JP2009247057A - Control device of electric vehicle - Google Patents

Control device of electric vehicle Download PDF

Info

Publication number
JP2009247057A
JP2009247057A JP2008088001A JP2008088001A JP2009247057A JP 2009247057 A JP2009247057 A JP 2009247057A JP 2008088001 A JP2008088001 A JP 2008088001A JP 2008088001 A JP2008088001 A JP 2008088001A JP 2009247057 A JP2009247057 A JP 2009247057A
Authority
JP
Japan
Prior art keywords
high voltage
voltage source
voltage battery
electric vehicle
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088001A
Other languages
Japanese (ja)
Inventor
Yutaka Yokoyama
裕 横山
Mitsunori Ishii
光徳 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008088001A priority Critical patent/JP2009247057A/en
Publication of JP2009247057A publication Critical patent/JP2009247057A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

<P>PROBLEM TO BE SOLVED: To use a high-voltage battery by sufficiently charging it while suppressing the deterioration of the high-voltage battery. <P>SOLUTION: It is determined whether a terminal voltage Vi of the high-voltage battery exceeds a prescribed voltage V1 or not (mark b) when an ignition switch is switched to an off-state (mark a). When it is determined that the terminal voltage Vi exceeds the prescribed voltage V1 for a prescribed time TO (mark c), drive states of a converter are switched (mark d), and a low-voltage battery is charged by the high-voltage battery. In continuation to this, when it is determined that the terminal voltage Vi of the high-voltage battery is lower than the a prescribed voltage V2 (mark e), the discharge of the high-voltage battery is stopped by the stop of the converter (mark f). As above, since the high-voltage battery is not left in a highly-charged state, the deterioration of the high-voltage battery can be suppressed even if the high-voltage battery is sufficiently charged and used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高電圧源および低電圧源を備える電気自動車の制御装置に関する。   The present invention relates to a control device for an electric vehicle including a high voltage source and a low voltage source.

駆動源として電動モータのみを備える電気自動車や、駆動源としてエンジンおよび電動モータを備えるハイブリッド型の電気自動車がある。これらの電気自動車には、電動モータに電力を供給するリチウムイオンバッテリ等の蓄電デバイスが搭載されている。このような電気自動車において、電動モータを用いて走行する際の航続距離を延ばすとともに、蓄電デバイスの小型化や軽量化を図るためには、蓄電デバイスを十分に充電して使用することが望ましい。また、蓄電デバイスからの電力は、電動モータに対して供給されるだけでなく、エアコンディショナ装置の電動コンプレッサにも供給されている。このような電動コンプレッサの駆動に備える観点からも、蓄電デバイスを十分に充電しておくことが望ましい。しかしながら、長時間に渡って蓄電デバイスを満充電状態で保持することは、蓄電デバイスを劣化させてしまう要因となっていた。   There are electric vehicles that include only an electric motor as a drive source, and hybrid electric vehicles that include an engine and an electric motor as drive sources. These electric vehicles are equipped with a power storage device such as a lithium ion battery for supplying electric power to the electric motor. In such an electric vehicle, it is desirable to sufficiently charge and use the power storage device in order to extend the cruising distance when traveling using the electric motor and to reduce the size and weight of the power storage device. Further, the electric power from the power storage device is not only supplied to the electric motor but also supplied to the electric compressor of the air conditioner device. From the viewpoint of preparing for driving such an electric compressor, it is desirable to sufficiently charge the power storage device. However, holding the power storage device in a fully charged state for a long time has been a factor that deteriorates the power storage device.

そこで、外部電源によって蓄電デバイスを充電するタイプの電気自動車においては、予め利用者が出発時刻を設定しておくことにより、この出発時刻の直前に蓄電デバイスを満充電状態まで充電する充電方法が考えられている。この充電方法によれば、満充電状態の蓄電デバイスを長期に渡って放置することがないため、蓄電デバイスの劣化を抑制することが可能となる。また、同様の問題を解決するため、バッテリの充電回路に操作スイッチを組み込み、充電電圧が低く設定される長寿命モードと、充電電圧が高く設定される高容量モードとの切換を可能にした充電回路が提案されている(例えば、特許文献1参照)。この充電回路によれば、電気自動車を走行させる際には高容量モードに設定する一方、電気自動車を駐車させる際には予め長寿命モードに設定することにより、蓄電デバイスの劣化を抑制しながら蓄電デバイスを十分に充電して使用することが可能となる。
特開2002−78222号公報
Therefore, in an electric vehicle of a type in which the power storage device is charged by an external power source, a charging method for charging the power storage device to a fully charged state immediately before the departure time by setting a departure time in advance by the user is considered. It has been. According to this charging method, a fully charged power storage device is not left for a long period of time, so that deterioration of the power storage device can be suppressed. In order to solve the same problem, an operation switch is incorporated in the battery charging circuit to enable switching between a long life mode in which the charging voltage is set low and a high capacity mode in which the charging voltage is set high. A circuit has been proposed (see, for example, Patent Document 1). According to this charging circuit, while driving the electric vehicle, the high capacity mode is set, while when the electric vehicle is parked, the long life mode is set in advance, thereby suppressing the deterioration of the power storage device. The device can be fully charged and used.
JP 2002-78222 A

しかしながら、利用者に対して出発時刻の入力操作や充電モードの切換操作を強いることは、電気自動車の使い勝手を悪化させる要因となる。また、走行に備えて蓄電デバイスを十分に充電した場合であっても、電気自動車が使用されずに蓄電デバイスが満充電状態で放置されてしまうことも考えられる。このように、利用者の操作によって蓄電デバイスの充電制御を変化させる方法では、蓄電デバイスの劣化を防止することが極めて困難となっていた。   However, forcing the user to input the departure time or change the charging mode is a factor that deteriorates the usability of the electric vehicle. In addition, even when the power storage device is sufficiently charged in preparation for traveling, it is conceivable that the power storage device is left in a fully charged state without using the electric vehicle. As described above, in the method of changing the charging control of the power storage device by the operation of the user, it has been extremely difficult to prevent the deterioration of the power storage device.

本発明の目的は、利用者に負担を強いることなく、蓄電デバイスの劣化を抑制しながら蓄電デバイスを十分に充電して使用することにある。   An object of the present invention is to sufficiently charge and use an electricity storage device while suppressing deterioration of the electricity storage device without imposing a burden on the user.

本発明の電気自動車の制御装置は、走行用の電動モータに電力を供給する高電圧源と、車両補機に電力を供給する低電圧源とを備える電気自動車の制御装置であって、前記高電圧源と前記低電圧源との間に設けられ、前記高電圧源から前記低電圧源に電力を供給するコンバータと、前記コンバータの駆動状態を制御するコンバータ制御手段と、前記高電圧源が高充電状態であるか否かを判定する判定手段とを有し、前記コンバータ制御手段は、イグニッションスイッチがオフ操作された状態のもとで、前記高電圧源の高充電状態が所定時間に渡って継続されたときに、前記コンバータを駆動して前記高電圧源から前記低電圧源に電力を供給することを特徴とする。   An electric vehicle control device according to the present invention is an electric vehicle control device including a high voltage source that supplies electric power to a traveling electric motor, and a low voltage source that supplies electric power to a vehicle auxiliary machine. A converter provided between the voltage source and the low voltage source and supplying power from the high voltage source to the low voltage source; converter control means for controlling a driving state of the converter; and Determining means for determining whether or not the battery is in a charged state, wherein the converter control means is configured so that a high charged state of the high voltage source is maintained for a predetermined time under a state in which an ignition switch is turned off. When continued, the converter is driven to supply power from the high voltage source to the low voltage source.

本発明の電気自動車の制御装置は、前記高電圧源の高充電状態とは、前記高電圧源の電圧が第1電圧値を上回る状態であり、前記コンバータ制御手段は、前記高電圧源の電圧が前記第1電圧値よりも低い第2電圧値を下回るまで、前記コンバータを駆動して前記高電圧源から前記低電圧源に電力を供給することを特徴とする。   In the control apparatus for an electric vehicle according to the present invention, the high charge state of the high voltage source is a state in which the voltage of the high voltage source exceeds a first voltage value, and the converter control means includes a voltage of the high voltage source. Until the voltage falls below a second voltage value lower than the first voltage value, the converter is driven to supply power from the high voltage source to the low voltage source.

本発明の電気自動車の制御装置は、前記イグニッションスイッチがオン操作された状態のもとでは、前記低電圧源の電圧が所定の上限電圧に達しないように、前記低電圧源を充電制御する低電圧源制御手段を有することを特徴とする。   The control apparatus for an electric vehicle according to the present invention is a low-voltage control device that controls charging of the low-voltage source so that the voltage of the low-voltage source does not reach a predetermined upper limit voltage when the ignition switch is turned on. It has a voltage source control means.

本発明の電気自動車の制御装置は、外部電源を接続して前記高電圧源を充電する際には、前記高電圧源が高充電状態に達するまで、前記高電圧源を充電制御する高電圧源制御手段を有することを特徴とする。   The control apparatus for an electric vehicle according to the present invention is configured to charge the high voltage source until the high voltage source reaches a high charge state when the high voltage source is charged by connecting an external power source. It has a control means.

本発明によれば、イグニッションスイッチがオフ操作された状態のもとで、高電圧源の高充電状態が所定時間に渡って継続されたときに、コンバータを駆動して高電圧源から低電圧源に電力を供給する。これにより、高電圧源が高充電状態で放置されないため、高電圧源の劣化を抑制しながら高電圧源を十分に充電して使用することが可能となる。しかも、高電圧源から放電された電力は低電圧源の充電に使用されることから、高電圧源の電力を無駄なく使用することが可能となる。また、利用者に対して特別な操作を強いることがないため、電気自動車の使い勝手を損なうこともない。   According to the present invention, when the high charge state of the high voltage source continues for a predetermined time under the state where the ignition switch is turned off, the converter is driven to switch the high voltage source from the low voltage source. To supply power. Accordingly, since the high voltage source is not left in a high charge state, the high voltage source can be sufficiently charged and used while suppressing deterioration of the high voltage source. In addition, since the power discharged from the high voltage source is used for charging the low voltage source, the power of the high voltage source can be used without waste. Moreover, since the user is not forced to perform a special operation, the usability of the electric vehicle is not impaired.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は電気自動車10の構成を示す概略図であり、この電気自動車10には本発明の一実施の形態である電気自動車の制御装置が設けられている。図1に示すように、車体前部には駆動源としてのモータジェネレータ(電動モータ)11が搭載されている。このモータジェネレータ11には歯車列12を介して前輪駆動軸13が連結され、前輪駆動軸13には駆動輪としての前輪14が連結されている。また、電気自動車10には、モータジェネレータ11に供給する電力を蓄えるため、高電圧源である高電圧バッテリ15(例えば400Vのリチウムイオンバッテリ)が搭載されている。なお、電気自動車10を制動する際には、モータジェネレータ11を発電駆動させることにより、運動エネルギーを電気エネルギーに変換して高電圧バッテリ15に回収することが可能となる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of an electric vehicle 10, and the electric vehicle 10 is provided with a control device for an electric vehicle according to an embodiment of the present invention. As shown in FIG. 1, a motor generator (electric motor) 11 as a drive source is mounted on the front of the vehicle body. A front wheel drive shaft 13 is connected to the motor generator 11 via a gear train 12, and a front wheel 14 as a drive wheel is connected to the front wheel drive shaft 13. The electric vehicle 10 is equipped with a high voltage battery 15 (for example, a 400 V lithium ion battery) that is a high voltage source in order to store electric power to be supplied to the motor generator 11. When braking the electric vehicle 10, the motor generator 11 is driven to generate electricity, so that kinetic energy can be converted into electric energy and recovered by the high voltage battery 15.

モータジェネレータ11のトルクや回転数を制御するため、モータジェネレータ11にはインバータ16が接続されている。このインバータ16は通電ケーブル17,18を介して高電圧バッテリ15に接続されており、インバータ16は高電圧バッテリ15の直流電流を交流電流に変換してモータジェネレータ11に供給する。また、インバータ16を介して交流電流の電流値や周波数を制御することにより、モータジェネレータ11のトルクや回転数を制御することが可能となる。なお、高電圧バッテリ15からの直流電流を案内する通電ケーブル17,18にはメインリレー19が設けられている。   In order to control the torque and rotation speed of the motor generator 11, an inverter 16 is connected to the motor generator 11. The inverter 16 is connected to the high voltage battery 15 via energization cables 17 and 18, and the inverter 16 converts the direct current of the high voltage battery 15 into an alternating current and supplies it to the motor generator 11. Further, by controlling the current value and frequency of the alternating current via the inverter 16, it is possible to control the torque and rotation speed of the motor generator 11. A main relay 19 is provided in the energizing cables 17 and 18 for guiding a direct current from the high voltage battery 15.

また、高電圧バッテリ15には、DC/DCコンバータ20(以下、コンバータという)を介して低電圧源である低電圧バッテリ21(例えば12Vの鉛蓄電池)が接続されている。この低電圧バッテリ21は、インバータ16、コンバータ20、後述する各種制御ユニット30,31に対して電力を供給するとともに、ヘッドライト、テールランプ、ウインカー、ブロワ等の車両補機22に対して電力を供給する。また、コンバータ20を介して高圧電流から低圧電流を生成することにより、高電圧バッテリ15から低電圧バッテリ21に対して電力を供給することが可能となる。   The high voltage battery 15 is connected to a low voltage battery 21 (for example, a 12V lead storage battery) as a low voltage source via a DC / DC converter 20 (hereinafter referred to as a converter). The low voltage battery 21 supplies power to the inverter 16, the converter 20, and various control units 30 and 31, which will be described later, and also supplies power to the vehicle auxiliary equipment 22 such as a headlight, tail lamp, turn signal, and blower. To do. Further, by generating a low voltage current from the high voltage current via the converter 20, it is possible to supply power from the high voltage battery 15 to the low voltage battery 21.

また、高電圧バッテリ15の充放電を制御するため、高電圧バッテリ15にはバッテリ制御ユニット(BCU)30が接続されている。このバッテリ制御ユニット30は、高電圧バッテリ15の電圧、電流、温度等に基づいて、高電圧バッテリ15の残存容量を表す充電状態SOC(state of charge)を算出することが可能である。また、インバータ16の駆動状態や高電圧バッテリ15の充放電等を制御するため、電気自動車10には車両制御ユニット31が設けられている。さらに、車両制御ユニット31には、電気自動車10を起動状態と停止状態とに切り換えるイグニッションスイッチ32や、低電圧バッテリ21の端子電圧を検出する電圧センサ33等が接続されている。なお、車両制御ユニット31、バッテリ制御ユニット30、インバータ16、コンバータ20等は通信ネットワーク34を介して相互に接続されている。   Further, a battery control unit (BCU) 30 is connected to the high voltage battery 15 in order to control charging / discharging of the high voltage battery 15. The battery control unit 30 can calculate a state of charge (SOC) representing the remaining capacity of the high voltage battery 15 based on the voltage, current, temperature, etc. of the high voltage battery 15. In addition, a vehicle control unit 31 is provided in the electric vehicle 10 in order to control the driving state of the inverter 16 and charging / discharging of the high voltage battery 15. Further, an ignition switch 32 that switches the electric vehicle 10 between a start state and a stop state, a voltage sensor 33 that detects a terminal voltage of the low voltage battery 21, and the like are connected to the vehicle control unit 31. Note that the vehicle control unit 31, the battery control unit 30, the inverter 16, the converter 20, and the like are connected to each other via a communication network 34.

続いて、図2(A)および(B)は外部電源によって充電される電気自動車10を示す説明図であり、(A)には急速充電器(外部電源)35を用いた急速充電モードが示され、(B)には家庭用電源(外部電源)36を用いた家庭充電モードが示されている。図1および図2(A)に示すように、給電ステーション等に設置される急速充電器35を用いた急速充電モードを実行するため、車体側部には急速充電用の受電側コネクタ37が設置されている。この受電側コネクタ37は一対の接続端子38,39を有しており、一方の接続端子38は通電ケーブル40を介して通電ケーブル17に接続され、他方の接続端子39は通電ケーブル41を介して通電ケーブル18に接続されている。すなわち、受電側コネクタ37の接続端子38,39は、高電圧バッテリ15の正極と負極とに接続されている。   Next, FIGS. 2A and 2B are explanatory views showing the electric vehicle 10 charged by an external power source. FIG. 2A shows a quick charging mode using a quick charger (external power source) 35. (B) shows a home charging mode using a home power source (external power source) 36. As shown in FIG. 1 and FIG. 2 (A), in order to execute a quick charging mode using a quick charger 35 installed in a power supply station or the like, a power receiving side connector 37 for quick charging is installed on the side of the vehicle body. Has been. The power receiving side connector 37 has a pair of connection terminals 38, 39. One connection terminal 38 is connected to the energization cable 17 via an energization cable 40, and the other connection terminal 39 is energized via an energization cable 41. It is connected to the energization cable 18. That is, the connection terminals 38 and 39 of the power receiving side connector 37 are connected to the positive electrode and the negative electrode of the high voltage battery 15.

また、急速充電器35から延びる充電ケーブル42には給電側コネクタ43が設けられており、この給電側コネクタ43には受電側コネクタ37の接続端子38,39に対応する一対の接続端子44,45が設けられている。そして、高電圧バッテリ15を急速充電する際には、受電側コネクタ37に対して給電側コネクタ43を接続することにより、急速充電器35によって生成された充電電流が高電圧バッテリ15に対して供給される。また、急速充電器35は通信ネットワーク34に接続されており、高電圧バッテリ15が後述する高充電状態に達するまで、車両制御ユニット31からの制御信号に応じて充電制御が実行されている。なお、急速充電器35には、低電圧(例えば200V)の交流電流を高電圧(例えば400V)の直流電流に変換する昇圧コンバータ46が組み込まれている。   The charging cable 42 extending from the quick charger 35 is provided with a power supply side connector 43. The power supply side connector 43 has a pair of connection terminals 44 and 45 corresponding to the connection terminals 38 and 39 of the power reception side connector 37. Is provided. When the high voltage battery 15 is rapidly charged, the charging current generated by the quick charger 35 is supplied to the high voltage battery 15 by connecting the power supply side connector 43 to the power receiving side connector 37. Is done. Further, the quick charger 35 is connected to the communication network 34, and charging control is executed in accordance with a control signal from the vehicle control unit 31 until the high voltage battery 15 reaches a high charging state described later. The quick charger 35 incorporates a boost converter 46 that converts a low voltage (for example, 200 V) alternating current into a high voltage (for example, 400 V) direct current.

また、図1および図2(B)に示すように、家庭用電源36(例えばAC200V)を用いた家庭充電モードを実行するため、電気自動車10には、家庭用電源36の交流電流を高電圧バッテリ15に対応した高電圧(例えば400V)の直流電流に変換する車載充電器50が搭載されている。この車載充電器50は一対の通電ケーブル51,52を有しており、一方の通電ケーブル51は通電ケーブル17に接続され、他方の通電ケーブル52は通電ケーブル18に接続されている。すなわち、車載充電器50の通電ケーブル51,52は、高電圧バッテリ15の正極と負極とに接続されている。さらに、車載充電器50を家庭用電源36に接続するため、車体前部には家庭充電用の受電側コネクタ53が設けられている。この受電側コネクタ53は一対の接続端子54,55を有しており、一方の接続端子54は通電ケーブル56を介して車載充電器50に接続され、他方の接続端子55は通電ケーブル57を介して車載充電器50に接続されている。すなわち、受電側コネクタ53の接続端子54,55は、車載充電器50を介して高電圧バッテリ15の正極と負極とに接続されている。   Further, as shown in FIGS. 1 and 2B, in order to execute the home charging mode using the home power source 36 (for example, AC 200V), the electric vehicle 10 is supplied with the alternating current of the home power source 36 at a high voltage. A vehicle-mounted charger 50 that converts a high voltage (for example, 400 V) DC current corresponding to the battery 15 is mounted. The in-vehicle charger 50 has a pair of energization cables 51 and 52, one energization cable 51 is connected to the energization cable 17, and the other energization cable 52 is connected to the energization cable 18. That is, the energization cables 51 and 52 of the in-vehicle charger 50 are connected to the positive electrode and the negative electrode of the high voltage battery 15. Furthermore, in order to connect the in-vehicle charger 50 to the household power source 36, a power receiving side connector 53 for household charging is provided at the front of the vehicle body. The power receiving side connector 53 has a pair of connection terminals 54, 55. One connection terminal 54 is connected to the in-vehicle charger 50 via an energization cable 56, and the other connection terminal 55 is connected via an energization cable 57. Connected to the in-vehicle charger 50. That is, the connection terminals 54 and 55 of the power receiving side connector 53 are connected to the positive electrode and the negative electrode of the high voltage battery 15 via the in-vehicle charger 50.

さらに、家庭用電源36のコンセント58に接続される充電ケーブル59には給電側コネクタ60が設けられており、この給電側コネクタ60には受電側コネクタ53の接続端子54,55に対応する一対の接続端子61,62が設けられている。そして、高電圧バッテリ15を家庭用電源36によって充電する際には、受電側コネクタ53に対して給電側コネクタ60が接続される。これにより、家庭用電源36からの交流電流は車載充電器50に供給され、車載充電器50によって充電電流に変換された後に高電圧バッテリ15に対して供給される。なお、車載充電器50は通信ネットワーク34に接続されており、高電圧バッテリ15が後述する高充電状態に達するまで、車両制御ユニット31からの制御信号に応じて充電制御が実行されている。   Further, the charging cable 59 connected to the outlet 58 of the household power supply 36 is provided with a power supply side connector 60, and the power supply side connector 60 has a pair of terminals corresponding to the connection terminals 54 and 55 of the power reception side connector 53. Connection terminals 61 and 62 are provided. When the high voltage battery 15 is charged by the household power source 36, the power supply side connector 60 is connected to the power reception side connector 53. Thereby, the alternating current from the household power source 36 is supplied to the in-vehicle charger 50, converted into a charging current by the in-vehicle charger 50, and then supplied to the high voltage battery 15. The in-vehicle charger 50 is connected to the communication network 34, and charging control is executed in accordance with a control signal from the vehicle control unit 31 until the high voltage battery 15 reaches a high charging state described later.

ところで、電気自動車10に搭載される高電圧バッテリ15においては、高電圧バッテリ15の小型化を図りつつ航続距離を延ばす観点から、高電圧バッテリ15を十分に充電して使用することが望ましい。しかしながら、高電圧バッテリ15として採用されるリチウムイオンバッテリは、高レベルの充電状態SOCが長時間に渡って継続されると、バッテリ性能が劣化してしまうという特性を有している。そこで、本発明の電気自動車の制御装置は、高レベルの充電状態SOCとなった高電圧バッテリ15が放置されることのないよう、所定条件下において高電圧バッテリ15を放電させるようにしている。以下、高電圧バッテリ15の放電制御について説明する。なお、この放電制御は、コンバータ制御手段、判定手段および高電圧源制御手段として機能する車両制御ユニット31によって実行されている。   By the way, in the high voltage battery 15 mounted in the electric vehicle 10, it is desirable to fully charge and use the high voltage battery 15 from the viewpoint of extending the cruising distance while reducing the size of the high voltage battery 15. However, the lithium ion battery adopted as the high voltage battery 15 has a characteristic that the battery performance deteriorates when the high-level state of charge SOC is continued for a long time. Therefore, the control apparatus for an electric vehicle according to the present invention discharges the high voltage battery 15 under a predetermined condition so that the high voltage battery 15 in a high level SOC is not left unattended. Hereinafter, the discharge control of the high voltage battery 15 will be described. This discharge control is executed by the vehicle control unit 31 that functions as converter control means, determination means, and high voltage source control means.

図3は放電制御の実行手順の一例を示すフローチャートである。図3に示すように、ステップS1では、イグニッションスイッチ32がオフ操作された状態であるか否かが判定される。ステップS1において、イグニッションスイッチ32がオン状態である場合には、高電圧バッテリ15の電力がモータジェネレータ11等に供給されるため、高電圧バッテリ15の放電処理を行うことなくルーチンを抜ける。一方、ステップS1において、イグニッションスイッチ32がオフ状態である場合には、その時点の充電状態SOCにて高電圧バッテリ15が放置される可能性があるため、ステップS2に進み、タイマTをリセットした後にタイマカウント処理が開始される。   FIG. 3 is a flowchart showing an example of the execution procedure of the discharge control. As shown in FIG. 3, in step S1, it is determined whether or not the ignition switch 32 has been turned off. In step S1, when the ignition switch 32 is in the ON state, the electric power of the high voltage battery 15 is supplied to the motor generator 11 and the like, and the routine is exited without performing the discharging process of the high voltage battery 15. On the other hand, if the ignition switch 32 is in the OFF state in step S1, the high voltage battery 15 may be left in the state of charge SOC at that time, so the process proceeds to step S2 and the timer T is reset. The timer count process is started later.

続いて、ステップS3では、高電圧バッテリ15の端子電圧Viが所定電圧(第1電圧値)V1を上回るか否かが判定される。なお、所定電圧V1とは高電圧バッテリ15に劣化のおそれがあるか否かを判定する値であり、端子電圧Viが所定電圧V1を上回る場合には、高電圧バッテリ15は劣化のおそれがある高充電状態であると判定されることになる。ステップS3において、端子電圧Viが所定電圧V1を下回ると判定された場合には、高電圧バッテリ15に劣化のおそれはないため、高電圧バッテリ15の放電処理を行うことなくルーチンを抜ける。一方、ステップS3において、端子電圧Viが所定電圧V1を上回ると判定された場合には、高電圧バッテリ15に劣化のおそれがあるため、続くステップS4,S5において、端子電圧Viが所定電圧V1を所定時間に渡って上回るか否かが判定される。   Subsequently, in step S3, it is determined whether or not the terminal voltage Vi of the high voltage battery 15 exceeds a predetermined voltage (first voltage value) V1. The predetermined voltage V1 is a value for determining whether or not the high voltage battery 15 may be deteriorated. If the terminal voltage Vi exceeds the predetermined voltage V1, the high voltage battery 15 may be deteriorated. It will be determined that the state of charge is high. If it is determined in step S3 that the terminal voltage Vi is lower than the predetermined voltage V1, the high voltage battery 15 is not likely to be deteriorated, and the routine is exited without performing the discharge process of the high voltage battery 15. On the other hand, if it is determined in step S3 that the terminal voltage Vi exceeds the predetermined voltage V1, the high voltage battery 15 may be deteriorated. Therefore, in the subsequent steps S4 and S5, the terminal voltage Vi exceeds the predetermined voltage V1. It is determined whether or not it exceeds a predetermined time.

ステップS4では、タイマTのカウント処理が実行され、続くステップS5では、タイマTが所定時間TOを上回るか否かが判定される。ステップS5において、タイマTが所定時間TOを下回る場合には、再びステップS3において、端子電圧Viが所定電圧V1を上回るか否かが判定される。一方、ステップS5において、タイマTが所定時間TOを上回る場合には、ステップS6に進み、高電圧バッテリ15の放電処理が開始される。すなわち、ステップS3〜5に従い、端子電圧Viが所定電圧V1を上回る状態が、所定時間TOに渡って継続されたと判定された場合には、高電圧バッテリ15に劣化のおそれがあるため、ステップS6に進み、高電圧バッテリ15の放電処理が開始される。一方、所定時間TO内に端子電圧Viが所定電圧V1を下回った場合には、高電圧バッテリ15に劣化のおそれはないため、放電処理を行うことなくルーチンを抜ける。   In step S4, the count process of the timer T is executed, and in the subsequent step S5, it is determined whether or not the timer T exceeds the predetermined time TO. In step S5, if the timer T falls below the predetermined time TO, it is determined again in step S3 whether the terminal voltage Vi exceeds the predetermined voltage V1. On the other hand, when the timer T exceeds the predetermined time TO in step S5, the process proceeds to step S6, and the discharging process of the high voltage battery 15 is started. That is, if it is determined that the state where the terminal voltage Vi exceeds the predetermined voltage V1 is continued for the predetermined time TO according to steps S3 to S5, the high voltage battery 15 may be deteriorated. The process of discharging the high voltage battery 15 is started. On the other hand, when the terminal voltage Vi falls below the predetermined voltage V1 within the predetermined time TO, the high voltage battery 15 is not likely to be deteriorated, and the routine is exited without performing the discharge process.

ステップS6では、出力電圧を引き上げるようにコンバータ20が駆動され、高電圧バッテリ15から低電圧バッテリ21に対して電力が供給される。続くステップS7では、イグニッションスイッチ32がオン状態であるか否かが判定される。ステップS7において、イグニッションスイッチ32がオン状態であると判定された場合には、モータジェネレータ11等に対する電力供給に備えるため、ステップS9に進み、コンバータ20が停止されて高電圧バッテリ15から低電圧バッテリ21に対する電力供給が遮断される。一方、ステップS7において、イグニッションスイッチ32がオフ状態であると判定された場合には、ステップS8に進み、高電圧バッテリ15の端子電圧Viが所定電圧V1よりも低い所定電圧(第2電圧値)V2を下回るか否かが判定される。なお、所定電圧V2とは高電圧バッテリ15の劣化要因が解消したが否かを判定する値であり、端子電圧Viが所定電圧V2を下回る場合には、高電圧バッテリ15の劣化要因が解消されたと判定されることになる。   In step S <b> 6, converter 20 is driven so as to raise the output voltage, and power is supplied from high voltage battery 15 to low voltage battery 21. In a succeeding step S7, it is determined whether or not the ignition switch 32 is in an on state. If it is determined in step S7 that the ignition switch 32 is in the on state, the process proceeds to step S9 to prepare for power supply to the motor generator 11 and the like, and the converter 20 is stopped and the high voltage battery 15 is switched to the low voltage battery. The power supply to 21 is cut off. On the other hand, if it is determined in step S7 that the ignition switch 32 is in the OFF state, the process proceeds to step S8, where the terminal voltage Vi of the high-voltage battery 15 is lower than the predetermined voltage V1 (second voltage value). It is determined whether it is below V2. The predetermined voltage V2 is a value for determining whether or not the degradation factor of the high voltage battery 15 has been eliminated. When the terminal voltage Vi is lower than the predetermined voltage V2, the degradation factor of the high voltage battery 15 is eliminated. Will be determined.

ステップS8において、端子電圧Viが所定電圧V2を上回ると判定された場合には、高電圧バッテリ15の劣化要因が解消していないため、再びステップS6に進み、コンバータ20の駆動状態が継続される。一方、ステップS8において、端子電圧Viが所定電圧V2を下回ると判定された場合には、高電圧バッテリ15の劣化要因が解消した状態であるため、ステップS9に進み、コンバータ20が停止されて高電圧バッテリ15から低電圧バッテリ21に対する電力供給が遮断されることになる。   If it is determined in step S8 that the terminal voltage Vi exceeds the predetermined voltage V2, the deterioration factor of the high voltage battery 15 has not been eliminated, so the process proceeds to step S6 again, and the driving state of the converter 20 is continued. . On the other hand, if it is determined in step S8 that the terminal voltage Vi is lower than the predetermined voltage V2, since the deterioration factor of the high voltage battery 15 is eliminated, the process proceeds to step S9, where the converter 20 is stopped and the high voltage is increased. The power supply from the voltage battery 15 to the low voltage battery 21 is cut off.

続いて、前述した高電圧バッテリ15の放電制御をタイミングチャートに沿って説明する。図4は放電制御の実行状況の一例を示すタイミングチャートである。図4に示すように、イグニッションスイッチ32がオン状態からオフ状態に切り換えられると(符号a)、高電圧バッテリ15の端子電圧Viが所定電圧V1を上回るか否かが判定される(符号b)。そして、所定時間TOに渡って端子電圧Viが所定電圧V1を上回ると判定された場合には(符号c)、コンバータ20の駆動状態が出力停止状態から高出力のハイ状態に切り換えられる(符号d)。これにより、高電圧バッテリ15から低電圧バッテリ21への電力供給が開始され、高電圧バッテリ15の端子電圧Viが低下する一方、低電圧バッテリ21の端子電圧Liが上昇することになる。そして、高電圧バッテリ15の端子電圧Viが所定電圧V2を下回ると判定された場合には(符号e)、高電圧バッテリ15の劣化要因が解消した状態であるため、コンバータ20が停止されて高電圧バッテリ15から低電圧バッテリ21に対する電力供給が遮断される(符号f)。   Next, the above-described discharge control of the high voltage battery 15 will be described with reference to a timing chart. FIG. 4 is a timing chart showing an example of the execution status of the discharge control. As shown in FIG. 4, when the ignition switch 32 is switched from the on state to the off state (reference a), it is determined whether or not the terminal voltage Vi of the high voltage battery 15 exceeds a predetermined voltage V1 (reference b). . When it is determined that the terminal voltage Vi exceeds the predetermined voltage V1 over the predetermined time TO (reference c), the drive state of the converter 20 is switched from the output stop state to the high output high state (reference d). ). As a result, power supply from the high voltage battery 15 to the low voltage battery 21 is started, and the terminal voltage Vi of the high voltage battery 15 decreases, while the terminal voltage Li of the low voltage battery 21 increases. When it is determined that the terminal voltage Vi of the high voltage battery 15 is lower than the predetermined voltage V2 (symbol e), since the deterioration factor of the high voltage battery 15 has been eliminated, the converter 20 is stopped and high. The power supply from the voltage battery 15 to the low voltage battery 21 is interrupted (reference f).

このように、イグニッションスイッチ32がオフ操作された状態のもとで、高電圧バッテリ15が高充電状態であり、この高充電状態が所定時間TOに渡って継続した場合には、コンバータ20を駆動することによって高電圧バッテリ15から電力を放電させるようにしている。これにより、高電圧バッテリ15が高充電状態で放置されることがないため、高電圧バッテリ15の劣化を抑制しつつ高電圧バッテリ15を十分に充電して使用することが可能となる。したがって、電気自動車10の航続距離を確保しつつ高電圧バッテリ15の小型化や軽量化を達成することが可能となる。しかも、高電圧バッテリ15から放電された電力は、低電圧バッテリ21の充電に使用されることから、高電圧バッテリ15に蓄えられた電気エネルギーを無駄なく使用することが可能となる。また、利用者に対して特別な操作を強いることがないため、電気自動車10の使い勝手を損なうこともない。なお、高電圧バッテリ21を所定電圧V2まで放電させることにより、高電圧バッテリ21の充電状態SOCが劣化防止に適した範囲(例えば50〜60%)に収まるようになっている。   In this way, when the ignition switch 32 is turned off, the high-voltage battery 15 is in a high charge state, and when this high charge state continues for a predetermined time TO, the converter 20 is driven. By doing so, electric power is discharged from the high-voltage battery 15. Thereby, since the high voltage battery 15 is not left in a high charge state, the high voltage battery 15 can be sufficiently charged and used while suppressing deterioration of the high voltage battery 15. Therefore, the high voltage battery 15 can be reduced in size and weight while ensuring the cruising distance of the electric vehicle 10. In addition, since the electric power discharged from the high voltage battery 15 is used for charging the low voltage battery 21, the electric energy stored in the high voltage battery 15 can be used without waste. Further, since the user is not forced to perform a special operation, the usability of the electric vehicle 10 is not impaired. In addition, by discharging the high voltage battery 21 to the predetermined voltage V2, the state of charge SOC of the high voltage battery 21 falls within a range (for example, 50 to 60%) suitable for preventing deterioration.

また、図4に示すように、イグニッションスイッチ32がオン状態に操作されている場合には、低電圧バッテリの端子電圧Liが所定の上限電圧L1を下回るように制御されている。このように、イグニッションスイッチ32がオン側に操作された状態のもとでは、低電圧源制御手段として機能する車両制御ユニット31からの制御信号により、コンバータ20は出力電圧を抑えたロー状態で駆動され、上限電圧L1を超えないように低電圧バッテリ21に対して充電が施される。ここで、低電圧バッテリ21の上限電圧L1とは、低電圧バッテリ21の受け入れ可能な許容電圧L2よりも低く設定される電圧であり、放電制御に伴う高電圧バッテリ15からの放電量に基づき設定される電圧である。すなわち、低電圧バッテリ21を上限電圧L1以下に制御しておくことにより、低電圧バッテリ21に高電圧バッテリ21から放出される電力の受入領域を設定することができ、放電制御の実行によって高電圧バッテリ15から放出される電気エネルギーを確実に低電圧バッテリ21に蓄えることが可能となっている。   Further, as shown in FIG. 4, when the ignition switch 32 is operated to be in an ON state, the terminal voltage Li of the low voltage battery is controlled to be lower than a predetermined upper limit voltage L1. Thus, under the state where the ignition switch 32 is operated to the on side, the converter 20 is driven in the low state with the output voltage suppressed by the control signal from the vehicle control unit 31 functioning as the low voltage source control means. Then, the low voltage battery 21 is charged so as not to exceed the upper limit voltage L1. Here, the upper limit voltage L1 of the low-voltage battery 21 is a voltage that is set lower than the allowable voltage L2 that the low-voltage battery 21 can accept, and is set based on the amount of discharge from the high-voltage battery 15 that accompanies discharge control. Voltage. That is, by controlling the low voltage battery 21 to be equal to or lower than the upper limit voltage L1, it is possible to set an acceptance region for the electric power discharged from the high voltage battery 21 in the low voltage battery 21, and the high voltage is obtained by executing the discharge control. The electric energy released from the battery 15 can be reliably stored in the low voltage battery 21.

前述の説明では、駆動源としてモータジェネレータ11のみを備える電気自動車10に対し、本発明の電気自動車の制御装置を適用しているが、これに限られることはない。例えば、駆動源としてエンジン71および電動モータを備えるハイブリッド電気自動車に対して本発明を適用することも可能である。ここで、図5および図6はハイブリッド電気自動車70,80の構成を示す概略図である。なお、図5および図6において、図1に示す部品と同様の部品については、同一の符号を付してその説明を省略する。   In the above description, the control device for an electric vehicle according to the present invention is applied to the electric vehicle 10 including only the motor generator 11 as a drive source. However, the present invention is not limited to this. For example, the present invention can be applied to a hybrid electric vehicle including an engine 71 and an electric motor as drive sources. Here, FIG. 5 and FIG. 6 are schematic views showing the configuration of the hybrid electric vehicles 70 and 80. 5 and FIG. 6, parts similar to those shown in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

図5に示すように、ハイブリッド電気自動車70には、車体前部に駆動源としてのエンジン71が搭載されている。このエンジン71には変速機72を介して前輪駆動軸73が連結され、前輪駆動軸73には駆動輪としての前輪14が連結されている。また、車体後部には、駆動源としてモータジェネレータ11が搭載されている。このモータジェネレータ11には歯車列12を介して後輪駆動軸74が連結され、後輪駆動軸74には駆動輪としての後輪75が連結されている。また、車体側部には、急速充電器35からの充電ケーブル42が接続される受電側コネクタ37や、家庭用電源36からの充電ケーブル59が接続される受電側コネクタ53が設けられている。このように、図5に示す電気自動車は、外部電源からの充電を可能としたプラグイン型のハイブリッド電気自動車70となっている。   As shown in FIG. 5, the hybrid electric vehicle 70 has an engine 71 as a drive source mounted at the front of the vehicle body. A front wheel drive shaft 73 is connected to the engine 71 via a transmission 72, and a front wheel 14 as a drive wheel is connected to the front wheel drive shaft 73. A motor generator 11 is mounted as a drive source at the rear of the vehicle body. A rear wheel drive shaft 74 is connected to the motor generator 11 via a gear train 12, and a rear wheel 75 as a drive wheel is connected to the rear wheel drive shaft 74. Further, a power receiving side connector 37 to which the charging cable 42 from the quick charger 35 is connected and a power receiving side connector 53 to which the charging cable 59 from the household power source 36 is connected are provided on the vehicle body side. As described above, the electric vehicle shown in FIG. 5 is a plug-in hybrid electric vehicle 70 that can be charged from an external power source.

また、図6に示すように、ハイブリッド電気自動車80には、車体前部に縦置きのパワーユニット81が設けられている。このパワーユニット81は、駆動源としてのエンジン82、駆動源としてのモータジェネレータ(電動モータ)83、変速機84、トランスファ機構85によって構成されている。変速機84の後端にはプロペラシャフト86が接続されており、このプロペラシャフト86にはリヤデファレンシャル87を介して駆動輪である後輪75が連結されている。また、トランスファ機構85には前輪出力軸88が接続されており、この前輪出力軸88にはフロントデファレンシャル89を介して駆動輪である前輪14が連結されている。このように、図6に示す電気自動車は、パラレル型のハイブリッド電気自動車80となっており、走行用の主要な駆動源としてエンジン82が駆動される一方、発進時や加速時には補助的な駆動源としてモータジェネレータ83が駆動されることになる。なお、減速時や定常走行時にはモータジェネレータ83を発電駆動させることにより、運動エネルギーを電気エネルギーに変換して回収することが可能である。   As shown in FIG. 6, the hybrid electric vehicle 80 is provided with a vertically installed power unit 81 at the front of the vehicle body. The power unit 81 includes an engine 82 as a drive source, a motor generator (electric motor) 83 as a drive source, a transmission 84, and a transfer mechanism 85. A propeller shaft 86 is connected to the rear end of the transmission 84, and a rear wheel 75, which is a driving wheel, is connected to the propeller shaft 86 via a rear differential 87. Further, a front wheel output shaft 88 is connected to the transfer mechanism 85, and the front wheel 14 which is a driving wheel is connected to the front wheel output shaft 88 through a front differential 89. As described above, the electric vehicle shown in FIG. 6 is a parallel type hybrid electric vehicle 80, and the engine 82 is driven as a main driving source for traveling, while an auxiliary driving source is used at the time of start and acceleration. As a result, the motor generator 83 is driven. It is possible to convert the kinetic energy into electric energy and recover it by driving the motor generator 83 to generate electricity during deceleration or steady running.

このようなハイブリッド電気自動車70,80においても、本発明の制御装置を適用することにより、前述した効果と同様の効果を得ることが可能である。すなわち、停車前の回生制動等によって高電圧バッテリ15が高充電状態になったとしても、イグニッションスイッチ32がオフ操作された後に、コンバータ20を駆動して高電圧バッテリ15を放電させることが可能となる。これにより、高電圧バッテリ15が高充電状態で放置されることがないため、高電圧バッテリ15の劣化を抑制しながら、高電圧バッテリ15を十分に充電して使用することが可能となる。また、ハイブリッド電気自動車70,80においては、高電圧バッテリ15の性能を十分に発揮させることにより、エンジン71,82の燃料消費量を抑制することが可能となる。   Even in such hybrid electric vehicles 70 and 80, by applying the control device of the present invention, it is possible to obtain the same effects as those described above. That is, even if the high voltage battery 15 is in a high charge state due to regenerative braking or the like before stopping, the converter 20 can be driven to discharge the high voltage battery 15 after the ignition switch 32 is turned off. Become. Thereby, since the high voltage battery 15 is not left in a high charge state, the high voltage battery 15 can be sufficiently charged and used while suppressing deterioration of the high voltage battery 15. Further, in the hybrid electric vehicles 70 and 80, the fuel consumption of the engines 71 and 82 can be suppressed by sufficiently exerting the performance of the high voltage battery 15.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。たとえば、図3に示すように、高電圧バッテリ15の端子電圧Viに基づいて、高電圧バッテリ15が高充電状態であるか否かを判定しているが、これに限られることはない。例えば、高電圧バッテリ15の充電状態SOCに基づいて、高電圧バッテリ15が高充電状態であるか否かを判定しても良い。また、前述の説明では、高電圧バッテリ15としてリチウムイオンバッテリを採用しているが、高充電状態での放置に伴って性能が劣化するものであれば、他の形式のバッテリやキャパシタであっても良い。さらに、図6に示すハイブリッド電気自動車80は、パラレル方式のハイブリッド電気自動車であるが、これに限られることはない。例えば、シリーズ方式のハイブリッド電気自動車に対して本発明の制御装置を適用しても良く、シリーズ・パラレル方式のハイブリッド電気自動車に対して本発明の制御装置を適用しても良い。   It goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, as shown in FIG. 3, it is determined whether or not the high voltage battery 15 is in a high charge state based on the terminal voltage Vi of the high voltage battery 15, but the present invention is not limited to this. For example, based on the state of charge SOC of the high voltage battery 15, it may be determined whether or not the high voltage battery 15 is in a high state of charge. In the above description, a lithium-ion battery is used as the high-voltage battery 15, but other types of batteries and capacitors may be used as long as the performance deteriorates when left in a high-charge state. Also good. Furthermore, although the hybrid electric vehicle 80 shown in FIG. 6 is a parallel type hybrid electric vehicle, it is not limited to this. For example, the control device of the present invention may be applied to a series type hybrid electric vehicle, and the control device of the present invention may be applied to a series / parallel type hybrid electric vehicle.

電気自動車の構成を示す概略図である。It is the schematic which shows the structure of an electric vehicle. (A)および(B)は外部電源によって充電される電気自動車を示す説明図である。(A) And (B) is explanatory drawing which shows the electric vehicle charged with an external power supply. 放電制御の実行手順の一例を示すフローチャートである。It is a flowchart which shows an example of the execution procedure of discharge control. 放電制御の実行状況の一例を示すタイミングチャートである。It is a timing chart which shows an example of the execution situation of discharge control. ハイブリッド電気自動車の構成を示す概略図である。It is the schematic which shows the structure of a hybrid electric vehicle. ハイブリッド電気自動車の構成を示す概略図である。It is the schematic which shows the structure of a hybrid electric vehicle.

符号の説明Explanation of symbols

10 電気自動車
11 モータジェネレータ(電動モータ)
15 高電圧バッテリ(高電圧源)
20 DC/DCコンバータ(コンバータ)
21 低電圧バッテリ(低電圧源)
22 車両補機
31 車両制御ユニット(コンバータ制御手段、判定手段、低電圧源制御手段、高電圧源制御手段)
32 イグニッションスイッチ
35 急速充電器(外部電源)
36 家庭用電源(外部電源)
70 ハイブリッド電気自動車(電気自動車)
80 ハイブリッド電気自動車(電気自動車)
83 モータジェネレータ(電動モータ)
10 Electric Vehicle 11 Motor Generator (Electric Motor)
15 High voltage battery (high voltage source)
20 DC / DC converter (converter)
21 Low voltage battery (low voltage source)
22 Vehicle accessory 31 Vehicle control unit (converter control means, determination means, low voltage source control means, high voltage source control means)
32 Ignition switch 35 Quick charger (external power supply)
36 Household power supply (external power supply)
70 Hybrid Electric Vehicle (Electric Vehicle)
80 Hybrid electric vehicle (electric vehicle)
83 Motor generator (electric motor)

Claims (4)

走行用の電動モータに電力を供給する高電圧源と、車両補機に電力を供給する低電圧源とを備える電気自動車の制御装置であって、
前記高電圧源と前記低電圧源との間に設けられ、前記高電圧源から前記低電圧源に電力を供給するコンバータと、
前記コンバータの駆動状態を制御するコンバータ制御手段と、
前記高電圧源が高充電状態であるか否かを判定する判定手段とを有し、
前記コンバータ制御手段は、イグニッションスイッチがオフ操作された状態のもとで、前記高電圧源の高充電状態が所定時間に渡って継続されたときに、前記コンバータを駆動して前記高電圧源から前記低電圧源に電力を供給することを特徴とする電気自動車の制御装置。
A control device for an electric vehicle comprising a high voltage source for supplying electric power to an electric motor for traveling and a low voltage source for supplying electric power to a vehicle auxiliary machine,
A converter provided between the high voltage source and the low voltage source and supplying power from the high voltage source to the low voltage source;
Converter control means for controlling the driving state of the converter;
Determining means for determining whether the high voltage source is in a high charge state;
The converter control means drives the converter from the high voltage source when the high charge state of the high voltage source is continued for a predetermined time under a state where the ignition switch is turned off. An electric vehicle control apparatus for supplying electric power to the low voltage source.
請求項1記載の電気自動車の制御装置において、
前記高電圧源の高充電状態とは、前記高電圧源の電圧が第1電圧値を上回る状態であり、
前記コンバータ制御手段は、前記高電圧源の電圧が前記第1電圧値よりも低い第2電圧値を下回るまで、前記コンバータを駆動して前記高電圧源から前記低電圧源に電力を供給することを特徴とする電気自動車の制御装置。
In the control apparatus of the electric vehicle according to claim 1,
The high charge state of the high voltage source is a state in which the voltage of the high voltage source exceeds a first voltage value,
The converter control means drives the converter to supply power from the high voltage source to the low voltage source until the voltage of the high voltage source falls below a second voltage value lower than the first voltage value. A control apparatus for an electric vehicle.
請求項1または2記載の電気自動車の制御装置において、
前記イグニッションスイッチがオン操作された状態のもとでは、前記低電圧源の電圧が所定の上限電圧に達しないように、前記低電圧源を充電制御する低電圧源制御手段を有することを特徴とする電気自動車の制御装置。
In the control apparatus of the electric vehicle according to claim 1 or 2,
Under the state where the ignition switch is turned on, it has low voltage source control means for controlling charging of the low voltage source so that the voltage of the low voltage source does not reach a predetermined upper limit voltage. Electric vehicle control device.
請求項1〜3のいずれか1項に記載の電気自動車の制御装置において、
外部電源を接続して前記高電圧源を充電する際には、前記高電圧源が高充電状態に達するまで、前記高電圧源を充電制御する高電圧源制御手段を有することを特徴とする電気自動車の制御装置。
In the control apparatus of the electric vehicle of any one of Claims 1-3,
When charging the high voltage source by connecting an external power source, the high voltage source control means for controlling charging of the high voltage source until the high voltage source reaches a high charge state is provided. Automotive control device.
JP2008088001A 2008-03-28 2008-03-28 Control device of electric vehicle Pending JP2009247057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088001A JP2009247057A (en) 2008-03-28 2008-03-28 Control device of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088001A JP2009247057A (en) 2008-03-28 2008-03-28 Control device of electric vehicle

Publications (1)

Publication Number Publication Date
JP2009247057A true JP2009247057A (en) 2009-10-22

Family

ID=41308374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088001A Pending JP2009247057A (en) 2008-03-28 2008-03-28 Control device of electric vehicle

Country Status (1)

Country Link
JP (1) JP2009247057A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148299A (en) * 2008-12-22 2010-07-01 Mitsubishi Motors Corp Charging port device
JP2011182588A (en) * 2010-03-02 2011-09-15 Hitachi Electronics Service Co Ltd Electric vehicle charging system for parking lot and electric vehicle charging method for parking lot
JP2011223839A (en) * 2010-04-14 2011-11-04 Calsonic Kansei Corp Power supply unit for vehicle
WO2011161780A1 (en) * 2010-06-23 2011-12-29 トヨタ自動車株式会社 Control device for vehicle and control method for vehicle
WO2012070346A1 (en) * 2010-11-22 2012-05-31 本田技研工業株式会社 Power control unit for electric vehicle
EP2523248A2 (en) * 2010-01-06 2012-11-14 LG Chem, Ltd. Battery control device and method
JP2013038909A (en) * 2011-08-08 2013-02-21 Robert Bosch Gmbh Device and method for operating vehicle to be driven by using electric machine
CN102951024A (en) * 2011-08-26 2013-03-06 罗伯特·博世有限公司 Device and method for operation of automobile driven by motor
WO2013073327A1 (en) * 2011-11-14 2013-05-23 本田技研工業株式会社 Electric automobile
JP2014512787A (en) * 2011-02-02 2014-05-22 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Charging device for electrical energy storage mechanism in automobile
JP2017500699A (en) * 2014-01-22 2017-01-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for driving a battery, in particular a lithium ion battery, in a consumer device
US9776524B2 (en) 2010-07-20 2017-10-03 Robert Bosch Gmbh Method and device for operating a motor vehicle which is driven with the aid of an electric machine
JP7473070B1 (en) 2023-12-18 2024-04-23 スズキ株式会社 Vehicle Control Systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134811A (en) * 1998-10-20 2000-05-12 Fujitsu General Ltd Portable terminal device
JP2000287372A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Method and device for using lithium-ion secondary battery
JP2000350370A (en) * 1999-06-04 2000-12-15 Nec Mobile Energy Kk Battery pack power supply
JP2003092805A (en) * 2001-09-20 2003-03-28 Sanyo Electric Co Ltd Power supply unit for hybrid car
JP2005218285A (en) * 2004-02-02 2005-08-11 Kobelco Contstruction Machinery Ltd Power source apparatus for working machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134811A (en) * 1998-10-20 2000-05-12 Fujitsu General Ltd Portable terminal device
JP2000287372A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Method and device for using lithium-ion secondary battery
JP2000350370A (en) * 1999-06-04 2000-12-15 Nec Mobile Energy Kk Battery pack power supply
JP2003092805A (en) * 2001-09-20 2003-03-28 Sanyo Electric Co Ltd Power supply unit for hybrid car
JP2005218285A (en) * 2004-02-02 2005-08-11 Kobelco Contstruction Machinery Ltd Power source apparatus for working machine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148299A (en) * 2008-12-22 2010-07-01 Mitsubishi Motors Corp Charging port device
EP2523248A4 (en) * 2010-01-06 2014-07-23 Lg Chemical Ltd Battery control device and method
US9108521B2 (en) 2010-01-06 2015-08-18 Lg Chem, Ltd. Battery control apparatus and method
EP2523248A2 (en) * 2010-01-06 2012-11-14 LG Chem, Ltd. Battery control device and method
JP2011182588A (en) * 2010-03-02 2011-09-15 Hitachi Electronics Service Co Ltd Electric vehicle charging system for parking lot and electric vehicle charging method for parking lot
JP2011223839A (en) * 2010-04-14 2011-11-04 Calsonic Kansei Corp Power supply unit for vehicle
WO2011161780A1 (en) * 2010-06-23 2011-12-29 トヨタ自動車株式会社 Control device for vehicle and control method for vehicle
JPWO2011161780A1 (en) * 2010-06-23 2013-08-19 トヨタ自動車株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5621845B2 (en) * 2010-06-23 2014-11-12 トヨタ自動車株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
US9776524B2 (en) 2010-07-20 2017-10-03 Robert Bosch Gmbh Method and device for operating a motor vehicle which is driven with the aid of an electric machine
US9290101B2 (en) 2010-11-22 2016-03-22 Honda Motor Co., Ltd. Power control unit for electric vehicle with converters cooled by surfaces of a cooling unit
CN103201936A (en) * 2010-11-22 2013-07-10 本田技研工业株式会社 Power control unit for electric vehicle
JP5275525B2 (en) * 2010-11-22 2013-08-28 本田技研工業株式会社 Power control unit for electric vehicles
WO2012070346A1 (en) * 2010-11-22 2012-05-31 本田技研工業株式会社 Power control unit for electric vehicle
JP2014512787A (en) * 2011-02-02 2014-05-22 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Charging device for electrical energy storage mechanism in automobile
JP2013038909A (en) * 2011-08-08 2013-02-21 Robert Bosch Gmbh Device and method for operating vehicle to be driven by using electric machine
CN102951024A (en) * 2011-08-26 2013-03-06 罗伯特·博世有限公司 Device and method for operation of automobile driven by motor
US20150034400A1 (en) * 2011-11-14 2015-02-05 Honda Motor Co., Ltd. Electric automobile
JPWO2013073327A1 (en) * 2011-11-14 2015-04-02 本田技研工業株式会社 Electric car
US9079504B2 (en) 2011-11-14 2015-07-14 Honda Motor Co., Ltd. Electric automobile
CN103930300A (en) * 2011-11-14 2014-07-16 本田技研工业株式会社 Electric automobile
WO2013073327A1 (en) * 2011-11-14 2013-05-23 本田技研工業株式会社 Electric automobile
JP2017500699A (en) * 2014-01-22 2017-01-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for driving a battery, in particular a lithium ion battery, in a consumer device
US10336209B2 (en) 2014-01-22 2019-07-02 Robert Bosch Gmbh Method and device for operating a battery, in particular a lithium ion battery, in a consumer
JP7473070B1 (en) 2023-12-18 2024-04-23 スズキ株式会社 Vehicle Control Systems

Similar Documents

Publication Publication Date Title
JP2009247057A (en) Control device of electric vehicle
KR102302783B1 (en) Vehicle Driving System and Method
US8427103B2 (en) Charging device for electric vehicle
US8639413B2 (en) Vehicle power supply system and method for controlling the same
EP2669131B1 (en) Hybrid vehicle
JP5348312B2 (en) vehicle
JP5245780B2 (en) vehicle
JP5515897B2 (en) Vehicle control device and vehicle equipped with the same
CN108382388B (en) Vehicle-mounted charger charging and discharging control method and system and hybrid vehicle
KR20130069001A (en) Electric vehicle and control method thereof
US20200376949A1 (en) Vehicle drive system
KR101926896B1 (en) Controlling method and apparatus for charging low-voltage battery
JP2015067042A (en) Vehicular power supply device
JP2010213503A (en) Power supply apparatus and method
JP2015180140A (en) Power supply system for vehicle
JP2017175721A (en) Automobile
KR101909275B1 (en) Apparatus and Method for Battery Charge
CN111483453B (en) double-BSG (binary System generator) weakly mixing system for medium-weight card and control method
KR20170025605A (en) Power conversion control method of for using high voltage vehicle
JP2016220305A (en) Hybrid automobile and charge control device therefor
JP7373113B2 (en) Vehicle power control device
JP5885236B2 (en) Vehicle power supply
JP5293160B2 (en) Vehicle control device
JP2018098954A (en) Controller for electric vehicle
JP2008302852A (en) Controller for hybrid car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507