JP2008100186A - Gas adsorption apparatus - Google Patents

Gas adsorption apparatus Download PDF

Info

Publication number
JP2008100186A
JP2008100186A JP2006285966A JP2006285966A JP2008100186A JP 2008100186 A JP2008100186 A JP 2008100186A JP 2006285966 A JP2006285966 A JP 2006285966A JP 2006285966 A JP2006285966 A JP 2006285966A JP 2008100186 A JP2008100186 A JP 2008100186A
Authority
JP
Japan
Prior art keywords
adsorption
activated carbon
organic solvent
gas adsorption
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006285966A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
敏明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006285966A priority Critical patent/JP2008100186A/en
Publication of JP2008100186A publication Critical patent/JP2008100186A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas adsorption apparatus for the recovery of an organic solvent which can recover even an organic solvent of a high boiling point in a target gas and thereby reduce the concentration of the organic solvent in an exhaust gas at a quite high level. <P>SOLUTION: The gas adsorption apparatus employs a fibrous active charcoal having a BET specific surface area of 1,000-1,800 m<SP>2</SP>/g, an amount of surface acidic groups of ≤0.5 meq/g and an average pore diameter of 17-20 Å whose precursor is made of a phenolic fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大気への有機溶剤の飛散を最小限として、有機溶剤を最大限に回収することを可能とした有機溶剤回収用ガス吸着処理装置に関するものである。   The present invention relates to a gas adsorption treatment apparatus for organic solvent recovery that makes it possible to recover the organic solvent to the maximum while minimizing the scattering of the organic solvent to the atmosphere.

有機溶媒を回収・再利用し、かつ有機溶媒が外気放出することを防ぐ処理装置として、従来より、吸着材として活性炭素繊維が充填されている吸着槽が2基以上設けられている他に、各吸着槽に対する有機溶剤が含有した被処理ガスを供給する手段と水蒸気を噴出する脱着手段とを設け、前記吸着槽にて被処理ガスを吸着処理する吸着操作と脱着手段にて脱着を行う脱着操作とを交互に切り替える手段が設けた構成が採用されている。   In addition to providing two or more adsorption tanks filled with activated carbon fibers as an adsorbent, as a treatment apparatus that collects and reuses an organic solvent and prevents the organic solvent from being released to the outside air, A means for supplying a gas to be treated containing an organic solvent to each adsorption tank and a desorption means for ejecting water vapor are provided, and an adsorption operation for adsorbing the gas to be treated in the adsorption tank and a desorption by desorption means. A configuration in which means for alternately switching between operations is provided is employed.

このような構成は、吸着した有機溶剤を脱着操作で十分に離脱させることにより、吸着操作と脱着操作とを交互に切り替えても、吸着性能の低下がなく長期間の運転において連続的かつ安定的に高除去性能での処理が可能となる。   In such a configuration, the adsorbed organic solvent is sufficiently desorbed by the desorption operation, so that even if the adsorption operation and the desorption operation are alternately switched, the adsorption performance is not deteriorated and is continuously and stably in a long-term operation. In addition, processing with high removal performance becomes possible.

しかしながら、従来の溶剤回収ガス吸着処理装置では、炭素数7〜12のような高分子、高沸点の有機溶剤の場合、吸着性能は高いが脱着性能が低く、結果的に脱着不足により残存した有機溶剤によって吸着性能を低下させるため、長期間の運転において連続的かつ安定的に高除去性能の処理は出来なかった。
また、脱着に使用する水蒸気の温度を有機溶剤の沸点以上(200℃以上)に上昇させ、吸着した有機溶剤の脱着効率を上昇させる方法が取られるが、その場合でも吸着した有機溶剤は100%脱着は不可能であり、200℃以上の高温下で脱着操作と吸着操作を切り替えた際には、残存した有機溶剤と繊維状活性炭との反応により繊維状活性炭が発火又は燃焼するおそれがある。
However, in the conventional solvent recovery gas adsorption processing apparatus, in the case of a polymer having 7 to 12 carbon atoms and an organic solvent having a high boiling point, the adsorption performance is high but the desorption performance is low. Since the adsorption performance was lowered by the solvent, the high removal performance could not be continuously and stably treated for a long time.
In addition, a method of increasing the temperature of water vapor used for desorption above the boiling point of the organic solvent (200 ° C. or higher) and increasing the desorption efficiency of the adsorbed organic solvent is taken, but even in that case, the adsorbed organic solvent is 100% Desorption is impossible, and when the desorption operation and the adsorption operation are switched at a high temperature of 200 ° C. or higher, the fibrous activated carbon may ignite or burn due to the reaction between the remaining organic solvent and the fibrous activated carbon.

近年、有害大気汚染物質に対する排出濃度規制が強化されてきており、有機溶剤回収ガス吸着処理装置からの排ガス中の有機溶剤濃度をより高いレベルで最小化することが望まれているが、上記構成の溶剤回収ガス吸着処理装置では、有機溶剤の沸点が高い場合はこれらの要請に対応することができなかった。   In recent years, emission concentration regulations for harmful air pollutants have been strengthened, and it is desired to minimize the organic solvent concentration in the exhaust gas from the organic solvent recovery gas adsorption treatment device at a higher level. In the solvent recovery gas adsorption processing apparatus, when the boiling point of the organic solvent is high, these requests cannot be met.

そこで、被処理有機溶剤の沸点が高い場合は、水蒸気賦活を進めることにより比表面積が大きく細孔容積が大きい(細孔径が大きい)繊維状活性炭を使用することによって、脱着性能を上昇させる方法がとられているが、水蒸気賦活により細孔径を大きくすると、吸着除去性能を維持するために必要なミクロポアが消失し、細孔内での分子拡散による吸着速度が遅くなり、吸着操作による除去性能を低下させるため、十分な性能は得られておらず、いまだ市場の要請に応えうる溶剤回収ガス吸着処理装置は存在しないのが現状である。   Therefore, when the boiling point of the organic solvent to be treated is high, there is a method for improving desorption performance by using fibrous activated carbon having a large specific surface area and a large pore volume (large pore diameter) by promoting steam activation. However, if the pore size is increased by steam activation, the micropores necessary to maintain the adsorption removal performance disappear, the adsorption speed due to molecular diffusion in the pores slows down, and the removal performance by the adsorption operation is reduced. In the current situation, sufficient performance has not been obtained because of the reduction, and there is no solvent recovery gas adsorption treatment apparatus that can still meet market demands.

特開2004−255336号公報JP 2004-255336 A

本発明は、従来技術の課題を背景になされたもので、被処理ガス中の有機溶剤の沸点が高い場合であっても、有効的に有機溶剤を回収し、もって極めて高いレベルで排出ガス中の有機溶媒濃度を低減することができる有機溶剤回収ガス吸着処理装置を提供することを課題とするものである。   The present invention has been made against the background of the problems of the prior art, and even when the boiling point of the organic solvent in the gas to be treated is high, the organic solvent is effectively recovered, so that the exhaust gas is exhausted at a very high level. It is an object of the present invention to provide an organic solvent recovery gas adsorption treatment apparatus capable of reducing the concentration of organic solvent.

すなわち、本発明は以下の通りである。
1.BET比表面積1000〜1800m/g、表面酸性基量が0.5meq/g以上、平均細孔直径が17〜20Åであって、前駆体がフェノール系繊維からなる繊維状活性炭を用いることを特徴とするガス吸着処理装置。
2.吸着するガスが有機化合物であることを特徴とする上記1に記載のガス吸着処理装置。
3.有機化合物が芳香族炭化水素またはパラフィン系炭化水素である上記2に記載のガス吸着処理装置。
4.有機化合物が炭素数7〜12であり、沸点が130〜200℃であることを特徴とする上記2又は3に記載のガス吸着処理装置。
5.有機化合物を、吸着と水蒸気による脱着を交互に切り替えて実施し、吸着処理することを特徴とする上記2〜4のいずれかに記載のガス吸着処理装置。
That is, the present invention is as follows.
1. A BET specific surface area of 1000 to 1800 m 2 / g, a surface acidic group amount of 0.5 meq / g or more, an average pore diameter of 17 to 20 mm, and a precursor used as a fibrous activated carbon composed of phenolic fibers Gas adsorption treatment equipment.
2. 2. The gas adsorption processing apparatus according to 1 above, wherein the gas to be adsorbed is an organic compound.
3. 3. The gas adsorption treatment apparatus according to 2 above, wherein the organic compound is an aromatic hydrocarbon or a paraffinic hydrocarbon.
4). The gas adsorption treatment apparatus according to 2 or 3 above, wherein the organic compound has 7 to 12 carbon atoms and has a boiling point of 130 to 200 ° C.
5. 5. The gas adsorption treatment apparatus as described in any one of 2 to 4 above, wherein the organic compound is subjected to adsorption treatment by alternately switching between adsorption and desorption with water vapor.

本発明の有機溶剤回収ガス吸着処理装置によれば、前駆体がフェノール系繊維からなる繊維状活性炭を空気の存在下で熱処理(空気酸化処理)することにより、比表面積を増加させずに平均細孔径を大きくすることが可能であり、吸着除去性能に必要なミクロポアを残しつつ脱着性能の上昇に有効なメソポアが発達することにより、高沸点の有機化合物の脱着性が著しく上昇し、吸脱着操作を繰り返しても処理性能の低下がなく、連続的に安定な処理が行える。さらには、有機化合物に応じて空気酸化処理条件を変えることにより細孔径を制御することが可能である。   According to the organic solvent recovery gas adsorption treatment apparatus of the present invention, the fibrous fine activated carbon whose precursor is made of phenol fiber is heat-treated in the presence of air (air oxidation treatment), so that the average fine surface area is not increased without increasing the specific surface area. The development of mesopores that can increase the pore size and leave the micropores necessary for adsorption and removal performance while improving the desorption performance significantly increases the desorption properties of high-boiling organic compounds, and the adsorption and desorption operation. Even if the process is repeated, the processing performance is not deteriorated, and a stable process can be performed continuously. Furthermore, it is possible to control the pore diameter by changing the air oxidation treatment conditions according to the organic compound.

以下、本発明を詳細する。
本発明にかかる有機溶剤処理装置は、被処理有機溶剤の沸点が高い場合は、細孔径が小さく吸着性能に優れた前駆体がフェノール系繊維からなる繊維状活性炭を空気の存在下で熱処理することによって、比表面積を増加させずに平均細孔径(細孔容積)を大きくする事が可能であり、吸着除去性能に必要なミクロポアを残し、かつ脱着性能の上昇に有効なメソポアが発達することによって、高沸点の有機溶剤であっても高い吸着性を維持し、脱着性能が著しく上昇させることを本発明者らが見出したことに基づくものである。上記繊維状活性炭を使用することにより、極めて高い溶剤処理性能を確保することが可能となる。
The present invention is described in detail below.
When the organic solvent to be treated has a high boiling point, the organic solvent treatment apparatus according to the present invention heat-treats fibrous activated carbon composed of phenolic fibers having a small pore diameter and excellent adsorption performance in the presence of air. It is possible to increase the average pore diameter (pore volume) without increasing the specific surface area, leaving the micropores necessary for adsorption removal performance, and developing mesopores effective for increasing desorption performance. This is based on the finding of the present inventors that even if the organic solvent has a high boiling point, the high adsorbability is maintained and the desorption performance is remarkably increased. By using the fibrous activated carbon, it is possible to ensure extremely high solvent treatment performance.

フェノール系の繊維状活性炭はセルロース系、ピッチ系、PAN系の繊維状活性炭に比べて細孔径が小さく、空気の存在下で熱処理しても、ミクロポアを残し、且つメソポアを拡大することが可能である。一方、PAN系の繊維状活性炭では結晶構造が緻密過ぎて1,000m/g以上の高比表面積のものがつくりにくく、ピッチ系の繊維状活性炭は非常に強度が弱く、使用においては十分な補強が必要となる。 Phenol-based fibrous activated carbon has a smaller pore size than cellulose-based, pitch-based, and PAN-based fibrous activated carbon, and can retain micropores and expand mesopores even when heat-treated in the presence of air. is there. On the other hand, PAN-based fibrous activated carbon has a crystal structure that is too dense to make a high specific surface area of 1,000 m 2 / g or more. Pitch-based fibrous activated carbon has a very low strength and is sufficient for use. Reinforcement is required.

以上のような理由から、高沸点の有機化合物吸着処理装置の吸着材料として加工性と実用的強度を併せ持つフェノール系の繊維状活性炭の空気酸化品が好適である。   For the reasons described above, an air-oxidized product of phenol-based fibrous activated carbon having both processability and practical strength is suitable as an adsorbing material for an organic compound adsorption treatment apparatus having a high boiling point.

一般に、繊維状活性炭においては、比表面積が大きくなるにつれて細孔容積(細孔径)も増加し、通常の有機溶剤の吸着に適する1,500m/g程度の比表面積での細孔径は15〜20Åに大部分の細孔が分布する。また、比表面積を2,000m/g程度にまで上げると細孔分布が広がり、20〜50Å程度まで非常に広範な分布を示す。 In general, in the fibrous activated carbon, the pore volume (pore diameter) increases as the specific surface area increases, and the pore diameter at a specific surface area of about 1,500 m 2 / g suitable for adsorption of ordinary organic solvents is 15 to Most of the pores are distributed in 20cm. Further, when the specific surface area is increased to about 2,000 m 2 / g, the pore distribution is expanded, and a very wide distribution is exhibited up to about 20 to 50 mm.

分子量が100以上の比較的高分子量の有機化合物の吸着には平均細孔径が20Å以下、脱着には平均細孔径が17Å以上が好適であり、そのため比表面積は1,000〜1,800m/gが望ましい。比表面積が1,000m/g未満の場合は、繊維状活性炭の全細孔容積が小さくなり、有機化合物の吸着容量が小さくなる。尚、ここで比表面積とは窒素の吸着等温線から求めたBET表面積である。 The average pore diameter is preferably 20 mm or less for adsorption of a relatively high molecular weight organic compound having a molecular weight of 100 or more, and the average pore diameter is preferably 17 mm or more for desorption. Therefore, the specific surface area is 1,000 to 1,800 m 2 /. g is desirable. When the specific surface area is less than 1,000 m 2 / g, the total pore volume of the fibrous activated carbon becomes small, and the adsorption capacity of the organic compound becomes small. Here, the specific surface area is a BET surface area obtained from an adsorption isotherm of nitrogen.

また、繊維状活性炭の全細孔容積は、0.5〜0.9cc/gが好ましく、より好ましくは0.6〜0.8cc/gである。全細孔容積が0.5cc/g未満の場合は、有機化合物の吸着容量が少ないために、特に高濃度の場合に繊維状活性炭の使用量が多くなることが予想される。尚、ここで全細孔容積は、窒素吸着法によって求めた値である。   Further, the total pore volume of the fibrous activated carbon is preferably 0.5 to 0.9 cc / g, and more preferably 0.6 to 0.8 cc / g. When the total pore volume is less than 0.5 cc / g, since the adsorption capacity of the organic compound is small, it is expected that the amount of fibrous activated carbon used is increased especially at a high concentration. Here, the total pore volume is a value obtained by a nitrogen adsorption method.

また、活性炭素繊維を空気の存在下で熱処理することによって、活性炭表面の表面酸化化合物(カルボキシル基、水酸基等)が一般の活性炭と比較して著しく増加する。この表面酸性基は化学吸着性があり、活性炭の表面に有機溶剤を吸着することで、脱着操作によって容易に脱離することが可能である。また、表面酸性基量の測定は容易に実施することができるため、空気の存在下での熱処理によって変化する比表面積や細孔径の値の指標とすることが可能である。   In addition, when the activated carbon fiber is heat-treated in the presence of air, the surface oxidized compounds (carboxyl groups, hydroxyl groups, etc.) on the activated carbon surface are remarkably increased as compared with general activated carbon. This surface acidic group has chemical adsorptivity, and can be easily desorbed by desorption operation by adsorbing an organic solvent on the surface of activated carbon. Moreover, since the measurement of the amount of surface acidic groups can be carried out easily, it can be used as an index of the value of the specific surface area and the pore diameter that change by the heat treatment in the presence of air.

吸着破過テストに用いた繊維状活性炭エレメントは、フェノール系繊維を原料とした繊維状活性炭で、空気中で熱処理することによって比表面積、平均細孔径を変えた素材[A][B]と空気中で熱処理していないフェノール系繊維を原料とした繊維状活性炭[C]と石油ピッチを原料とした繊維状活性炭[D]の4種類である。各素材の特性を表1にまとめて示す。また、各特性は以下の方法によって測定した。   The fibrous activated carbon element used for the adsorption breakthrough test is a fibrous activated carbon made of phenolic fiber as a raw material. Material [A] [B] and air whose specific surface area and average pore diameter are changed by heat treatment in air There are four types, fibrous activated carbon [C] made from phenolic fibers that have not been heat-treated, and fibrous activated carbon [D] made from petroleum pitch. The characteristics of each material are summarized in Table 1. Each characteristic was measured by the following method.

Figure 2008100186
Figure 2008100186

(BET比表面積)
繊維状活性炭素材約0.1g採取し、120℃で12時間真空乾燥後秤量した。上記サンプルの液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.0〜0.2の範囲で徐々に高めながら数点測定した。結果をBETプロットし、重量当たりの比表面積を求めた。
(BET specific surface area)
About 0.1 g of fibrous activated carbon material was collected, weighed after vacuum drying at 120 ° C. for 12 hours. Several points were measured while gradually increasing the amount of nitrogen gas adsorbed at the boiling point of liquid nitrogen (-195.8 ° C.) of the sample in the range of relative pressure of 0.0 to 0.2. The results were BET plotted to determine the specific surface area per weight.

(全細孔容積)
相対圧0.95での窒素の吸着量から計算で求めた容積。
(Total pore volume)
Volume calculated from the amount of nitrogen adsorbed at a relative pressure of 0.95.

(表面酸性基量)
繊維状活性炭素材約0.3gを純水にて洗浄し、熱風乾燥に続き12時間の真空乾燥を施した後、秤量を行った。上記サンプルを、250mlの1/10規定NaOH標準溶液に浸漬した状態で、25℃で10時間振とうした。上記溶液をガラスろ過器でろ過した後、ろ液25mlを正確に分取し、これを1/10規定HCl標準溶液にて滴定した。指示薬は、フェノールナフタレインを使用した。同様の操作を繊維状活性炭素材を入れない状態で行い、これを空試験の滴定量とした。活性炭素材重量当たりの表面全酸性基量は、数式1により求めた。
(Amount of surface acidic groups)
About 0.3 g of fibrous activated carbon material was washed with pure water, dried with hot air, followed by vacuum drying for 12 hours, and then weighed. The sample was shaken at 25 ° C. for 10 hours while immersed in 250 ml of 1/10 normal NaOH standard solution. After filtering the said solution with a glass filter, 25 ml of filtrates were fractionated correctly, and this was titrated with 1/10 N HCl standard solution. As the indicator, phenol naphthalein was used. The same operation was performed without adding the fibrous activated carbon material, and this was used as the titration amount of the blank test. The total surface acidic group amount per weight of the activated carbon material was determined by Equation 1.

Figure 2008100186
Figure 2008100186

ここでDは空試験の滴定量から繊維状活性炭素材を入れた時の滴定量を差し引いた値[ml]である。fは1/10規定のHCl標準溶液のファクターである。Wは活性炭素材の重量[g]である。   Here, D is a value [ml] obtained by subtracting the titration amount when the fibrous activated carbon material is added from the titration amount of the blank test. f is a factor of 1/10 normal HCl standard solution. W is the weight [g] of the activated carbon material.

(平均細孔径)
平均細孔径=全細孔容積×4/比表面積×10000
(Average pore diameter)
Average pore diameter = total pore volume × 4 / specific surface area × 10000

破過時間測定は、繊維状活性炭を約3kg巻きつけたエレメントを装着した吸着槽を2槽併設した吸着装置に、所定の濃度、湿度、風量、温度のキシレン、デカンの各ガスを流し、一定時間吸着し、吸着終了時に前記エレメントに水蒸気を噴出させて脱着するサイクルを繰り返し行った。条件と結果を表2に示す。   The breakthrough time is measured by flowing xylene and decane gases at a predetermined concentration, humidity, air volume, and temperature into an adsorption device equipped with two adsorption tanks equipped with an element wound with approximately 3 kg of fibrous activated carbon. The cycle of adsorbing for a time and desorbing the element by ejecting water vapor at the end of adsorption was repeated. The conditions and results are shown in Table 2.

Figure 2008100186
Figure 2008100186

表2から、フェノール系の繊維状活性炭において、キシレン、デカンの破過時間は、平均細孔径が大きく(比表面積一定であれば細孔容積が大きくなる)、表面酸性基が多い(比表面積一定であれば細孔容積が大きくなる)程長くなっている。   From Table 2, in the phenol-based fibrous activated carbon, the breakthrough time of xylene and decane has a large average pore diameter (if the specific surface area is constant, the pore volume increases), and there are many surface acidic groups (constant specific surface area). If so, the pore volume increases).

この理由は、キシレンおよびデカンは構造的に分子サイズが比較的大きいために、細孔径が小さいと細孔内での分子の拡散エネルギーが吸着エネルギーより小さくなり、結果的に脱着量が少なくなるためと考えられる。
また、表面酸性基が少ないと脱着性に有利な活性炭表面付近での化学吸着が行われないため、吸着及び脱着量が少なくなっているものと考えられる。
This is because xylene and decane are structurally relatively large in molecular size, so if the pore size is small, the diffusion energy of the molecules in the pore is smaller than the adsorption energy, resulting in a smaller desorption amount. it is conceivable that.
In addition, if the surface acidic groups are small, chemical adsorption near the activated carbon surface, which is advantageous for desorption, is not performed, and it is considered that the amount of adsorption and desorption is small.

また、ピッチ系の素材[D]の破過時間は、比表面積、平均細孔径が同等以上であってもフェノール系の素材に比べて、キシレンおよびデカン破過時間が短くなっている。   Further, the breakthrough time of the pitch-based material [D] is shorter than that of the phenol-based material even when the specific surface area and average pore diameter are equal or greater.

これは、細孔径が大きすぎると、細孔内での分子の拡散による吸着が遅くなり、結果的に吸着量が少なくなるためと考えられる。   This is presumably because if the pore diameter is too large, the adsorption due to the diffusion of molecules in the pores is delayed, resulting in a decrease in the amount of adsorption.

これらのことから、フェノール系の繊維状活性炭を空気により酸化することで比表面積を増加させずに細孔径を大きくすることにより、高分子量有機化合物の吸脱着に適している実施例の素材は、キシレンやデカン等の高分子量、高沸点化合物を効果的に吸着除去できることがわかる。   From these things, the material of the example suitable for adsorption / desorption of a high molecular weight organic compound by increasing the pore diameter without increasing the specific surface area by oxidizing the phenol-based fibrous activated carbon with air, It can be seen that high molecular weight, high boiling point compounds such as xylene and decane can be effectively adsorbed and removed.

以上説明したように、本発明の繊維状活性炭を使用した有機溶剤ガス吸着処理装置は、キシレン、デカンのような活性炭に対する脱着性の低い、高分子量、高沸点化合物の吸着処理に対して効果を発揮することができる。従って、装置がコンパクトで、しかも低コストにでき、化学工場、医薬工場などの工業プロセスから排出される高分子量、高沸点化合物の排出濃度を低減でき、環境浄化、リサイクルに貢献するものである。
As described above, the organic solvent gas adsorption treatment apparatus using the fibrous activated carbon of the present invention is effective for adsorption treatment of high molecular weight, high boiling point compounds having low detachability to activated carbon such as xylene and decane. It can be demonstrated. Therefore, the apparatus is compact and can be manufactured at low cost, and the discharge amount of high molecular weight and high boiling point compounds discharged from industrial processes such as chemical factories and pharmaceutical factories can be reduced, contributing to environmental purification and recycling.

Claims (5)

BET比表面積1000〜1800m/g、表面酸性基量が0.5meq/g以上、平均細孔直径が17〜20Åであって、前駆体がフェノール系繊維からなる繊維状活性炭を用いることを特徴とするガス吸着処理装置。 A BET specific surface area of 1000 to 1800 m 2 / g, a surface acidic group amount of 0.5 meq / g or more, an average pore diameter of 17 to 20 mm, and a precursor used as a fibrous activated carbon composed of phenolic fibers Gas adsorption treatment equipment. 吸着するガスが有機化合物であることを特徴とする請求項1に記載のガス吸着処理装置。   The gas adsorption processing apparatus according to claim 1, wherein the gas to be adsorbed is an organic compound. 有機化合物が芳香族炭化水素またはパラフィン系炭化水素である請求項2に記載のガス吸着処理装置。   The gas adsorption processing apparatus according to claim 2, wherein the organic compound is an aromatic hydrocarbon or a paraffinic hydrocarbon. 有機化合物が炭素数7〜12であり、沸点が130〜200℃であることを特徴とする請求項2又は3に記載のガス吸着処理装置。   The gas adsorption treatment apparatus according to claim 2 or 3, wherein the organic compound has 7 to 12 carbon atoms and has a boiling point of 130 to 200 ° C. 有機化合物を、吸着と水蒸気による脱着を交互に切り替えて実施し、吸着処理することを特徴とする請求項2〜4のいずれかに記載のガス吸着処理装置。
The gas adsorption treatment apparatus according to any one of claims 2 to 4, wherein the organic compound is subjected to adsorption treatment by alternately switching between adsorption and desorption with water vapor.
JP2006285966A 2006-10-20 2006-10-20 Gas adsorption apparatus Withdrawn JP2008100186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285966A JP2008100186A (en) 2006-10-20 2006-10-20 Gas adsorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285966A JP2008100186A (en) 2006-10-20 2006-10-20 Gas adsorption apparatus

Publications (1)

Publication Number Publication Date
JP2008100186A true JP2008100186A (en) 2008-05-01

Family

ID=39434914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285966A Withdrawn JP2008100186A (en) 2006-10-20 2006-10-20 Gas adsorption apparatus

Country Status (1)

Country Link
JP (1) JP2008100186A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105545A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber
JP2012020229A (en) * 2010-07-14 2012-02-02 Kao Corp Method for manufacturing activated carbon particle
CN104128064A (en) * 2014-08-07 2014-11-05 青岛三瑞节能环保技术有限公司 Process and device for treating petroleum ether-containing waste gas generated in ibuprofen synthesis process
WO2016067440A1 (en) * 2014-10-31 2016-05-06 大阪ガスケミカル株式会社 Fibrous activated carbon for solvent recovery
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
KR102613491B1 (en) * 2023-06-27 2023-12-14 주식회사 엔비컨스 Solvent Recovery System and/or Adsorber Package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251132A (en) * 2002-02-28 2003-09-09 Toyobo Co Ltd Gas treatment apparatus and treatment method used for the same
JP2005138038A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Organic compound adsorption fibrous activated carbon and exhaust gas treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251132A (en) * 2002-02-28 2003-09-09 Toyobo Co Ltd Gas treatment apparatus and treatment method used for the same
JP2005138038A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Organic compound adsorption fibrous activated carbon and exhaust gas treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105545A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Activated carbon fiber
JP2012020229A (en) * 2010-07-14 2012-02-02 Kao Corp Method for manufacturing activated carbon particle
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
CN104128064A (en) * 2014-08-07 2014-11-05 青岛三瑞节能环保技术有限公司 Process and device for treating petroleum ether-containing waste gas generated in ibuprofen synthesis process
WO2016067440A1 (en) * 2014-10-31 2016-05-06 大阪ガスケミカル株式会社 Fibrous activated carbon for solvent recovery
KR102613491B1 (en) * 2023-06-27 2023-12-14 주식회사 엔비컨스 Solvent Recovery System and/or Adsorber Package

Similar Documents

Publication Publication Date Title
JP5482133B2 (en) Activated carbon fiber
JP2008100186A (en) Gas adsorption apparatus
JPH09239265A (en) Mercury adsorbent
KR102328148B1 (en) Porous carbon, humidity-controlling adsorbent material, adsorption-type heat pump, and fuel cell
WO2012120948A1 (en) Method for removing organic solvent, and removal device
JP5327009B2 (en) Activated carbon fiber
Bai et al. Modification of textural properties of CuO-supported activated carbon fibers for SO2 adsorption based on electrical investigation
JP2008188493A (en) Water treatment apparatus
JP2013154301A (en) Adsorption sheet and adsorption element using the same
JP2011083693A (en) Material for adsorbing/decomposing volatile organic compound
JP4378612B2 (en) Fibrous activated carbon for adsorbing organic compounds and exhaust gas treatment apparatus using the same
JP5482134B2 (en) Activated carbon fiber
JP6042922B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
JP2001170482A (en) Active carbon, its manufacturing method and device for purifying treatment of water using the same
JP6332586B2 (en) Water treatment device and water treatment system
JP2967389B2 (en) Activated carbon fiber, method for producing the same, and water purifier using the activated carbon fiber as an adsorbent
JP2002211911A (en) Carbonized material containing hydroxyl group derived from hydrophilic polymer and method for producing the same
Shi et al. Adsorption behaviors of lead ion onto acetate modified activated carbon fiber
KR102545878B1 (en) activated carbon
JP3620650B2 (en) Gas processing apparatus and processing method
JP6616597B2 (en) 1,4-dioxane treatment method
JP2019108250A (en) Porous charcoal material
JPH0576753A (en) Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide
WO2016067440A1 (en) Fibrous activated carbon for solvent recovery
JP7400189B2 (en) How to regenerate adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110328