JP2009249202A - Method for producing aluminum nitride single crystal - Google Patents

Method for producing aluminum nitride single crystal Download PDF

Info

Publication number
JP2009249202A
JP2009249202A JP2008096232A JP2008096232A JP2009249202A JP 2009249202 A JP2009249202 A JP 2009249202A JP 2008096232 A JP2008096232 A JP 2008096232A JP 2008096232 A JP2008096232 A JP 2008096232A JP 2009249202 A JP2009249202 A JP 2009249202A
Authority
JP
Japan
Prior art keywords
aluminum nitride
single crystal
nitride single
plane
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096232A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamata
弘之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008096232A priority Critical patent/JP2009249202A/en
Publication of JP2009249202A publication Critical patent/JP2009249202A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aluminum nitride single crystal where the growing rate of the aluminum nitride single crystal can be quickened. <P>SOLUTION: In the method for producing the aluminum nitride single crystal where the aluminum nitride single crystal is deposited on a seed substrate 11 placed on a susceptor 4, an apparatus 9 for producing the aluminum nitride single crystal provided with at least a heating furnace body comprising a reaction chamber 3 having an opening part at an upper part and housing a raw material 22 at the bottom side of an inner space 3a and the susceptor 4 to plug the opening part and a gas supplying means 5 to introduce a process gas from outside to the inner space 3a is used. The seed substrate 11 is made of SiC and its face to be deposited is (a) face (11-20). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は窒化アルミニウム単結晶の製造方法に係り、より詳しくは、結晶成長速度の向上を図った窒化アルミニウム単結晶の製造方法に関する。   The present invention relates to a method for manufacturing an aluminum nitride single crystal, and more particularly to a method for manufacturing an aluminum nitride single crystal with an improved crystal growth rate.

窒化アルミニウム(AlN)系半導体は、深紫外のレーザーダイオードや高効率、高周波の電子デバイスとして期待されている。この半導体を育成する基板としては、窒化アルミニウム単結晶が最適であることから、窒化アルミニウム単結晶作製の開発が進められている。
窒化アルミニウム単結晶の特徴としては、熱伝導率が290Wm−1−1と非常に高いことが挙げられ、デバイス作動時に発生する熱を放散する上で大変有利である。
Aluminum nitride (AlN) -based semiconductors are expected as deep ultraviolet laser diodes and high-efficiency, high-frequency electronic devices. As a substrate for growing this semiconductor, an aluminum nitride single crystal is optimal, and therefore, development of aluminum nitride single crystal is under development.
A characteristic of the aluminum nitride single crystal is that it has a very high thermal conductivity of 290 Wm −1 K −1 , which is very advantageous in dissipating heat generated during device operation.

窒化アルミニウム単結晶の作製方法は、溶液法ではフラックス法が、気相法では、成長基板上に有機金属気相成長法(Metalorganic Vapor Phase Epitaxy,MOVPE)、水素化物気相堆積法(Hydride Vapor Phase Epitaxy,HVPE)、昇華法などが挙げられる。この中でも昇華法は、一般的に成長速度が大きいため、バルク結晶の作製に対して有力な方法である。この昇華法とは、原料である窒化アルミニウムを昇華させ、それを昇華温度より低い温度域で再凝縮させ、単結晶を作製する方法である。   The aluminum nitride single crystal is produced by the flux method in the solution method, and in the vapor phase method, metalorganic vapor phase epitaxy (MOVPE), hydride vapor deposition method (Hydride Vapor Phase) on the growth substrate. Epitaxy, HVPE) and sublimation method. Among these, the sublimation method is a powerful method for producing a bulk crystal because the growth rate is generally high. This sublimation method is a method for producing a single crystal by sublimating aluminum nitride as a raw material and recondensing it in a temperature range lower than the sublimation temperature.

しかしながら、例えば特許文献1〜2に記載されている方法で、炭化ケイ素(SiC)からなる基板上のc面(0001)に窒化アルミニウム単結晶を成長させた際、c軸に垂直な方向の窒化アルミニウムの成長速度は、平行方向の成長速度に比べ一桁程度低くなる。これは、c面は原子配列最密面であるため、原子配列の密度が低いc面に平行な面に比べて成長速度が遅いことに起因する。
また、窒化アルミニウムのc面(0001)上に窒化アルミニウム系発光デバイスを作製して電流を注入すると、垂直方向ではなく水平方向に発光してしまう。そのため、c軸方向の発光強度が低下してしまっていた。これは、窒化アルミニウムのバンド構造に起因し、窒化アルミニウムのバンド間光学遷移がc軸平行方向に許容されるためである。
特開2005−343722号公報 特開2006−169023号公報
However, for example, when an aluminum nitride single crystal is grown on the c-plane (0001) on the substrate made of silicon carbide (SiC) by the method described in Patent Documents 1 and 2, nitriding in a direction perpendicular to the c-axis is performed. The growth rate of aluminum is about an order of magnitude lower than the growth rate in the parallel direction. This is because the c-plane is a close-packed plane of atomic arrangement, and thus the growth rate is slower than a plane parallel to the c-plane having a low density of atomic arrangement.
Further, when an aluminum nitride-based light emitting device is manufactured on the c-plane (0001) of aluminum nitride and current is injected, light is emitted in the horizontal direction instead of the vertical direction. For this reason, the light emission intensity in the c-axis direction has been reduced. This is because the optical transition between bands of aluminum nitride is allowed in the c-axis parallel direction due to the band structure of aluminum nitride.
JP 2005-343722 A JP 2006-169023 A

本発明は、上記事情に鑑みてなされたものであって、窒化アルミニウム単結晶の成長速度の向上を図った窒化アルミニウム単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing an aluminum nitride single crystal in which the growth rate of the aluminum nitride single crystal is improved.

本発明の請求項1に記載の窒化アルミニウム単結晶の製造方法は、上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置を用い、前記サセプタ上に配された種子基板上に窒化アルミニウム単結晶を堆積させる窒化アルミニウム単結晶の製造方法であって、前記種子基板はSiCからなり、その被堆積面をa面(11−20)としたことを特徴とする。   The method for producing an aluminum nitride single crystal according to claim 1 of the present invention includes a reaction chamber having an opening at the top, containing a raw material on the bottom side of the internal space, and a susceptor that closes the opening. An aluminum nitride single crystal is deposited on a seed substrate disposed on the susceptor by using an apparatus for producing an aluminum nitride single crystal having at least a furnace body and a gas supply means for introducing a process gas from the outside into the internal space. A method for producing an aluminum nitride single crystal, wherein the seed substrate is made of SiC, and its deposition surface is an a-plane (11-20).

本発明の請求項2に記載の窒化アルミニウム単結晶の製造方法は、上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置を用い、前記サセプタ上に配された種子基板上に窒化アルミニウム単結晶を堆積させる窒化アルミニウム単結晶の製造方法であって、前記種子基板はSiCからなり、その被堆積面をm面(10−10)としたことを特徴とする。   The method for producing an aluminum nitride single crystal according to claim 2 of the present invention includes a reaction chamber having an opening at the top, containing a raw material on the bottom side of the internal space, and a susceptor that closes the opening. An aluminum nitride single crystal is deposited on a seed substrate disposed on the susceptor using an apparatus for producing an aluminum nitride single crystal having at least a furnace body and a gas supply means for introducing a process gas from the outside into the internal space. A method for producing an aluminum nitride single crystal, wherein the seed substrate is made of SiC, and its deposition surface is an m-plane (10-10).

本発明によれば、SiCからなる種子基板のa面(11−20)またはm面(10−10)上に窒化アルミニウム単結晶を成長させることで、結晶成長速度の向上が図れ、生産性の増大が可能となる。   According to the present invention, by growing an aluminum nitride single crystal on the a-plane (11-20) or m-plane (10-10) of a seed substrate made of SiC, the crystal growth rate can be improved and the productivity can be improved. Increase is possible.

以下、本発明を、図面を参照して詳細に説明するが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更が可能である。   Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

<第一実施形態>
本発明の窒化アルミニウムの製造方法は、上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置を用い、前記サセプタ上に配された種子基板上に窒化アルミニウム単結晶を堆積させる。この際、種子基板はSiCからなり、その被堆積面をa面(11−20)として作製する。
<First embodiment>
The method for producing aluminum nitride of the present invention includes a reaction chamber having an opening at the top and containing a raw material on the bottom surface side of the internal space, a heating furnace main body including a susceptor that closes the opening, and the internal space. An aluminum nitride single crystal is deposited on a seed substrate disposed on the susceptor using an apparatus for producing an aluminum nitride single crystal having at least a gas supply means for introducing a process gas from the outside. At this time, the seed substrate is made of SiC, and the surface to be deposited is produced as the a-plane (11-20).

図1は、本発明で用いる窒化アルミニウム単結晶の製造装置9の一例を模式的に示した断面図である。この製造装置は、上部に開口部を有し、内部空間の底面側に原料22を収納する反応室3と、該開口部を塞ぐサセプタ4とからなる加熱炉本体、及び内部空間3aへ外部からプロセスガスを導入するガス供給手段5、から概略構成されている。また、加熱炉本体内に配された原料22と、サセプタ4と、サセプタ4に配された種子基板11とを加熱する加熱手段7が加熱炉本体に沿って配されている。加熱炉本体は、支持手段2により、所定の位置に配置され、上記加熱炉本体、加熱手段7、及び支持手段2は、真空ポンプ6が設けられたチャンバー1内に配されている。加熱炉本体、温度調節手段7、ガス供給手段5、支持手段2、チャンバー1、及び真空ポンプ6としては、特に限定されるものではなく、従来公知のものを用いることができる。   FIG. 1 is a cross-sectional view schematically showing an example of an aluminum nitride single crystal manufacturing apparatus 9 used in the present invention. This manufacturing apparatus has an opening in the upper part, a heating furnace main body comprising a reaction chamber 3 that houses the raw material 22 on the bottom side of the internal space, and a susceptor 4 that closes the opening, and an internal space 3a from the outside. A gas supply means 5 for introducing a process gas is schematically configured. Moreover, the heating means 7 which heats the raw material 22 distribute | arranged in the heating furnace main body, the susceptor 4, and the seed substrate 11 distribute | arranged to the susceptor 4 is distribute | arranged along the heating furnace main body. The heating furnace main body is arranged at a predetermined position by the support means 2, and the heating furnace main body, the heating means 7, and the support means 2 are arranged in the chamber 1 in which the vacuum pump 6 is provided. The heating furnace main body, the temperature adjusting means 7, the gas supply means 5, the support means 2, the chamber 1, and the vacuum pump 6 are not particularly limited, and conventionally known ones can be used.

原料22としては、粉末状やペレット状、多結晶体を破砕した破片などの窒化アルミニウム用いることができる。   As the raw material 22, aluminum nitride such as powder, pellets, or fragments obtained by crushing a polycrystalline body can be used.

種子基板11は、6H−SiCからなり、窒化アルミニウム単結晶の被堆積面11aはa面(11−20)である。   The seed substrate 11 is made of 6H—SiC, and the deposition surface 11a of the aluminum nitride single crystal is the a-plane (11-20).

次に、本発明の製造装置9を用いた窒化アルミニウム単結晶の製造方法について説明する。
まず、窒化アルミニウムの粉末や焼結体などの原料22を反応室3下部にセットし、種子基板11をサセプタ4に配して加熱炉本体を密閉する。この際、種子基板11のa面(11−20)が原料22と対向するようにサセプタ4に水平に設置する。
次いで、加熱炉本体内を真空ポンプ6により真空排気した後、ガス供給手段5により窒素ガス等のプロセスガスを加熱炉本体内の内部空間3aに導入する。加熱炉本体内の圧力は例えば10Torr以上760Torr以下、窒素ガス流量は、例えば50sccm以上5000sccm以下である。
そして、原料22が配された反応室3の下部(昇華部)の方が、種子基板11が配されたサセプタ4(析出部)よりも高温となるように、加熱手段7を用いて加熱炉本体内の原料22やサセプタ4、種子基板11を加熱する。この際、昇華部の温度は、1800℃以上2400℃以下、析出部の温度は、1700℃以上2300℃以下が好ましい。
加熱で昇華させて分解気化された原料22は、窒素ガス雰囲気下で種子基板11上に結晶成長されることで、種子基板11のa面(11−20)上に窒化アルミニウム単結晶12が成長する。
以上で、図2に示すような、種子基板11の被体積面11aに窒化アルミニウム単結晶が成長した窒化アルミニウム結晶基板10が得られる。
Next, a method for producing an aluminum nitride single crystal using the production apparatus 9 of the present invention will be described.
First, a raw material 22 such as aluminum nitride powder or sintered body is set at the lower part of the reaction chamber 3, and the seed substrate 11 is arranged on the susceptor 4 to seal the heating furnace body. At this time, the seed substrate 11 is horizontally installed on the susceptor 4 so that the a-plane (11-20) of the seed substrate 11 faces the raw material 22.
Next, after the inside of the heating furnace body is evacuated by the vacuum pump 6, a process gas such as nitrogen gas is introduced into the internal space 3 a in the heating furnace body by the gas supply means 5. The pressure in the heating furnace body is, for example, 10 Torr or more and 760 Torr or less, and the nitrogen gas flow rate is, for example, 50 sccm or more and 5000 sccm or less.
Then, the heating furnace 7 is used to heat the lower part (sublimation part) of the reaction chamber 3 in which the raw material 22 is arranged, so that the temperature becomes higher than the susceptor 4 (deposition part) in which the seed substrate 11 is arranged. The raw material 22, the susceptor 4 and the seed substrate 11 in the body are heated. At this time, the temperature of the sublimation part is preferably 1800 ° C. or more and 2400 ° C. or less, and the temperature of the precipitation part is preferably 1700 ° C. or more and 2300 ° C. or less.
The raw material 22 sublimated by heating and decomposed and vaporized is crystal-grown on the seed substrate 11 in a nitrogen gas atmosphere, so that an aluminum nitride single crystal 12 grows on the a-plane (11-20) of the seed substrate 11. To do.
As described above, an aluminum nitride crystal substrate 10 in which an aluminum nitride single crystal is grown on the surface 11a of the seed substrate 11 as shown in FIG. 2 is obtained.

本発明の窒化アルミニウム単結晶の製造方法によれば、SiCからなる種子基板11のa面(11−20)上に窒化アルミニウム単結晶12を成長させるため、該結晶の成長速度を速めることが可能となり、ひいては、生産性が増大する。   According to the method for producing an aluminum nitride single crystal of the present invention, since the aluminum nitride single crystal 12 is grown on the a-plane (11-20) of the seed substrate 11 made of SiC, the growth rate of the crystal can be increased. As a result, productivity increases.

また、本発明の製造方法で得られた窒化アルミニウム単結晶基板10は、窒化アルミニウム単結晶12がa面(11−20)である。そのため、この窒化アルミニウム単結晶12を例えば厚さ200〜800μmで切り出して研磨し、AlN系の発光デバイスや電子デバイスに用いることで、垂直方向に発光させることが可能となり、該デバイスの発光強度を増加させることが可能となる。   Moreover, in the aluminum nitride single crystal substrate 10 obtained by the manufacturing method of the present invention, the aluminum nitride single crystal 12 has an a-plane (11-20). Therefore, the aluminum nitride single crystal 12 is cut out with a thickness of, for example, 200 to 800 μm, polished, and used for an AlN-based light-emitting device or electronic device, so that light can be emitted in the vertical direction. It can be increased.

<第2実施形態>
本発明の窒化アルミニウムの製造方法は、上部に開口部を有し、内部空間の底面側に原料22を収納する反応室3と、該開口部を塞ぐサセプタ4とからなる加熱炉本体、及び内部空間3aへ外部からプロセスガスを導入するガス供給手段5、を少なくとも備えた窒化アルミニウム単結晶の製造装置9を用い、サセプタ4に配された種子基板11上に窒化アルミニウム単結晶12を堆積させる。この際、種子基板11はSiCからなり、その被堆積面11aをm面(10−10)として作製する。
Second Embodiment
The method for producing aluminum nitride according to the present invention includes a reaction furnace 3 having an opening at the top and containing a raw material 22 on the bottom side of the internal space, and a heating furnace main body comprising a susceptor 4 for closing the opening, The aluminum nitride single crystal 12 is deposited on the seed substrate 11 disposed in the susceptor 4 by using an aluminum nitride single crystal manufacturing apparatus 9 including at least a gas supply means 5 for introducing a process gas from the outside into the space 3a. At this time, the seed substrate 11 is made of SiC, and the deposition surface 11a is formed as an m-plane (10-10).

本実施形態が第1実施形態と異なる点は、種子基板11のm面(10−10)上に窒化アルミニウム単結晶12を堆積させる点である。製造装置9としては、第1実施形態と同様に、図1に示したものと同一なものを用いることができる。   This embodiment is different from the first embodiment in that an aluminum nitride single crystal 12 is deposited on the m-plane (10-10) of the seed substrate 11. As the manufacturing apparatus 9, the same apparatus as that shown in FIG. 1 can be used as in the first embodiment.

次に、図1に示す製造装置9を用いた窒化アルミニウム単結晶12の製造方法について説明する。
まず、窒化アルミニウムの粉末や焼結体などの原料22を反応室3下部にセットし、種子基板11をサセプタ4に配して加熱炉本体を密閉する。この際、種子基板11のm面(10−10)が原料22と対向するようにサセプタ4に水平に設置する。
次いで、加熱炉本体内を真空ポンプ6により真空排気した後、ガス供給手段5により窒素ガス等のプロセスガスを加熱炉本体内の内部空間3aに導入する。加熱炉本体内の圧力は例えば10Torr以上760Torr以下、窒素ガス流量は、例えば50sccm以上5000sccm以下である。
そして、原料22が配された反応室3の下部(昇華部)の方が、種子基板11が配されたサセプタ4(析出部)よりも高温となるように加熱手段7により加熱炉内の原料22やサセプタ3、種子基板11を加熱する。この際、昇華部の温度は、1800℃以上2400℃以下、析出部の温度は、1700℃以上2300℃以下が好ましい。
加熱で昇華させて分解気化された原料22は、窒素ガス雰囲気下で種子基板11上に結晶成長されることで、種子基板のm面(10−10)上に窒化アルミニウム単結晶12が成長する。
以上で、第1実施形態と同様に図2に示すような、種子基板11の被体積面11aに窒化アルミニウム単結晶が成長した窒化アルミニウム結晶基板が得られる。
Next, a method for manufacturing the aluminum nitride single crystal 12 using the manufacturing apparatus 9 shown in FIG. 1 will be described.
First, a raw material 22 such as aluminum nitride powder or sintered body is set at the lower part of the reaction chamber 3, and the seed substrate 11 is arranged on the susceptor 4 to seal the heating furnace body. At this time, the seed substrate 11 is horizontally installed on the susceptor 4 so that the m-plane (10-10) of the seed substrate 11 faces the raw material 22.
Next, after the inside of the heating furnace body is evacuated by the vacuum pump 6, a process gas such as nitrogen gas is introduced into the internal space 3 a in the heating furnace body by the gas supply means 5. The pressure in the heating furnace body is, for example, 10 Torr or more and 760 Torr or less, and the nitrogen gas flow rate is, for example, 50 sccm or more and 5000 sccm or less.
Then, the raw material in the heating furnace is heated by the heating means 7 so that the lower part (sublimation part) of the reaction chamber 3 in which the raw material 22 is arranged becomes higher in temperature than the susceptor 4 (deposition part) in which the seed substrate 11 is arranged. 22, the susceptor 3 and the seed substrate 11 are heated. At this time, the temperature of the sublimation part is preferably 1800 ° C. or more and 2400 ° C. or less, and the temperature of the precipitation part is preferably 1700 ° C. or more and 2300 ° C. or less.
The raw material 22 sublimated by heating and decomposed and vaporized is crystal-grown on the seed substrate 11 in a nitrogen gas atmosphere, so that an aluminum nitride single crystal 12 grows on the m-plane (10-10) of the seed substrate. .
As described above, an aluminum nitride crystal substrate in which an aluminum nitride single crystal is grown on the surface 11a of the seed substrate 11 as shown in FIG. 2 is obtained as in the first embodiment.

本発明の窒化アルミニウム単結晶の製造方法によれば、SiCからなる種子基板11のm面(10−10)上に窒化アルミニウム単結晶12を成長させるため、該結晶の成長速度を速めることが可能となり、ひいては、生産性が増大する。   According to the method for producing an aluminum nitride single crystal of the present invention, since the aluminum nitride single crystal 12 is grown on the m-plane (10-10) of the seed substrate 11 made of SiC, the growth rate of the crystal can be increased. As a result, productivity increases.

また、本発明の製造方法で得られた窒化アルミニウム単結晶基板10は、窒化アルミニウム単結晶12がm面(10−10)である。そのため、この窒化アルミニウム単結晶12を厚さ200〜800μmで切り出して研磨し、AlN系の発光デバイスや電子デバイスに用いることで、垂直方向に発光させることが可能となり、該デバイスの発光強度を増加させることが可能となる。   Further, in the aluminum nitride single crystal substrate 10 obtained by the manufacturing method of the present invention, the aluminum nitride single crystal 12 has an m-plane (10-10). Therefore, the aluminum nitride single crystal 12 is cut out to a thickness of 200 to 800 μm, polished, and used for an AlN-based light emitting device or electronic device, so that light can be emitted in the vertical direction, and the light emission intensity of the device is increased. It becomes possible to make it.

6H−SiC基板の一面に、窒化アルミニウム単結晶を作製した。窒化アルミニウム単結晶の作製にあたっては、以下の表1に示す条件1〜3で行った。   An aluminum nitride single crystal was formed on one surface of a 6H—SiC substrate. The production of the aluminum nitride single crystal was performed under conditions 1 to 3 shown in Table 1 below.

Figure 2009249202
Figure 2009249202

<実施例1>
基板として6H−SiCのc面に垂直なa面(11−20)基板を用い、図1に示した製造装置を用い、表1に示した条件1で窒化アルミニウム単結晶を作製し、これを実施例1とした。
<Example 1>
An a-plane (11-20) substrate perpendicular to the c-plane of 6H—SiC is used as the substrate, and the manufacturing apparatus shown in FIG. 1 is used to produce an aluminum nitride single crystal under condition 1 shown in Table 1. Example 1 was adopted.

<実施例2>
表1に示した条件2で窒化アルミニウム単結晶を作製したこと以外は実施例1と同様に行い、これを実施例2とした。
<Example 2>
Example 2 was carried out in the same manner as in Example 1 except that an aluminum nitride single crystal was produced under the condition 2 shown in Table 1.

<実施例3>
表1に示した条件2で窒化アルミニウム単結晶を作製したこと以外は実施例1と同様に行い、これを実施例3とした。
<Example 3>
Example 3 was performed in the same manner as in Example 1 except that an aluminum nitride single crystal was produced under the condition 2 shown in Table 1.

<実施例4>
基板として6H−SiCのc面に垂直なm面(10−10)基板を用いたこと以外は実施例1と同様に行い、これを実施例4とした。
<Example 4>
Example 4 was performed in the same manner as in Example 1 except that an m-plane (10-10) substrate perpendicular to the c-plane of 6H—SiC was used as the substrate.

<実施例5>
基板として6H−SiCのc面に垂直なm面(10−10)基板を用いたこと以外は実施例2と同様に行い、これを実施例5とした。
<Example 5>
Example 5 was performed in the same manner as in Example 2 except that an m-plane (10-10) substrate perpendicular to the c-plane of 6H—SiC was used as the substrate.

<実施例6>
基板として6H−SiCのc面に垂直なm面(10−10)基板を用いたこと以外は実施例3と同様に行い、これを実施例6とした。
<Example 6>
Example 6 was performed in the same manner as in Example 3 except that an m-plane (10-10) substrate perpendicular to the c-plane of 6H—SiC was used as the substrate.

<比較例1>
基板として6H−SiCのc面(0001)基板を用いたこと以外は実施例1と同様に行い、これを比較例1とした。
<Comparative Example 1>
This was carried out in the same manner as in Example 1 except that a 6H—SiC c-plane (0001) substrate was used as the substrate, and this was designated as Comparative Example 1.

<比較例2>
基板として6H−SiCのc面(0001)基板を用いたこと以外は実施例2と同様に行い、これを比較例2とした。
<Comparative example 2>
This was carried out in the same manner as in Example 2 except that a 6H—SiC c-plane (0001) substrate was used as the substrate, and this was designated as Comparative Example 2.

<比較例3>
基板として6H−SiCのc面(0001)基板を用いたこと以外は実施例3と同様に行い、これを比較例3とした。
<Comparative Example 3>
This was carried out in the same manner as in Example 3 except that a 6H—SiC c-plane (0001) substrate was used as the substrate.

上記で作製した実施例1〜4、及び比較例1〜3で得られた窒化アルミニウム単結晶長を表2に示す。   Table 2 shows the aluminum nitride single crystal lengths obtained in Examples 1 to 4 and Comparative Examples 1 to 3 prepared above.

Figure 2009249202
Figure 2009249202

表2より、SiCのc面基板よりも、a面やm面基板を用いた方が高い成長速度で結晶が得られることがわかった。
また、作製したa面、m面の窒化アルミニウム単結晶は、厚さ200μ〜800μmで切断し、研磨することでa面、m面基板とした。特に、ウェハー状に切断、研磨することで、窒化アルミニウム系の発光デバイス、及び電子デバイスに提供することができ、発光強度の向上に資することができる。
From Table 2, it was found that crystals can be obtained at a higher growth rate by using the a-plane or m-plane substrate than the SiC c-plane substrate.
Further, the a-plane and m-plane aluminum nitride single crystals produced were cut to a thickness of 200 μm to 800 μm and polished to obtain a-plane and m-plane substrates. In particular, by cutting and polishing into a wafer shape, it can be provided for an aluminum nitride-based light-emitting device and an electronic device, which can contribute to an improvement in emission intensity.

青色および紫外発光ダイオード(LED)向け基板や、レーザーダイオード(LD)用基板、パワーデバイス用基板などの製造方法に適用することができる。   The present invention can be applied to manufacturing methods for blue and ultraviolet light emitting diode (LED) substrates, laser diode (LD) substrates, power device substrates, and the like.

本発明で用いた窒化アルミニウム単結晶の製造装置を模式的に示した図である。It is the figure which showed typically the manufacturing apparatus of the aluminum nitride single crystal used by this invention. 本発明の製造方法で得られる窒化アルミニウム単結晶基板を模式的に示した断面図である。It is sectional drawing which showed typically the aluminum nitride single crystal substrate obtained with the manufacturing method of this invention.

符号の説明Explanation of symbols

1 チャンバー、2 支持手段、3 反応室、4 サセプタ、5 ガス供給手段、6 真空ポンプ、7 加熱手段、9 窒化アルミニウム単結晶の製造装置、10 窒化アルミニウム単結晶基板、11 種子基板、11a 種子基板の被成膜面、12 窒化アルミニウム単結晶、22 原料。   DESCRIPTION OF SYMBOLS 1 Chamber, 2 Support means, 3 Reaction chamber, 4 Susceptor, 5 Gas supply means, 6 Vacuum pump, 7 Heating means, 9 Aluminum nitride single crystal manufacturing apparatus, 10 Aluminum nitride single crystal substrate, 11 Seed substrate, 11a Seed substrate Film forming surface, 12 aluminum nitride single crystal, 22 raw material.

Claims (2)

上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置を用い、前記サセプタ上に配された種子基板上に窒化アルミニウム単結晶を堆積させる窒化アルミニウム単結晶の製造方法であって、
前記種子基板はSiCからなり、その被堆積面をa面(11−20)としたことを特徴とする窒化アルミニウム単結晶の製造方法。
A heating furnace body having an opening at the top and containing a raw material on the bottom side of the internal space, a susceptor that closes the opening, and a gas supply means for introducing process gas from the outside into the internal space A method for producing an aluminum nitride single crystal comprising depositing an aluminum nitride single crystal on a seed substrate disposed on the susceptor using an apparatus for producing an aluminum nitride single crystal comprising at least
The method for producing an aluminum nitride single crystal, wherein the seed substrate is made of SiC, and the deposition surface is an a-plane (11-20).
上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置を用い、前記サセプタ上に配された種子基板上に窒化アルミニウム単結晶を堆積させる窒化アルミニウム単結晶の製造方法であって、
前記種子基板はSiCからなり、その被堆積面をm面(10−10)としたことを特徴とする窒化アルミニウム単結晶の製造方法。
A heating furnace body having an opening at the top and containing a raw material on the bottom side of the internal space, a susceptor that closes the opening, and a gas supply means for introducing process gas from the outside into the internal space A method for producing an aluminum nitride single crystal comprising depositing an aluminum nitride single crystal on a seed substrate disposed on the susceptor using an apparatus for producing an aluminum nitride single crystal comprising at least
The method for producing an aluminum nitride single crystal, wherein the seed substrate is made of SiC, and the deposition surface is an m-plane (10-10).
JP2008096232A 2008-04-02 2008-04-02 Method for producing aluminum nitride single crystal Pending JP2009249202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096232A JP2009249202A (en) 2008-04-02 2008-04-02 Method for producing aluminum nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096232A JP2009249202A (en) 2008-04-02 2008-04-02 Method for producing aluminum nitride single crystal

Publications (1)

Publication Number Publication Date
JP2009249202A true JP2009249202A (en) 2009-10-29

Family

ID=41310249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096232A Pending JP2009249202A (en) 2008-04-02 2008-04-02 Method for producing aluminum nitride single crystal

Country Status (1)

Country Link
JP (1) JP2009249202A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222192A (en) * 2009-03-24 2010-10-07 Sumitomo Electric Ind Ltd Production method of nitride single crystal, template substrate, and nitride single crystal substrate
JP2013035720A (en) * 2011-08-09 2013-02-21 Fujikura Ltd Apparatus and method for manufacturing aluminum nitride single crystal
CN106435736A (en) * 2016-09-14 2017-02-22 苏州奥趋光电技术有限公司 Aluminum nitride crystal growing furnace
CN107916454A (en) * 2016-09-14 2018-04-17 苏州奥趋光电技术有限公司 A kind of thermal field for aluminum nitride crystal growth stove

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222192A (en) * 2009-03-24 2010-10-07 Sumitomo Electric Ind Ltd Production method of nitride single crystal, template substrate, and nitride single crystal substrate
JP2013035720A (en) * 2011-08-09 2013-02-21 Fujikura Ltd Apparatus and method for manufacturing aluminum nitride single crystal
CN106435736A (en) * 2016-09-14 2017-02-22 苏州奥趋光电技术有限公司 Aluminum nitride crystal growing furnace
CN107916454A (en) * 2016-09-14 2018-04-17 苏州奥趋光电技术有限公司 A kind of thermal field for aluminum nitride crystal growth stove

Similar Documents

Publication Publication Date Title
JP4563230B2 (en) Method for manufacturing AlGaN substrate
JP6510413B2 (en) Nitride semiconductor crystal, manufacturing method and manufacturing apparatus
US7638346B2 (en) Nitride semiconductor heterostructures and related methods
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
US7462505B2 (en) Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JP4428105B2 (en) Method for producing compound film and method for producing compound semiconductor device
TW201226622A (en) Method and device for manufacturing self-supporting gallium nitride
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2011246749A (en) Aluminum-based group iii nitride production apparatus and method for producing aluminum-based group iii nitride
JP4980476B2 (en) Method and apparatus for manufacturing gallium nitride (GaN) free-standing substrate
JP2009221041A (en) Crystal growth method, crystal growth apparatus, and semiconductor device having crystal thin film produced by the same
WO2014141959A1 (en) METHOD AND DEVICE FOR MANUFACTURING GALLIUM NITRIDE (GaN) FREE-STANDING SUBSTRATE
JP2005104742A (en) Substrate for growing single crystal and semiconductor device
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP2009249201A (en) Apparatus for producing aluminum nitride single crystal
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP5490597B2 (en) Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth
JP2009084136A (en) Method for manufacturing semiconductor device
JPH09134881A (en) Manufacture of nitride compound semiconductor
JP2004104056A (en) Gallium-nitride-based semiconductor light emitting element
JP5182758B2 (en) Method and apparatus for producing nitride single crystal
KR101220825B1 (en) Method of growing single crystal nitride
JP2009249199A (en) Apparatus for producing aluminum nitride single crystal
JP2009249200A (en) Method for producing aluminum nitride single crystal
JP6159245B2 (en) Method for producing aluminum nitride crystal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A711 Notification of change in applicant

Effective date: 20101028

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101028