JP2009251104A - Method of manufacturing light adjusting particle - Google Patents

Method of manufacturing light adjusting particle Download PDF

Info

Publication number
JP2009251104A
JP2009251104A JP2008096136A JP2008096136A JP2009251104A JP 2009251104 A JP2009251104 A JP 2009251104A JP 2008096136 A JP2008096136 A JP 2008096136A JP 2008096136 A JP2008096136 A JP 2008096136A JP 2009251104 A JP2009251104 A JP 2009251104A
Authority
JP
Japan
Prior art keywords
light control
particles
light
light adjusting
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096136A
Other languages
Japanese (ja)
Inventor
Hirokazu Mitsui
博一 三井
Takayuki Shirai
崇之 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008096136A priority Critical patent/JP2009251104A/en
Publication of JP2009251104A publication Critical patent/JP2009251104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing light adjusting particles with good operability by which the light adjusting particles having extremely high purity and an extremely narrow particle size distribution are selectively obtained. <P>SOLUTION: The method of manufacturing light adjusting particles obtained by mixing (A) element-like molecular iodine, (B) alkali earth metal iodide, and (C) a heterocyclic compound in a solvent, is provided, the method includes a process of performing centrifugal separation with a centrifugal force of 10,000 to 50,000 G. The centrifugal separation is performed preferably by a cylinder type centrifugal separator. The centrifugal separation is carried out preferably by a closed system. The method preferably includes a process of cracking light adjusting particle precipitates obtained by the centrifugal separation with a shearing force. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光調整粒子の製造方法に関する。詳しくは、調光材料の光調整機能として作用する光調整粒子の製造方法に関する。   The present invention relates to a method for producing light control particles. In detail, it is related with the manufacturing method of the light control particle | grains which act as a light control function of a light control material.

調光材料は、電界の印加の有無により光透過率が変化し、入射光量の調整が可能な材料である。例えば、電界に対して応答可能な光調整粒子を分散した光調整懸濁液を樹脂マトリックス中に分散した調光層を透明導電性基板で挟持した調光フィルムが知られている。この調光フィルムは、光調整粒子を分散した光調整懸濁液の微細な液滴が紫外線照射によって硬化した樹脂マトリックス中に分散したフィルムである。この調光フィルム中で光調整粒子は、電界を印加していない状態では、ブラウン運動により光を吸収、散乱又は反射するため、フィルムへの入射光は透過できない。電界を印加した場合、光調整粒子の分極により、電界につれて平行な方向に配列するため、フィルムに入射した光を透過させる。このように、光調整粒子の電界への応答により、光の透過量を調整している(特許文献1参照)。
調光材料の光調整機能として作用する光調整粒子としては、例えば高分子媒体、または高分子媒体中の樹脂成分、即ちUV硬化樹脂と親和力がなく、また粒子の分散性を高めることができる高分子分散剤の存在下で、粒子の前駆体(基板形成物質)であるピラジン−2,3−ジカルボン酸・2水和物、ピラジン−2,5−ジカルボン酸・2水和物、ピリジン−2,5−ジカルボン酸・1水和物からなる群の中から選ばれた1つの物質と沃素及び沃化物を反応させて作ったポリ過沃化物の針状小結晶である。使用しうる高分子分散剤としては、例えばニトロセルロース等が挙げられる。沃化物としては沃化カルシウム等が挙げられる。
光学、電気特性に優れる光調整粒子の製造方法として、沃素とアルカリ土類金属沃化物と複素環式化合物とを溶媒中で超音波を照射しながら結合させるか、または結合後に超音波照射するアルカリ土類金属過沃化物と複素環式化合物との分子間化合物を得、その後2000G以上の遠心力で遠心分離を行い、沈降物に超音波を照射して高分子分散剤または溶媒中に分散させることで極めて高純度、かつ極めて粒度分布が狭い光調整粒子を選択的に得る方法がある(特許文献2参照)。
The light-modulating material is a material whose light transmittance changes depending on whether or not an electric field is applied and the amount of incident light can be adjusted. For example, a light control film is known in which a light control layer in which a light control suspension in which light control particles capable of responding to an electric field are dispersed is dispersed in a resin matrix, is sandwiched between transparent conductive substrates. This light control film is a film in which fine droplets of a light control suspension in which light control particles are dispersed are dispersed in a resin matrix cured by ultraviolet irradiation. In the light control film, the light adjusting particles absorb, scatter, or reflect light by Brownian motion in a state where no electric field is applied, and therefore light incident on the film cannot be transmitted. When an electric field is applied, the light adjusting particles are arranged in a direction parallel to the electric field due to the polarization of the light adjusting particles, so that the light incident on the film is transmitted. In this way, the amount of transmitted light is adjusted by the response of the light adjusting particles to the electric field (see Patent Document 1).
As the light adjusting particles that act as the light adjusting function of the light modulating material, for example, the polymer medium or the resin component in the polymer medium, that is, the UV curable resin has no affinity, and the dispersibility of the particles can be increased. Pyrazine-2,3-dicarboxylic acid dihydrate, pyrazine-2,5-dicarboxylic acid dihydrate, pyridine-2, which are precursors of the particles (substrate-forming substance) in the presence of a molecular dispersant , 5-dicarboxylic acid monohydrate, a polyperiodide needle-like crystal formed by reacting one substance selected from the group consisting of monohydrate and iodine and iodide. Examples of the polymer dispersant that can be used include nitrocellulose. Examples of iodide include calcium iodide.
As a method for producing light control particles having excellent optical and electrical properties, iodine, alkaline earth metal iodide, and heterocyclic compound are bonded while irradiating ultrasonic waves in a solvent, or an alkali irradiated with ultrasonic waves after bonding. An intermolecular compound of an earth metal periodate and a heterocyclic compound is obtained, and then centrifuged with a centrifugal force of 2000 G or more, and the precipitate is irradiated with ultrasonic waves and dispersed in a polymer dispersant or solvent. Thus, there is a method for selectively obtaining light control particles having extremely high purity and extremely narrow particle size distribution (see Patent Document 2).

特表平8−503314号公報Japanese National Patent Publication No. 8-503314 特開2004−307486号公報JP 2004-307486 A

しかし、特許文献2では、詳細な条件は検討されておらず、条件によっては効率的に極めて粒度分布が狭い光調整粒子を得ることができない場合がある。また、遠心分離の条件は記載されているものの、広範囲な条件が記載されるのみであり、実施例においては具体的な条件について詳細な検討はなされていない。
本発明者らは、遠心分離の条件によっては、粒度分布が狭い調光粒子を効率的に得ることができない場合があることを見いだした。例えば、光調整粒子を長時間遠心力場におくと、光調整粒子沈降物が過度に硬化してしまい、それを回収及び高分子分散剤または溶媒中への分散する際、非常に作業性が悪くなる問題があった。本発明は短時間で極めて高純度、かつ極めて粒度分布が狭い光調整粒子を選択的に得ることが可能で、作業性に優れた光調整粒子の製造方法を提供するものである。
However, in Patent Document 2, detailed conditions have not been studied, and in some cases, light control particles having a very narrow particle size distribution cannot be obtained efficiently. Moreover, although the conditions for centrifugation are described, only a wide range of conditions are described, and in the examples, detailed examinations are not made on specific conditions.
The present inventors have found that light control particles having a narrow particle size distribution may not be obtained efficiently depending on the conditions of centrifugation. For example, if the light control particles are left in the centrifugal field for a long time, the light control particle sediment is excessively hardened, and it is very workable when recovered and dispersed in a polymer dispersant or solvent. There was a problem that got worse. The present invention provides a method for producing light-controlling particles that can selectively obtain light-controlling particles with extremely high purity and a very narrow particle size distribution in a short time and that is excellent in workability.

本発明者らは、鋭意検討した結果、上記課題を解決できることを見いだした。すなわち本発明は、下記[1]〜[4]に記載の事項をその特徴とするものである。
[1](A)元素状分子沃素、(B)アルカリ土類金属沃化物及び(C)複素環式化合物とを溶媒中で混合して得られる光調整粒子の製造方法であって、遠心力10000〜50000Gで遠心分離する工程を含むことを特徴とする光調整粒子の製造方法。
[2]遠心分離が円筒型遠心分離機にて行われることを特徴とする[1]に記載の光調整粒子の製造方法。
[3]遠心分離が閉鎖系にて行われることを特徴とする[1]又は[2]に記載の光調整粒子の製造方法。
[4]遠心分離によって得られた光調整粒子沈殿物をせん断力によって解砕する工程を含むことを特徴とする[1]に記載の光調整粒子の製造方法。
As a result of intensive studies, the present inventors have found that the above problems can be solved. That is, the present invention is characterized by the matters described in [1] to [4] below.
[1] A method for producing light control particles obtained by mixing (A) elemental molecular iodine, (B) alkaline earth metal iodide, and (C) a heterocyclic compound in a solvent, the centrifugal force The manufacturing method of the light control particle | grain characterized by including the process of centrifuging at 10000-50000G.
[2] The method for producing light-controlling particles according to [1], wherein the centrifugation is performed with a cylindrical centrifuge.
[3] The method for producing light control particles according to [1] or [2], wherein the centrifugation is performed in a closed system.
[4] The method for producing light-controlling particles according to [1], comprising a step of crushing the light-controlling particle precipitate obtained by centrifugation by shearing force.

本発明によれば短時間で極めて高純度、かつ極めて粒度分布が狭い光調整粒子を選択的に得ることが可能で、作業性に優れた光調整粒子の製造方法を提供することができる。   According to the present invention, it is possible to selectively obtain light control particles having extremely high purity and a very narrow particle size distribution in a short time, and it is possible to provide a method for producing light control particles having excellent workability.

以下、本発明について詳細に説明する。
本発明における光調整粒子は、調光材料の光調整機能として作用する粒子である。本発明における調光材料は、例えば、調光フィルムを得るために用いられる材料となる。本発明における調光材料は、エネルギー線が照射されることにより硬化する高分子媒体と、高分子媒体中に分散した光調整懸濁液とを含有する。光調整懸濁液は、光調整粒子、分散媒を含有しており、分散媒は、高分子媒体及びその硬化物と相分離する材料から選択される。本発明に関する調光フィルムにおいては、エネルギー線により硬化した調光材料からなる調光層が、2枚の透明導電性基板などの基板により挟持されている。調光層では、液状の光調整懸濁液が、高分子媒体を硬化させてなる固体状の樹脂マトリックス中に、微細な液滴の形態で分散されている。光調整粒子としては、針状または棒状の粒子が好ましい。
このような調光フィルムは、電界が印加されていない状態では、液滴中に流動状態で浮遊分散されている光調整粒子のブラウン運動により、光を吸収、散乱又は反射するため、フィルムに入射した光はフィルムをほとんど透過できない。しかし、調光フィルムに電界が印加されると、光調整粒子が電気的双極子モーメントを持つことから、光調整粒子が電界に対して平行な方向に配列するため、フィルムに入射した光を透過させるようになる。このように、光調整粒子が印加された電界に応答することにより、光の透過量を調整することが可能となる。
Hereinafter, the present invention will be described in detail.
The light control particles in the present invention are particles that act as a light control function of the light control material. The light control material in this invention turns into a material used in order to obtain a light control film, for example. The light-modulating material in the present invention contains a polymer medium that cures when irradiated with energy rays, and a light-conditioning suspension dispersed in the polymer medium. The light adjusting suspension contains light adjusting particles and a dispersion medium, and the dispersion medium is selected from a polymer medium and a material that is phase-separated from a cured product thereof. In the light control film according to the present invention, a light control layer made of a light control material cured by energy rays is sandwiched between two substrates such as a transparent conductive substrate. In the light control layer, a liquid light adjusting suspension is dispersed in the form of fine droplets in a solid resin matrix obtained by curing a polymer medium. As the light adjusting particles, needle-like or rod-like particles are preferable.
Such a light control film absorbs, scatters, or reflects light due to Brownian motion of light control particles suspended and dispersed in a fluidized state in a droplet when no electric field is applied. The transmitted light can hardly pass through the film. However, when an electric field is applied to the light control film, since the light adjusting particles have an electric dipole moment, the light adjusting particles are arranged in a direction parallel to the electric field, so that light incident on the film is transmitted. Will come to let you. As described above, the light transmission amount can be adjusted by responding to the electric field to which the light adjusting particles are applied.

上記光調整懸濁液中の分散媒としては、光調整粒子を流動可能な状態で分散させる役割を果たし、また、光調整粒子に選択的に付着被覆し、高分子媒体との相分離の際に粒子が相分離された液滴相に移動するように作用し、電気導電性がなく、高分子媒体とは親和性がなく、調光フィルムとした際に高分子媒体から形成される樹脂マトリックスとの屈折率が近似した液状共重合体を使用することが好ましい。例えば、フルオロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましく、フルオロ基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましい。このような共重合体を使用すると、フルオロ基、水酸基のどちらか1つのモノマー単位は光調整粒子に向き、残りのモノマー単位は高分子媒体中で光調整懸濁液が液滴として安定に維持するために働くことから、光調整懸濁液内に光調整粒子が分散しやすく、相分離の際に光調整粒子が相分離される液滴内に誘導されやすい。このようなフルオロ基及び/又は水酸基を有するアクリル酸エステルオリゴマーとしては、メタクリル酸−2,2,2−トリフルオロエチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸3,5,5−トリメチルヘキシル/アクリル酸2−ヒドロキシプロピル/フマール酸共重合体、アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸2,2,3,3−テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸1H,1H,5H−オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸1H,1H,2H,2H−ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸2,2,2−トリフルオロエチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸2,2,3,3−テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸1H,1H,5H−オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸1H,1H,2H,2H−ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体等が挙げられる。また、これらのアクリル酸エステルオリゴマーはフルオロ基及び水酸基の両方を有することがより好ましい。   The dispersion medium in the light adjustment suspension serves to disperse the light adjustment particles in a flowable state, and selectively adheres and coats the light adjustment particles for phase separation from the polymer medium. Resin matrix formed from the polymer medium when the light control film has a non-electric conductivity and no affinity with the polymer medium. It is preferable to use a liquid copolymer having an approximate refractive index of For example, a (meth) acrylic acid ester oligomer having a fluoro group and / or a hydroxyl group is preferred, and a (meth) acrylic acid ester oligomer having a fluoro group and a hydroxyl group is more preferred. When such a copolymer is used, one monomer unit of either a fluoro group or a hydroxyl group is directed to the light control particles, and the remaining monomer units are stably maintained as droplets of the light control suspension in the polymer medium. Therefore, the light adjusting particles are easily dispersed in the light adjusting suspension, and the light adjusting particles are easily induced in the phase-separated liquid droplet during the phase separation. Examples of the acrylate ester oligomer having a fluoro group and / or a hydroxyl group include methacrylic acid-2,2,2-trifluoroethyl / butyl acrylate / acrylic acid 2-hydroxyethyl copolymer, acrylic acid 3,5. , 5-trimethylhexyl / 2-hydroxypropyl acrylate / fumaric acid copolymer, butyl acrylate / 2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl acrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, acrylic acid 1H, 1H, 5H-octafluoropentyl / butyl acrylate / acrylic acid 2-hydroxyethyl copolymer, acrylic acid 1H, 1H, 2H, 2H-heptadecafluoro Decyl / butyl acrylate / 2-hydroxyethyl acrylate Polymer, 2,2,2-trifluoroethyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl methacrylate / butyl acrylate / acrylic acid 2 -Hydroxyethyl copolymer, methacrylic acid 1H, 1H, 5H-octafluoropentyl / butyl acrylate / acrylic acid 2-hydroxyethyl copolymer, methacrylic acid 1H, 1H, 2H, 2H-heptadecafluorodecyl / acrylic acid Examples include butyl / 2-hydroxyethyl acrylate copolymer. Moreover, it is more preferable that these acrylate oligomers have both a fluoro group and a hydroxyl group.

これらのアクリル酸エステルオリゴマーは、ゲルパーミエーションクロマトグラフィーで測定した標準ポリスチレン換算の重量平均分子量が1,000〜20,000であることが好ましく、2,000〜10,000であることがより好ましい。これらのアクリル酸エステルオリゴマーの原料となるフルオロ基含有モノマーの使用量は、原料であるモノマー総量の6〜12モル%であることが好ましく、7〜8モル%であることがより好ましい。フルオロ基含有モノマーの使用量が12モル%を超えると、屈折率が大きくなり、光透過率が低下する傾向がある。また、これらのアクリル酸エステルオリゴマーの原料となる、水酸基含有モノマーの使用量は0.5〜22モル%であることが好ましく、1〜8モル%であることがより好ましい。水酸基含有モノマーの使用量が22モル%を超えると、屈折率が大きくなり、光透過性が低下する傾向がある。   These acrylate oligomers preferably have a standard polystyrene equivalent weight average molecular weight measured by gel permeation chromatography of 1,000 to 20,000, more preferably 2,000 to 10,000. . The amount of the fluoro group-containing monomer used as a raw material for these acrylic acid ester oligomers is preferably 6 to 12 mol%, more preferably 7 to 8 mol%, based on the total amount of monomers as raw materials. When the usage-amount of a fluoro group containing monomer exceeds 12 mol%, there exists a tendency for a refractive index to become large and for the light transmittance to fall. Moreover, it is preferable that the usage-amount of the hydroxyl-containing monomer used as the raw material of these acrylic acid ester oligomers is 0.5-22 mol%, and it is more preferable that it is 1-8 mol%. When the usage-amount of a hydroxyl-containing monomer exceeds 22 mol%, there exists a tendency for a refractive index to become large and for light transmittance to fall.

上記光調整懸濁液は、光調整粒子を1〜70重量%含有することが好ましく、4〜50重量%含有することがより好ましい。また、分散媒を30〜99重量%含有することが好ましく、50〜96重量%含有することがより好ましい。また、光調整懸濁液は、高分子媒体に100重量部に対して、1〜100重量部含有することが好ましく、4〜70重量部含有することがより好ましく、6〜60重量部含有することがさらに好ましく、8〜50重量部含有することが特に好ましい。   The light adjusting suspension preferably contains 1 to 70% by weight of light adjusting particles, and more preferably 4 to 50% by weight. Moreover, it is preferable to contain 30 to 99 weight% of dispersion media, and it is more preferable to contain 50 to 96 weight%. Moreover, it is preferable to contain 1-100 weight part with respect to 100 weight part in a polymer medium, as for light adjustment suspension, It is more preferable to contain 4-70 weight part, It contains 6-60 weight part. It is more preferable to contain 8 to 50 parts by weight.

上記調光層における樹脂マトリックスを形成する高分子媒体は、調光材料による膜を形成後に、エネルギー線を照射することにより硬化するものが好ましい。本発明において、エネルギー線を照射することにより硬化する高分子媒体としては、例えば、光重合開始剤及び、紫外線、可視光線、電子線等のエネルギー線により硬化する高分子化合物を含む高分子組成物が挙げられる。上記高分子組成物としては、例えば、エチレン性不飽和結合を有する置換基をもつ高分子化合物及び光重合開始剤を含む高分子組成物が挙げられる。
上記エチレン性不飽和結合を有する置換基をもつ高分子化合物としては、シリコーン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等の点から好ましい。これらの樹脂は、置換基として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、ヘキシル基、シクロヘキシル基等のアルキル基、フェニル基、ナフチル基等のアリール基を有することが、調光性能、耐久性等の点から好ましい。
The polymer medium forming the resin matrix in the light control layer is preferably one that is cured by irradiating energy rays after forming a film of the light control material. In the present invention, as a polymer medium that is cured by irradiation with energy rays, for example, a polymer composition comprising a photopolymerization initiator and a polymer compound that is cured by energy rays such as ultraviolet rays, visible rays, and electron beams. Is mentioned. Examples of the polymer composition include a polymer composition containing a polymer compound having a substituent having an ethylenically unsaturated bond and a photopolymerization initiator.
As the polymer compound having a substituent having an ethylenically unsaturated bond, a silicone resin, an acrylic resin, a polyester resin, and the like are preferable from the viewpoints of ease of synthesis, light control performance, durability, and the like. These resins are substituted with alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, amyl group, isoamyl group, hexyl group, and cyclohexyl group, and phenyl group. It is preferable to have an aryl group such as a naphthyl group from the viewpoints of light control performance and durability.

シリコーン系樹脂として、具体的には、例えば、特公昭53−36515号公報、特公昭57−52371号公報、特公昭58−53656号公報、特公昭61−17863号公報等に記載の高分子化合物を挙げることができる。
また、上記シリコーン系樹脂としては、例えば、両末端シラノールポリジメチルシロキサン、両末端シラノールポリジフェニルシロキサン−ジメチルシロキサンコポリマー、両末端シラノールポリジメチルジフェニルシロキサン等の両末端シラノールシロキサンポリマー、トリメチルエトキシシラン等のトリアルキルアルコキシシラン、(3−アクリロキシプロピル)メチルジメトキシシラン等のエチレン性不飽和結合含有シラン化合物などを、有機錫系触媒である2−エチルヘキサン錫の存在下で、脱水素縮合反応及び脱アルコール反応させて合成される。樹脂の形態としては、無溶剤型が好ましい。すなわち、樹脂の合成に溶剤を用いた場合には、合成反応後に溶剤を除去することが好ましい。(3−アクリロキシプロピル)メトキシシラン等のエチレン性不飽和結合含有シラン化合物の使用量は、原料シロキサン及びシラン化合物総量の2〜30重量%とすることが好ましく、5〜18重量%とすることがより好ましい。
Specific examples of the silicone resin include polymer compounds described in, for example, JP-B-53-36515, JP-B-57-52371, JP-B-58-53656, JP-B-61-17863, and the like. Can be mentioned.
Examples of the silicone resin include, for example, both-end silanol polydimethylsiloxane, both-end silanol polydiphenylsiloxane-dimethylsiloxane copolymer, both-end silanol siloxane polymer such as both-end silanol polydimethyldiphenylsiloxane, and trimethylethoxysilane. Dehydrogenation condensation reaction and dealcoholization of ethylenically unsaturated bond-containing silane compounds such as alkylalkoxysilane and (3-acryloxypropyl) methyldimethoxysilane in the presence of 2-ethylhexanetin, which is an organic tin catalyst. It is synthesized by reacting. The form of the resin is preferably a solventless type. That is, when a solvent is used for resin synthesis, it is preferable to remove the solvent after the synthesis reaction. The amount of the ethylenically unsaturated bond-containing silane compound such as (3-acryloxypropyl) methoxysilane is preferably 2 to 30% by weight, and preferably 5 to 18% by weight of the total amount of the raw material siloxane and silane compound. Is more preferable.

前記アクリル系樹脂は、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸ベンジル、スチレン等の主鎖形成モノマーと、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸イソシアナトエチル、(メタ)アクリル酸グリシジル等のエチレン性不飽和結合導入用官能基含有モノマーなどを共重合して、プレポリマーを一旦合成し、次いで、このプレポリマーの官能基と反応させるべく(メタ)アクリル酸グリシジル、(メタ)アクリル酸イソシアナトエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸等のモノマーを前記プレポリマーに付加反応させることにより得ることができる。
前記ポリエステル樹脂は、公知の方法で容易に製造できる。
これらエチレン性不飽和結合を有する置換基をもつ高分子化合物のゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算の重量平均分子量は、20,000〜100,000であることが好ましく、30,000〜80,000であることがより好ましい。
The acrylic resin includes, for example, (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid benzyl, main chain forming monomers such as styrene, (meth) acrylic acid, (meth) acrylic A prepolymer was synthesized by copolymerizing ethylenically unsaturated bond-introducing functional group-containing monomers such as hydroxyethyl acid, isocyanatoethyl (meth) acrylate, and glycidyl (meth) acrylate. By reacting monomers such as glycidyl (meth) acrylate, isocyanatoethyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylic acid, etc. to the prepolymer to react with the functional group of the polymer Obtainable.
The polyester resin can be easily produced by a known method.
The polystyrene equivalent weight average molecular weight obtained by gel permeation chromatography of the polymer compound having a substituent having an ethylenically unsaturated bond is preferably 20,000 to 100,000, and preferably 30,000 to 80. Is more preferable.

上記エチレン性不飽和結合を有する置換基をもつ高分子化合物を用いる場合、エネルギー線に露光するとラジカル重合を活性化する光重合開始剤を用いることができる。具体的には2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−(4−(2−ヒドロキシエトキシ)フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、(1−ヒドロキシシクロヘキシル)フェニルケトン等を用いることができる。
これらの光重合開始剤の使用量は、上記エチレン性不飽和結合を有する置換基をもつ高分子化合物100重量部に対して0.05〜20重量部であることが好ましく、0.1〜5重量部であることがより好ましい。
When using the polymer compound having a substituent having an ethylenically unsaturated bond, a photopolymerization initiator that activates radical polymerization when exposed to energy rays can be used. Specifically, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- (4- (2-hydroxyethoxy) phenyl) -2-hydroxy-2-methyl-1-propan-1-one Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, (1-hydroxycyclohexyl) phenyl ketone, and the like can be used.
The amount of these photopolymerization initiators used is preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the polymer compound having a substituent having an ethylenically unsaturated bond, More preferred are parts by weight.

また、上記エチレン性不飽和結合を有する置換基をもつ高分子化合物の他に、有機溶剤可溶型樹脂又は熱可塑性樹脂、例えば、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が1,000〜100,000のポリアクリル酸、ポリメタクリル酸等も併用することができる。
また、高分子媒体中には、ジブチル錫ジラウレート等の着色防止剤等の添加物を必要に応じて添加してもよい。
In addition to the polymer compound having a substituent having an ethylenically unsaturated bond, the weight average molecular weight in terms of polystyrene measured by an organic solvent-soluble resin or thermoplastic resin, for example, gel permeation chromatography is 1. 1,000 to 100,000 polyacrylic acid, polymethacrylic acid and the like can be used in combination.
Moreover, you may add additives, such as coloring inhibitors, such as dibutyltin dilaurate, in a polymer medium as needed.

上記調光層は、以上のような、樹脂マトリックスを形成する高分子媒体と光調整懸濁液とを含む調光材料を用いて形成することができる。
本発明において、光調整粒子の長径は、200〜500nmであることが好ましく、250〜450nmであることがより好ましく、300〜450nmであることがさらに好ましい。また、光調整粒子の短径は30〜90nmであることが好ましく、40〜70nmであるがより好ましく、50〜70nmであることがさらに好ましい。
本発明における光調整粒子の長径と短径は、走査型電子顕微鏡、透過型電子顕微鏡等の電子顕微鏡で光調整粒子を撮影し、撮影した画像より任意に50個の光調整粒子を抽出し、各光調整粒子の長径と短径を、それぞれ平均値として算出することができる。ここで、長径とは、上記撮影した画像により二次元視野内に投影された光調整粒子について、最も長い径の長さとする。また、短径とは、上記長径に直交する最も長い径の長さとする。
The light control layer can be formed using a light control material including the polymer medium forming the resin matrix and the light control suspension as described above.
In the present invention, the major axis of the light adjusting particles is preferably 200 to 500 nm, more preferably 250 to 450 nm, and still more preferably 300 to 450 nm. The minor axis of the light control particles is preferably 30 to 90 nm, more preferably 40 to 70 nm, and even more preferably 50 to 70 nm.
The major axis and minor axis of the light adjusting particles in the present invention are obtained by photographing the light adjusting particles with an electron microscope such as a scanning electron microscope or a transmission electron microscope, and arbitrarily extracting 50 light adjusting particles from the photographed image, The major axis and minor axis of each light control particle can be calculated as an average value. Here, the long diameter is the length of the longest diameter of the light control particles projected in the two-dimensional visual field by the photographed image. Further, the minor axis is the length of the longest diameter orthogonal to the major axis.

本発明における光調整粒子は、(A)元素状分子沃素、(B)アルカリ土類金属沃化物及び(C)複素環式化合物とを溶媒中で反応させることにより製造される。
(A)元素状分子沃素とは、沃素単体の化合物であり、Iで表記される。元素状沃素の形状に特に制限はないが、粉末状、特に球状微粒子を形成する粉末を用いることが溶媒への溶解性の観点で好ましい。(A)元素状分子沃素はそのまま反応系内に投入してもよく、あらかじめ溶媒に溶解し溶液として系内に投入してもよい。溶液として反応系内に投入することで、反応量論上すべての分子が反応可能となるため好ましい。溶媒に溶解し溶液として用いる場合、溶媒(溶剤)としては特に制限はないが、光調整粒子の合成時に用いる溶媒と同じものを用いることが好ましい。溶液の濃度は1〜50重量%であることが好ましく、3〜40重量%であることがより好ましく、5〜30重量%であることがさらに好ましい。
The light control particles in the present invention are produced by reacting (A) elemental molecular iodine, (B) alkaline earth metal iodide and (C) a heterocyclic compound in a solvent.
(A) Elemental molecular iodine is a simple compound of iodine and is represented by I 2 . The shape of elemental iodine is not particularly limited, but it is preferable from the viewpoint of solubility in a solvent to use powder, particularly powder that forms spherical fine particles. (A) Elemental molecular iodine may be added as it is into the reaction system, or may be previously dissolved in a solvent and added as a solution into the system. It is preferable to put it in the reaction system as a solution because all molecules can react in terms of the reaction stoichiometry. When dissolved in a solvent and used as a solution, the solvent (solvent) is not particularly limited, but it is preferable to use the same solvent as used in the synthesis of the light control particles. The concentration of the solution is preferably 1 to 50% by weight, more preferably 3 to 40% by weight, and further preferably 5 to 30% by weight.

(B)アルカリ土類金属沃化物としては、例えば、沃化カルシウム、沃化マグネシウム、沃化ストロンチウム、沃化バリウム等が挙げられる。中でも、沃化カルシウムを用いることが好ましい。沃化カルシウムを用いる場合、沃化カルシウには吸湿性があり、塊状であり有機溶媒には溶解しにくいため、加熱処理により乾燥させてある程度水分を除去することが好ましい。このようにして乾燥した沃化カルシウムは固体のまま反応系内に投入してもよく、あらかじめ溶媒に溶解し溶液として系内に投入してもよい。溶媒に溶解し溶液として用いる場合、溶媒としては特に制限はないが、光調整粒子の合成時に用いる溶媒と同じものを用いることが好ましい。溶媒に溶解し溶液として用いる場合、溶液の濃度はで1〜50重量%であることが好ましく、3〜40重量%であることがより好ましく、5〜30重量%であることがさらに好ましい。   Examples of (B) alkaline earth metal iodides include calcium iodide, magnesium iodide, strontium iodide, barium iodide and the like. Among these, it is preferable to use calcium iodide. When calcium iodide is used, calcium iodide is hygroscopic and is agglomerated and difficult to dissolve in an organic solvent. Therefore, it is preferable to remove water to some extent by drying by heat treatment. The calcium iodide dried in this manner may be charged into the reaction system as a solid, or may be previously dissolved in a solvent and charged as a solution into the system. When dissolved in a solvent and used as a solution, the solvent is not particularly limited, but it is preferable to use the same solvent as that used in the synthesis of the light control particles. When dissolved in a solvent and used as a solution, the concentration of the solution is preferably 1 to 50% by weight, more preferably 3 to 40% by weight, and even more preferably 5 to 30% by weight.

(C)複素環式化合物としては、例えば、下記一般式(I)に表される化合物が挙げられ、具体的には、例えば、ピラジン−2,3−ジカルボン酸・2水和物、ピラジン−2,5−ジカルボン酸・2水和物、ピラジン−2,5−ジカルボン酸・1水和物等が挙げられる。   (C) As a heterocyclic compound, the compound represented by the following general formula (I) is mentioned, for example, Specifically, for example, pyrazine-2,3-dicarboxylic acid dihydrate, pyrazine- Examples include 2,5-dicarboxylic acid dihydrate, pyrazine-2,5-dicarboxylic acid monohydrate, and the like.

Figure 2009251104
(一般式(I)中、R、Rはそれぞれ独立に水素、もしくは飽和炭化水素であるアルキル基をあらわし、その炭素数は1〜13の範囲にある。)
Figure 2009251104
(In general formula (I), R 1 and R 2 each independently represents an alkyl group that is hydrogen or a saturated hydrocarbon, and the carbon number thereof is in the range of 1 to 13.)

本発明における光調整粒子の製造方法においては、上記(A)、(B)、(C)を溶媒中で反応させるが、溶媒としては、特に制限はないが、例えば、酢酸エチル、酢酸ブチル、酢酸イソペンチル、酢酸ヘキシル等の酢酸エステル系の溶媒、メタノール、エタノール、イソプロパノール等のアルコール系の溶媒が挙げられる。これらの溶媒は、二種以上を混合して用いてもよい。溶媒の量に特に制限はないが、上記(A)、(B)及び(C)成分の合計重量に対して、1〜50重量%であることが好ましく、2〜40重量%であることがより好ましく、5〜20重量%であることがさらに好ましい。
上記(A)、(B)および(C)の配合比率としては、それぞれの投入量をモル比で表した場合((A):(B):(C))、1〜4:0.5〜6:1〜10であることが好まく、1〜3:1〜5:1〜5であることがより好ましく、1.5〜2.5:1〜3:1.5〜4であることがさらに好ましい。それぞれの成分のモル比を上記範囲とすることで、針状でアスペクト比の大きな光調整粒子が得られる傾向がある。
In the method for producing light control particles in the present invention, the above (A), (B), and (C) are reacted in a solvent. The solvent is not particularly limited, and examples thereof include ethyl acetate, butyl acetate, Examples thereof include acetate solvents such as isopentyl acetate and hexyl acetate, and alcohol solvents such as methanol, ethanol and isopropanol. Two or more of these solvents may be mixed and used. Although there is no restriction | limiting in particular in the quantity of a solvent, It is preferable that it is 1-50 weight% with respect to the total weight of said (A), (B) and (C) component, and it is 2-40 weight%. More preferably, it is more preferably 5 to 20% by weight.
As a blending ratio of the above (A), (B), and (C), when each input amount is expressed by a molar ratio ((A) :( B) :( C)), 1-4: 0.5 It is preferable that it is -6: 1-10, it is more preferable that it is 1-3: 1-5: 1-5, and it is 1.5-2.5: 1-3: 1.5-4. More preferably. By setting the molar ratio of each component in the above range, there is a tendency that light adjusting particles having a needle shape and a large aspect ratio can be obtained.

また、光調整粒子を合成する過程において、均一な大きさの粒子を形成させるため、及び、光調整懸濁液内での粒子の分散性を向上させるため、ニトロセルロース等の高分子物質を使用することが好ましい。ニトロセルロース等の高分子物質を用いることにより、光調整懸濁液が調光層中の固体状の高分子媒体内に微細な液滴の形態で分散された際に、光調整粒子が微細な液滴内へ容易に分散、浮遊し、電界に対する応答性が向上する傾向にある。ニトロセルロースと共に、ポリアクリル酸などの分散性を向上させるための高分子物質を併用することも可能である。   In addition, in the process of synthesizing the light control particles, a polymer substance such as nitrocellulose is used to form uniform size particles and to improve the dispersibility of the particles in the light control suspension. It is preferable to do. By using a polymer substance such as nitrocellulose, when the light control suspension is dispersed in the form of fine droplets in the solid polymer medium in the light control layer, the light control particles are fine. It tends to disperse and float easily in the droplet, and the response to the electric field tends to be improved. Along with nitrocellulose, a polymer material for improving dispersibility such as polyacrylic acid can be used in combination.

本発明の光調整粒子の製造方法においては、高純度、かつ粒度分布が狭い光調整粒子を選択的に得るために、遠心力10000〜50000Gで遠心分離する工程を含むことを特徴とする。
この工程を含むことによって、未反応溶解物、微粒、未反応固形物、粗粒等を取り除くことが可能であり、光調整粒子の純度をさらに向上し、粒度分布をさらに狭めることができる。このように高純度で、狭い粒度分布とすることで、調光材料の調光特性を向上させることが可能となる。
The method for producing light control particles of the present invention includes a step of centrifuging at a centrifugal force of 10,000 to 50,000 G in order to selectively obtain light control particles having high purity and a narrow particle size distribution.
By including this step, it is possible to remove unreacted dissolved matter, fine particles, unreacted solids, coarse particles, and the like, further improving the purity of the light control particles and further narrowing the particle size distribution. Thus, it becomes possible to improve the light control characteristic of a light control material by setting it as a highly purified and narrow particle size distribution.

本発明において使用する遠心分離機としては、例えば、円筒型遠心分離機、デキャンタ型遠心分離機等を用いることができる。遠心分離機として、ディスクロータ、スイングロータ、アングロロータ等の各種ロータに容器を差し込みロータが回転することにより遠心力を発生させるロータ型遠心分離機は、処理量が少ない場合には高い遠心力を得ることができるが、処理量が多い場合には10000G程度しか遠心力を得ることが出来ない場合があり、高い遠心力を得にくい。高い遠心力が得られない場合、処理時間が長くなる傾向があり、光調整粒子を長時間遠心力場におくと、光調整粒子沈降物が過度に硬化してしまい、沈降物を回収及び高分子分散剤または溶媒中への分散をする際、作業性が悪くなる。従って処理量をより多く、かつ遠心力を高くし、短時間での処理をするためには円筒形の回転筒を直接回転させる円筒型遠心分離機を用いることが好ましい。   As the centrifuge used in the present invention, for example, a cylindrical centrifuge, a decanter centrifuge, or the like can be used. As a centrifuge, a rotor-type centrifuge that generates centrifugal force by inserting a container into various rotors such as a disk rotor, swing rotor, and anglo-rotor and rotating the rotor produces high centrifugal force when the amount of processing is small. Although it is possible to obtain a centrifugal force of only about 10,000 G when the amount of processing is large, it is difficult to obtain a high centrifugal force. When high centrifugal force cannot be obtained, the processing time tends to be long, and if the light adjusting particles are left in the centrifugal force field for a long time, the light adjusting particle sediment is excessively hardened, and the sediment is recovered and increased. When dispersing in a molecular dispersant or a solvent, workability deteriorates. Therefore, in order to increase the processing amount, increase the centrifugal force, and perform processing in a short time, it is preferable to use a cylindrical centrifuge that directly rotates a cylindrical rotating cylinder.

円筒型遠心分離機は、一般的に開放系で使用される。開放系では、例えば、円柱状の回転筒を高速回転させることにより遠心力を発生させる。遠心分離処理前の固形分を含む液体は回転筒の下部に位置する供給口からポンプ等により連続的に回転筒に供給され、回転筒下部から回転筒上部に流れる。この間に、固形分は回転筒内壁面に沈降し、固形物以外の上澄み液体が円筒上部から連続的に排出されるしくみとなっている。沈降物の量は遠心力と固形物の遠心場滞留時間によって制御することができる。しかし、本発明の対象となる光調整粒子は、粒子径がナノサイズであるため、上記のような連続処理では遠心場滞留時間が短いため、目的の粒度分布を持つ光調整粒子を得ることが出来ない場合がある。そこで、回転筒を閉鎖系として使用することで光調整粒子の遠心場における滞留時間を長くすることができる。詳しくは、密閉状態の円筒を用い、予めその円筒内に光調整粒子の分散体を投入し蓋をする。この円筒を所定の時間回転させることで円筒内壁面に沈降した固形物を得ることが出来る。回転によって得られる遠心力としては10000〜50000Gであることが好ましく、15000〜25000Gであることがより好ましい。上澄みは回転を停止させた後、円筒の蓋を外し抜出すことで回収することが出来る。   Cylindrical centrifuges are generally used in open systems. In an open system, for example, centrifugal force is generated by rotating a cylindrical rotating cylinder at high speed. The liquid containing the solid content before the centrifugal separation process is continuously supplied to the rotating cylinder by a pump or the like from a supply port located at the lower part of the rotating cylinder, and flows from the lower rotating cylinder to the upper part of the rotating cylinder. During this time, the solid content settles on the inner wall surface of the rotating cylinder, and the supernatant liquid other than the solid matter is continuously discharged from the upper part of the cylinder. The amount of sediment can be controlled by the centrifugal force and the solid residence time. However, since the light control particles to be the subject of the present invention are nano-sized, the centrifuge field residence time is short in the continuous processing as described above, so that light control particles having the desired particle size distribution can be obtained. It may not be possible. Therefore, the residence time in the centrifugal field of the light control particles can be increased by using the rotating cylinder as a closed system. Specifically, a sealed cylinder is used, and a dispersion of light adjusting particles is put into the cylinder in advance to cover the cylinder. By rotating the cylinder for a predetermined time, it is possible to obtain a solid that has settled on the inner wall surface of the cylinder. The centrifugal force obtained by rotation is preferably 10,000 to 50,000 G, and more preferably 15,000 to 25,000 G. The supernatant can be recovered by removing the cylinder lid after stopping the rotation.

遠心分離によって沈殿物として得られた光調整粒子を溶媒中に分散する際には、ステータとタービン翼の隙間で生じたせん断力によって粒子を分散させる高速せん断ミキサを用いることができる。高速せん断ミキサとしては、例えば、ホモジナイザ、デゾルバー等が挙げられる。これにより光調整粒子を一次粒子に近いレベルまで分散させることができる。さらにこの分散体へ超音波を照射することで一次粒子レベルまで完全に分散させることができる。   When the light control particles obtained as a precipitate by centrifugation are dispersed in the solvent, a high-speed shear mixer that disperses the particles by a shearing force generated in the gap between the stator and the turbine blade can be used. Examples of the high-speed shear mixer include a homogenizer and a resolver. Thereby, the light adjusting particles can be dispersed to a level close to the primary particles. Further, by irradiating this dispersion with ultrasonic waves, it can be completely dispersed to the primary particle level.

図1に、本発明の光調整粒子の製造方法における、高純度、かつ粒度分布が狭い光調整粒子を選択的に得るための方法の一例を示す。まず、上記方法により光調整粒子を合成する。合成によって得られた光調整粒子と溶媒との混合物に超音波照射を行う(超音波分散1)。次いで、10000〜50000Gの遠心力で遠心分離を行い、粒子を沈降させる(遠心分離1)。上澄みを除去し、得られた光調整粒子の沈殿物に上記高分子物質の溶解した溶媒(粒子合成時に使用した溶媒と同様の溶媒)を加え、高速せん断ミキサにて再分散をする(高速せん断分散1)。得られた光調整粒子の分散液に超音波照射を行い(超音波分散2)、10000〜50000Gの遠心力で遠心分離を行う(遠心分離2)。浮遊物の含まれる上澄み液を取り除き、得られた光調整粒子の沈殿物に上記光調整粒子の合成時に使用した溶媒と同じ溶媒を加え、高速せん断ミキサにて再分散をする(高速せん断分散2)。得られた光調整粒子の分散液に超音波照射を行う(超音波分散3)。上記工程を含むことで高純度、かつ粒度分布が狭い光調整粒子を選択的に得ることが可能となる。   FIG. 1 shows an example of a method for selectively obtaining light adjusting particles having high purity and a narrow particle size distribution in the method for producing light adjusting particles of the present invention. First, light adjusting particles are synthesized by the above method. Ultrasonic irradiation is performed on the mixture of the light control particles and the solvent obtained by the synthesis (ultrasonic dispersion 1). Next, centrifugation is performed with a centrifugal force of 10,000 to 50,000 G to sediment the particles (centrifugation 1). The supernatant is removed, and a solvent in which the above-mentioned polymer substance is dissolved (the same solvent used for particle synthesis) is added to the resulting precipitate of light control particles, and redispersion is performed using a high-speed shear mixer (high-speed shearing) Variance 1). The obtained dispersion liquid of light control particles is irradiated with ultrasonic waves (ultrasonic dispersion 2), and centrifuged with a centrifugal force of 10,000 to 50,000 G (centrifugation 2). The supernatant liquid containing the suspended matter is removed, and the same solvent as that used in the synthesis of the light control particles is added to the resulting precipitate of the light control particles, and redispersion is performed using a high speed shear mixer (high speed shear dispersion 2). ). Ultrasound irradiation is performed on the obtained dispersion liquid of light control particles (ultrasonic dispersion 3). By including the above steps, it becomes possible to selectively obtain light control particles having high purity and a narrow particle size distribution.

このようにして得られた光調整粒子の分散液を、上記光調整懸濁液中の分散媒となる媒体と混合したり、前記工程において光調整粒子を分散させるために用いた溶媒を除去することによって、光調整粒子が分散媒中に分散した光調整懸濁液とすることができる。
本発明の光調整粒子の製造方法によれば、高純度で粒度分布の狭い光調整粒子を短時間で製造することが可能となる。また、長時間遠心力にさらされることがないため、製造工程中に生成する光調整粒子の沈殿物が過度に硬化することを制御することができ、優れた光調整機能を発揮する光調整粒子を効率的に製造することが可能となる。
The dispersion liquid of the light control particles thus obtained is mixed with a medium serving as a dispersion medium in the light control suspension, or the solvent used for dispersing the light control particles in the step is removed. As a result, a light adjusting suspension in which the light adjusting particles are dispersed in the dispersion medium can be obtained.
According to the method for producing light control particles of the present invention, light control particles having high purity and a narrow particle size distribution can be manufactured in a short time. In addition, since it is not exposed to centrifugal force for a long time, it can control that the precipitate of the light control particles generated during the manufacturing process is excessively cured, and it exhibits an excellent light control function. Can be efficiently manufactured.

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明する。
[光調整粒子の合成例]
光調整粒子を製造するために、撹拌機及び冷却管を装着した500mlの四つ口フラスコに、ニトロセルロース1/4LIG(商品名、ベルジュラックNC社製)15重量%の酢酸イソアミル(試薬特級、和光純薬工業(株)製)希釈溶液87.54g、酢酸イソアミル44.96g、脱水CaI(化学用、和光純薬工業(株)製)4.5g、無水エタノール(有機合成用、和光純薬工業(株)製)2.0g、精製水(精製水、和光純薬工業(株)製)0.6gの溶液に、沃素(JIS試薬特級、和光純薬工業(株)製)4.5gを溶解し、光調整粒子の基盤形成物質であるピラジン−2,5−ジカルボン酸2水和物(PolyCarbon Industries製)3gを添加した。45℃で3時間撹拌して反応を終了させた後、超音波分散機で2時間分散させた。このとき、混合液の色相は、茶色から暗紺色に変化した。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof.
[Example of synthesis of light control particles]
In order to produce light-controlling particles, a 500 ml four-necked flask equipped with a stirrer and a condenser tube was charged with nitrocellulose 1/4 LIG (trade name, manufactured by Bergerac NC) 15% by weight of isoamyl acetate (special grade reagent) Wako Pure Chemical Industries, Ltd.) diluted solution 87.54 g, isoamyl acetate 44.96 g, dehydrated CaI 2 (chemical, Wako Pure Chemical Industries, Ltd.) 4.5 g, absolute ethanol (for organic synthesis, Wako Pure) 3. Iodine (special grade of JIS reagent, manufactured by Wako Pure Chemical Industries, Ltd.) in a solution of 2.0 g of Yakuhin Kogyo Co., Ltd. and 0.6 g of purified water (purified water, manufactured by Wako Pure Chemical Industries, Ltd.) 5 g was dissolved, and 3 g of pyrazine-2,5-dicarboxylic acid dihydrate (manufactured by PolyCarbon Industries), which is a base-forming substance of light control particles, was added. After stirring at 45 ° C. for 3 hours to complete the reaction, the mixture was dispersed with an ultrasonic disperser for 2 hours. At this time, the hue of the mixed solution changed from brown to dark blue.

(実施例1)
上記合成例で得られた反応溶液から一定な大きさの光調整粒子を取り出すために、円筒型遠心分離機((株)関西遠心分離機製作所製)を用いて光調整粒子を分離した。反応溶液を20000Gの遠心力で60分間遠心分離を行い、浮遊物を取り除き、沈殿物をスクレッパーでかき取り、ここに高分子物質含有媒体を沈殿物の5倍量加え高速せん断ミキサ(ポリトロン、キネマティカ社製商品名)で高分子物質含有媒体中に光調整粒子を分散させた。
上記で得られた沈殿物はやわらかく、スクレッパーでのかき取りは非常に容易であった。なお、ここで用いた高分子物質含有媒体はニトロセルロース1/4HIG(商品名、ベルジュラックNC社製)6重量%の酢酸イソアミル(試薬特級、和光純薬工業(株)製)希釈溶液である。この分散液を超音波分散機で2時間分散させた。次に20000Gで40分間遠心分離して、浮遊物を取り除き、沈殿物に酢酸イソアミルを沈殿物の5倍量加え高速せん断ミキサで光調整粒子を再分散させた。そして、この分散液を超音波分散機で2時間分散させた。
Example 1
In order to take out light control particles having a certain size from the reaction solution obtained in the above synthesis example, the light control particles were separated using a cylindrical centrifuge (manufactured by Kansai Centrifuge Co., Ltd.). The reaction solution is centrifuged for 60 minutes at a centrifugal force of 20000 G, the suspended matter is removed, the precipitate is scraped off with a scraper, and a polymer substance-containing medium is added in an amount five times that of the precipitate, and a high-speed shear mixer (Polytron, Kinematica) is added. The light control particles were dispersed in a polymer substance-containing medium under the trade name of the company.
The precipitate obtained above was soft and scraping with a scraper was very easy. The polymer substance-containing medium used here is a 6% by weight isoamyl acetate (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) diluted solution of nitrocellulose 1 / 4HIG (trade name, manufactured by Bergerac NC). . This dispersion was dispersed with an ultrasonic disperser for 2 hours. Next, the mixture was centrifuged at 20000 G for 40 minutes to remove suspended matters, and isoamyl acetate was added to the precipitate five times as much as the precipitate, and the light control particles were redispersed with a high-speed shear mixer. Then, this dispersion was dispersed with an ultrasonic disperser for 2 hours.

(実施例2)
同様に上記合成例で得られた反応溶液から一定な大きさの光調整粒子を取り出すために、円筒型遠心分離機((株)関西遠心分離機製作所製)を用いて光調整粒子を分離した。反応溶液を15000Gの遠心力で120分間遠心分離を行い、浮遊物を取り除き、沈殿物をスクレッパーでかき取り、ここに高分子物質含有媒体を沈殿物の5倍量加え高速せん断ミキサ(ポリトロン、キネマティカ社製商品名)で高分子物質含有媒体中に光調整粒子を分散させた。
上記で得られた沈殿物はやわらかく、スクレッパーでのかき取りは非常に容易であった。なお、ここで用いた高分子物質含有媒体はニトロセルロース1/4HIG(商品名、ベルジュラックNC社製)6重量%の酢酸イソアミル(試薬特級、和光純薬工業(株)製)希釈溶液である。この分散液を超音波分散機で2時間分散させた。次に15000Gで80分間遠心分離して、浮遊物を取り除き、沈殿物に酢酸イソアミルを沈殿物の5倍量加え高速せん断ミキサで光調整粒子を再分散させた。この分散液を超音波分散機で2時間分散させた。
(Example 2)
Similarly, in order to take out the light control particles having a certain size from the reaction solution obtained in the above synthesis example, the light control particles were separated using a cylindrical centrifuge (manufactured by Kansai Centrifuge Co., Ltd.). . The reaction solution is centrifuged for 120 minutes at a centrifugal force of 15000 G, suspended matter is removed, the precipitate is scraped off with a scraper, and a polymer substance-containing medium is added in an amount five times that of the precipitate, and a high-speed shear mixer (Polytron, Kinematica) is added. The light control particles were dispersed in a polymer substance-containing medium under the trade name of the company.
The precipitate obtained above was soft and scraping with a scraper was very easy. The polymer substance-containing medium used here is a 6% by weight isoamyl acetate (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) diluted solution of nitrocellulose 1 / 4HIG (trade name, manufactured by Bergerac NC). . This dispersion was dispersed with an ultrasonic disperser for 2 hours. Next, the mixture was centrifuged at 15000 G for 80 minutes to remove suspended matters, isoamyl acetate was added 5 times the amount of the precipitate to the precipitate, and the light control particles were redispersed with a high-speed shear mixer. This dispersion was dispersed with an ultrasonic disperser for 2 hours.

(比較例1)
同様に上記合成例で得られた反応溶液から一定な大きさの光調整粒子を取り出すために、ロータによる遠心分離機(H−7000SL、(株)コクサン製)を用いて光調整粒子を分離した。反応溶液を9500Gの遠心力で300分間遠心分離を行い、浮遊物を取り除き、沈殿物をスクレッパーでかき取り、ここに高分子物質含有媒体を沈殿物の5倍量加え高速せん断ミキサ(ポリトロン、キネマティカ社製商品名)で高分子物質含有媒体中に光調整粒子を分散させた。
上記で得られた沈殿物は非常に硬いものであり、スクレッパーでのかき取りが困難であった。なお、ここで用いた高分子物質含有媒体はニトロセルロース1/4HIG(商品名、ベルジュラックNC社製)6重量%の酢酸イソアミル(試薬特級、和光純薬工業(株)製)希釈溶液である。この分散液を超音波分散機で2時間分散させた。次に728Gの遠心力で10分間遠心分離して沈殿物を取り除き、更に9500Gで180分間遠心分離して、浮遊物を取り除き、沈殿物に酢酸イソアミルを沈殿物の5倍量加え高速せん断ミキサで光調整粒子を再分散させた。この分散液を超音波分散機で2時間分散させた。
(Comparative Example 1)
Similarly, in order to take out light adjustment particles of a certain size from the reaction solution obtained in the above synthesis example, the light adjustment particles were separated using a centrifuge with a rotor (H-7000SL, manufactured by Kokusan Co., Ltd.). . The reaction solution is centrifuged for 300 minutes at a centrifugal force of 9500 G, the suspended matter is removed, the precipitate is scraped off with a scraper, and a medium containing a polymer substance is added in an amount 5 times the amount of the precipitate, and a high-speed shear mixer (Polytron, Kinematica) is added. The light control particles were dispersed in a polymer substance-containing medium under the trade name of the company.
The precipitate obtained above was very hard and difficult to scrape off with a scraper. The polymer substance-containing medium used here is a 6% by weight isoamyl acetate (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) diluted solution of nitrocellulose 1 / 4HIG (trade name, manufactured by Bergerac NC). . This dispersion was dispersed with an ultrasonic disperser for 2 hours. Next, the precipitate is removed by centrifuging for 10 minutes at a centrifugal force of 728 G, and further centrifuged at 9500 G for 180 minutes to remove suspended matter. The light control particles were redispersed. This dispersion was dispersed with an ultrasonic disperser for 2 hours.

各実施例及び比較例で製造した光調整粒子を用いて、サブミクロン粒子アナライザ(N4MD、ベックマン・コールタ社製)を用いて粒子径を測定し、その結果を表1に示した。   The particle diameter was measured using a submicron particle analyzer (N4MD, manufactured by Beckman Coulter, Inc.) using the light control particles produced in each Example and Comparative Example, and the results are shown in Table 1.

Figure 2009251104
Figure 2009251104

本発明の光調整粒子の製造方法により、遠心力10000〜50000Gで遠心分離する工程を含むことで、短時間で極めて高純度で、粒度分布が狭い光調整粒子を得ることができた。遠心力が、従来の分離で相当に高い9500G程度の比較例では、分離に時間を要し、また、得られた沈殿物が過度に硬くなり、採取に時間がかかり、さらに、分散性にも劣る。   By including the step of centrifuging at a centrifugal force of 10,000 to 50,000 G by the method for producing light control particles of the present invention, light control particles having a very high purity and a narrow particle size distribution could be obtained in a short time. In the comparative example of about 9500G where the centrifugal force is considerably high in the conventional separation, the separation takes time, the obtained precipitate becomes excessively hard, the collection takes time, and the dispersibility is also improved. Inferior.

本発明による光調整粒子の製造工程の一例を示す工程図。Process drawing which shows an example of the manufacturing process of the light control particle | grains by this invention.

Claims (4)

(A)元素状分子沃素、(B)アルカリ土類金属沃化物及び(C)複素環式化合物とを溶媒中で混合して得られる光調整粒子の製造方法であって、遠心力10000〜50000Gで遠心分離する工程を含むことを特徴とする光調整粒子の製造方法。 (A) Elemental molecular iodine, (B) Alkaline earth metal iodide, and (C) Heterocyclic compound is a method for producing light control particles obtained by mixing in a solvent and having a centrifugal force of 10,000 to 50,000 G A method for producing light-controlling particles, comprising the step of centrifuging at the same time. 遠心分離が円筒型遠心分離機にて行われることを特徴とする請求項1に記載の光調整粒子の製造方法。 The method for producing light control particles according to claim 1, wherein the centrifugal separation is performed with a cylindrical centrifuge. 遠心分離が閉鎖系にて行われることを特徴とする請求項1又は請求項2に記載の光調整粒子の製造方法。 The method for producing light control particles according to claim 1 or 2, wherein the centrifugal separation is performed in a closed system. 遠心分離によって得られた光調整粒子沈殿物をせん断力によって解砕する工程を含むことを特徴とする請求項1に記載の光調整粒子の製造方法。 The method for producing light-controlling particles according to claim 1, further comprising a step of crushing the light-controlling particle precipitate obtained by centrifugation by shearing force.
JP2008096136A 2008-04-02 2008-04-02 Method of manufacturing light adjusting particle Pending JP2009251104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096136A JP2009251104A (en) 2008-04-02 2008-04-02 Method of manufacturing light adjusting particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096136A JP2009251104A (en) 2008-04-02 2008-04-02 Method of manufacturing light adjusting particle

Publications (1)

Publication Number Publication Date
JP2009251104A true JP2009251104A (en) 2009-10-29

Family

ID=41311919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096136A Pending JP2009251104A (en) 2008-04-02 2008-04-02 Method of manufacturing light adjusting particle

Country Status (1)

Country Link
JP (1) JP2009251104A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181918A (en) * 1989-12-12 1991-08-07 Toyota Central Res & Dev Lab Inc Dimmer element
JP2004133326A (en) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd Polymerized toner manufacturing method
JP2004307486A (en) * 2003-03-26 2004-11-04 Dainippon Ink & Chem Inc Method for producing intermolecular compound
JP2005345738A (en) * 2004-06-02 2005-12-15 Seiko Epson Corp Sheet for electrophoresis display device
JP2005345568A (en) * 2004-05-31 2005-12-15 Canon Inc Electrophoretic particles, and method for manufacturing the same, electrophoretic display element using electrophoretic dispersion
JP2006018236A (en) * 2004-06-02 2006-01-19 Seiko Epson Corp Electrophoresis particles, its manufacturing method, and its use
JP2008214653A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181918A (en) * 1989-12-12 1991-08-07 Toyota Central Res & Dev Lab Inc Dimmer element
JP2004133326A (en) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd Polymerized toner manufacturing method
JP2004307486A (en) * 2003-03-26 2004-11-04 Dainippon Ink & Chem Inc Method for producing intermolecular compound
JP2005345568A (en) * 2004-05-31 2005-12-15 Canon Inc Electrophoretic particles, and method for manufacturing the same, electrophoretic display element using electrophoretic dispersion
JP2005345738A (en) * 2004-06-02 2005-12-15 Seiko Epson Corp Sheet for electrophoresis display device
JP2006018236A (en) * 2004-06-02 2006-01-19 Seiko Epson Corp Electrophoresis particles, its manufacturing method, and its use
JP2008214653A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same

Similar Documents

Publication Publication Date Title
Amalvy et al. Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites
JP5011695B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP5167582B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
US4937173A (en) Radiation curable liquid resin composition containing microparticles
JP4215834B2 (en) Particles and droplets containing liquid domains
JP5600874B2 (en) Light control film
CN104411745A (en) Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
JP2008158043A (en) Light control film
CN101082752B (en) Electrophoresis displaying particle and synthetic method thereof
JP5704075B2 (en) Method for producing (meth) acryloyl group-containing polysiloxane resin for light control material
JP2008158042A (en) Light control film
JP2008158040A (en) Photochromic material, photochromic film using it, and its manufacturing method
JP5541474B2 (en) Monodispersed crosslinked polymer fine particles and method for producing the same
JP2009251104A (en) Method of manufacturing light adjusting particle
JP2015163987A (en) Method for manufacturing light control particle and light control film using light control particle obtained thereby
CN1697856A (en) Photopolymerizable composition and photopolymerizable film prepared therefrom
JP4655614B2 (en) Magnesium fluoride particle organosol, method for producing the same, and paint using the same
KR100332459B1 (en) A polymer film for smart window
JP5266767B2 (en) Light control material, light control film, and method of manufacturing light control material
JP5842396B2 (en) Light control material and light control film
RU2732539C2 (en) Composition based on hollow polymers
JP6048011B2 (en) Light control material and light control film
JP2008158041A (en) Light control material, light control film and method for manufacturing light control film
JP2016023212A (en) Zirconium tungstate particles having polymer adsorbed and resin composition containing the same
JP5652033B2 (en) Manufacturing method of light control suspension, manufacturing method of light control material, and manufacturing method of light control film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130530