JP2009249653A - Electroplating method - Google Patents

Electroplating method Download PDF

Info

Publication number
JP2009249653A
JP2009249653A JP2008095574A JP2008095574A JP2009249653A JP 2009249653 A JP2009249653 A JP 2009249653A JP 2008095574 A JP2008095574 A JP 2008095574A JP 2008095574 A JP2008095574 A JP 2008095574A JP 2009249653 A JP2009249653 A JP 2009249653A
Authority
JP
Japan
Prior art keywords
electroplating
metal substrate
metal
copper
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008095574A
Other languages
Japanese (ja)
Other versions
JP5243832B2 (en
Inventor
Tetsuya Shimizu
哲也 清水
Nagayoshi Tajima
永善 田島
Seizo Miyata
清▲蔵▼ 宮田
Masato Sone
正人 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SES Co Ltd
Original Assignee
SES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SES Co Ltd filed Critical SES Co Ltd
Priority to JP2008095574A priority Critical patent/JP5243832B2/en
Publication of JP2009249653A publication Critical patent/JP2009249653A/en
Application granted granted Critical
Publication of JP5243832B2 publication Critical patent/JP5243832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating method which prevents the dissolution of a metal substrate and can normally electroplate even an extremely thin metal substrate, when electroplating the surface of the metal substrate. <P>SOLUTION: When electroplating the surface of the metal substrate, the electroplating method includes: employing an electroplating liquid which contains at least one of carbon dioxide and an inert gas, contains a surface active agent, and makes a metal powder with an average particle diameter larger than 100 μm in an amount exceeding the soluble amount of the metal powder added and dispersed therein; and electroplating the substrate in a supercritical state or a subcritical state. Then, the method can decrease a dissolution rate of the metal substrate because the metal exists in the electroplating liquid in a saturated or supersaturated state, and also prevents the occurrence of an induced co-deposition phenomenon to provide a smooth plated layer on the surface of the metal substrate in a short period of time. The electroplating method can be applied even to the case in which the metal substrate is a metallic thin film formed on the surface of an insulating layer provided on a substrate, and also even to the case in which the metal is copper, zinc, iron, nickel and cobalt. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属基体の表面に電気めっきする電気めっき方法に関し、特に電気めっき前の金属基体の溶解を防止して極めて薄い金属基体であっても二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させた電気めっき液で短時間で均一な被膜を電気めっきで得られるようにした電気めっき方法に関する。   The present invention relates to an electroplating method for electroplating on the surface of a metal substrate, and in particular, prevents the dissolution of the metal substrate before electroplating, so that even a very thin metal substrate has surface activity with at least one of carbon dioxide and inert gas. An electroplating solution that contains an agent and has an average particle size greater than 100 μm added and dispersed in an amount that does not dissolve the metal powder. Regarding the method.

従来から、半導体素子内の微細金属配線形成方法としては、スパッタリング法により基板上に例えばアルミニウム薄膜を形成した後、フォトレジストを塗布し、露光・現像処理によりパターニングを行い、エッチングにより所定の配線を形成することが行われていた。しかしながら、半導体回路素子の高度集積化、微細化に伴い、このような配線形成方法の適用が困難となってきたため、予め配線用の溝や孔を形成し、化学気相成長法CVD、スパッタリング、めっき法等によりアルミニウムや銅を溝や孔の中に埋め込み、その後に、化学的機械研磨CMP(Chemical Mechanical Polishing)法により表面を研磨することにより配線を形成する方法、いわゆるダマシン法が行われるようになってきた。このダマシン法において、下層の配線への接続孔も溝形成時に孔開けし、この接続孔と溝とに同時にアルミニウムや銅を充填し、配線を形成する方法はデュアルダマシン法と呼ばれている。   Conventionally, as a method for forming fine metal wiring in a semiconductor element, after forming, for example, an aluminum thin film on a substrate by sputtering, a photoresist is applied, patterning is performed by exposure / development processing, and predetermined wiring is formed by etching. It was done to form. However, with the high integration and miniaturization of semiconductor circuit elements, it has become difficult to apply such a wiring formation method. Therefore, grooves and holes for wiring are formed in advance, chemical vapor deposition CVD, sputtering, A so-called damascene method is performed in which aluminum or copper is embedded in grooves or holes by plating or the like, and then the surface is polished by chemical mechanical polishing (CMP). It has become. In this damascene method, a connection hole to a lower layer wiring is also formed at the time of forming a groove, and this connection hole and groove are filled with aluminum or copper at the same time to form a wiring, which is called a dual damascene method.

近年、半導体装置の配線形成工程としては、電解めっき法を適用したダマシン法が主流となっている(下記特許文献1、2参照)。ここで下記特許文献1に従来例として開示されているダマシン法を適用した3次元実装用半導体装置の配線の形成方法について図3及び図4を用いて説明する。この配線の形成方法は、図3Aに示すように、例えばシリコン基板等の基板70の表面にリソグラフィ及びエッチング技術により孔72を形成し、次いで、図3Bに示すように、この基板70の表面に例えばCVDによりSiOからなる絶縁膜74を形成して孔72の表面を絶縁膜74で覆い、これによって、電気が漏れないようにし、更に、図3Cに示すように、絶縁膜74の上に電解めっきの給電層としてのシード層76を例えばCVDやスパッタリングで形成する。 In recent years, as a wiring formation process of a semiconductor device, a damascene method to which an electrolytic plating method is applied has become mainstream (see Patent Documents 1 and 2 below). Here, a method of forming a wiring of a three-dimensional mounting semiconductor device to which the damascene method disclosed as a conventional example in Patent Document 1 below is described will be described with reference to FIGS. 3A, holes 72 are formed on the surface of a substrate 70 such as a silicon substrate by lithography and etching techniques as shown in FIG. 3A, and then, on the surface of the substrate 70 as shown in FIG. 3B. For example, an insulating film 74 made of SiO 2 is formed by CVD and the surface of the hole 72 is covered with the insulating film 74, thereby preventing electricity from leaking, and further, on the insulating film 74 as shown in FIG. 3C. A seed layer 76 as a power feeding layer for electrolytic plating is formed by, for example, CVD or sputtering.

そして、図3Dに示すように、基板70の表面に電解めっきによる銅めっきを施すことで、基板70の孔72の内部に銅を充填させるとともに、絶縁膜74の上に銅めっき膜78を堆積させ、その後、図3Eに示すように、CMP法により、基板70上の銅めっき膜78及び絶縁膜74を除去し、孔72内に充填させた銅めっき膜78の表面を基板70の表面と略同一平面となるようにして埋込み配線を形成している。   Then, as shown in FIG. 3D, the surface of the substrate 70 is subjected to copper plating by electrolytic plating so that the inside of the hole 72 of the substrate 70 is filled with copper, and a copper plating film 78 is deposited on the insulating film 74. Thereafter, as shown in FIG. 3E, the copper plating film 78 and the insulating film 74 on the substrate 70 are removed by CMP, and the surface of the copper plating film 78 filled in the holes 72 is replaced with the surface of the substrate 70. The embedded wiring is formed so as to be substantially in the same plane.

この下記特許文献1に開示されている埋め込み配線は、孔72の径Wが5〜20μm程度であり、深さDが50〜70μm程度のものに適用し得るとされている。そして、下記特許文献1に開示された発明では、図3Dに示した電解めっきによる銅めっき工程においては、図4Aに示すように孔72の入口近傍で銅がオーバーハングして銅配線の内部にボイド(巣)が生じるのを防止するため、図4Bに示すように電解めっき工程の途中でめっき膜の一部をエッチングする工程を追加し、更に図4C及び図4Dに示すように所望の回数電解めっき工程及びめっき膜のエッチング工程を繰り返すことにより、図4Eに示すように溝72内を銅で埋めるようにしている。   The embedded wiring disclosed in the following Patent Document 1 can be applied to a hole 72 having a diameter W of about 5 to 20 μm and a depth D of about 50 to 70 μm. In the invention disclosed in Patent Document 1 below, in the copper plating process by electrolytic plating shown in FIG. 3D, copper overhangs near the entrance of the hole 72 as shown in FIG. In order to prevent the formation of voids, a step of etching a part of the plating film is added in the middle of the electrolytic plating process as shown in FIG. 4B, and a desired number of times as shown in FIGS. 4C and 4D. By repeating the electrolytic plating step and the plating film etching step, the groove 72 is filled with copper as shown in FIG. 4E.

なお、上述のような特許文献1に開示された発明を適用しても、0.20μm程度ないしはそれ以下というような狭い溝ないし孔内に銅をボイドなく埋め込むことは困難であるため、下記特許文献2に開示された発明では、めっき液の組成を調整して溝ないし孔の底部側と入口側の金属析出速度を調整することで対処するようにしている。
特開2003− 96596号公報(特許請求の範囲、段落[0003]〜[0010]、[0011]、図4、図6、図8) 特開2005−259959号公報(特許請求の範囲、段落[0011]、[0013]、[0029]、図1、図2) 特開2003−321798号公報(段落[0001]〜[0009]) 特開2005−154816号公報(請求項15、段落[0023]〜[0036]、図1) 特開平 7−268696号公報(特許請求の範囲、段落[0021]〜[0022]、図1、図2)
Even if the invention disclosed in Patent Document 1 as described above is applied, it is difficult to bury copper without voids in narrow grooves or holes of about 0.20 μm or less. In the invention disclosed in Document 2, the composition of the plating solution is adjusted to adjust the metal deposition rate on the bottom side and the inlet side of the groove or hole.
JP 2003-96596 A (claims, paragraphs [0003] to [0010], [0011], FIG. 4, FIG. 6, FIG. 8) JP 2005-259959 A (claims, paragraphs [0011], [0013], [0029], FIG. 1 and FIG. 2) JP 2003-321798 A (paragraphs [0001] to [0009]) Japanese Patent Laying-Open No. 2005-154816 (claim 15, paragraphs [0023] to [0036], FIG. 1) Japanese Patent Laid-Open No. 7-268696 (Claims, paragraphs [0021] to [0022], FIGS. 1 and 2)

上述のように、ダマシン法ないしデュアルダマシン法においては、絶縁膜の表面にCVD法ないしスパッタリング法によって電解めっきの給電層としてのシード層、すなわち極めて薄い金属基体を形成するとともに、この金属基体の表面に同種の金属を電気めっきすることが行われている。しかしながら、我々の実験によるとこの金属基体を電気めっき液に浸漬して同種の金属電気めっきを行うと、金属基体が厚板の場合であっても、金属基体が溶解してしまうために正常な滑らかなめっき表面が得られず、めっき不良となるものが多く見出された。このような現象は、特に金属基体の溶解速度が速い超臨界流体ないしは亜臨界流体を用いた電気めっき法(上記特許文献3、4参照)の場合には顕著に表れる。   As described above, in the damascene method or dual damascene method, a seed layer as an electroplating power feeding layer, that is, a very thin metal substrate is formed on the surface of the insulating film by a CVD method or a sputtering method. The same type of metal is electroplated. However, according to our experiment, when this metal substrate is immersed in an electroplating solution and the same type of metal electroplating is performed, the metal substrate is dissolved even if the metal substrate is a thick plate. Many smooth plating surfaces were not obtained, resulting in poor plating. Such a phenomenon is prominent particularly in the case of an electroplating method using a supercritical fluid or a subcritical fluid in which the dissolution rate of the metal substrate is high (see Patent Documents 3 and 4).

発明者等は、めっき層の析出速度が速く、かつ、下地金属基体への密着性が良好な電気めっき法を得るべく種々実験を重ねた結果、予め電気めっき液中に二酸化炭素及び不活性ガスの少なくとも一方と、金属基体、電気めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であって、平均粒径が100μmより大きい金属粉末を多量に添加すると共に、亜臨界状態又は超臨界状態において電気めっきを行った。   The inventors have conducted various experiments in order to obtain an electroplating method in which the deposition rate of the plating layer is high and the adhesion to the base metal substrate is good. As a result, carbon dioxide and inert gas are previously contained in the electroplating solution. At least one of the above, a metal substrate, and at least one of the same kind of metal coating obtained by electroplating treatment, and adding a large amount of metal powder having an average particle size of more than 100 μm, a subcritical state or a supercritical state Electroplating was performed in the state.

このとき、先ず、めっき液より金属イオンが析出してめっき層を形成する。析出により減少した金属イオンは多量に添加された平均粒径が100μmより大きい金属粉末がめっき液中に溶解することによって補充され、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく誘導共析現象の発生を防止でき、均一で均質な膜厚の薄膜金属層が形成できる。なお、本明細書における誘導共析現象とは、電気めっき時に金属粉末の一部も同時にめっき被膜中に取り込まれる現象を意味する。(図5を参照。)   At this time, first, metal ions are precipitated from the plating solution to form a plating layer. Metal ions reduced by precipitation are replenished by dissolving a large amount of added metal powder with an average particle size greater than 100 μm in the plating solution, and the plating solution is in a subcritical or supercritical environment and does not generate friction. Since the viscosity is almost zero, the metal powder is not easily incorporated into the plating layer in combination with the large particle size of the metal powder, and it is possible to prevent the occurrence of inductive eutectoid phenomenon. Can be formed. In addition, the induction eutectoid phenomenon in this specification means the phenomenon in which a part of metal powder is simultaneously taken in into a plating film at the time of electroplating. (See Figure 5.)

一方、金属粉末の粒径が小さいとめっき層に吸着されたとき、めっき層内に取り込まれ易くなって、誘導共析現象を引き起こして凸部を形成してしまう。このような観点から、亜臨界状態又は超臨界状態においてめっき液中に多量に添加する金属粒子の平均粒径を100μmより大きくすることによって、金属イオンの補充も十分になされ、誘導共析現象を発生させることなく金属粉末粒子による凸部も形成されない均一で均質な膜厚の薄膜金属層が形成できるということを見出し、本発明を完成するに至ったのである。   On the other hand, if the particle size of the metal powder is small, when it is adsorbed to the plating layer, it is easily taken into the plating layer, causing an induction eutectoid phenomenon and forming a convex portion. From such a viewpoint, by increasing the average particle size of the metal particles added in a large amount in the plating solution in the subcritical state or the supercritical state to be larger than 100 μm, the metal ions can be sufficiently replenished, and the induced eutectoid phenomenon is caused. The inventors have found that a thin metal layer having a uniform and uniform film thickness can be formed without generating convex portions due to metal powder particles without generating the metal powder particles, and the present invention has been completed.

すなわち、本発明は、電気めっきする前の金属基体の溶解を防止し、特に極めて薄い金属基体であっても電気めっきが行え、また、誘導共析現象による凸部も形成されない均一で均質な膜厚のめっき層被膜を電気めっきで得られるようにした電気めっき方法を提供することを目的とする。   That is, the present invention prevents the dissolution of the metal substrate before electroplating, and can perform electroplating even on an extremely thin metal substrate, and does not form a convex portion due to induction eutectoid phenomenon. An object of the present invention is to provide an electroplating method in which a thick plating layer film can be obtained by electroplating.

なお、上記特許文献5には、ニッケル系めっき液中のニッケル濃度を調整する目的で溶解槽内に粒状ないしは粉状ニッケルを直接添加するようになしたものが開示されているが、電気めっき槽についての記載はなく、得られたニッケル系めっき液を別途電気めっき槽に供給して電気めっきを行っていることは明らかである。   In addition, Patent Document 5 discloses a method in which granular or powdery nickel is directly added to the dissolution tank for the purpose of adjusting the nickel concentration in the nickel-based plating solution. There is no description about, and it is clear that the obtained nickel-based plating solution is separately supplied to an electroplating tank and electroplating is performed.

上記目的を達成するため、本発明の電気めっき方法は、電気めっき液として二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものを用い、超臨界状態又は亜臨界状態で電気めっきを行うことを特徴とする。   In order to achieve the above object, the electroplating method of the present invention comprises a metal powder that dissolves a metal powder containing at least one of carbon dioxide and an inert gas as an electroplating solution and a surfactant and having an average particle size of more than 100 μm. The electroplating is performed in a supercritical state or a subcritical state using a dispersion added and dispersed in an amount exceeding the amount to be eliminated.

本発明の電気めっき方法によれば、電気めっき液が二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させ、超臨界状態又は亜臨界状態で電気めっきを行うため、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく誘導共析現象の発生を防止でき、均一で均質な膜厚の被膜を得ることができる。   According to the electroplating method of the present invention, the electroplating solution contains at least one of carbon dioxide and an inert gas and a surfactant, and a metal powder having an average particle size larger than 100 μm is added in an amount that does not dissolve the metal powder. Since the electroplating is performed in a supercritical or subcritical state, the plating solution is in a subcritical or supercritical environment, friction does not occur, and the viscosity is almost zero. In addition to having a large particle size, it is difficult to be incorporated into the plating layer and the occurrence of induction eutectoid phenomenon can be prevented, and a film having a uniform and uniform film thickness can be obtained.

また、本発明は、前記電気めっき方法において、前記金属粉末は、金属基体、電気めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であることを特徴とする。   In the electroplating method, the present invention is characterized in that the metal powder is the same type of metal as at least one of a metal substrate and a metal coating obtained by electroplating.

本発明の電気めっき方法によれば、電気めっき液中に必要とする金属イオンは金属粉末から十分補給されるので所望のめっき層が得られるようになる。   According to the electroplating method of the present invention, the metal ions required in the electroplating solution are sufficiently supplied from the metal powder, so that a desired plating layer can be obtained.

また、本発明は、前記電気めっき方法において、前記金属基体を前記電気めっき液に浸漬する前から、前記金属基体が溶解しない電圧を印加しておくことを特徴とする。   In the electroplating method, the present invention is characterized in that a voltage at which the metal substrate does not dissolve is applied before the metal substrate is immersed in the electroplating solution.

本発明の電気めっき方法によれば、金属基体を前記電気めっき液に浸漬する前から、前記金属基体が溶解しない電圧が印加されているため、金属基体を電気めっき液に浸漬する前に電気めっき液が十分安定した状態となっており、金属基体をめっき液に浸漬しても金属基体が溶解することはなく、特に微細配線形成用に最適となる。   According to the electroplating method of the present invention, since the voltage at which the metal substrate does not dissolve is applied before the metal substrate is immersed in the electroplating solution, the electroplating is performed before the metal substrate is immersed in the electroplating solution. The solution is in a sufficiently stable state, and even when the metal substrate is immersed in the plating solution, the metal substrate is not dissolved, and is particularly suitable for forming fine wiring.

また、本発明は、前記電気めっき方法において、前記金属基体が溶解しない電圧は電気めっき時の電圧であることを特徴とする。   In the electroplating method, the present invention is characterized in that the voltage at which the metal substrate does not melt is a voltage at the time of electroplating.

本発明の電気めっき方法によれば、金属基体を電気めっき液中に浸漬する前に電気めっき時の電圧が印加されているため、金属基体を電気めっき液に浸漬すると直ちに金属基体表面に電気めっきが行われるので、短時間で所定の電気めっき層を得ることができるようになる。   According to the electroplating method of the present invention, since the voltage during electroplating is applied before the metal substrate is immersed in the electroplating solution, the surface of the metal substrate is electroplated as soon as the metal substrate is immersed in the electroplating solution. Thus, a predetermined electroplating layer can be obtained in a short time.

また、本発明は、特にダマシン法ないしデュアルダマシン法等による高度集積化、微細化された半導体回路素子の微細配線形成用として適用した場合に下記のような優れた効果を奏する。   In addition, the present invention has the following excellent effects particularly when applied for forming fine wiring of highly integrated and miniaturized semiconductor circuit elements by the damascene method or dual damascene method.

すなわち、半導体回路素子の微細配線を形成するには、図3に示すように半導体基板の基体上に配線となる孔を設け、その上にシード層を形成し、シード層を覆うように金属めっきを施した後、平坦面を研磨することにより、微細配線を露出させるのが一般的な方法である。しかしながら、配線を微細にしようとすると、前記孔は微小な大きさになり、金属粒子により孔が塞がれてしまうことで、微細配線に「す」とよばれる空洞が生じてしまう。(図4C参照。)   That is, in order to form a fine wiring of a semiconductor circuit element, a hole to be a wiring is provided on a base of a semiconductor substrate as shown in FIG. 3, a seed layer is formed thereon, and metal plating is performed so as to cover the seed layer. After performing the above, it is a general method to expose the fine wiring by polishing the flat surface. However, if the wiring is made finer, the hole becomes very small, and the hole is blocked by the metal particles, so that a cavity called “su” is generated in the fine wiring. (See FIG. 4C.)

しかしながら、本発明は、電気めっき液として二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものを用い、超臨界状態又は亜臨界状態で電気めっきを行うようにしているため、電気めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく、微細配線を形成するための微細な孔に電気めっき液が十分浸透して電気めっきを行うことができ、「す」の無い微細配線を形成することができる。したがって、本発明は、特にダマシン法ないしデュアルダマシン法等による高度集積化、微細化された半導体回路素子の微細配線形成用にも有効に適用することができるようになる。   However, in the present invention, the electroplating solution contains at least one of carbon dioxide and inert gas and a surfactant, and a metal powder having an average particle size of more than 100 μm is added and dispersed in an amount that does not dissolve the metal powder. Since the electroplating is performed in a supercritical state or subcritical state, the electroplating solution is in a subcritical or supercritical environment and no friction occurs and the viscosity is almost zero. Along with the large particle size of the metal powder, the metal powder is difficult to be taken into the plating layer, and the electroplating solution can sufficiently penetrate into the fine holes for forming the fine wiring, and the electroplating can be performed. It is possible to form a fine wiring having no "". Therefore, the present invention can be effectively applied to the formation of fine wiring of highly integrated and miniaturized semiconductor circuit elements, particularly by the damascene method or dual damascene method.

以下、本発明を実施するための最良の形態を、各種実験例及び図面を用いて詳細に説明するが、以下に述べる各種実験例は、本発明をここに記載したものに限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。なお、図1は各実験例で使用した電気めっき装置の概略図であり、図2は電気銅試料からの銅溶解量と経過時間との間の関係を示す図である。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to various experimental examples and drawings, but the various experimental examples described below are intended to limit the present invention to those described herein. However, the present invention can be equally applied to various modifications without departing from the technical idea shown in the claims. FIG. 1 is a schematic view of an electroplating apparatus used in each experimental example, and FIG. 2 is a diagram showing a relationship between the amount of copper dissolved from the electrolytic copper sample and the elapsed time.

[電気めっき液]
以下に述べる各種実験例において使用した銅用の電気めっき液の組成、実験系の構成は次のとおりである。
電気めっき液組成
硫酸銅(CuSO・5HO) 70g/L
硫酸(HSO) 180g/L
塩素イオン(Cl) 50mg/L
非イオン界面活性剤 10ml/L
なお、以下においては上記組成の銅用電気めっき液を「ハイスロー浴」と称する。
[Electroplating solution]
The composition of the electroplating solution for copper used in the various experimental examples described below and the configuration of the experimental system are as follows.
Electroplating solution composition Copper sulfate (CuSO 4 · 5H 2 O) 70g / L
Sulfuric acid (H 2 SO 4 ) 180 g / L
Chloride ion (Cl ) 50 mg / L
Nonionic surfactant 10ml / L
Hereinafter, the copper electroplating solution having the above composition is referred to as a “high throw bath”.

[電気めっき装置]
電気めっき装置10としては、図1に示したように、超臨界流体ないし亜臨界流体を用いて電気めっきを行うことができるようにするため、耐圧電気めっき槽11を用いた。この耐圧電気めっき槽11には、必要に応じて二酸化炭素ボンベ12からの二酸化炭素を高圧ポンプユニット13及びバルブ14を経て上部の蓋15に設けられた入口16に供給することができ、また、この二酸化炭素を上部の蓋15に設けられた出口17から圧力調整ユニット18を経て周囲大気中に排出することができるようになっている。
[Electroplating equipment]
As the electroplating apparatus 10, as shown in FIG. 1, a pressure-resistant electroplating tank 11 is used so that electroplating can be performed using a supercritical fluid or a subcritical fluid. In this pressure-resistant electroplating tank 11, carbon dioxide from a carbon dioxide cylinder 12 can be supplied to an inlet 16 provided in an upper lid 15 via a high-pressure pump unit 13 and a valve 14 as necessary. The carbon dioxide can be discharged from the outlet 17 provided in the upper lid 15 through the pressure adjustment unit 18 into the surrounding atmosphere.

そして、耐圧電気めっき槽11は蓋15を外すことによって所定量の電気めっき液19を注入することができるとともに、耐圧電気めっき槽11内には撹拌手段としてのスターラー20が挿入されており、さらに、この耐圧電気めっき槽11はオーブン21内に載置されて内部に挿入された電気めっき液19を所定の恒温に維持することができるようになっている。   The pressure-resistant electroplating tank 11 can inject a predetermined amount of electroplating solution 19 by removing the lid 15, and a stirrer 20 as a stirring means is inserted into the pressure-resistant electroplating tank 11. The pressure-resistant electroplating tank 11 can maintain the electroplating solution 19 placed in the oven 21 and inserted therein at a predetermined constant temperature.

さらに、耐圧電気めっき槽11の上部から金属基体試料22及び対極23が電気的に絶縁されて配置されており、また、金属基体試料22は直流電源24の−端子に電気的に接続され、対極23は直流電源24の+端子に電気的に接続されている。なお、以下における実験例、実施例等においては、金属基体試料22として銅板ないしはTaN膜表面に形成された銅薄膜を使用し、対極23としては市販の含燐銅を使用した。   Further, the metal substrate sample 22 and the counter electrode 23 are disposed from the upper part of the withstand voltage electroplating tank 11 so as to be electrically insulated, and the metal substrate sample 22 is electrically connected to the negative terminal of the DC power source 24 to provide a counter electrode. Reference numeral 23 is electrically connected to the + terminal of the DC power supply 24. In the following experimental examples and examples, a copper thin film formed on the surface of the copper plate or TaN film was used as the metal substrate sample 22, and commercially available phosphorous copper was used as the counter electrode 23.

この電気めっき装置10においては、超臨界状態ないしは亜臨界状態で実験を行う場合には、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14、圧力調整ユニット18を操作して耐圧電気めっき槽11内を圧力8〜10MPaに維持するとともに、オーブン21を操作することにより電気めっき液19を40℃に加熱し、耐圧電気めっき槽11内を超臨界状態ないしは亜臨界状態とした。また、1気圧の条件下で実験を行う場合には、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を操作することにより耐圧電気めっき槽11内を大気圧下に開放し、オーブン21を操作することにより電気めっき液19を所定温度に加熱した。   In the electroplating apparatus 10, when an experiment is performed in a supercritical state or a subcritical state, the carbon dioxide cylinder 12, the high pressure pump unit 13, the valve 14, and the pressure adjustment unit 18 are operated to operate in the pressure resistant electroplating tank 11. Was maintained at a pressure of 8 to 10 MPa, and the electroplating solution 19 was heated to 40 ° C. by operating the oven 21 to bring the pressure-resistant electroplating tank 11 into a supercritical state or a subcritical state. When the experiment is performed under the condition of 1 atm, the inside of the pressure-resistant electroplating tank 11 is opened to the atmospheric pressure by operating the carbon dioxide cylinder 12, the high-pressure pump unit 13, the valve 14 and the pressure adjusting unit 18. The electroplating solution 19 was heated to a predetermined temperature by operating the oven 21.

[実験例1〜3]
実験例1〜3では、上記のハイスロー浴を使用し、超臨界状態で電気めっきを行いそれぞれの実験例における金属基体の溶解性について調査した。金属基体試料22としてはスパッタリング法によりTaN膜上に厚さ65nmの銅薄膜を形成したものを用いた。この金属基体試料22を酸洗前処理後に、対極23とともに上記耐圧めっき槽11内の電気めっき液19の上部に、電気めっき液19に触れないように配置し、金属基体試料22と対極23間に印加開始時期を実験例毎に変化させて電圧を印加した。なお、電気めっき液19の使用量は30mlとした。
[Experimental Examples 1-3]
In Experimental Examples 1 to 3, the above-described high-throw bath was used, and electroplating was performed in a supercritical state, and the solubility of the metal substrate in each experimental example was investigated. As the metal substrate sample 22, a copper thin film having a thickness of 65 nm formed on a TaN film by a sputtering method was used. After this metal substrate sample 22 is subjected to pre-washing treatment, it is placed on the upper part of the electroplating solution 19 in the pressure-resistant plating tank 11 together with the counter electrode 23 so as not to touch the electroplating solution 19, and between the metal substrate sample 22 and the counter electrode 23. A voltage was applied by changing the application start time for each experimental example. The amount of electroplating solution 19 used was 30 ml.

この状態で、耐圧電気めっき槽11内の電気めっき液19の温度を40℃に加熱し、スターラー20で電気めっき液19を撹拌せずに、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を操作することによって耐圧電気めっき槽11内の圧力が10MPaとなるように加圧した。そして、耐圧電気めっき槽11内の圧力が10MPaとなると同時にスターラー20で電気めっき液19を撹拌した。なお、金属基体試料22と対極23間には、実施例1では加圧開始後5分経過してから、実施例2では加圧開始後直ちに、実施例3では昇圧開始と同時にそれぞれ電圧の印加を開始した。   In this state, the temperature of the electroplating solution 19 in the pressure-resistant electroplating tank 11 is heated to 40 ° C., and the electroplating solution 19 is not stirred by the stirrer 20, and the carbon dioxide cylinder 12, the high-pressure pump unit 13, the valve 14, By operating the pressure adjusting unit 18, the pressure in the pressure-resistant electroplating tank 11 was increased to 10 MPa. And the electroplating liquid 19 was stirred with the stirrer 20 simultaneously with the pressure in the pressure-resistant electroplating tank 11 becoming 10 MPa. It should be noted that between the metal substrate sample 22 and the counter electrode 23, after 5 minutes have elapsed from the start of pressurization in the first embodiment, immediately after the start of pressurization in the second embodiment, and simultaneously with the start of pressurization in the third embodiment. Started.

そうすると、電気めっき液19の温度が40℃の場合の二酸化炭素の臨界圧力は約7.38MPaであるから、上記の温度及び圧力条件下では耐圧電気めっき槽11内は実質的に超臨界状態ないし亜臨界状態となっており、電気めっき液19中に含有されている界面活性剤のために電気めっき液19は実質的に摩擦が発生せず粘度もほぼゼロに近い状態となって耐圧電気めっき槽11内に充満して金属基体試料22及び対極23と十分に接触する状態となる。   Then, since the critical pressure of carbon dioxide when the temperature of the electroplating solution 19 is 40 ° C. is about 7.38 MPa, the inside of the pressure-resistant electroplating tank 11 is substantially in a supercritical state or under the above temperature and pressure conditions. Due to the surfactant contained in the electroplating solution 19, the electroplating solution 19 is substantially free of friction and has a viscosity of almost zero because of the surfactant contained in the electroplating solution 19. The tank 11 is filled and the metal substrate sample 22 and the counter electrode 23 are sufficiently in contact with each other.

それぞれの実験例におけるめっき状態の結果は下記表1に記載したとおりであった。

Figure 2009249653
The results of the plating state in each experimental example were as described in Table 1 below.
Figure 2009249653

すなわち、実験例1の条件の場合、銅薄膜からなる金属基体試料22はめっき電圧を印加する前に全て溶解してしまったため、銅めっき被膜は得られなかった。実験例2の条件の場合、銅薄膜からなる金属基体試料22はかなりの部分が溶解したが、部分的に残っていた部分が電気めっきされていた。また、実験例3の条件の場合はめっき被膜は得られたが均一ではなく、まだら状であった。   That is, in the case of the condition of Experimental Example 1, since the metal substrate sample 22 made of a copper thin film was completely dissolved before applying the plating voltage, a copper plating film could not be obtained. In the case of the condition of Experimental Example 2, a considerable portion of the metal base sample 22 made of a copper thin film was dissolved, but the remaining portion was electroplated. Moreover, in the case of the conditions of Experimental Example 3, a plating film was obtained, but it was not uniform and was mottled.

以上のことからすると、臨界状態ないし亜臨界状態で銅からなる金属基体に銅を電気めっきするには、一般的に使用されているハイスロー浴を使用すると電気めっき液と銅薄膜からなる金属基体との間の反応が早いために、良好な電気めっき被膜が得られないことが分かる。   From the above, in order to electroplate copper on a metal substrate made of copper in a critical state or a subcritical state, when a commonly used high-throw bath is used, an electroplating solution and a metal substrate made of a copper thin film It can be seen that a good electroplated film cannot be obtained due to the rapid reaction between the two.

[実験例4]
そこで、実験例4として上記のハイスロー浴を用い、加圧条件として超臨界状態又は亜臨界状態となっていない条件下でのめっき状態を調査した。すなわち、耐圧電気めっき槽11内に電気めっき液としてハイスロー浴を40ml注入し、耐圧電気めっき槽11内の電気めっき液19の温度を40℃に加熱した。次いで、上記と同様の銅薄膜からなる金属基体試料22を電気めっき液19に浸漬されるように配置した。
[Experimental Example 4]
Therefore, the above-described high-throw bath was used as Experimental Example 4, and the plating state under a condition that was not in a supercritical state or a subcritical state as a pressurizing condition was investigated. That is, 40 ml of a high-throw bath was injected as an electroplating solution into the pressure-resistant electroplating bath 11, and the temperature of the electroplating solution 19 in the pressure-resistant electroplating bath 11 was heated to 40 ° C. Next, a metal substrate sample 22 made of the same copper thin film as described above was placed so as to be immersed in the electroplating solution 19.

そして、この状態で、スターラー20で電気めっき液19を撹拌せずに、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を操作することによって耐圧電気めっき槽11内の圧力が5MPaとなるように加圧した。そして、耐圧電気めっき槽11内の圧力が5MPaとなると同時にスターラー20で電気めっき液19を撹拌するとともに、直流電源24から金属基体試料22及び対極23間に電気めっき用電圧を印加した。   In this state, by operating the carbon dioxide cylinder 12, the high pressure pump unit 13, the valve 14, and the pressure adjustment unit 18 without stirring the electroplating solution 19 with the stirrer 20, the pressure in the withstand pressure electroplating tank 11 is increased. Pressurization was performed to 5 MPa. At the same time as the pressure in the pressure-resistant electroplating tank 11 became 5 MPa, the electroplating solution 19 was stirred with the stirrer 20 and a voltage for electroplating was applied from the DC power source 24 to the metal substrate sample 22 and the counter electrode 23.

この5MPaという加圧状態は、40℃では臨界条件に達しないため、ハイスロー浴は液状で存在している。この場合では、直流電圧印加前に銅薄膜からなる金属基体の大部分は溶解してしまい、一部にのみ電気めっき被膜が得られた。   Since this pressurized state of 5 MPa does not reach the critical condition at 40 ° C., the high-throw bath exists in a liquid state. In this case, most of the metal substrate made of the copper thin film was dissolved before the DC voltage was applied, and an electroplated film was obtained only on a part thereof.

[実験例5]
上記実験例1〜4の結果に鑑み、銅からなる金属基体は銅用の電気めっき液であるハイスロー浴への溶解速度が速いことから、電気めっき液の組成について検討を加えた。すなわち、上述したハイスロー浴には安定化のために硫酸及び塩素イオンが添加されており、これが金属基体の溶解速度の上昇につながっていた。そこで、実験例5では銅からなる金属基体の溶解速度を遅くすることを目的として、硫酸及び塩素イオンを除外した下記のような組成の電気めっき液を用いて実験を行った。なお、界面活性剤は上述のものと同じものである。
[Experimental Example 5]
In view of the results of Experimental Examples 1 to 4, since the metal base made of copper has a high dissolution rate in a high-throw bath that is an electroplating solution for copper, the composition of the electroplating solution was examined. That is, sulfuric acid and chlorine ions were added to the above-described high-throw bath for stabilization, which led to an increase in the dissolution rate of the metal substrate. Therefore, in Experimental Example 5, an experiment was performed using an electroplating solution having the following composition excluding sulfuric acid and chlorine ions for the purpose of slowing the dissolution rate of the metal substrate made of copper. The surfactant is the same as described above.

[電気めっき液組成]
電気めっき液は、「ハイスロー浴」を用いた。
[電気めっき装置]
図1に示した電気めっき装置10を使用し、前記組成の電気めっき液を耐圧電気めっき槽11内に40ml注入し、耐圧電気めっき槽11内の電気めっき液の温度を40℃に加熱した。次いで、実験例1〜4で使用したものと同様の銅薄膜からなる金属基体試料22を電気めっき液19に浸漬されるように配置した。この状態で、特に加圧せずに大気圧下においてスターラー20で電気めっき液19を撹拌するとともに、直流電源24から金属基体試料22及び対極23間に電気めっき用電圧を印加した。
[Electroplating solution composition]
As the electroplating solution, a “high throw bath” was used.
[Electroplating equipment]
Using the electroplating apparatus 10 shown in FIG. 1, 40 ml of the electroplating solution having the above composition was injected into the pressure-resistant electroplating bath 11, and the temperature of the electroplating solution in the pressure-resistant electroplating bath 11 was heated to 40 ° C. Next, a metal substrate sample 22 made of the same copper thin film as used in Experimental Examples 1 to 4 was placed so as to be immersed in the electroplating solution 19. In this state, the electroplating solution 19 was stirred with the stirrer 20 under atmospheric pressure without any particular pressure, and a voltage for electroplating was applied from the DC power source 24 to the metal substrate sample 22 and the counter electrode 23.

この実験例5においては、一部に金属基体試料22から銅薄膜の溶出が生じているが、部分的にメッキ被膜が得られた。このように、従来の銅用電気めっき液から硫酸や塩素イオンを除外しても銅薄膜の溶出が生じ、正常に電気めっきすることができないことが確認された。   In Experimental Example 5, the elution of the copper thin film partially occurred from the metal substrate sample 22, but a plating film was partially obtained. Thus, it was confirmed that even if sulfuric acid or chlorine ions were excluded from the conventional electroplating solution for copper, elution of the copper thin film occurred and electroplating could not be performed normally.

[実験例6]
実験例1〜5の結果からして、銅からなる金属基体に銅の電気めっきを行うためには電気めっき液への銅の溶解速度を遅くする必要があることが分かる。そこで、実験例6としては銅用電気めっき液への銅溶解速度を調べた。まず、2cm×2cm×5mmの電気銅試料を用意し、実験例1〜4で使用されたハイスロー浴からなる銅用電気めっき液を耐圧電気めっき槽11内に40ml注入し、この電気銅試料を銅用電気めっき液19内に浸漬し、1気圧60℃における溶解速度を調べた。電気銅試料からの銅の溶解量は重量測定により行った。銅溶解量と経過時間との関係を図2に示す。
[Experimental Example 6]
From the results of Experimental Examples 1 to 5, it can be seen that in order to perform copper electroplating on a copper metal substrate, it is necessary to slow the dissolution rate of copper in the electroplating solution. Therefore, as Experimental Example 6, the copper dissolution rate in the electroplating solution for copper was examined. First, an electrolytic copper sample of 2 cm × 2 cm × 5 mm was prepared, and 40 ml of a copper electroplating solution composed of the high-throw bath used in Experimental Examples 1 to 4 was injected into the pressure-resistant electroplating tank 11, and this electrolytic copper sample was It was immersed in the electroplating solution 19 for copper, and the dissolution rate at 1 atm 60 ° C. was examined. The amount of copper dissolved from the electrolytic copper sample was measured gravimetrically. The relationship between the amount of copper dissolved and the elapsed time is shown in FIG.

図2に示した結果から、31時間経過してもハイスロー浴中の銅濃度は飽和濃度にまでに達していないことから、バルクの銅を用いた場合には銅用電気めっき液中の銅濃度を飽和状態とするには相当の時間が必要であることが分かった。   From the results shown in FIG. 2, the copper concentration in the high-throw bath does not reach the saturation concentration even after 31 hours. When bulk copper is used, the copper concentration in the electroplating solution for copper It has been found that it takes considerable time to saturate.

そこで、さらに実験例1〜4で使用された銅用電気めっき液に対して銅粉末を添加した場合の溶解性を調べた。銅粉末として200メッシュ通過粒分を用い、前記のハイスロー浴500mlに対して撹拌しながら0.3g添加したところ、銅粉末が分散状態で存在している電気めっき液が得られた。このように、従来から使用されている銅用の電気めっき液に対して銅を飽和させるには粉末状態の銅を添加することが好ましいことが分かった。   Therefore, the solubility when copper powder was added to the electroplating solution for copper used in Experimental Examples 1 to 4 was examined. When 200 g of particles passing through 200 mesh were used as copper powder and 0.3 g was added to 500 ml of the high-throw bath with stirring, an electroplating solution in which the copper powder was present in a dispersed state was obtained. Thus, it turned out that it is preferable to add copper of a powder state, in order to saturate copper with respect to the electroplating solution for copper used conventionally.

[実験例7〜10]
次に、各種の銅用電気めっき液に対して上記実験例1〜5で用いたのと同様の金属基体試料を大気圧下25℃で浸漬した場合の溶解性を調査した。銅用電気めっき液としては実験例7〜実験例10の4種類を用いた。電気めっき液として、実験例7ではハイスロー浴のみ、実験例8ではハイスロー浴に電気銅を添加したもの、実験例9ではハイスロー浴に銅粉末を添加したもの、実験例10は、実験例9の電気めっき液に界面活性剤を添加したものをそれぞれ使用した。なお、実験例9及び10における銅粉末の添加割合は、実験例6に示したものと同様に、200メッシュ通過粒分の銅粉末をハイスロー浴500mlに対して撹拌しながら0.3g添加したものである。また、実験例10で使用した界面活性剤は、ハイスロー浴中に添加されているものと同種のものであり、耐圧電気めっき槽11内に直接追加添加したものである。
[Experimental Examples 7 to 10]
Next, the solubility was examined when the same metal substrate sample as used in Experimental Examples 1 to 5 was immersed in various electroplating solutions for copper at 25 ° C. under atmospheric pressure. Four types of experimental examples 7 to 10 were used as the electroplating solution for copper. As an electroplating solution, only the high-throw bath is used in Experimental Example 7, only copper powder is added to the high-throw bath in Experimental Example 8, copper powder is added to the high-throw bath in Experimental Example 9, and Experimental Example 10 is the same as that of Experimental Example 9. Each obtained by adding a surfactant to the electroplating solution was used. In addition, the addition ratio of the copper powder in Experimental Examples 9 and 10 was the same as that shown in Experimental Example 6 except that 0.3 g of copper powder for 200 mesh passing grains was added to 500 ml of the high-throw bath with stirring. It is. Moreover, the surfactant used in Experimental Example 10 is the same type as that added in the high-throw bath, and is additionally added directly into the pressure-resistant electroplating tank 11.

上述の4種類の銅用電気めっき液をそれぞれ耐圧電気めっき槽11内に40ml注入し、金属基体試料22をこの4種類の銅用電気めっき液に大気圧下25℃で浸漬して3分、5分、10分、12分及び15分経過後のそれぞれの表面状態を調査した。結果をまとめて表2に示した。なお、表2に示した結果は、銅表面に溶解が認められなかったものを○、銅表面に溶解状態が認められたものを△、銅が全て溶解したものを×で表したものである。

Figure 2009249653
40 ml of each of the above four types of copper electroplating solutions is injected into the pressure-resistant electroplating tank 11, and the metal substrate sample 22 is immersed in the four types of copper electroplating solutions at 25 ° C. under atmospheric pressure for 3 minutes. Each surface state after 5 minutes, 10 minutes, 12 minutes and 15 minutes was investigated. The results are summarized in Table 2. In addition, the result shown in Table 2 is represented by ◯ when the dissolution is not observed on the copper surface, Δ when the dissolution state is recognized on the copper surface, and × when the copper is completely dissolved. .
Figure 2009249653

表2に示した結果から、ハイスロー浴に対して予めバルクの電気銅を溶解させても銅からなる金属基体の溶出を抑止できなかったが、銅金属粉末を添加して銅金属粉末が粉末状態で分散している状態のものでは金属基体の溶出を抑止することができ、さらに、界面活性剤を多めに添加するとさらに金属基体の溶出を抑止することができることが確認できた。   From the results shown in Table 2, it was not possible to suppress the elution of the metal base made of copper even if the bulk electrolytic copper was previously dissolved in the high-throw bath, but the copper metal powder was in a powder state by adding the copper metal powder. It was confirmed that in the dispersed state, the elution of the metal substrate can be suppressed, and further, when a large amount of surfactant is added, the elution of the metal substrate can be further suppressed.

[実験例11〜13]
表2に示した結果から、銅金属粉末を添加して銅金属粉末が粉末状態で分散している状態の銅めっき液を使用するとともに、界面活性剤を多めに添加するとさらに銅からなる金属基体の溶出を抑止することができることが明らかになったので、実験例10の電気めっき液を使用し、上記実験例1〜5で用いたのと同様の銅の金属基体試料22に対して金属基体試料22と対極23との間に印加する電圧を変化させた場合の金属基体からの銅の溶出状態の変化を調べた。
[Experimental Examples 11 to 13]
From the results shown in Table 2, using a copper plating solution in which a copper metal powder is added and the copper metal powder is dispersed in a powder state, a metal substrate made of copper is further added when a large amount of surfactant is added. As a result, it was clarified that the elution of the metal substrate can be suppressed. Therefore, the electroplating solution of Experimental Example 10 was used, and the metal substrate was compared with the same copper metal substrate sample 22 used in Experimental Examples 1 to 5 above. The change in the elution state of copper from the metal substrate when the voltage applied between the sample 22 and the counter electrode 23 was changed was examined.

すなわち、実験例11は電圧を印加せず、実験例12は1Vの電圧を印加し、実験例13は5Vの電圧を印加し、また、それぞれの電気めっき液の使用量は40ml、電気めっき液の温度は40℃とし、全て撹拌状態で実験を行った。なお、この1Vの電圧は理論的には銅めっきが進行せず、かつ銅が溶解しないと考えられている電圧である。   That is, in Experimental Example 11, no voltage was applied, in Experimental Example 12, a voltage of 1 V was applied, in Experimental Example 13, a voltage of 5 V was applied, and the amount of each electroplating solution used was 40 ml. The temperature was set to 40 ° C., and all the experiments were conducted with stirring. The voltage of 1V is theoretically a voltage at which copper plating does not proceed and copper is not dissolved.

結果をまとめて表3に示した。なお、表3においては、目視状態において正常な銅めっき被膜が形成されているものを○、めっき被膜が形成されているがムラがあるものを△、全て溶解してしまったものを×で示した。

Figure 2009249653
The results are summarized in Table 3. In Table 3, the case where a normal copper plating film is formed in a visual state is indicated by ○, the case where a plating film is formed but uneven is indicated by Δ, and the case where all are dissolved is indicated by ×. It was.
Figure 2009249653

表3に示した結果から、ハイスロー浴に銅粉末を添加して銅粉末が浮遊状態となるようにし、かつ、界面活性剤を多く添加した電気めっき浴を用いて銅からなる金属基体に銅めっきを行うには、金属基体を電気めっき液に浸漬する前から電気めっきに必要な電圧(ここでは5V)を印加しておいた方が好ましいことが分かる。   From the results shown in Table 3, copper powder was added to a high-throw bath so that the copper powder was in a floating state, and a copper plating was applied to a metal substrate made of copper using an electroplating bath to which a large amount of surfactant was added. It can be seen that it is preferable to apply a voltage (here, 5 V) necessary for electroplating before immersing the metal substrate in the electroplating solution.

[実験例14]
実験例14では、表3に示された最も良好な結果が得られた実験例13の条件を採用して、図1に示した電気めっき装置10を使用し、超臨界条件で電気めっきを行った。銅の電気めっき液としては、実験例13のものと同様に、ハイスロー浴に銅粉末を添加して銅粉末が浮遊状態となるようにしたものを30ml耐圧電気めっき層11内に注入し、さらに非イオン界面活性剤を0.3ml追加添加した。
[Experimental Example 14]
In Experimental Example 14, the conditions of Experimental Example 13 with the best results shown in Table 3 were adopted, and the electroplating apparatus 10 shown in FIG. 1 was used to perform electroplating under supercritical conditions. It was. As the copper electroplating solution, as in Experimental Example 13, a copper powder added to a high-throw bath so that the copper powder is in a floating state is injected into the 30 ml pressure-resistant electroplating layer 11, and An additional 0.3 ml of nonionic surfactant was added.

次いで、金属基体試料22としてはスパッタリング法により2cm×2cmのTaN基板上に厚さ65nm銅薄膜を形成したものを用いた。この金属基体試料22を酸洗前処理後に、対極23とともに上記耐圧電気めっき槽11内の電気めっき液19の上部に、電気めっき液19に触れないように配置した。なお、電気めっき液19の使用量は30mlとした。次いで、実験例1〜5で使用したものと同様の金属基体試料22を酸洗前処理後に、対極23とともに上記耐圧めっき槽11内の電気めっき液19の上部に、電気めっき液19に触れないように配置した。   Next, as the metal substrate sample 22, a 65 nm thick copper thin film formed on a 2 cm × 2 cm TaN substrate by sputtering was used. The metal substrate sample 22 was placed on the upper part of the electroplating solution 19 in the pressure-resistant electroplating bath 11 together with the counter electrode 23 after the pickling pretreatment so as not to touch the electroplating solution 19. The amount of electroplating solution 19 used was 30 ml. Subsequently, after the same metal substrate sample 22 as used in Experimental Examples 1 to 5 is subjected to the pre-washing treatment, the electroplating solution 19 is not touched on the electroplating solution 19 in the pressure-resistant plating tank 11 together with the counter electrode 23. Arranged.

この状態で、耐圧電気めっき槽11内の電気めっき液の温度を40℃に加熱し、金属基体試料22と対極23との間に5Vの電圧を印加し、最初にスターラー20で電気めっき液19を撹拌せずに、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を操作することによって耐圧電気めっき槽11内の圧力が10MPaとなるように加圧した。そして、耐圧電気めっき槽11内の圧力が10MPaとなると同時にスターラー20で電気めっき液19を撹拌した。   In this state, the temperature of the electroplating solution in the withstand voltage electroplating tank 11 is heated to 40 ° C., a voltage of 5 V is applied between the metal substrate sample 22 and the counter electrode 23, and the electroplating solution 19 is firstly applied by the stirrer 20. The pressure in the pressure-resistant electroplating tank 11 was increased to 10 MPa by operating the carbon dioxide cylinder 12, the high-pressure pump unit 13, the valve 14, and the pressure adjustment unit 18 without stirring. And the electroplating liquid 19 was stirred with the stirrer 20 simultaneously with the pressure in the pressure-resistant electroplating tank 11 becoming 10 MPa.

この状態を3分間維持し、次いで金属基体試料22と対極23との間に5Vの電圧を印加したまま圧力調整ユニット18を操作することによって耐圧電気めっき槽11内の二酸化炭素を徐々に排気して圧力を大気圧にまで下げた。得られた金属基体試料22の表面には良好な銅めっき被膜が形成されていた。したがって、この実験例14で採用した操作条件によれば、超臨界流体によるダマシン法ないしはデュアルダマシン法に対しても適用可能であることが明らかとなった。   This state is maintained for 3 minutes, and then the carbon dioxide in the pressure-resistant electroplating tank 11 is gradually exhausted by operating the pressure adjustment unit 18 while applying a voltage of 5 V between the metal substrate sample 22 and the counter electrode 23. The pressure was reduced to atmospheric pressure. A good copper plating film was formed on the surface of the obtained metal substrate sample 22. Therefore, it has been clarified that the operation conditions employed in Experimental Example 14 can be applied to a damascene method using a supercritical fluid or a dual damascene method.

なお、上記実験例においては、銅粉末として200メッシュ通過の粒度のものを用いたが、この銅粉末は電気めっき液中の銅濃度を実質的に飽和濃度に維持することを目的とするものである一方、金属粒子がめっき層内に取り込まれる誘導共析現象を防止するために粒径は大きい方がよい。特に100μmより大きい粒子を使用すると、電解液への分散状態は良好であり、しかも誘導共析現象も発生し難いため、1μm未満の精度を持つ基板構造にも容易に電気めっきすることができるようになる。また、金属粒子の粒径は1mm程度までは良好な分散状態が得られ緻密で均一な膜厚のめっきが得られる。   In the above experimental example, a copper powder having a particle size of 200 mesh was used, but this copper powder is intended to maintain the copper concentration in the electroplating solution at a substantially saturated concentration. On the other hand, in order to prevent the induction eutectoid phenomenon in which the metal particles are taken into the plating layer, it is better that the particle size is large. In particular, when particles larger than 100 μm are used, the dispersion state in the electrolytic solution is good and the inductive eutectoid phenomenon hardly occurs, so that it is possible to easily electroplate even a substrate structure having an accuracy of less than 1 μm. become. Further, when the particle size of the metal particles is up to about 1 mm, a good dispersion state can be obtained, and a dense and uniform film thickness can be obtained.

また、上記各実験例においては、金属基体及び電気めっきする金属がともに銅の場合について説明したが、本発明の電気めっき方法は金属基体と電気めっきする金属が同種の場合であれば同様の効果を奏する。そのため、金属基体及び電気めっきする金属としては、銅の場合だけでなく、亜鉛、鉄、ニッケル、コバルト等に対しても等しく適用可能である。   In each of the above experimental examples, the case where the metal base and the metal to be electroplated are both copper has been described. However, the electroplating method of the present invention has the same effect as long as the metal base and the metal to be electroplated are the same type. Play. Therefore, the metal substrate and the metal to be electroplated are equally applicable not only to copper but also to zinc, iron, nickel, cobalt, and the like.

各実験例で使用した電気めっき装置の概略図である。It is the schematic of the electroplating apparatus used in each experiment example. 電気銅試料からの銅溶解量と経過時間との間の関係を示す図である。It is a figure which shows the relationship between the copper dissolution amount from an electrolytic copper sample, and elapsed time. 図3A〜図3Eは従来例の3次元実装用半導体装置の配線の形成工程を順に説明する図である。FIG. 3A to FIG. 3E are diagrams for sequentially explaining the wiring formation process of the conventional three-dimensional mounting semiconductor device. 図3に示した従来で採用されているボイド抑制工程を説明する図である。It is a figure explaining the void suppression process employ | adopted conventionally shown in FIG. 金属粒子がめっき層に取り込まれた誘導共析現象の問題点を説明する図である。It is a figure explaining the problem of the induction eutectoid phenomenon in which the metal particle was taken in into the plating layer.

符号の説明Explanation of symbols

10 電気めっき装置
11 耐圧電気めっき槽
12 二酸化炭素ボンベ
13 高圧ポンプユニット
14 バルブ
15 蓋
16 入口
17 出口
18 圧力調整ユニット
19 電気めっき液
20 スターラー
21 オーブン
22 金属基体試料
23 対極
24 直流電源
DESCRIPTION OF SYMBOLS 10 Electroplating apparatus 11 Withstand pressure electroplating tank 12 Carbon dioxide cylinder 13 High pressure pump unit 14 Valve 15 Lid 16 Inlet 17 Outlet 18 Pressure adjustment unit 19 Electroplating solution 20 Stirrer 21 Oven 22 Metal substrate sample 23 Counter electrode 24 DC power supply

Claims (4)

金属基体の表面に電気めっきする方法において、電気めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で電気めっきを行うことを特徴とする電気めっき方法。   In the method of electroplating on the surface of the metal substrate, the electroplating solution contains at least one of carbon dioxide and inert gas and a surfactant, and the metal powder having an average particle size larger than 100 μm is more than the amount that prevents the metal powder from dissolving. An electroplating method characterized in that the electroplating is carried out in a supercritical state or a subcritical state. 前記金属粉末は、金属基体、電気めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であることを特徴とする請求項1に記載の電気めっき方法。   2. The electroplating method according to claim 1, wherein the metal powder is a metal of the same kind as at least one of a metal substrate and a metal coating obtained by electroplating. 前記金属基体を前記電気めっき液に浸漬する前から、前記金属基体が溶解しない電圧を印加しておくことを特徴とする請求項1又は2のいずれかに記載の電気めっき方法。   The electroplating method according to claim 1, wherein a voltage at which the metal substrate does not dissolve is applied before the metal substrate is immersed in the electroplating solution. 前記金属基体が溶解しない電圧は電気めっき時の電圧であることを特徴とする請求項3に記載の電気めっき方法。   The electroplating method according to claim 3, wherein the voltage at which the metal substrate does not melt is a voltage at the time of electroplating.
JP2008095574A 2008-04-01 2008-04-01 Electroplating method Active JP5243832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095574A JP5243832B2 (en) 2008-04-01 2008-04-01 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095574A JP5243832B2 (en) 2008-04-01 2008-04-01 Electroplating method

Publications (2)

Publication Number Publication Date
JP2009249653A true JP2009249653A (en) 2009-10-29
JP5243832B2 JP5243832B2 (en) 2013-07-24

Family

ID=41310629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095574A Active JP5243832B2 (en) 2008-04-01 2008-04-01 Electroplating method

Country Status (1)

Country Link
JP (1) JP5243832B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480505A (en) * 2014-12-11 2015-04-01 江苏理工学院 Supercritical-fluid-based 3D electrodeposition machining device and method
CN110257882A (en) * 2019-06-26 2019-09-20 高国有 Overcritical composite plating drill bit for machining and application method based on swap cathode
CN113182733A (en) * 2021-04-28 2021-07-30 武汉理工大学 Preparation and brazing method of low-temperature active solder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158097A (en) * 1994-11-29 1996-06-18 Suzuki Motor Corp Dispension plated film
JPH10237685A (en) * 1997-02-26 1998-09-08 Nippon Steel Corp Method for preventing melting of steel strip in tinning bath
JPH10321991A (en) * 1997-05-21 1998-12-04 Fujitsu Ltd Formation of wiring of circuit substrate
JPH10330987A (en) * 1997-03-31 1998-12-15 Tdk Corp Electroplating method and its apparatus
JP2001123291A (en) * 1999-10-25 2001-05-08 Hitachi Ltd Method and apparatus for plating
JP2003321798A (en) * 2000-12-28 2003-11-14 Hideo Yoshida Method and apparatus for electrical treatment such as electroplating
JP2008088498A (en) * 2006-10-02 2008-04-17 Ses Co Ltd Electroplating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158097A (en) * 1994-11-29 1996-06-18 Suzuki Motor Corp Dispension plated film
JPH10237685A (en) * 1997-02-26 1998-09-08 Nippon Steel Corp Method for preventing melting of steel strip in tinning bath
JPH10330987A (en) * 1997-03-31 1998-12-15 Tdk Corp Electroplating method and its apparatus
JPH10321991A (en) * 1997-05-21 1998-12-04 Fujitsu Ltd Formation of wiring of circuit substrate
JP2001123291A (en) * 1999-10-25 2001-05-08 Hitachi Ltd Method and apparatus for plating
JP2003321798A (en) * 2000-12-28 2003-11-14 Hideo Yoshida Method and apparatus for electrical treatment such as electroplating
JP2008088498A (en) * 2006-10-02 2008-04-17 Ses Co Ltd Electroplating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480505A (en) * 2014-12-11 2015-04-01 江苏理工学院 Supercritical-fluid-based 3D electrodeposition machining device and method
CN106086961A (en) * 2014-12-11 2016-11-09 江苏理工学院 Method based on supercritical fluid 3D electro-deposition process component
CN106222707A (en) * 2014-12-11 2016-12-14 江苏理工学院 Based on supercritical fluid 3D electro-deposition processing unit (plant)
CN106086961B (en) * 2014-12-11 2017-11-21 江苏理工学院 Method based on supercritical fluid 3D electro-deposition process components
CN106222707B (en) * 2014-12-11 2018-02-06 江苏理工学院 Based on supercritical fluid 3D electro-deposition processing unit (plant)s
CN110257882A (en) * 2019-06-26 2019-09-20 高国有 Overcritical composite plating drill bit for machining and application method based on swap cathode
CN113182733A (en) * 2021-04-28 2021-07-30 武汉理工大学 Preparation and brazing method of low-temperature active solder

Also Published As

Publication number Publication date
JP5243832B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP4163728B2 (en) Electroplating method
KR102509652B1 (en) Pretreatment of nickel and cobalt liners for electrodeposition of copper into through silicon vias
JP5346215B2 (en) Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices
US9376758B2 (en) Electroplating method
US20060283716A1 (en) Method of direct plating of copper on a ruthenium alloy
US9435049B2 (en) Alkaline pretreatment for electroplating
US8377824B1 (en) Methods and apparatus for depositing copper on tungsten
EP3080340B1 (en) Copper electrodeposition bath containing an electrochemically inert cation
US20060199381A1 (en) Electro-chemical deposition apparatus and method of preventing cavities in an ecd copper film
JP5243832B2 (en) Electroplating method
JP2013524019A (en) Seed layer deposition in microscale structures
JP4177400B2 (en) Electroless plating method
JP6498187B2 (en) Method for depositing a copper seed layer on a barrier layer and copper plating bath
KR101014839B1 (en) Electrochemical polishing and plating method for manufacturing of through via and bumps in 3D SiP
JP5095423B2 (en) Electroplating method
TWI281211B (en) Methods for electrochemical deposition (ECD) and for fabrication integrated circuit devices on a semiconductor substrate with damascene structures and defect-free ECD metal layer on the semiconductor wafer
US20030188974A1 (en) Homogeneous copper-tin alloy plating for enhancement of electro-migration resistance in interconnects
Wu et al. Dual effects of CTAB on Co-deposition of SiC/Cu in micro via
JP4613270B2 (en) Electroless plating method
JP5291377B2 (en) Electroless plating method
JP2009249652A (en) Electroless plating method
JP5399421B2 (en) A substrate having an alloy film of a metal element having a barrier function and a metal element having a catalytic function
임태호 Investigation of Cu electroless deposition mechanism using OCP measurement with QCM for the application to Cu damascene process in semiconductor fabrication

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250