ガス透過膜を介して超純水と接する気相側が真空ポンプ3により減圧状態に保たれ、超純水中に溶存している気体が脱気される。溶存気体が脱気された超純水は、次いで水素ガス溶解膜モジュール4に送られる。水素ガス溶解膜モジュール4においては、水素ガス供給器5から供給される水素ガスが気相側に送られ、ガス透過膜を介して超純水に供給される。溶存水素ガス濃度が所定の値に達した超純水に、薬液貯槽6から薬注ポンプ7によりアンモニア水などの薬液を添加し、所定のpH値に調整する。水素ガスを溶解し、アルカリ性となった水素含有超純水は、最後に精密ろ過装置8に送られ、MFフィルターなどにより微粒子が除去される。
脱気膜モジュール2の入口及び出口に設置した溶存気体測定センサ9により、超純水中の気体量を測定して飽和度を求め、信号を真空ポンプに送って超純水の飽和度と所望飽和度とを対比し、脱気量を調整する。脱気量の調整は、例えば、真空ポンプによる真空度を真空度調節弁の開度を調整して行う。脱気後の超純水の気体飽和度を溶存気体測定センサ9により測定し、水素ガス溶解膜モジュールから流出する水素含有超純水中の水素ガス濃度を溶存水素測定センサ9Aにより測定する。これらの測定信号を水素ガス供給器に送り、例えば、水素ガス供給路に設けた弁の開度などを調整することにより水素ガスの供給量を制御する。
特開平11−077023号
上記特開平11−077023号において、水素ガス溶解膜モジュール4のガス透過膜は、気体のみを透過し、液体を透過しない特性を有するが、水蒸気は透過する。このため、ガス透過膜を透過して液相室から気相室へ水蒸気が拡散してくる。このように液相室から気相室へガス透過膜を透過した水蒸気は、気相室で結露して凝縮水となり、気相室内に溜まる。
この凝縮水が少量である場合には、この水素ガス溶解膜モジュール4の性能に及ぼす影響は軽微であるが、凝縮水が多量になると、この凝縮水で被われるガス透過膜の気相室側の膜面積が大きくなり、ガス透過膜のうちガスの透過に寄与する有効面積が減少する。これにより、水素ガス溶解膜モジュール4の性能が低下し、超純水に水素ガスを十分に溶解させることができなくなる。
このため、水素ガス溶解膜モジュール4の気相室内に凝縮水が溜まったときに、運転を停止してこの凝縮水を気相室から排出する必要がある。
なお、水素ガス溶解膜モジュールの気相室に溜まった凝縮水を運転中に排出する方法として、この気相室に真空ポンプ等の排気装置を接続し、気相室に凝縮水が溜まった時に、この凝縮水をこの真空ポンプで吸引して排出することが考えられる。しかしながら、真空ポンプに液状の水が吸い込まれると、ポンプ駆動部が著しく劣化し、吸引性能の低下、故障の増加などの問題が生じる。その結果、運転を停止し、ポンプのメンテナンスや交換等を行う必要が生じる。また、真空ポンプ等で気相室内の凝縮水を吸引する場合、気相室の圧力が低下するため、気相室からガス透過膜を介して液相室内の超純水に供給される気体量が減少し、気体溶解水の気体濃度が低下するという問題も生じる。
本発明は、上記の問題点を解決し、長期間にわたって連続的かつ安定的に運転することが可能な気体溶解膜装置及び気体溶解液の製造方法を提供することを目的とする。
本発明(請求項1)のガス溶解水の製造装置は、気体透過膜によって気相室と液相室に区画された気体溶解膜モジュールと、該気相室で凝縮した凝縮水を排出するための凝縮水排出装置とを有する気体溶解膜装置において、該凝縮水排出装置は、該気相室から排出された凝縮水が流入する貯留部及び該貯留部からの水の流出部を備えた排出路と、該気相室と該貯留部との連通及び遮断を行う第1の弁と、該第1の弁を閉止した状態で該貯留部内に加圧ガスを供給して該貯留部内の凝縮水を該流出部から排出させるためのガス供給手段と、を有することを特徴とするものである。
請求項2の気体溶解膜装置は、請求項1において、前記流出部に第2の弁が設けられており、前記第1の弁及び該第2の弁を閉弁させた状態で該貯留部内の圧力を調節する圧力調節手段を有することを特徴とする。
請求項3の気体溶解膜装置は、請求項2において、該圧力調節手段は、該排出路内のガスを吸引排気する排気装置を有することを特徴とする。
本発明(請求項4)の気体溶解液の製造方法は、請求項1ないし3のいずれか1項の気体溶解膜装置を用いて気体溶解液を製造する方法であって、前記液相室に液体を通液すると共に前記気相室に気体を供給し、該気相室内のガスを前記気体透過膜を透過させて該液相室内の液体に溶解させて気体溶解液を得る気体溶解液の製造運転の実行中において、前記第1の弁を開弁し、該気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、該第1の弁を閉弁すると共に前記ガス供給手段から該貯留部内に加圧ガスを供給し、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、を順次に行うことを特徴とするものである。
請求項5の気体溶解液の製造方法は、請求項4において、前記凝縮水排出装置は請求項2又は3の凝縮水排出装置であり、前記製造運転の実行中において、前記第1の弁を開弁すると共に前記第2の弁を閉弁し、前記気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、該第1の弁を閉弁すると共に該第2の弁を開弁し、かつ前記ガス供給手段から該貯留部内に加圧ガスを供給して、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、該第1の弁及び該第2の弁を閉弁し、前記圧力調節手段で該貯留部内の圧力を該気相室内の圧力と同一に調節した後に、該第1の弁を開弁する圧力調節工程と、を順次に行うことを特徴とする。
本発明の気体溶解膜装置(請求項1ないし3)及び気体溶解液の製造方法(請求項4,5)にあっては、第1の弁を開弁し、気相室で凝縮した凝縮水を貯留部に受け入れることにより、気体溶解液の製造運転中に気相室内に凝縮水が溜まって製造効率が低下することが防止される。また、該貯留部に凝縮水が溜まった場合、第1の弁を閉弁すると共にガス供給手段から該貯留部内に加圧ガスを供給することにより、該貯留部内の凝縮水を流出部から排出させることができる。この際、第1の弁が閉弁しているため、気相室内の圧力が変化することがなく、気体溶解液の製造が安定して継続される。本発明では、このように貯留部内の凝縮水の排出にガス供給手段を用いており、真空ポンプを用いていないため、真空ポンプに凝縮水が吸い込まれることによるポンプ駆動部の劣化、吸引性能の低下、故障の増加などの問題が生じることがない。
請求項2の通り、流出部に第2の弁が設けられており、第1の弁及び第2の弁を閉弁させた状態で貯留部内の圧力を調節する圧力調節手段を有していてもよい。
この場合、請求項5の通り、第1の弁を開弁すると共に第2の弁を閉弁し、気相室で凝縮した凝縮水を貯留部に受け入れる凝縮水貯留工程と、該第1の弁を閉弁すると共に該第2の弁を開弁し、かつガス供給手段から該貯留部内に加圧ガスを供給して、該貯留部内の凝縮水を流出部から排出させる凝縮水排出工程と、該第1の弁及び該第2の弁を閉弁し、圧力調節手段で該貯留部内の圧力を該気相室内の圧力と同一に調節した後に、該第1の弁を開弁する圧力調節工程と、を順次に行うことが好ましい。凝縮水貯留工程において第2の弁及び第3の弁が閉弁しているため、系外からガスや不純物が貯留部に逆流することが防止される。圧力調節工程で貯留部内の圧力を気相室内の圧力と同一にしてから凝縮水貯留工程に復帰するため、復帰時に貯留部内の気体が気相室内に逆流したり、気相室内の圧力が変動したりすることがなく、気体溶解液の製造が安定して継続される。凝縮水排出工程で貯留部内の凝縮水が貯留部から排出されているため、その後の圧力調節工程で圧力調節手段が凝縮水を吸い込むことがなく、凝縮水の吸引に起因する圧力調節手段の劣化、性能低下、故障などの問題が生じることがない。
以下、図面を参照して本発明の実施の形態を説明する。第1図〜第3図は実施の形態に係る気体溶解膜装置及び気体溶解液の製造方法を説明する系統図である。第1図は凝縮水貯留工程を説明する系統図、第2図は凝縮水排出工程を説明する系統図、第3図は圧力調節工程を説明する系統図である。
この実施の形態は、気体透過膜モジュール10によって気体溶解水を生成させると共に、気体透過膜モジュール10の気相室13内の凝縮水を凝縮水排出装置60で排出するよう構成したものである。
気体溶解膜モジュール10内は、気体透過膜11によって液相室12と気相室13に区画されている。
この気体透過膜10としては、水を透過させず、かつ水に溶解させるガスを透過させるものであれば特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。
開閉弁21aを備えた原水配管21が、気体溶解膜モジュール10の液相室12に接続されている。また、この液相室12に、気体溶解水取出用の配管23が接続されている。
この原水配管21に供給する原水としては、ユースポイントで使用する用途を満足する清浄度があり、気体透過膜を極度に劣化ないし変質させる物質が含まれていないものであれば特に制限はなく、上水、純水、超純水等が用いられる。また、前記第4図の脱気膜モジュール2などで脱気した脱気水を用いてもよい。
この気体溶解膜モジュール10の気相室13に、流量調節弁22aを備えたガス供給配管22が接続されている。
このガス供給配管22に供給する特定気体としては、例えば、水素、酸素、炭酸ガス、オゾン、アルゴンやヘリウムなどの希ガス、窒素などの不活性ガス、これらのガスの2種以上の混合ガスなどが用いられる。
この気相室13に、凝縮水排出装置60が接続されている。この凝縮水排出装置60について次に説明する。
この気相室13に管状の排出路30が接続されている。この排出路30は、一端が気相室13に接続され、水平に延在する水平部30aと、該水平部の他端から垂下する垂下部30bとを有している。この垂下部30bに、第1の弁31、第2の弁32及び第3の弁33が上方から下方に向ってこの順に設けられている。この排出路30のうち第1の弁31と第2の弁32の間の部分が貯留部34となっており、該貯留部34の下端側が流出部34aとなっている。該貯留部34に凝縮水検出手段35が設けられている。
この排出路30の内径に制限は無いが、内径が小さすぎると凝縮水が流れにくいため、内径は3.96〜25.4mm特に6〜23mmであることが好ましい。
凝縮水検出手段35としては、例えば、この貯留部34に溜まった凝縮水の液面を検知する液面計や、溜まった凝縮水の重量を測定する重量測定計などが用いられる。このうち、構造が簡易であり、かつ正確な検知が可能であるため、液面計を用いるのが好ましい。液面計としては、光、超音波、静電容量などを利用する液面計等を用いることができる。
この貯留部34の上部側に、該貯留部34にスイープガスを供給するためのガス供給配管41が接続されている。このガス供給配管41に、弁42が設けられている。
このスイープガスとしては、供給ガスと同じものが挙げられる。例えば、水素ガス、酸素ガス、炭酸ガス、オゾン、アルゴンやヘリウムなどの希ガス、窒素などの不活性ガス等が例示される。
この排出路30のうち第2の弁32と第3の弁33との間の位置に、貯留部34内の気体を排出するための排気装置52を備えた排気配管51が接続されている。この排気配管51には、弁53及び圧力計54が設けられている。
排気装置52としては、貯留部34内を15kPa以下、特に10kPa以下に減圧する能力があるものが好適に用いられる。排気装置としては、真空ポンプやアスピレータなどが挙げられる。真空ポンプを用いる場合、真空側への汚染を防止するためにオイルレスのものが好適に用いられる。
この排出路30のうち第1の弁31よりも気相室13側の位置に、圧力計36が設けられている。
図示は省略するが、この凝縮水排出装置60は制御回路を有している。この制御回路は、凝縮水検出手段35からの信号を受信し、この受信信号に基づいて第1の弁31、第2の弁32、第3の弁33、弁42、弁53の開閉制御を行うことができるように構成されている。また、この制御回路は、圧力計36及び圧力計54からの信号を受信し、これらの圧力が同一値又は近似値となるように排気装置52の動作及び/又は弁53の開度の制御を行うことができるように構成されている。
凝縮水排出装置60で用いる弁(第1の弁31、第2の弁32、第3の弁33、弁42、弁53)は、真空側への汚染を防止するために禁油であることが好ましい。
次に、このように構成された気体溶解膜装置を用いて気体溶解水を製造する方法の一例を説明する。
本例は、気体溶解膜モジュール10の液相室12に原水を流通させると共に気相室13にガスを供給して気体溶解水を製造する過程において、気相室で凝縮した凝縮水を上記の凝縮水排出装置60を作動させて排出するものである。
従って、先ず気体溶解水を製造する過程について説明し、次いで、この製造過程で実行する凝縮水排出装置60の作動工程(凝縮水貯留工程、凝縮水排出工程及び圧力調節工程)について説明する。
[気体溶解水の製造運転]
弁21a及び弁22aを開弁する。なお、凝縮水排出装置60の少なくとも第1の弁31(好ましくはすべての弁)を閉弁しておく。
これにより、原水が、原水配管21を経由して気体溶解膜モジュール10の液相室12に供給される。また、ガスが、ガス供給配管22を経由して気相室13内に供給される。この気相室13内に供給されたガスが、気体透過膜11を透過し、液相室12内の原水に溶解する。このようにして得られた気体溶解水は、ガス溶解水配管23を経由してユースポイントに供給される。
なお、気相室13内の圧力は溶存ガス濃度によって決まるが、水素の場合60〜100kPa程度とするのが好ましい。
このようにして気体溶解水を製造する過程において、水蒸気が液相室12から気体透過膜11を透過して気相室13に徐々に拡散し、気相室13で結露して凝縮水となる。この気相室13内の凝縮水は、上記の凝縮水排出装置60を用いて、次のようにして排出される。
[凝縮水貯留工程(第1図)]
上記の気体溶解水の製造運転の実行中において、凝縮水排出装置60の第2の弁32、第3の弁33、弁42、弁53が閉弁した状態において、第1の弁31を開弁する(第1図)。
これにより、気相室13で凝縮した凝縮水は、排出路30及び第1の弁31を通って貯留部34に貯留される。この貯留部34に貯留された凝縮水量は、凝縮水検出手段35によって測定される。
この貯留部34への凝縮水の貯留時に第2の弁32、第3の弁33が閉弁しているため、系外から気体や不純物が排出路30、第3の弁33、第2の弁32を介して貯留部34に流入することが防止される。
[凝縮水排出工程(第2図)]
凝縮水検出手段35によって測定された凝縮水量が所定値を超えると、第1の弁31が閉弁すると共に、第2の弁32、第3の弁33及び弁42が開弁する(第2図)。
これにより、スイープガスが配管41を介して貯留部34内の上部側に供給される。貯留部34内の凝縮水は、このスイープガスに押圧されて貯留部34の流出部34aから排出され、さらに排出路30を通って凝縮水排出装置60の系外に排出される。
このように、スイープガスの供給によって貯留部34内が加圧されるが、第1の弁31が閉弁しているため、第1の弁31よりも上流側の気相室13にスイープガスが流入したり、該気相室13の圧力が高くなったりすることがない。このため、気体溶解水の製造が安定に継続される。
なお、第1の弁31の閉弁と弁42の開弁は同時に行ってもよいが、スイープガスの気相室13への逆流を確実に防止するために、第1の弁31を閉弁した後に弁42を開弁するようにしてもよい。
また、第2の弁32及び第3の弁33の開弁は、弁42の開弁よりも前、同時、後のいずれであってもよいが、先ず弁42を開弁して貯留部34内を加圧し、次いで第2の弁32及び第3の弁33を開弁するのが好ましい。このように貯留部34内を加圧してから第2の弁32及び第3の弁33を開弁する場合、系外の空気や異物が排出路30、第3の弁33及び第2の弁32を通って貯留部34内に逆流することが防止される。この逆流を防止するためには、貯留部34内の圧力を0.05PMa以上にしてから、第2の弁32及び第3の弁33を開弁することが好ましい。
第2の弁32と第3の弁33は、同時に開弁してもよく、いずれかを先に開弁してもよい。
凝縮水の排出を促進するために、第2の弁32及び第3の弁33を開弁した状態で弁42を開閉させてもよい。また、第2の弁32及び第3の弁33を交互に開弁させながら、弁42を開閉させてもよい。さらに、上記の凝縮水貯留工程、当該凝縮水排出工程、及び後述する圧力調整工程を繰り返すことで、凝縮水の排出を促してもよい。
[圧力調節工程(第3図)]
上記の凝縮水排出工程では、第1の弁31よりも下流側がスイープガスによって加圧されているため、この状態で第1の弁31を開弁して上記の凝縮水貯留工程に復帰した場合、スイープガスが第1の弁31を通って気相室13内に流入するおそれがある。これを防止するために、次の圧力調節工程を行う。
上記の凝縮水排出工程を行った後、弁42及び第3の弁33を閉弁する。また、排気装置52を作動させ、弁53を開弁する(第3図)。
これにより、排出路30のうち第1の弁31よりも下流側の部分(第1の弁31と第3の弁33との間の部分)のガスが排気され、圧力が低下する。この排気装置52による排気は、排出路30のうち第1の弁31よりも下流側の部分の圧力(圧力計54で測定される圧力)が、上流側の部分の圧力(圧力計54で測定される圧力)と同一値又は近似値になるまで行われる。
この圧力の調節に際しては、弁53として圧力調整弁を用い、該弁53の開度を調整することによって行ってもよい。この圧力調整弁としては、圧力センサーが内蔵されているタイプのものを用いてもよく、この場合、圧力計54を省略することができる。
また、この圧力の調節は、排気装置52の抽気量を調整することによって行ってもよい。例えば、排気装置52が真空ポンプである場合には、その周波数を制御すればよく、排気装置52がアスピレータである場合には、駆動流体の圧力や流量を制御すればよい。
このようにして、排出路30のうち第1の弁31よりも下流側の部分の圧力が上流側の部分の圧力と同一になった後、弁53を閉弁すると共に排気装置52を停止する。また、第2の弁32を閉弁すると共に第1の弁31を開弁する。これにより、凝縮水貯留工程(第1図)に復帰する。
これら3工程(凝縮水貯留工程、凝縮水排出工程及び圧力調節工程)は、凝縮水検出手段35による凝縮水の検知量が所定量以下になるまで繰り返し続けられるようにしてもよい。また、凝縮水排出装置60にタイマー及びカウンターを設け、これら3工程を所定時間毎に所定回数繰り返すようにしてもよい。
以下、実施例及び比較例を参照して、本発明をより詳細に説明する。
[実施例1]
第1図の装置を用い、液相室12に通水する原水として十分に脱気した超純水を用い、気相室13に供給する特定気体として水素ガスを用いて、水素溶解水を製造した。液相室12には超純水を毎時1mで供給し、気相室13には水素ガスを毎時1.2gで供給し、3ヶ月間の連続運転を行った。
凝縮水検出手段35として液面計を用い、排気装置52として真空ポンプを用いた。
貯留部34内の凝縮水の排出は、60分に1回の頻度で行った。
この3ヶ月の連続運転によって、溶存水素ガス濃度1.2mg/Lの水素ガス溶解水を毎時1mにて製造することができた。
[比較例1]
第1図の装置から、ガス供給配管41及び弁53を除き、第3の弁33を閉弁した装置を用い、実施例1と同様にして3ヶ月の連続運転を行った。
なお、比較例1では、凝縮水検出手段35が凝縮水を検知したら、第1の弁31を閉弁すると共に第2の弁32を開弁し、真空ポンプ52によって貯留部34内の凝縮水を系外に排出した。
運転開始から2ヶ月間は、溶存水素ガス濃度1.2mg/Lの水素ガス溶解水を毎時1mにて製造することができた。しかしながら、2ヶ月経過後から真空ポンプ52の吸引能力が落ち、凝縮水の吸引を行わなくなった。さらに運転を継続したところ、溶存水素ガス濃度が徐々に低下し、運転開始3ヶ月後には、溶存水素ガス濃度が0.9mg/Lにまで低下した。運転を停止して気体溶解膜モジュール10を開放したところ、気相室13の約3/4が凝縮水で浸水していた。
実施の形態に係る気体溶解膜装置の凝縮水貯留工程を説明する系統図である。 実施の形態に係る気体溶解膜装置の凝縮水排出工程を説明する系統図である。 実施の形態に係る気体溶解膜装置の圧力調節工程を説明する系統図である。 従来例に係る水素溶解水の製造工程系統図である。
符号の説明
10 気体溶解膜モジュール
11 気体透過膜
12 液相室
13 気相室
30 排出路
31 第1の弁
32 第2の弁
33 第3の弁
34 貯留部
35 凝縮水検出手段
41 ガス供給配管
52 排気装置

Claims (5)

  1. 気体透過膜によって気相室と液相室に区画された気体溶解膜モジュールと、該気相室で凝縮した凝縮水を排出するための凝縮水排出装置とを有する気体溶解膜装置において、
    該凝縮水排出装置は、
    該気相室から排出された凝縮水が流入する貯留部及び該貯留部からの水の流出部を備えた排出路と、
    該気相室と該貯留部との連通及び遮断を行う第1の弁と、
    該第1の弁を閉止した状態で該貯留部内に加圧ガスを供給して該貯留部内の凝縮水を該流出部から排出させるためのガス供給手段と、
    を有することを特徴とする気体溶解膜装置。
  2. 請求項1において、前記流出部に第2の弁が設けられており、前記第1の弁及び該第2の弁を閉弁させた状態で該貯留部内の圧力を調節する圧力調節手段を有することを特徴とする気体溶解膜装置。
  3. 請求項2において、該圧力調節手段は、該排出路内のガスを吸引排気する排気装置を有することを特徴とする気体溶解膜装置。
  4. 請求項1ないし3のいずれか1項の気体溶解膜装置を用いて気体溶解液を製造する方法であって、
    前記液相室に液体を通液すると共に前記気相室に気体を供給し、該気相室内のガスを前記気体透過膜を透過させて該液相室内の液体に溶解させて気体溶解液を得る気体溶解液の製造運転の実行中において、
    前記第1の弁を開弁し、該気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、
    該第1の弁を閉弁すると共に前記ガス供給手段から該貯留部内に加圧ガスを供給し、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、
    を順次に行うことを特徴とする気体溶解液の製造方法。
  5. 請求項4において、前記凝縮水排出装置は請求項2又は3の凝縮水排出装置であり、
    前記製造運転の実行中において、
    前記第1の弁を開弁すると共に前記第2の弁を閉弁し、前記気相室で凝縮した凝縮水を前記貯留部に受け入れる凝縮水貯留工程と、
    該第1の弁を閉弁すると共に該第2の弁を開弁し、かつ前記ガス供給手段から該貯留部内に加圧ガスを供給して、該貯留部内の凝縮水を前記流出部から排出させる凝縮水排出工程と、
    該第1の弁及び該第2の弁を閉弁し、前記圧力調節手段で該貯留部内の圧力を該気相室内の圧力と同一に調節した後に、該第1の弁を開弁する圧力調節工程と、
    を順次に行うことを特徴とする気体溶解液の製造方法。
JP2008104819A 2008-04-14 2008-04-14 気体溶解膜装置及び気体溶解液の製造方法 Pending JP2009254935A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104819A JP2009254935A (ja) 2008-04-14 2008-04-14 気体溶解膜装置及び気体溶解液の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104819A JP2009254935A (ja) 2008-04-14 2008-04-14 気体溶解膜装置及び気体溶解液の製造方法

Publications (1)

Publication Number Publication Date
JP2009254935A true JP2009254935A (ja) 2009-11-05

Family

ID=41383076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104819A Pending JP2009254935A (ja) 2008-04-14 2008-04-14 気体溶解膜装置及び気体溶解液の製造方法

Country Status (1)

Country Link
JP (1) JP2009254935A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180500A (ja) * 2015-05-29 2015-10-15 栗田工業株式会社 ガス溶解水供給装置及びガス溶解水の製造方法
JP2021041342A (ja) * 2019-09-11 2021-03-18 オルガノ株式会社 ガス溶解水製造装置及び方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185559A (ja) * 2006-01-11 2007-07-26 Japan Organo Co Ltd ガス溶解方法および装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185559A (ja) * 2006-01-11 2007-07-26 Japan Organo Co Ltd ガス溶解方法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180500A (ja) * 2015-05-29 2015-10-15 栗田工業株式会社 ガス溶解水供給装置及びガス溶解水の製造方法
JP2021041342A (ja) * 2019-09-11 2021-03-18 オルガノ株式会社 ガス溶解水製造装置及び方法
JP7328840B2 (ja) 2019-09-11 2023-08-17 オルガノ株式会社 ガス溶解水製造装置及び方法

Similar Documents

Publication Publication Date Title
WO2010113863A1 (ja) ガス溶解水供給装置及びガス溶解水の製造方法
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP2001190938A (ja) 水処理膜の破損検出方法
JP2006071340A (ja) 液体中の溶存気体濃度の測定方法、測定装置及び窒素ガス溶解水の製造装置
JP2005218885A (ja) 水素水製造装置、水素水製造方法および水素水
JP2000189742A (ja) 気体溶解モジュ―ル
JP5380870B2 (ja) ガス溶解水の製造方法及び装置
JP5999222B2 (ja) ガス溶解水供給装置及びガス溶解水の製造方法
JP4919385B2 (ja) ガス溶解方法および装置
JP2009254935A (ja) 気体溶解膜装置及び気体溶解液の製造方法
JP2000271549A (ja) ガス溶解水供給装置
JP2007319843A (ja) 気体溶解モジュール
JP2012176360A (ja) ガス溶解水の製造装置
JP4893592B2 (ja) ガス溶解水の製造装置及び製造方法
JP5092968B2 (ja) ガス溶解水供給装置及びガス溶解水の製造方法
TW202003098A (zh) 膜洗淨裝置及膜洗淨方法
JP5358910B2 (ja) 炭酸水の製造装置及び製造方法
JP3561589B2 (ja) 膜脱気装置
JP2000185203A (ja) 膜脱気装置の運転方法
JP4998200B2 (ja) ガス溶解水の製造ユニット、製造装置及び製造方法
JP3290385B2 (ja) レジスト処理方法及びレジスト処理装置
JP5552792B2 (ja) ガス溶解水製造装置及び製造方法
JP2012139656A (ja) 窒素ガス溶解水製造方法および窒素ガス溶解水製造システム
JP2000065710A (ja) 液体中の溶存気体濃度の測定方法及び測定装置
JP2004188252A (ja) 膜ろ過装置およびその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110328

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108