JP2009248009A - Method for producing noble metal-supported catalyst - Google Patents

Method for producing noble metal-supported catalyst Download PDF

Info

Publication number
JP2009248009A
JP2009248009A JP2008099968A JP2008099968A JP2009248009A JP 2009248009 A JP2009248009 A JP 2009248009A JP 2008099968 A JP2008099968 A JP 2008099968A JP 2008099968 A JP2008099968 A JP 2008099968A JP 2009248009 A JP2009248009 A JP 2009248009A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
ammonia
reaction tube
supported catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008099968A
Other languages
Japanese (ja)
Other versions
JP5039631B2 (en
Inventor
Susumu Hizuya
進 日数谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2008099968A priority Critical patent/JP5039631B2/en
Publication of JP2009248009A publication Critical patent/JP2009248009A/en
Application granted granted Critical
Publication of JP5039631B2 publication Critical patent/JP5039631B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a noble metal-supported catalyst which is converted into a simple metal after being reduced, activated, and prevented from being oxidized in the presence of air in the reduction of a catalyst supporting a noble metal such as ruthenium. <P>SOLUTION: In the reduction of the catalyst with ruthenium supported on an activated carbon carrier, after the catalyst is reduced with hydrogen gas in a reaction vessel, ammonia gas is circulated through the reaction vessel to suppress the oxidation activity of the reduced noble metal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばアンモニア分解方法またはアンモニアからの水素製造に用いられるルテニウムのような貴金属の担持触媒に関し、より詳しくは同触媒の還元方法に関するものである。   The present invention relates to a supported catalyst of a noble metal such as ruthenium used in an ammonia decomposition method or hydrogen production from ammonia, and more particularly to a reduction method of the catalyst.

従来、ルテニウム担持触媒を製造するには、担体である活性炭をルテニウム溶液に浸漬し、取り出し・乾燥後、ルテニウムの配位子を除去するために水素を用いて還元処理を行った後、促進剤であるバリウム化合物等の金属を含浸担持法により担体に担持する方法であり、促進剤である金属の配位子は触媒の製造工程では除去されず、アンモニア合成または分解装置に触媒を充填した後、配位子は該装置内で前処理により除去されている(特許文献1参照)。  Conventionally, in order to produce a ruthenium-supported catalyst, activated carbon as a support is immersed in a ruthenium solution, taken out, dried, then subjected to a reduction treatment using hydrogen to remove a ruthenium ligand, and then an accelerator. This is a method in which a metal such as a barium compound is supported on a support by an impregnation supporting method, and the metal ligand as an accelerator is not removed in the catalyst production process, but after the catalyst is filled in the ammonia synthesis or decomposition apparatus The ligand is removed by pretreatment in the apparatus (see Patent Document 1).

ルテニウムの配位子を除去するための水素による還元処理の後は、ルテニウムは活性化されているため空気と触れると酸化され、酸化熱が発生し、この熱によりルテニウムが凝集するため触媒活性が低下する。このルテニウムの酸化を防止するには、水素による還元処理から促進剤である金属の含浸担持工程までの間は、不活性ガス雰囲気下で操作を行う必要がある。   After the reduction treatment with hydrogen to remove the ruthenium ligand, ruthenium is activated so that it is oxidized when it comes into contact with air, and heat of oxidation is generated. descend. In order to prevent the oxidation of ruthenium, it is necessary to perform an operation in an inert gas atmosphere from the reduction treatment with hydrogen to the impregnation supporting step of the metal as the promoter.

促進剤である金属の配位子除去は装置内で行われるため、装置運転初期には配位子または配位子由来の化合物が生成物中に混入してしまう。さらに、転位子の除去温度が装置運転温度より高い場合には配位子の除去のために装置仕様を高く設定する必要がある。また、触媒製造工程で配位子を除去する場合は、ルテニウムの配位子を除去する場合と同様の課題がある。
特開2000-176284号公報
Since the removal of the ligand of the metal as the promoter is performed in the apparatus, the ligand or the compound derived from the ligand is mixed in the product at the initial stage of the operation of the apparatus. Furthermore, when the removal temperature of the dislocation is higher than the apparatus operating temperature, it is necessary to set the apparatus specification high for removing the ligand. Moreover, when removing a ligand by a catalyst manufacturing process, the subject similar to the case where the ligand of ruthenium is removed occurs.
JP 2000-176284 A

本発明は、上記のような問題を解決すべく、還元された貴金属の触媒活性低下を抑制する方法を提供するものである。   The present invention provides a method for suppressing a reduction in catalytic activity of a reduced noble metal in order to solve the above problems.

ルテニウムの還元処理に係わる課題は、還元処理後にルテニウムが金属単体の状態に還元されて活性化されているため起きている。つまり、還元されたルテニウムを不活性化させれば空気下においてもルテニウムが酸化されることはない。ルテニウムを不活性化させるためには、室温付近でルテニウム表面に吸着できる物質を吸着させればよいが、吸着した物質は後に容易に脱離できるものである必要がある。これが脱離できなければ吸着した物質は触媒被毒物質となり触媒性能が低下するからである。室温付近で吸着し容易に脱離できる物質を検討した結果、アンモニアが好ましいことを見出した。  The problem relating to the reduction treatment of ruthenium occurs because the ruthenium is reduced and activated to a single metal state after the reduction treatment. In other words, if the reduced ruthenium is inactivated, ruthenium will not be oxidized even in the air. In order to inactivate ruthenium, a substance that can be adsorbed on the surface of ruthenium may be adsorbed near room temperature, but the adsorbed substance needs to be easily desorbable later. If this cannot be desorbed, the adsorbed substance becomes a catalyst poisoning substance and the catalyst performance is lowered. As a result of examining a substance that can be adsorbed and easily desorbed at around room temperature, it was found that ammonia is preferable.

請求項1に係る発明は、担体に貴金属を担持してなる触媒の還元において、反応管内にて水素ガスで触媒の還元処理を行った後、同反応管にアンモニアガスを流通し、還元された貴金属にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法である。  In the invention according to claim 1, in the reduction of the catalyst in which the noble metal is supported on the carrier, after the catalyst is reduced with hydrogen gas in the reaction tube, ammonia gas is circulated through the reaction tube and reduced. A method for producing a noble metal-supported catalyst, wherein ammonia is adsorbed on a noble metal and the oxidation activity of the reduced noble metal is suppressed.

請求項2に係る発明は、担体に貴金属を担持してなる触媒の還元において、反応管内にてアンモニアガスまたはアンモニア含有ガスで還元処理を行った後、引き続き同反応管にアンモニアガスまたはアンモニア含有ガスを流通し、還元された貴金属にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法である。  In the invention according to claim 2, in the reduction of the catalyst in which the noble metal is supported on the support, after the reduction treatment with ammonia gas or ammonia-containing gas is performed in the reaction tube, the ammonia gas or ammonia-containing gas is continuously supplied to the reaction tube. , And adsorb ammonia to the reduced noble metal to suppress the oxidation activity of the reduced noble metal, thereby producing a noble metal-supported catalyst.

請求項3に係る発明は、担体に貴金属および促進剤を担持してなる触媒の還元において、反応管内にて水素ガスで触媒の還元処理を行った後、同反応管にアンモニアガスを流通し、還元された貴金属および促進剤にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法である。  In the invention according to claim 3, in the reduction of the catalyst in which the noble metal and the promoter are supported on the support, after reducing the catalyst with hydrogen gas in the reaction tube, ammonia gas is circulated through the reaction tube, A method for producing a noble metal-supported catalyst, characterized in that ammonia is adsorbed on a reduced noble metal and a promoter to suppress the oxidation activity of the reduced noble metal.

請求項4に係る発明は、担体に貴金属および促進剤を担持してなる触媒の還元において、反応管内にてアンモニアガスまたはアンモニア含有ガスで還元処理を行った後、引き続き同反応管にアンモニアガスまたはアンモニア含有ガスを流通し、還元された貴金属および促進剤にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法である。  In the invention according to claim 4, in the reduction of the catalyst in which the support is supported with the noble metal and the promoter, after the reduction treatment with ammonia gas or ammonia-containing gas in the reaction tube, the ammonia gas or A method for producing a noble metal-supported catalyst, characterized in that ammonia-containing gas is circulated, ammonia is adsorbed on the reduced noble metal and the promoter, and the oxidation activity of the reduced noble metal is suppressed.

請求項5に係る発明は、貴金属がルテニウムである1〜4のいずれかに記載の貴金属担持触媒野製造方法である。  The invention according to claim 5 is the method for producing a noble metal-supported catalyst field according to any one of 1 to 4, wherein the noble metal is ruthenium.

請求項6に係る発明は、担体が活性炭である1〜5のいずれかに記載の貴金属担持触媒野製造方法である。  The invention according to claim 6 is the method for producing a noble metal-supported catalyst field according to any one of 1 to 5, wherein the support is activated carbon.

請求項7に係る発明は、促進剤がバリウム化合物である1〜6のいずれかに記載の貴金属担持触媒野製造方法である。  The invention according to claim 7 is the method for producing a noble metal-supported catalyst field according to any one of 1 to 6, wherein the promoter is a barium compound.

請求項8に係る発明は、請求項1〜7のいずれかに記載の方法で製造された貴金属担持触媒である。  The invention according to claim 8 is a noble metal-supported catalyst produced by the method according to any one of claims 1 to 7.

請求項9に係る発明は、請求項8記載の貴金属担持触媒を用いるアンモニア分解方法またはアンモニアからの水素製造方法である。  The invention according to claim 9 is an ammonia decomposition method using the noble metal-supported catalyst according to claim 8 or a hydrogen production method from ammonia.

アンモニアの吸着には、水素による還元処理後、温度を室温まで降下させている間にアンモニアガスを触媒層に供給する方法が好ましい。還元ガスとして水素ではなくアンモニアを使用し、還元処理後もアンモニア気流下で室温まで降下させてもよい。   For the adsorption of ammonia, a method of supplying ammonia gas to the catalyst layer while reducing the temperature to room temperature after the reduction treatment with hydrogen is preferable. Ammonia may be used instead of hydrogen as the reducing gas, and the temperature may be lowered to room temperature in a stream of ammonia even after the reduction treatment.

促進剤である金属の配位子の除去方法についても上記と同様である。  The method for removing the metal ligand as the accelerator is the same as described above.

本発明によれば、還元された貴金属にアンモニアを吸着させることにより、還元された貴金属の酸化活性を効果的に抑制することができる。  According to the present invention, it is possible to effectively suppress the oxidation activity of the reduced noble metal by adsorbing ammonia to the reduced noble metal.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実施例1
i)活性炭を塩化ルテニウム水溶液(ルテニウムとして10g/l)に8時間浸漬した後、同水溶液から取り出し、110℃で空気下で乾燥させた。
Example 1
i) The activated carbon was immersed in an aqueous ruthenium chloride solution (10 g / l as ruthenium) for 8 hours, then taken out from the aqueous solution and dried at 110 ° C. in air.

ii)塩化ルテニウムを担持した活性炭を反応管に充填し、水素気流下で充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。 ii) Activated carbon loaded with ruthenium chloride was filled into a reaction tube, the temperature of the packed bed was raised to 450 ° C under a hydrogen stream, held at 450 ° C for 2 hours, and then the temperature was lowered.

iii)充填層温度が200℃になったら水素ガスの流れを停止し、反応管にアンモニアガスを供給した。 iii) When the packed bed temperature reached 200 ° C., the flow of hydrogen gas was stopped and ammonia gas was supplied to the reaction tube.

iv)充填層温度が100℃になったところで塩化ルテニウムを担持した活性炭を反応管から空気下で取り出し、空気下で乾燥させた。こうしてRu担持触媒を調製した。 iv) When the packed bed temperature reached 100 ° C, activated carbon carrying ruthenium chloride was taken out from the reaction tube under air and dried under air. Thus, a Ru-supported catalyst was prepared.

実施例2
i)活性炭を塩化ルテニウム水溶液(ルテニウムとして10g/l)に8時間浸漬した後、同水溶液から取り出し、110℃で空気下で乾燥させた。
Example 2
i) The activated carbon was immersed in an aqueous ruthenium chloride solution (10 g / l as ruthenium) for 8 hours, then taken out from the aqueous solution and dried at 110 ° C. in air.

ii)塩化ルテニウムを担持した活性炭を反応管に充填し、アンモニアガス流中で充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。 ii) Activated carbon loaded with ruthenium chloride was filled into a reaction tube, the packed bed temperature was raised to 450 ° C. in an ammonia gas flow, and maintained at 450 ° C. for 2 hours, and then the temperature was lowered.

iii) 充填層温度が100℃になったところで塩化ルテニウムを担持した活性炭を反応管から空気下で取り出し、空気下で乾燥させた。こうしてRu担持触媒を調製した。 iii) When the packed bed temperature reached 100 ° C, activated carbon carrying ruthenium chloride was taken out from the reaction tube under air and dried under air. Thus, a Ru-supported catalyst was prepared.

実施例3
i)活性炭を塩化ルテニウム水溶液(ルテニウムとして10g/l)に8時間浸漬した後、同水溶液から取り出し、110℃で空気下で乾燥させた。
Example 3
i) The activated carbon was immersed in an aqueous ruthenium chloride solution (10 g / l as ruthenium) for 8 hours, then taken out from the aqueous solution and dried at 110 ° C. in air.

ii)塩化ルテニウムを担持した活性炭を反応管に充填し、水素気流下で充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。 ii) Activated carbon loaded with ruthenium chloride was filled into a reaction tube, the temperature of the packed bed was raised to 450 ° C under a hydrogen stream, held at 450 ° C for 2 hours, and then the temperature was lowered.

iii)充填層温度が200℃になったら水素ガスの流れを停止し、反応管にアンモニアガスを供給した。 iii) When the packed bed temperature reached 200 ° C., the flow of hydrogen gas was stopped and ammonia gas was supplied to the reaction tube.

iv)充填層温度が100℃になったところで塩化ルテニウムを担持した活性炭を反応管から空気下で取り出し、硝酸バリウム水溶液(0.1mol/1)に浸漬した。 iv) When the packed bed temperature reached 100 ° C., activated carbon carrying ruthenium chloride was taken out from the reaction tube under air and immersed in an aqueous barium nitrate solution (0.1 mol / 1).

v)8時間浸漬後、これを同水溶液から取り出し、llO℃で空気下で乾燥させた。こうしてRu-Ba担持触媒を調製した。 v) After being immersed for 8 hours, this was taken out of the same aqueous solution and dried in air at llO ° C. In this way, a Ru-Ba supported catalyst was prepared.

実施例4
i)活性炭を塩化ルテニウム水溶液(ルテニウムとして10g/l)に8時間浸漬した後、同水溶液から取り出し、110℃で空気下で乾燥させた。
Example 4
i) The activated carbon was immersed in an aqueous ruthenium chloride solution (10 g / l as ruthenium) for 8 hours, then taken out from the aqueous solution and dried at 110 ° C. in air.

ii)塩化ルテニウムを担持した活性炭を反応管に充填し、アンモニアガス流中で充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。 ii) Activated carbon loaded with ruthenium chloride was filled into a reaction tube, the packed bed temperature was raised to 450 ° C. in an ammonia gas flow, and maintained at 450 ° C. for 2 hours, and then the temperature was lowered.

iii) 充填層温度が100℃になったところで塩化ルテニウムを担持した活性炭を反応管から空気下で取り出し、硝酸バリウム水溶液(0.1mol/1)に浸漬した。 iii) When the packed bed temperature reached 100 ° C., the activated carbon carrying ruthenium chloride was taken out from the reaction tube under air and immersed in an aqueous barium nitrate solution (0.1 mol / 1).

v)8時間浸漬後、これを同水溶液から取り出し、llO℃で空気下で乾燥させた。こうしてRu-Ba担持触媒を調製した。 v) After being immersed for 8 hours, this was taken out of the same aqueous solution and dried in air at llO ° C. In this way, a Ru-Ba supported catalyst was prepared.

実施例5
i)実施例1で得られたRu-Ba担持触媒を反応管に充填し、水素気流下で触媒充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。
Example 5
i) The Ru-Ba-supported catalyst obtained in Example 1 was charged into a reaction tube, the catalyst packed bed temperature was raised to 450 ° C under a hydrogen stream, held at 450 ° C for 2 hours, and then the temperature was lowered. .

ii)充填層温度が200℃になったら水素ガスの流れを停止し、反応管にアンモニアガスを供給した。 ii) When the packed bed temperature reached 200 ° C., the flow of hydrogen gas was stopped and ammonia gas was supplied to the reaction tube.

iii)充填層温度が100℃になったところで触媒を反応管から空気下で取り出した。こうしてRu-Ba担持触媒を調製した。 iii) When the packed bed temperature reached 100 ° C., the catalyst was taken out from the reaction tube under air. In this way, a Ru-Ba supported catalyst was prepared.

実施例6
i)実施例1で得られたRu-Ba担持触媒を反応管に充填し、アンモニアガス流中で充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。
Example 6
i) The Ru-Ba-supported catalyst obtained in Example 1 was charged into a reaction tube, the packed bed temperature was raised to 450 ° C in an ammonia gas flow, held at 450 ° C for 2 hours, and then the temperature was lowered. .

ii) 充填層温度が100℃になったところで触媒を反応管から空気下で取り出した。こうしてRu-Ba担持触媒を調製した。 ii) When the packed bed temperature reached 100 ° C., the catalyst was taken out from the reaction tube under air. In this way, a Ru-Ba supported catalyst was prepared.

比較例1
i)活性炭を塩化ルテニウム水溶液(ルテニウムとして10g/l)に8時間浸漬した後、同水溶液から取り出し、110℃で空気下で乾燥させた。
Comparative Example 1
i) The activated carbon was immersed in an aqueous ruthenium chloride solution (10 g / l as ruthenium) for 8 hours, then taken out from the aqueous solution and dried at 110 ° C. in air.

ii)塩化ルテニウムを担持した活性炭を反応管に充填し、水素気流下で同充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。 ii) Activated carbon loaded with ruthenium chloride was filled into a reaction tube, the packed bed temperature was raised to 450 ° C. under a hydrogen stream, held at 450 ° C. for 2 hours, and then the temperature was lowered.

iii)充填層温度が室温になったところで塩化ルテニウムを担持した活性炭を反応管から空気下で取り出し、空気下で乾燥させた。こうしてRu担持触媒を調製した。 iii) When the packed bed temperature reached room temperature, activated carbon carrying ruthenium chloride was taken out from the reaction tube under air and dried under air. Thus, a Ru-supported catalyst was prepared.

比較例2
i)活性炭を塩化ルテニウム水溶液(ルテニウムとして10g/l)に8時間浸漬した後、同水溶液から取り出し、110℃で空気下で乾燥させた。
Comparative Example 2
i) The activated carbon was immersed in an aqueous ruthenium chloride solution (10 g / l as ruthenium) for 8 hours, then taken out from the aqueous solution and dried at 110 ° C. in air.

ii)塩化ルテニウムを担持した活性炭を反応管に充填し、水素気流下で同充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。 ii) Activated carbon loaded with ruthenium chloride was filled into a reaction tube, the packed bed temperature was raised to 450 ° C. under a hydrogen stream, held at 450 ° C. for 2 hours, and then the temperature was lowered.

iii)充填層温度が室温になったところで塩化ルテニウムを担持した活性炭を反応管から窒素下で取り出し、硝酸バリウム水溶液(0.1mol/1)に浸漬した。 iii) When the packed bed temperature reached room temperature, the activated carbon carrying ruthenium chloride was taken out of the reaction tube under nitrogen and immersed in an aqueous barium nitrate solution (0.1 mol / 1).

iv)8時間浸漬後、これを同水溶液から取り出し、llO℃で空気下で乾燥させた。こうしてRu-Ba担持触媒を調製した。 iv) After being immersed for 8 hours, this was taken out from the same aqueous solution and dried under air at llO ° C. In this way, a Ru-Ba supported catalyst was prepared.

比較例3
i)実施例1で得られたRu-Ba担持触媒を反応管に充填し、水素気流下で触媒充填層温度を450℃まで昇温し、450℃で2時間保持した後、温度を下げた。
Comparative Example 3
i) The Ru-Ba-supported catalyst obtained in Example 1 was charged into a reaction tube, the catalyst packed bed temperature was raised to 450 ° C under a hydrogen stream, held at 450 ° C for 2 hours, and then the temperature was lowered. .

ii)充填層温度が100℃になったところで触媒を反応管から空気下で取り出した。こうしてRu-Ba担持触媒を調製した。 ii) When the packed bed temperature reached 100 ° C., the catalyst was taken out from the reaction tube under air. In this way, a Ru-Ba supported catalyst was prepared.

性能評価試験
実施例および比較例で得られた各触媒のアンモニア分解活性を、図1に示す試験装置を用いて下記の試験条件で測定した。図1中,(1)はアンモニア分解用の反応器、(2)は反応器(1)に設けられた触媒充填層、(3)は反応器(1)のヒータ、(4)(5)は触媒充填層の上端および下端に配された熱電対、(6)は反応器(1)の頂部に供給されるアンモニア(+ヘリウム)の流量計、(7)は反応器(1)の下端から出るガス中の残存アンモニアを捕捉するトラップ、(8)(9)はアンモニア分解生成ガスの流量計およびガスクロマトクラフィである。
Performance Evaluation Test The ammonia decomposition activity of each catalyst obtained in the examples and comparative examples was measured under the following test conditions using the test apparatus shown in FIG. In FIG. 1, (1) is a reactor for ammonia decomposition, (2) is a catalyst packed bed provided in the reactor (1), (3) is a heater of the reactor (1), (4) (5) Is a thermocouple disposed at the upper and lower ends of the catalyst packed bed, (6) is a flow meter of ammonia (+ helium) supplied to the top of the reactor (1), and (7) is the lower end of the reactor (1). (8) and (9) are a flow meter and gas chromatograph of ammonia decomposition product gas.

試験条件
反応温度(℃) 400℃
圧力 常圧
入ロアンモニア濃度(%) 100%
空間速度(m/h/m−触媒) 5000
Test condition Reaction temperature (℃) 400 ℃
Pressure Normal pressure Input ammonia concentration (%) 100%
Space velocity (m 3 / h / m 3 -catalyst) 5000

測定結果は下記の通りである。  The measurement results are as follows.

測定結果
触媒 アンモニア分解率(%)
実施例1 20.3
実施例2 19.4
実施例3 60.1
実施例4 59.6
実施例5 60.0
実施例6 59.7
比較例1 5.3
比較例2 41.5
比較例3 28.5
Measurement results Catalyst Ammonia decomposition rate (%)
Example 1 20.3
Example 2 19.4
Example 3 60.1
Example 4 59.6
Example 5 60.0
Example 6 59.7
Comparative Example 1 5.3
Comparative Example 2 41.5
Comparative Example 3 28.5

実施例1および2の触媒と、実施例3〜6の触媒とは、促進剤を含有するか否かの点で異なるためアンモニア分解率は異なるが、実施例1の触媒と実施例2の触媒のアンモニア分解率、並びに実施例3〜6の各触媒のアンモニア分解率どうしとほぼ同じであり、触媒の状態としては同じ状態を維持していると考えられる。一方、比較例1の触媒のアンモニア分解率は実施例1および2の触媒と比べて著しく低く、比較例2および3の触媒のアンモニア分解率は実施例3〜6の触媒と比べて著しく低い。これは、塩化ルテニウムおよび硝酸バリウム担持の際に行った水素処理によって還元されたルテニウムが、触媒を反応管から取り出した際に空気により酸化されたことと、酸化による酸化熱のためルテニウムが凝集したためと考えられる。   The catalysts of Examples 1 and 2 and the catalysts of Examples 3 to 6 differ in terms of whether or not they contain a promoter, and thus the ammonia decomposition rate is different. However, the catalyst of Example 1 and the catalyst of Example 2 are different. The ammonia decomposition rate of each catalyst and the ammonia decomposition rates of the catalysts of Examples 3 to 6 are almost the same, and it is considered that the same state is maintained as the catalyst state. On the other hand, the ammonia decomposition rate of the catalyst of Comparative Example 1 is significantly lower than that of Examples 1 and 2, and the ammonia decomposition rate of the catalysts of Comparative Examples 2 and 3 is significantly lower than that of Examples 3 to 6. This is because ruthenium reduced by the hydrogen treatment performed when ruthenium chloride and barium nitrate were supported was oxidized by air when the catalyst was removed from the reaction tube, and ruthenium agglomerated due to the heat of oxidation due to oxidation. it is conceivable that.

以上の結果より、本発明が有効であることが確認された。   From the above results, it was confirmed that the present invention is effective.

アンモニア分解活性を測定する試験装置を示すフロー図である。It is a flowchart which shows the test apparatus which measures ammonia decomposition activity.

符号の説明Explanation of symbols

(1) 反応器
(2) 触媒充填層
(3) ヒータ
(4)(5) 熱電対
(6) 流量計
(7) トラップ
(8) 流量計
(9)ガスクロマトクラフィ
(1) Reactor (2) Catalyst packed bed (3) Heater (4) (5) Thermocouple (6) Flow meter (7) Trap (8) Flow meter (9) Gas chromatographic

Claims (9)

担体に貴金属を担持してなる触媒の還元において、反応管内にて水素ガスで触媒の還元処理を行った後、同反応管にアンモニアガスを流通し、還元された貴金属にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法。 In the reduction of a catalyst with a noble metal supported on a support, after reducing the catalyst with hydrogen gas in the reaction tube, ammonia gas is circulated through the reaction tube, and the reduced noble metal is adsorbed with ammonia to reduce the catalyst. A method for producing a noble metal-supported catalyst, characterized by suppressing the oxidation activity of the noble metal produced. 担体に貴金属を担持してなる触媒の還元において、反応管内にてアンモニアガスまたはアンモニア含有ガスで還元処理を行った後、引き続き同反応管にアンモニアガスまたはアンモニア含有ガスを流通し、還元された貴金属にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法。 In the reduction of the catalyst having noble metal supported on the support, after reducing with ammonia gas or ammonia-containing gas in the reaction tube, ammonia gas or ammonia-containing gas is continuously passed through the reaction tube to reduce the reduced noble metal. A method for producing a noble metal-supported catalyst, wherein ammonia is adsorbed on the metal and the oxidation activity of the reduced noble metal is suppressed. 担体に貴金属および促進剤を担持してなる触媒の還元において、反応管内にて水素ガスで触媒の還元処理を行った後、同反応管にアンモニアガスを流通し、還元された貴金属および促進剤にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法。 In the reduction of a catalyst in which a noble metal and a promoter are supported on a support, after reducing the catalyst with hydrogen gas in the reaction tube, ammonia gas is circulated through the reaction tube, and the reduced noble metal and the promoter A method for producing a noble metal-supported catalyst, characterized by adsorbing ammonia and suppressing the oxidation activity of the reduced noble metal. 担体に貴金属および促進剤を担持してなる触媒の還元において、反応管内にてアンモニアガスまたはアンモニア含有ガスで還元処理を行った後、引き続き同反応管にアンモニアガスまたはアンモニア含有ガスを流通し、還元された貴金属および促進剤にアンモニアを吸着させ、還元された貴金属の酸化活性を抑制することを特徴とする貴金属担持触媒の製造方法。 In the reduction of a catalyst comprising a support carrying a precious metal and a promoter, after reduction treatment with ammonia gas or ammonia-containing gas in the reaction tube, the ammonia gas or ammonia-containing gas is subsequently circulated through the reaction tube to reduce the catalyst. A method for producing a noble metal-supported catalyst, wherein ammonia is adsorbed on the noble metal and the promoter, and the oxidation activity of the reduced noble metal is suppressed. 貴金属がルテニウムである1〜4のいずれかに記載の貴金属担持触媒野製造方法。 5. The method for producing a noble metal-supported catalyst field according to any one of 1 to 4, wherein the noble metal is ruthenium. 担体が活性炭である1〜5のいずれかに記載の貴金属担持触媒野製造方法。 The method for producing a noble metal-supported catalyst field according to any one of 1 to 5, wherein the support is activated carbon. 促進剤がバリウム化合物である1〜6のいずれかに記載の貴金属担持触媒野製造方法。 The method for producing a noble metal-supported catalyst field according to any one of 1 to 6, wherein the promoter is a barium compound. 請求項1〜7のいずれかに記載の方法で製造された貴金属担持触媒。 A noble metal-supported catalyst produced by the method according to claim 1. 請求項8記載の貴金属担持触媒を用いるアンモニア分解方法またはアンモニアからの水素製造方法。 A method for decomposing ammonia or a method for producing hydrogen from ammonia using the noble metal-supported catalyst according to claim 8.
JP2008099968A 2008-04-08 2008-04-08 Method for producing noble metal supported catalyst Expired - Fee Related JP5039631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099968A JP5039631B2 (en) 2008-04-08 2008-04-08 Method for producing noble metal supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099968A JP5039631B2 (en) 2008-04-08 2008-04-08 Method for producing noble metal supported catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012091698A Division JP5677358B2 (en) 2012-04-13 2012-04-13 Method for producing ruthenium-supported catalyst

Publications (2)

Publication Number Publication Date
JP2009248009A true JP2009248009A (en) 2009-10-29
JP5039631B2 JP5039631B2 (en) 2012-10-03

Family

ID=41309190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099968A Expired - Fee Related JP5039631B2 (en) 2008-04-08 2008-04-08 Method for producing noble metal supported catalyst

Country Status (1)

Country Link
JP (1) JP5039631B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424875A (en) * 2014-09-03 2016-03-23 湖南华思仪器有限公司 Straight type adsorption pipe for dynamic adsorption device
CN105709858A (en) * 2014-12-01 2016-06-29 神华集团有限责任公司 Catalyst continuous reducing apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (en) * 1987-10-30 1989-05-11 Nkk Corp Catalyst for ammonia decomposition
JP2000176284A (en) * 1998-12-16 2000-06-27 Hitachi Zosen Corp Production of ammonia synthesis catalyst and catalyst obtained by the same
JP2002052341A (en) * 2000-07-06 2002-02-19 Haldor Topsoe As Catalytic ammonia production method and production and recovery method for ammonia synthesis catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (en) * 1987-10-30 1989-05-11 Nkk Corp Catalyst for ammonia decomposition
JP2000176284A (en) * 1998-12-16 2000-06-27 Hitachi Zosen Corp Production of ammonia synthesis catalyst and catalyst obtained by the same
JP2002052341A (en) * 2000-07-06 2002-02-19 Haldor Topsoe As Catalytic ammonia production method and production and recovery method for ammonia synthesis catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424875A (en) * 2014-09-03 2016-03-23 湖南华思仪器有限公司 Straight type adsorption pipe for dynamic adsorption device
CN105424875B (en) * 2014-09-03 2019-01-15 湖南华思仪器有限公司 The straight adsorption tube of Dynamic Adsorption instrument
CN105709858A (en) * 2014-12-01 2016-06-29 神华集团有限责任公司 Catalyst continuous reducing apparatus and method
CN105709858B (en) * 2014-12-01 2018-09-14 国家能源投资集团有限责任公司 A kind of device and method of continuous reducing catalyst

Also Published As

Publication number Publication date
JP5039631B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
Lee et al. Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment
JP4153483B2 (en) Method for purifying hydride gas
US5536302A (en) Adsorbent for removal of trace oxygen from inert gases
Liu et al. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene
TWI460003B (en) Gas purifying method and gas purifying device
Aschwanden et al. Development of a new generation of gold catalysts for amine oxidation
Fang et al. Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene
EP3517499A1 (en) Porous carbon material, method for producing same, and synthesis reaction catalyst
TW200536786A (en) Ingredient and process for producing copper (I) chloride, adsorbent and adsorbing method for reductive gas each with the use of copper (I) chloride, and recovering method of carbon monoxide gas
JP4921720B2 (en) Catalyst for N2O decomposition during the Ostwald process
US10188984B2 (en) Process for removing oxidisable gaseous compounds from a gas mixture by means of a platinum-containing oxidation catalyst
TWI498159B (en) Catalyst and process
JP5677358B2 (en) Method for producing ruthenium-supported catalyst
JP5039631B2 (en) Method for producing noble metal supported catalyst
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
Raskó et al. CO oxidation in the presence of hydrogen on Au/TiO 2 catalyst: an FTIR–MS study
JP5133929B2 (en) Method and apparatus for producing ultra-high purity nitrogen gas
JP2001294415A (en) Method of removing residue in liquefied gas and regenerating method of activated carbon
AU2007255151B2 (en) Method for removing heavy metals from gases
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon
JP4868882B2 (en) Method and apparatus for treating exhaust gas containing volatile organic compounds
JP5256120B2 (en) Method for producing CO adsorption / desorption agent
JP2001162175A (en) Method of producing catalyst for removal of nitrogen oxide and device for that production
JP2006223916A (en) Catalyst for oxidizing hydrocarbon partially and method and apparatus for producing hydrogen-containing gas by using the catalyst
JP7272739B2 (en) Method for producing methane from carbon dioxide containing sulfur oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees