JP2009249771A - Fiber assembly having nitrogen-containing functional group - Google Patents

Fiber assembly having nitrogen-containing functional group Download PDF

Info

Publication number
JP2009249771A
JP2009249771A JP2008099474A JP2008099474A JP2009249771A JP 2009249771 A JP2009249771 A JP 2009249771A JP 2008099474 A JP2008099474 A JP 2008099474A JP 2008099474 A JP2008099474 A JP 2008099474A JP 2009249771 A JP2009249771 A JP 2009249771A
Authority
JP
Japan
Prior art keywords
fiber assembly
surface area
specific surface
nitrogen
bet specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008099474A
Other languages
Japanese (ja)
Inventor
Akinori Mizutani
晶徳 水谷
Masahiko Nakamori
雅彦 中森
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008099474A priority Critical patent/JP2009249771A/en
Publication of JP2009249771A publication Critical patent/JP2009249771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical filter capable of quickly removing an aldehyde gas even in a small BET specific surface area and at a low temperature. <P>SOLUTION: The fiber assembly sheet comprises a fiber having an average fiber diameter of 0.02-1 μm. The chemical filter has a BET specific surface area of not more than 100 m<SP>2</SP>/g, and a nitrogen-containing functional group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、VOC等を除去する繊維集合体に関し、更に詳しくは、低温でのガス状アルデヒド類をすばやく除去することができる繊維集合体に関するものである。   The present invention relates to a fiber assembly that removes VOC and the like, and more particularly, to a fiber assembly that can quickly remove gaseous aldehydes at a low temperature.

従来、建物の室内や自動車の車内等におけるタバコ臭の除去を主目的に除去剤を含有したシート材料、またはそれ自体が除去剤として機能するシート材料が広く用いられている。これらは、タバコ臭の主成分であるアセトアルデヒド、あるいはシックハウスの原因物質とされるホルムアルデヒド等の除去材料として広く用いられている。   2. Description of the Related Art Conventionally, a sheet material containing a remover or a sheet material that itself functions as a remover has been widely used for the purpose of removing tobacco odor in a building interior, an automobile interior, or the like. These are widely used as removal materials for acetaldehyde, which is the main component of tobacco odor, or formaldehyde, which is a causative substance of sick house.

活性炭はVOC(揮発性有機化合物)等を吸着する材料として知られているが、低分子で高極性の有機物質(例えば、アセトアルデヒド、ホルムアルデヒド等)を除去することは困難とされている。一般的には、活性炭にアミン類を担持させ、化学吸着によって吸着除去性能を高めたものが知られている(特許文献1参照)。   Activated carbon is known as a material that adsorbs VOC (volatile organic compounds) and the like, but it is difficult to remove low-molecular and high-polar organic substances (for example, acetaldehyde, formaldehyde, etc.). In general, activated carbon is supported with amines and the adsorption removal performance is improved by chemical adsorption (see Patent Document 1).

しかし、アミン類の薬剤を担持させる技術においては、担持させたアミン類が熱的に不安定なため、性能が劣化してしまう問題がある。   However, the technology for loading amine chemicals has a problem in that performance is degraded because the loaded amines are thermally unstable.

一方、ガス状のアルデヒド類の除去材として酸化鉄等の金属酸化物が近年注目されている。(例えば非特許文献1参照)。   On the other hand, metal oxides such as iron oxide have recently attracted attention as removal agents for gaseous aldehydes. (For example, refer nonpatent literature 1).

しかし、これら金属酸化物は高温状態では十分な除去性能を得られるが、低温で高い除去性能を得ることは困難である。ここでいう低温とは50℃以下のことを言う。   However, these metal oxides can obtain sufficient removal performance at high temperatures, but it is difficult to obtain high removal performance at low temperatures. Low temperature here means 50 degrees C or less.

また、上記に示した、アミン類の薬剤や金属酸化物を活性炭などの担持体へ担持させる手法は、半乾燥担持法、沈殿担持法、溶剤蒸発法、平衡吸着担持法、イオン交換法等の公知の手法で、種々存在する。しかし、アミン類の薬剤や金属酸化物が活性炭の細孔深部へ吸着され、反応しない部分が生じることや、担持体に均一に分散しにくいことなど、技術的に問題がある。   In addition, the above-described methods of supporting amine chemicals and metal oxides on a support such as activated carbon include semi-dry support method, precipitation support method, solvent evaporation method, equilibrium adsorption support method, ion exchange method, etc. There are various known methods. However, there are technical problems in that amine chemicals and metal oxides are adsorbed in the deep pores of the activated carbon, resulting in unreacted parts and difficulty in uniformly dispersing on the support.

また、ポリアクリロニトリルを出発物質とした、窒素含有官能基を有した活性炭素繊維で、ガス状のアルデヒド類への優れた除去性能が示されている(非特許文献2参照)。   In addition, activated carbon fibers having a nitrogen-containing functional group starting from polyacrylonitrile and excellent removal performance to gaseous aldehydes have been shown (see Non-Patent Document 2).

ガス状有機物質の除去効率は、ガス状アルデヒド類などの対象物質と除去材との接触効率に関係する。繊維径を細くし、さらに活性炭素化によってBET比表面積を大きし、接触効率を高める検討も報告されている(非特許文献3参照、非特許文献4参照)。   The removal efficiency of the gaseous organic substance is related to the contact efficiency between the target substance such as gaseous aldehydes and the removal material. Studies have also been reported to increase the contact efficiency by reducing the fiber diameter and further increasing the BET specific surface area by activated carbonization (see Non-Patent Document 3 and Non-Patent Document 4).

しかし、活性炭素化を行うには、500℃以上1300℃以下の温度で炭素と反応する水蒸気、酸素、二酸化炭素などを含む活性な雰囲気で賦活する必要があり、出発物質からの重量収率が大きく減少する。   However, in order to perform activated carbonization, it is necessary to activate in an active atmosphere containing water vapor, oxygen, carbon dioxide, etc. that reacts with carbon at a temperature of 500 ° C. or higher and 1300 ° C. or lower. Decrease significantly.

上記のように、アミン類の薬剤や金属酸化物などを担持せず、出発物質からの重量収率が高く、かつ低温でガス状アルデヒド類をすばやく除去できる繊維集合体が存在しないのが現状である。   As described above, there is no fiber assembly that does not carry amine drugs or metal oxides, has a high weight yield from the starting material, and can quickly remove gaseous aldehydes at low temperatures. is there.

特開昭56−53744号広報JP-A-56-53744 Applied Catalysis B : Environmental, Vol.8, 405-415 (1996)Applied Catalysis B: Environmental, Vol.8, 405-415 (1996) Journal of Applied Polymer Science, Vol.106, 2151-2157 (2007)Journal of Applied Polymer Science, Vol.106, 2151-2157 (2007) 第34回 炭素材料学会要旨集, 48-49 (2007)34th Annual Meeting of the Carbon Materials Society of Japan, 48-49 (2007) Journal of Applied Polymer Science, Vol.102, 2454-2462 (2006)Journal of Applied Polymer Science, Vol.102, 2454-2462 (2006)

本発明者は、上記従来技術の課題を背景になされたものであり、BET比表面積が小さくても、低温でのアルデヒド類ガスをすばやく除去することができる耐熱性を持ったケミカルフィルターを提供することを目的とする。   The present inventor has been made in the background of the above-mentioned problems of the prior art, and provides a heat-resistant chemical filter that can quickly remove aldehyde gases at a low temperature even when the BET specific surface area is small. For the purpose.

本発明者らは鋭意研究した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は以下の通りである。
(1)平均繊維径が0.02〜1μmの繊維からなり、BET比表面積が100m/g以下であって、窒素含有官能基を持つことを特徴とする繊維集合体。
(2)該繊維集合体がシート状であることを特徴とする、(1)に記載の繊維集合体。
(3)空気中300℃、5時間での熱処理における重量の減量が10%以下であることを特徴とする(1)または(2)に記載の繊維集合体。
(4)FT−IR測定にて1500〜1700cm−1の間にピークを有することを特徴とする(1)から(3)いずれかに記載の繊維集合体。
(5)本文記載のホルムアルデヒド除去評価において、除去量が0.5mg/g以上あることを特徴とする(1)〜(4)いずれかに記載の繊維集合体。
As a result of intensive studies, the present inventors have found that the above-described problems can be solved by the following means, and have reached the present invention.
That is, the present invention is as follows.
(1) A fiber assembly comprising fibers having an average fiber diameter of 0.02 to 1 μm, a BET specific surface area of 100 m 2 / g or less, and having a nitrogen-containing functional group.
(2) The fiber assembly according to (1), wherein the fiber assembly is in a sheet form.
(3) The fiber assembly according to (1) or (2), wherein the weight loss in heat treatment at 300 ° C. for 5 hours in air is 10% or less.
(4) The fiber assembly according to any one of (1) to (3), which has a peak between 1500 and 1700 cm −1 by FT-IR measurement.
(5) The fiber assembly according to any one of (1) to (4), wherein the removal amount is 0.5 mg / g or more in the formaldehyde removal evaluation described in the text.

本発明の繊維集合体によれば、低温で迅速にホルムアルデヒドを除去することが可能となり、例えば、家庭用空調機、自動車用空調機に用いた場合、極めて短時間で空気を浄化できる。また、本発明の繊維集合体は、粉末や粒状の除去材または除去材担持体を用いていないため、改めてシート化する必要がなく、脱落する可能性がないため、取扱い性に優れる。さらに、従来の活性炭素繊維を用いた薄い不織布やペーパーなどの繊維集合体に対して、出発物質から活性化した際の重量収率が高く経済的である。その上、より薄いシートで効果を発現できるため、設置スペースの自由度が高い。   According to the fiber assembly of the present invention, it is possible to quickly remove formaldehyde at a low temperature. For example, when used in a home air conditioner or an automobile air conditioner, air can be purified in a very short time. Further, since the fiber assembly of the present invention does not use powder or granular removal material or removal material carrier, it is not necessary to form a sheet again and there is no possibility of dropping off, so that the handleability is excellent. Furthermore, a conventional fiber aggregate such as a thin nonwoven fabric or paper using activated carbon fibers has a high weight yield when activated from a starting material and is economical. Moreover, since the effect can be expressed with a thinner sheet, the degree of freedom of installation space is high.

本発明の繊維集合体は、平均繊維径が0.02〜1μmの繊維からなるシートであって、BET比表面積が100m/g以下であり、窒素含有官能基を持つことである。
本願発明者らは、窒素官能基が優れたガス状アルデヒド類の吸着性能を有することを見出した。しかし、窒素官能基を単に付与するのみでは充分な性能を得ることができず、ガス状アルデヒド類との接触効率を大きくする必要があった。接触効率を大きくする手段として、BET比表面積を高めることが一般的に知られているが、BET比表面積を100m/g以上とするには、500℃以上1300℃以下の温度で炭化、さらには炭素と反応する水蒸気、酸素、二酸化炭素などを含む活性な雰囲気で賦活する活性炭化工程が必要であり、出発物質からの重量収率が著しく減少するだけでなく窒素含有官能基も減少する。そこで、BET比表面積を100m/g以下とする一方、平均繊維径を0.02〜1μmの繊維集合体からなるシート材料として外表面積を大きくして接触効率を高めつつも、シート材料としての剛性も保ち、優れたガス状アルデヒド類の吸着性能を有する繊維集合体が得られることを本願発明者らは見出した。より好ましくは、平均繊維径0.05〜0.7μm、BET比表面積80m/g以下、更に好ましくは、平均繊維径0.07〜0.3μm、BET比表面積50m/g以下である。BET比表面積の下限は特に問題にならないが、0.01m2/gが測定下限である。
The fiber assembly of the present invention is a sheet composed of fibers having an average fiber diameter of 0.02 to 1 μm, has a BET specific surface area of 100 m 2 / g or less, and has a nitrogen-containing functional group.
The inventors of the present application have found that the nitrogen functional group has an excellent adsorption performance for gaseous aldehydes. However, sufficient performance cannot be obtained simply by adding a nitrogen functional group, and it has been necessary to increase the contact efficiency with gaseous aldehydes. As a means for increasing the contact efficiency, it is generally known to increase the BET specific surface area. However, in order to increase the BET specific surface area to 100 m 2 / g or more, carbonization is performed at a temperature of 500 ° C. or more and 1300 ° C. or less. Requires an activated carbonization step activated in an active atmosphere containing water vapor, oxygen, carbon dioxide, etc. that reacts with carbon, not only significantly reducing the weight yield from the starting material, but also reducing the nitrogen-containing functional groups. Therefore, while setting the BET specific surface area to 100 m 2 / g or less and increasing the outer surface area as a sheet material composed of a fiber aggregate having an average fiber diameter of 0.02 to 1 μm, The inventors of the present application have found that a fiber assembly having excellent adsorption performance for gaseous aldehydes can be obtained while maintaining rigidity. More preferably, the average fiber diameter is 0.05 to 0.7 μm and the BET specific surface area is 80 m 2 / g or less, and further preferably the average fiber diameter is 0.07 to 0.3 μm and the BET specific surface area is 50 m 2 / g or less. The lower limit of the BET specific surface area is not particularly problematic, but 0.01 m2 / g is the lower limit of measurement.

本発明の繊維集合体を得る手段を、例として具体的に説明する。
本発明における繊維集合体は、窒素含有官能基を持つ樹脂を出発物質とし、耐熱化することを特徴とする。ここでいう耐熱化とは、出発物質を空気中で熱処理する耐炎化だけでなく、さらにその耐炎化物を不活性雰囲気中で炭化する処理も含む。
The means for obtaining the fiber assembly of the present invention will be specifically described as an example.
The fiber assembly according to the present invention is characterized in that a resin having a nitrogen-containing functional group is used as a starting material and is heat-resistant. The heat resistance referred to here includes not only flame resistance in which the starting material is heat-treated in air, but also treatment in which the flame-resistant material is carbonized in an inert atmosphere.

窒素含有官能基を持つ樹脂として、例えば、アクリル樹脂、アミド樹脂、アラミド樹脂、イミド樹脂、アクリロニトリルブタジエンスチレン樹脂などがあげられる。またそれらの成分を含んだ、共重合やブレンドなどの手法で混合された混合樹脂を用いてもかまわない。その中でも、アクリル樹脂の一種であるポリアクリトニトリルを出発物質とするのが望ましい。耐熱化を行うにあたり、窒素含有官能基が残りやすく好ましい。また、耐熱化を行っても重量収率が高いため好ましい。   Examples of the resin having a nitrogen-containing functional group include acrylic resin, amide resin, aramid resin, imide resin, and acrylonitrile butadiene styrene resin. Moreover, you may use the mixed resin mixed by methods, such as copolymerization and a blend, containing those components. Among them, it is desirable to use polyacrylonitrile, which is a kind of acrylic resin, as a starting material. In performing heat resistance, it is preferable that the nitrogen-containing functional group remains easily. Moreover, even if it heat-resists, since a weight yield is high, it is preferable.

さらにその中でも、酸性分(カルボン酸など)を有する成分を共重合させた、変性ポリアクリロニトリルを出発物質とすることが望ましい。変性をしない場合、急激な反応が起きる場合があり、制御が困難である。変性をすることで反応開始点を局所化し制御が容易になる。   Furthermore, among them, it is desirable to use modified polyacrylonitrile obtained by copolymerizing a component having an acidic component (such as carboxylic acid) as a starting material. Without denaturation, a rapid reaction may occur and is difficult to control. By modifying, the reaction starting point is localized and control becomes easy.

本発明の繊維集合体を構成する極細繊維を得る手段は特に限定されないが、荷電紡糸法によることが好ましい。ここでいう荷電紡糸法とは、捕集基盤をアースに繋がった電極上にセットし、前駆体となる樹脂を溶解した溶液を注射器の筒状の容器に入れ、注射器の先端部の溶液噴出ノズルに電圧をかけ、捕集基材に噴出することで前駆体の繊維集合体を得るものである。   The means for obtaining the ultrafine fibers constituting the fiber assembly of the present invention is not particularly limited, but is preferably based on a charged spinning method. The charge spinning method here refers to setting the collection base on the electrode connected to the ground, putting the solution in which the precursor resin is dissolved into the cylindrical container of the syringe, and the solution ejection nozzle at the tip of the syringe A precursor fiber assembly is obtained by applying a voltage to the substrate and ejecting it to the collection substrate.

前駆体の繊維集合シートの耐炎化処理は、空気雰囲気中で温度範囲200〜300℃で熱処理する。耐炎化は、バッチ式焼成炉でも連続焼成炉でもよい。   The flameproofing treatment of the precursor fiber assembly sheet is heat-treated in an air atmosphere at a temperature range of 200 to 300 ° C. The flame resistance may be a batch-type firing furnace or a continuous firing furnace.

さらに、この耐炎化処理を行った繊維集合体シートを300℃以上1300℃以下の温度の不活性雰囲気で炭化してもかまわない。1300℃を超える温度で行うと重量収率が大きく低下してしまうため好ましくない。また、300℃未満の耐炎化処理以下の温度では炭化はされない。   Further, the fiber assembly sheet subjected to the flameproofing treatment may be carbonized in an inert atmosphere at a temperature of 300 ° C. or higher and 1300 ° C. or lower. When the temperature is higher than 1300 ° C., the weight yield is greatly reduced, which is not preferable. Further, carbonization is not performed at a temperature lower than 300 ° C. and lower than the flame resistance treatment.

本発明の繊維集合体は、空気中300℃、5時間での熱処理における重量の減量が10%以下である耐熱性を持つことが好ましい。かかる耐熱性を有することにより、消費者等の使用時の安全性が高いからである。減量の下限は特に問題にならないが、1%を下回ることは市場の要請が乏しい一方で、技術的な困難性が高くなる。   The fiber assembly of the present invention preferably has heat resistance such that the weight loss in heat treatment at 300 ° C. for 5 hours in air is 10% or less. This is because by having such heat resistance, safety at the time of use by consumers and the like is high. The lower limit of weight loss is not particularly a problem, but if it is less than 1%, the demand on the market is poor, but technical difficulty increases.

本発明の繊維集合体は、FT−IR測定にて、1500〜1700cm−1の間にピークを有することが望ましい。このピークは窒素を含有するアミン基またはピリジン基に由来されるピークであり、これによるアルデヒド類との化学吸着が可能なためである。 The fiber assembly of the present invention desirably has a peak between 1500 and 1700 cm −1 in FT-IR measurement. This is because the peak is derived from an amine group or a pyridine group containing nitrogen and can be chemisorbed with aldehydes.

本発明の繊維集合体は、本文記載のホルムアルデヒド除去評価において、除去量が0.5mg/g以上あることが好ましい。かかる性能を満たす、窒素含有量、繊維径、BET比表面積の繊維集合体とすることにより、市場の要請に充分に応えることができるからである。除去量の上限は特に問題にならないが、本評価法による上限2.5mg/gである。   The fiber aggregate of the present invention preferably has a removal amount of 0.5 mg / g or more in the formaldehyde removal evaluation described in the text. This is because a fiber assembly having a nitrogen content, a fiber diameter, and a BET specific surface area satisfying such performance can sufficiently meet market demands. The upper limit of the removal amount is not particularly problematic, but the upper limit by the present evaluation method is 2.5 mg / g.

本発明の繊維集合体は、アルデヒド除去材に用いることが好ましい。本発明の繊維集合体は特にアルデヒド除去性能に優れるため、かかる用途に用いると、特に有用であるからである。   The fiber assembly of the present invention is preferably used as an aldehyde removing material. This is because the fiber assembly of the present invention is particularly useful when used in such applications because it is particularly excellent in aldehyde removal performance.

以下本発明を実施例により説明するが、本発明は、これらの実施例に限定されるものではない。また以下の各実施例における評価項目は以下のとおりの手法にて実施した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The evaluation items in the following examples were carried out by the following methods.

(重量収率)
ホルムアルデヒド除去評価用のサンプル作成における熱処理前後での絶乾重量を測定し、重量収率(%)を算出した。
(Weight yield)
The absolute dry weight before and after the heat treatment in preparing a sample for removing formaldehyde was measured, and the weight yield (%) was calculated.

(平均繊維径)
走査型電子顕微鏡鏡にて10000倍または1000倍に拡大した写真から計30点の繊維径を測定し、平均したものを平均繊維径(単位μm)とした。
(Average fiber diameter)
A total of 30 fiber diameters were measured from a photograph magnified 10,000 times or 1000 times with a scanning electron microscope, and the averaged fiber diameter was taken as the average fiber diameter (unit: μm).

(BET比表面積)
サンプル約10mgを採取し、120℃12時間真空乾燥して秤量し、自動比表面積装置ジェミニ2375(マイクロメトリックス社製)を使用し、液体窒素の沸点(−195.8℃)における窒素の吸着量を相対圧0.02から0.95の範囲で徐々に高めながら40点測定し、上記サンプルで吸着等温線を作成した。相対圧0.02〜0.15での結果をBETプロットし、重量あたりのBET比表面積(m/g)を求めた。
(BET specific surface area)
About 10 mg of sample was taken, vacuum dried at 120 ° C. for 12 hours, weighed, and using an automatic specific surface area device Gemini 2375 (manufactured by Micrometrics), the amount of nitrogen adsorbed at the boiling point of liquid nitrogen (-195.8 ° C.) Was gradually increased in the range of 0.02 to 0.95 relative pressure, and an adsorption isotherm was created with the above sample. The results at a relative pressure of 0.02 to 0.15 were BET-plotted to determine the BET specific surface area (m 2 / g) per weight.

(FT−IR測定)
日本分光社製フーリエ変換赤外分光光度計(FT−IR6100)にて分解能4cm−1、積算16回で測定し、1500〜1700cm−1のアミンまたはピリジンに由来されるピークの有無を評価した。
(FT-IR measurement)
Manufactured by JASCO Corporation Fourier transform infrared spectrophotometer (FT-IR6100) at a resolution 4 cm -1, measured by integrating 16 times, it was evaluated for the presence or absence of peaks derived from amines or pyridine 1500~1700cm -1.

(耐熱性評価)
乾燥させたサンプル約100mgの重量を熱処理前の重量とし、電気炉にて空気雰囲気下5℃/minで300℃まで昇温し5時間保持したサンプルを乾燥させ、その重量を熱処理後の重量とし、熱処理前後の重量から減量率(%)を算出した。ここで言う乾燥とは、120℃、3時間の真空雰囲気(真空度1.3Pa以下)処理のことである。
(Heat resistance evaluation)
The weight of about 100 mg of the dried sample is the weight before the heat treatment, and the sample heated to 300 ° C. in an air furnace at 5 ° C./min in an air atmosphere and held for 5 hours is dried, and the weight is the weight after the heat treatment. The weight loss rate (%) was calculated from the weight before and after the heat treatment. The term “drying” as used herein means a treatment in a vacuum atmosphere (vacuum degree: 1.3 Pa or less) at 120 ° C. for 3 hours.

(ホルムアルデヒド除去評価)
5Lのテドラーバッグ中に、N希釈によりホルムアルデヒドの濃度を約4ppmにしたガス、およびサンプル約10mgを封入した。中に入っているホルムアルデヒドを含むガスをサンプルが十分に接触するようにテドラーバッグを適宜振った。なお、テドラーバッグ周囲の雰囲気温度は25℃とした。60分後のテドラーバッグ内のホルムアルデヒド濃度を電気化学式燃料電池法のホルムアルデヒドメーターにて測定し、除去前後のホルムアルデヒドの濃度変化から、ホルムアルデヒドのサンプル重量あたりの除去量(mg/g)を算出した。
(Formaldehyde removal evaluation)
In a 5 L Tedlar bag, a gas having a formaldehyde concentration of about 4 ppm by N 2 dilution and about 10 mg of a sample were enclosed. The Tedlar bag was shaken appropriately so that the sample contained the gas containing formaldehyde contained in the sample. The ambient temperature around the Tedlar bag was 25 ° C. The formaldehyde concentration in the Tedlar bag after 60 minutes was measured with a formaldehyde meter of an electrochemical fuel cell method, and the amount of formaldehyde removed (mg / g) per sample weight was calculated from the change in formaldehyde concentration before and after removal.

(実施例1)
アクリロニトリルとメタクリル酸のモル比が98:2の変性ポリアクリロニトリル樹脂をN、N−ジメチルアセトアミドに溶解させた溶液からエレクトロスピニング法によって繊維集合体シートを作成した。この繊維集合体シートを、空気雰囲気中で昇温速度5℃/minで300℃まで昇温し、60分間保持させ、耐炎化繊維集合体シートを得た。熱処理前後の重量変化から、重量収率(%)を算出した。上記繊維集合体シートを基材から剥離させ、平均繊維径、BET比表面積、FT−IR測定、耐熱性評価、ホルムアルデヒド除去評価を行った。
Example 1
A fiber assembly sheet was prepared by electrospinning from a solution in which a modified polyacrylonitrile resin having a molar ratio of acrylonitrile and methacrylic acid of 98: 2 was dissolved in N, N-dimethylacetamide. The fiber assembly sheet was heated to 300 ° C. at a temperature increase rate of 5 ° C./min in an air atmosphere and held for 60 minutes to obtain a flame-resistant fiber assembly sheet. The weight yield (%) was calculated from the weight change before and after the heat treatment. The fiber assembly sheet was peeled from the substrate, and the average fiber diameter, BET specific surface area, FT-IR measurement, heat resistance evaluation, and formaldehyde removal evaluation were performed.

(実施例2)
実施例1で作成した耐炎化繊維集合体シートを不活性雰囲気中で昇温速度5℃/minで600℃まで昇温し5分保持させ、炭化繊維集合体シートを得た。熱処理前後の重量変化から、重量収率(%)を算出した。この炭化繊維集合体シートを基材から剥離させ、平均繊維径、BET比表面積、FT−IR測定、耐熱性評価、ホルムアルデヒド除去評価を行った。
(Example 2)
The flame-resistant fiber assembly sheet prepared in Example 1 was heated to 600 ° C. at a temperature increase rate of 5 ° C./min in an inert atmosphere and held for 5 minutes to obtain a carbonized fiber assembly sheet. The weight yield (%) was calculated from the weight change before and after the heat treatment. The carbonized fiber aggregate sheet was peeled from the substrate, and the average fiber diameter, BET specific surface area, FT-IR measurement, heat resistance evaluation, and formaldehyde removal evaluation were performed.

(比較例1)
ポリアクリロニトリル系耐炎化繊維ラスタン(旭化成製)を不活性雰囲気中で昇温速度5℃/minで600℃まで昇温し5分間炭化させ炭素繊維を得た。熱処理前後の重量変化から、重量収率(%)を算出した。得られた炭素繊維で平均繊維径、BET比表面積、FT−IR測定、耐熱性評価、ホルムアルデヒド除去評価を行った。
(Comparative Example 1)
Polyacrylonitrile-based flameproof fiber Lastan (manufactured by Asahi Kasei) was heated to 600 ° C. at a temperature rising rate of 5 ° C./min in an inert atmosphere and carbonized for 5 minutes to obtain carbon fibers. The weight yield (%) was calculated from the weight change before and after the heat treatment. The obtained carbon fibers were subjected to average fiber diameter, BET specific surface area, FT-IR measurement, heat resistance evaluation, and formaldehyde removal evaluation.

(比較例2)
ノボラック型フェノール樹脂をメタノールに溶解させた溶液から荷電紡糸法によって、フェノール系繊維集合体シートを得た。このフェノール系繊維集合体シートを基材から剥離させ、不活性雰囲気中で昇温速度5℃/minで900℃まで昇温し30分間炭化させ、フェノール系炭化繊維集合体シートを得た。熱処理前後の重量変化から、重量収率(%)を算出した。得られたフェノール系炭化繊維集合体シートで平均繊維径、BET比表面積、FT−IR測定、耐熱性評価、ホルムアルデヒド除去評価を行った。
(Comparative Example 2)
A phenolic fiber assembly sheet was obtained by a charge spinning method from a solution in which a novolak type phenol resin was dissolved in methanol. The phenolic fiber aggregate sheet was peeled from the substrate, heated to 900 ° C. at a temperature increase rate of 5 ° C./min in an inert atmosphere, and carbonized for 30 minutes to obtain a phenolic carbonized fiber aggregate sheet. The weight yield (%) was calculated from the weight change before and after the heat treatment. The obtained phenolic carbonized fiber aggregate sheet was subjected to average fiber diameter, BET specific surface area, FT-IR measurement, heat resistance evaluation, and formaldehyde removal evaluation.

結果を表1に示す。表1で明らかなように、本発明である実施例1及び2は、FT−IR測定でピークを有しBET比表面積が100m/g以下であるが、繊維径が1μm以上の場合(比較例1)、また、繊維径が0.02〜1μmであるがFT−IR測定でピークがなく、かつ、BET比表面積が100m/g以上の場合(比較例2)と比較して、高い除去効率であることがわかる。 The results are shown in Table 1. As is clear from Table 1, Examples 1 and 2 according to the present invention have a peak in FT-IR measurement and a BET specific surface area of 100 m 2 / g or less, but when the fiber diameter is 1 μm or more (comparison) Example 1) Also, the fiber diameter is 0.02 to 1 μm, but there is no peak in the FT-IR measurement, and the BET specific surface area is higher than that of 100 m 2 / g or more (Comparative Example 2). It turns out that it is removal efficiency.

Figure 2009249771
Figure 2009249771

本発明により、BET比表面積が小さくて低温でのアルデヒド類ガスの除去性能に優れたケミカルフィルターを単独、あるいはそれを部材の一部とした除去フィルターとしての利用が容易であることから、産業界に大きく寄与すること大である。   According to the present invention, a chemical filter having a small BET specific surface area and excellent aldehyde gas removal performance at a low temperature can be easily used as a single or a part of the member as a removal filter. It is a great contribution to

Claims (5)

平均繊維径が0.02〜1μmの繊維からなり、BET比表面積が100m/g以下であって、窒素含有官能基を持つことを特徴とする繊維集合体。 A fiber assembly comprising fibers having an average fiber diameter of 0.02 to 1 μm, a BET specific surface area of 100 m 2 / g or less, and having a nitrogen-containing functional group. 該繊維集合体がシート状であることを特徴とする、請求項1に記載の繊維集合体。   The fiber assembly according to claim 1, wherein the fiber assembly is in the form of a sheet. 空気中300℃、5時間での熱処理における重量の減量が10%以下であることを特徴とする請求項1又は2に記載の繊維集合体。   The fiber assembly according to claim 1 or 2, wherein the weight loss in heat treatment at 300 ° C for 5 hours in air is 10% or less. FT−IR測定にて1500〜1700cm−1の間にピークを有することを特徴とする請求項1から3いずれかに記載の繊維集合体。 The fiber assembly according to any one of claims 1 to 3, which has a peak between 1500 and 1700 cm -1 by FT-IR measurement. 本文記載のホルムアルデヒド除去量の評価において、除去量が0.5mg/g以上あることを特徴とする請求項1〜4いずれかに記載の繊維集合体。   5. The fiber assembly according to claim 1, wherein the removal amount is 0.5 mg / g or more in the evaluation of the removal amount of formaldehyde described in the text.
JP2008099474A 2008-04-07 2008-04-07 Fiber assembly having nitrogen-containing functional group Pending JP2009249771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099474A JP2009249771A (en) 2008-04-07 2008-04-07 Fiber assembly having nitrogen-containing functional group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099474A JP2009249771A (en) 2008-04-07 2008-04-07 Fiber assembly having nitrogen-containing functional group

Publications (1)

Publication Number Publication Date
JP2009249771A true JP2009249771A (en) 2009-10-29

Family

ID=41310734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099474A Pending JP2009249771A (en) 2008-04-07 2008-04-07 Fiber assembly having nitrogen-containing functional group

Country Status (1)

Country Link
JP (1) JP2009249771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195362A (en) * 2010-03-18 2011-10-06 Teijin Ltd Carbon material and method for producing the same
CN110898526A (en) * 2019-12-09 2020-03-24 西安中科贝昂环保科技有限公司 Preparation method of air disinfection filter element material
JP7151918B1 (en) 2021-11-10 2022-10-12 住友ゴム工業株式会社 Heavy duty pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195362A (en) * 2010-03-18 2011-10-06 Teijin Ltd Carbon material and method for producing the same
CN110898526A (en) * 2019-12-09 2020-03-24 西安中科贝昂环保科技有限公司 Preparation method of air disinfection filter element material
JP7151918B1 (en) 2021-11-10 2022-10-12 住友ゴム工業株式会社 Heavy duty pneumatic tire
JP2023071136A (en) * 2021-11-10 2023-05-22 住友ゴム工業株式会社 Pneumatic tire for heavy load

Similar Documents

Publication Publication Date Title
Talapaneni et al. Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage
Tan et al. Removal of elemental mercury by bamboo charcoal impregnated with H2O2
Wu et al. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO 2 capture
CN110642238B (en) Graphene-like nitrogen-doped porous carbon material and preparation method and application thereof
US20100247909A1 (en) Manufacturing process of porous carbon nanofiber using a volatile organic matter
US9731272B2 (en) Activated carbon having basic functional groups and method for producing same
JP2010274178A (en) Agent for removing volatile harmful material and method for manufacturing the same
CN104499097A (en) Method for preparing active carbon fibers by utilizing hydrogen peroxide intensified water vapor to activate
Adelodun et al. Integrated basic treatment of activated carbon for enhanced CO2 selectivity
Jeong et al. Electrospun melamine‐blended activated carbon nanofibers for enhanced control of indoor CO2
JP2011178588A (en) Hydrogen storing-carbon material
Beltzung et al. Polyacrylonitrile nanoparticle‐derived hierarchical structure for CO2 capture
JP2009249771A (en) Fiber assembly having nitrogen-containing functional group
JP2013111553A (en) Water treatment system
KR20150064978A (en) Manufacturing method of carbon-based carbon dioxide adsorbents
KR101918652B1 (en) Activated carbon for removal of formaldehyde gas and the method thereof
Wu et al. Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO 2
JP2008100186A (en) Gas adsorption apparatus
Bai et al. Modification of textural properties of CuO-supported activated carbon fibers for SO2 adsorption based on electrical investigation
JP2013154301A (en) Adsorption sheet and adsorption element using the same
Thongwichit et al. Adsorption of carbon dioxide by solution-plasma-synthesized heteroatom-doped carbon nanospheres
JP5281926B2 (en) Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof
WO2007116874A1 (en) Method for processing exhaust gas in direct liquid fuel cell
CN109701548A (en) A kind of monoblock type VOCs catalyst for catalytic combustion and preparation method thereof
US20220220639A1 (en) Process for producing carbon fiber materials for separating co2 or nh3 from gas mixtures, carbon fiber materials and its use