JP2009242898A - Electrode structure - Google Patents

Electrode structure Download PDF

Info

Publication number
JP2009242898A
JP2009242898A JP2008092616A JP2008092616A JP2009242898A JP 2009242898 A JP2009242898 A JP 2009242898A JP 2008092616 A JP2008092616 A JP 2008092616A JP 2008092616 A JP2008092616 A JP 2008092616A JP 2009242898 A JP2009242898 A JP 2009242898A
Authority
JP
Japan
Prior art keywords
electrode
bipolar
cathode
anode
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008092616A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagai
達夫 永井
Shunichi Kanamori
春一 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008092616A priority Critical patent/JP2009242898A/en
Publication of JP2009242898A publication Critical patent/JP2009242898A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure provided with bipolar electrodes, wherein the difference in abrasion among the electrodes is reduced. <P>SOLUTION: An electrode structure in which bipolar electrodes 4 are interposed between an anode 2 and a cathode 3, wherein the internal resistance of each bipolar electrode 4 is set larger than the internal resistance of the electrode being either the anode 2 or the cathode 3 and having a constituent material which is the same as that of each bipolar electrode 4. When the electrodes are ones each prepared by forming a conductive diamond membrane on a substrate, the internal resistances of the substrate and/or the conductive diamond of each bipolar electrode are set larger. The difference of the electrode resistance of each bipolar electrode and that of the electrode made of a constituent material same as that of the bipolar electrode becomes smaller, which results in reduction in the difference between the abrasions of the electrodes with time, requirement of less frequent electrode exchange, and consequent reduced work load. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、陽極と陰極との間にバイポーラ電極を介在させて、溶液の電解などに利用される電極構造に関するものである。   The present invention relates to an electrode structure used for electrolysis of a solution by interposing a bipolar electrode between an anode and a cathode.

電解に用いる電解装置では、配線の簡素化、電流効率の向上などの観点からバイポーラ電極を用いたものが知られている。バイポーラ電極は、陽極と陰極との間に陽極と陰極に平行になるように1枚又は複数枚を配置するものであり、陽極、陰極に通電することで電源に接続することなく分極が生じて電解に寄与することができるものである。また、陽極、陰極、バイポーラ電極に用いる電極材料としては白金、酸化鉛、酸化すずといった種々のものが知られており、さらには、腐食性のある電解液や酸化性の強い電解液に対しても安定性の高い導電性ダイヤモンド電極が知られている(例えば特許文献1参照)。導電性ダイヤモンド電極は、ダイヤモンドにホウ素や窒素をドープすることによって導電性を与えたものであり、基板上に導電性ダイヤモンドを形成した後に基板を取り除いた自立型や、シリコンなどの基板に導電性ダイヤモンド膜を形成したものが用いられている。
特開2004−237165号公報
As an electrolysis apparatus used for electrolysis, one using a bipolar electrode is known from the viewpoint of simplifying wiring and improving current efficiency. In the bipolar electrode, one or a plurality of bipolar electrodes are arranged between the anode and the cathode so as to be parallel to the anode and the cathode. When the anode and the cathode are energized, polarization occurs without being connected to the power source. It can contribute to electrolysis. Various electrode materials such as platinum, lead oxide and tin oxide are known as electrode materials used for anodes, cathodes, and bipolar electrodes. Also known is a highly stable conductive diamond electrode (see, for example, Patent Document 1). Conductive diamond electrodes are made by doping diamond with boron or nitrogen. The conductive diamond electrode is a self-standing type in which the substrate is removed after the conductive diamond is formed on the substrate. A diamond film is used.
JP 2004-237165 A

上記のように、導電性ダイヤモンド電極は、化学的に安定したものと知られているが、酸化力の強い硫酸の電解などに用いると、経時的に損耗することが分かってきているが、発明者らは新たに以下の現象を明らかにした。まず溶液の温度が高いほど導電性ダイヤモンドの損耗が少ない。さらに、陽極、陰極とバイポーラ電極に同じ材質の導電性ダイヤモンド電極を用いたものでは、バイポーラ電極での損耗が陽極や陰極よりも早期に進行する。   As described above, the conductive diamond electrode is known to be chemically stable, but it has been found that when used for electrolysis of sulfuric acid with strong oxidizing power, it is worn out with time. They newly revealed the following phenomenon. First, the higher the temperature of the solution, the less wear of the conductive diamond. Further, when the conductive diamond electrode made of the same material is used for the anode, cathode and bipolar electrode, the wear on the bipolar electrode proceeds earlier than the anode and cathode.

これらの原因は、必ずしも明確ではないが、電極面での温度差が電極の損耗に影響を与えていると考えられる。そして、バイポーラ電極での損耗が、両端の陽極、陰極よりも早く進行するのも、電極面の温度差にあり、その要因は電極抵抗にあると考えられる。電極材の組成が同等であれば、陽極、陰極、バイポーラ電極のいずれにあっても内部抵抗は同等になる。しかし、両端にある陽極および陰極には、集電体を接続して電源からの通電を行うことが必要であり、この集電体の接続による接触抵抗が生じる。この接触抵抗は、通常、内部抵抗に比べて遙かに大きい。このため、電極における接触抵抗と内部抵抗を含む電極抵抗が、陽極、陰極については、バイポーラ電極よりも明らかに大きくなる。このため通電に際しては、ジュール熱によって、陽極、陰極の電極面温度がバイポーラ電極のそれよりも高くなり、結果的に陽極、陰極での損耗がバイポーラ電極の損耗よりも小さくなっていると推定される。   Although these causes are not necessarily clear, it is considered that the temperature difference on the electrode surface affects the wear of the electrode. The wear of the bipolar electrode proceeds faster than the anode and cathode at both ends because of the temperature difference on the electrode surface, which is considered to be due to the electrode resistance. If the composition of the electrode material is the same, the internal resistance is the same regardless of whether it is an anode, a cathode or a bipolar electrode. However, it is necessary to connect a current collector to the anode and the cathode at both ends to conduct current from the power source, and contact resistance is generated by the connection of the current collector. This contact resistance is usually much larger than the internal resistance. For this reason, the electrode resistance including the contact resistance and the internal resistance in the electrode is clearly larger than that of the bipolar electrode for the anode and the cathode. For this reason, during energization, the electrode surface temperature of the anode and the cathode is higher than that of the bipolar electrode due to Joule heat, and as a result, the wear at the anode and the cathode is estimated to be smaller than the wear of the bipolar electrode. The

ところで、陽極、陰極およびバイポーラ電極は、通常は電解セルに組み込んで使用され、そのうちのいずれかの電極が早期に損耗すると電解セル全体における電解効率が低下するため、損耗の小さい電極があるにも拘わらず電極の交換や電解セル毎の交換が必要になり、作業負担やコストが増大するという問題がある。   By the way, the anode, the cathode and the bipolar electrode are usually used by being incorporated in an electrolysis cell, and if one of them is worn out early, the electrolysis efficiency of the entire electrolysis cell is lowered. Regardless of this, it is necessary to replace the electrodes and each electrolytic cell, resulting in a problem that the work load and cost increase.

この発明は、上記事情を背景としてなされたものであり、同種材料の電極を含む電極構造において、電極材同士の損耗のばらつきを小さくして、電極の交換頻度を少なくすることができる電極構造を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and in an electrode structure including electrodes of the same kind of material, an electrode structure that can reduce the variation in wear between electrode materials and reduce the frequency of electrode replacement. The purpose is to provide.

すなわち、本発明の電極構造のうち、第1の本発明は、陽極と陰極との間にバイポーラ電極を介在させた電極構造において、前記バイポーラ電極の内部抵抗が、前記陽極および陰極のうち、前記バイポーラ電極と同材質の電極の内部抵抗より大きくされていることを特徴とする。   That is, among the electrode structures of the present invention, the first present invention is an electrode structure in which a bipolar electrode is interposed between an anode and a cathode. It is characterized by being larger than the internal resistance of the electrode made of the same material as the bipolar electrode.

第2の本発明の電極構造は、前記第1の本発明において、前記バイポーラ電極と、前記陽極および陰極のうち該バイポーラ電極と同材質の電極とが導電性ダイヤモンド電極であることを特徴とする。   The electrode structure of the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the bipolar electrode and an electrode made of the same material as the bipolar electrode among the anode and the cathode are conductive diamond electrodes. .

第3の本発明の電極構造は、前記第1または第2の本発明において、前記導電性ダイヤモンド電極が自立型導電性ダイヤモンドまたは基板に導電性ダイヤモンド膜を形成したものであることを特徴とする。   The electrode structure of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the conductive diamond electrode is a self-supporting conductive diamond or a conductive diamond film formed on a substrate. .

第4の本発明の電極構造は、前記第2または第3の本発明において、導電性ダイヤモンド電極からなる前記バイポーラ電極は、前記陽極および陰極のうち導電性ダイヤモンド電極からなる電極より導電性ダイヤモンドの内部抵抗を大きくしていることを特徴とする。   In the electrode structure of the fourth aspect of the present invention, in the second or third aspect of the present invention, the bipolar electrode made of a conductive diamond electrode is made of conductive diamond from an electrode made of a conductive diamond electrode of the anode and the cathode. The internal resistance is increased.

第5の本発明の電極構造は、前記第3または第4の本発明において、導電性ダイヤモンド電極からなる前記バイポーラ電極は、前記陽極および陰極のうち導電性ダイヤモンド電極からなる電極より基板の内部抵抗を大きくしていることを特徴とする。   According to a fifth aspect of the present invention, in the third or fourth aspect of the present invention, the bipolar electrode made of a conductive diamond electrode has a higher internal resistance than the electrode made of a conductive diamond electrode among the anode and the cathode. It is characterized by increasing.

第6の本発明の電極構造は、前記第1〜第5の本発明のいずれかにおいて、前記バイポーラ電極の内部抵抗が、前記陽極および陰極のうち、前記バイポーラ電極と同材質の電極の接触抵抗を含む電極抵抗と略同等にされていることを特徴とする。   The electrode structure according to a sixth aspect of the present invention is the electrode structure according to any one of the first to fifth aspects, wherein the internal resistance of the bipolar electrode is a contact resistance of the same material as the bipolar electrode among the anode and the cathode. It is characterized by being substantially equivalent to an electrode resistance including

第7の本発明の電極構造は、前記第1〜第6の本発明のいずれかにおいて、硫酸を電解する電解装置に備えるものであることを特徴する。   According to a seventh aspect of the present invention, there is provided the electrode structure according to any one of the first to sixth aspects, wherein the electrode structure is provided in an electrolyzer for electrolyzing sulfuric acid.

以上説明したように、本発明の電極構造によれば、陽極と陰極との間にバイポーラ電極を介在させた電極構造において、前記バイポーラ電極の内部抵抗が、前記陽極および陰極のうち、前記バイポーラ電極と同材質の電極の内部抵抗より大きくされているので、バイポーラ電極の電極抵抗と、該電極と同材質の電極の電極抵抗の差が小さくなる。これにより両電極の経時的な電極損耗の差が小さくなるので電極交換頻度を少なくして作業負担を小さくすることができる。   As described above, according to the electrode structure of the present invention, in the electrode structure in which the bipolar electrode is interposed between the anode and the cathode, the internal resistance of the bipolar electrode is the bipolar electrode of the anode and the cathode. Therefore, the difference between the electrode resistance of the bipolar electrode and the electrode resistance of the electrode of the same material as that of the electrode is reduced. As a result, the difference in electrode wear over time of both electrodes is reduced, so that the frequency of electrode replacement can be reduced and the work load can be reduced.

以下に、本発明の一実施形態を説明する。
図1は、ダイヤモンド電極で構成される陽極2、陰極3、バイポーラ電極4…4を備える硫酸電解用の電解セル1を示すものであり、それぞれの電極は図1(b)に示すようにSiなどによって構成される基板10の両面にダイヤモンド薄膜11を形成したものであり、ダイヤモンド薄膜11には、ホウ素や窒素などが所定の濃度でドープされている。
Hereinafter, an embodiment of the present invention will be described.
FIG. 1 shows an electrolytic cell 1 for sulfuric acid electrolysis comprising an anode 2, a cathode 3, and bipolar electrodes 4 ... 4 composed of diamond electrodes. Each electrode is made of Si as shown in FIG. 1 (b). The diamond thin film 11 is formed on both surfaces of the substrate 10 constituted by the above, and the diamond thin film 11 is doped with boron, nitrogen or the like at a predetermined concentration.

ダイヤモンド電極の製造は、既知の方法により行うことができるが、この発明では、バイポーラ電極4の内部抵抗を、陽極2、陰極3の内部抵抗よりも大きくしている。この実施形態で、電極の内部抵抗を大きくするためには、基板10の内部抵抗を大きくするか、ダイヤモンド薄膜11の内部抵抗を大きくするか、もしくは両者ともに内部抵抗を大きくすればよい。
シリコン基板の内部抵抗、ダイヤモンド薄膜の抵抗率は、それぞれドープする元素の濃度によって調整することができる。
The diamond electrode can be manufactured by a known method. In the present invention, the internal resistance of the bipolar electrode 4 is made larger than the internal resistances of the anode 2 and the cathode 3. In this embodiment, in order to increase the internal resistance of the electrode, the internal resistance of the substrate 10 is increased, the internal resistance of the diamond thin film 11 is increased, or both of the internal resistances are increased.
The internal resistance of the silicon substrate and the resistivity of the diamond thin film can be adjusted by the concentration of the element to be doped.

ダイヤモンド電極の製造工程は、本発明としては特に限定されるものではなく、例えば基板を一方向凝固や引き上げ法によって製造することができ、製造過程で不純物元素を添加して内部抵抗を調整することができる。
ダイヤモンド薄膜については、CVDなどによる成膜によって基板上にダイヤモンド薄膜を形成することができ、その際に不純物イオン量を調整しつつ導入することで、ダイヤモンド薄膜の内部抵抗を調整することができる。また、ダイヤモンド電極は、基板上にダイヤモンド膜を生成した後、基板を取り去ることで自立型のダイヤモンド電極とするものであってもよい。
The manufacturing process of the diamond electrode is not particularly limited as the present invention. For example, the substrate can be manufactured by unidirectional solidification or pulling, and the internal resistance is adjusted by adding an impurity element during the manufacturing process. Can do.
As for the diamond thin film, the diamond thin film can be formed on the substrate by film formation by CVD or the like, and the internal resistance of the diamond thin film can be adjusted by introducing the diamond thin film while adjusting the amount of impurity ions. The diamond electrode may be a self-supporting diamond electrode by removing the substrate after forming a diamond film on the substrate.

上記のように内部抵抗を調整したダイヤモンド電極のうち、内部抵抗が低いものを陽極2、陰極3として集電体5、5と接触させるようにして電解セルの両端に設置し、これら陽極2、陰極3の間に所定枚数のバイポーラ電極4…4を配置する。このときのバイポーラ電極の枚数は任意に設定することができる。なお、集電体5、5は、陽極2、陰極3に対する接触抵抗を小さくするように、コイルスプリングなど(図示しない)によって電極側に付勢する。集電体5、5には、図示しない電源を接続して通電可能にする。   Among the diamond electrodes whose internal resistance is adjusted as described above, those having a low internal resistance are placed at both ends of the electrolysis cell so as to be in contact with the current collectors 5 and 5 as the anode 2 and the cathode 3. A predetermined number of bipolar electrodes 4... 4 are arranged between the cathodes 3. The number of bipolar electrodes at this time can be set arbitrarily. The current collectors 5 and 5 are biased toward the electrodes by a coil spring or the like (not shown) so as to reduce the contact resistance with respect to the anode 2 and the cathode 3. A current source (not shown) is connected to the current collectors 5 and 5 so that they can be energized.

上記電解セル1は、各電極が電解液に浸漬している状態にすることで、通電に際し、バイポーラ電極4が分極して各電極での電解が可能になり、硫酸が電解されて過硫酸が生成される。なお、電解セル1は、流体入口1a、流体出口1bを設けて電解液を通液することも可能である。   In the electrolytic cell 1, each electrode is immersed in an electrolytic solution, so that the bipolar electrode 4 is polarized when energized to allow electrolysis at each electrode, and sulfuric acid is electrolyzed to produce persulfuric acid. Generated. In addition, the electrolytic cell 1 can also provide the fluid inlet 1a and the fluid outlet 1b, and can flow electrolyte solution.

上記電解セル1では、陽極2、陰極3は、内部抵抗、接触抵抗を含めた高い電極抵抗を有している。一方、バイポーラ電極4…4では接触抵抗を有しないが、内部抵抗を高くしているため、陽極2、陰極3との電極抵抗の差が小さくなっている。理想的には略同等の電極抵抗が望ましい。各電極では、通電によってジュール熱が生じており、各電極の内部抵抗が同等である従来の電極構造では、陽極2、陰極3での電極面温度は、バイポーラ電極4の電極面温度に対し明らかに高くなる。これに比べて、本実施形態では各電極での電極抵抗の差が小さくなっており、したがって、陽極2、陰極3の電極面温度とバイポーラ電極4の電極面温度との差は小さくなる。これにより陽極2、陰極3の経時的な損耗と、バイポーラ電極4の経時的な損耗の差が小さくなり、電極の交換頻度を抑えることができ、作業負担が小さくなる。   In the electrolytic cell 1, the anode 2 and the cathode 3 have high electrode resistance including internal resistance and contact resistance. On the other hand, the bipolar electrodes 4... 4 do not have contact resistance, but the internal resistance is increased, so that the difference in electrode resistance between the anode 2 and the cathode 3 is small. Ideally, approximately the same electrode resistance is desirable. In each electrode, Joule heat is generated by energization, and in the conventional electrode structure in which the internal resistance of each electrode is the same, the electrode surface temperature at the anode 2 and the cathode 3 is apparent with respect to the electrode surface temperature of the bipolar electrode 4. To be high. In contrast, in this embodiment, the difference in electrode resistance between the electrodes is small, and therefore the difference between the electrode surface temperatures of the anode 2 and the cathode 3 and the electrode surface temperature of the bipolar electrode 4 is small. As a result, the difference between the wear over time of the anode 2 and the cathode 3 and the wear over time of the bipolar electrode 4 is reduced, the frequency of electrode replacement can be suppressed, and the work load is reduced.

なお、上記実施形態では、陽極、陰極ともに導電性ダイヤモンド電極として説明をしたが、例えば陰極などの一方の電極がダイヤモンド電極以外の電極材料で構成されているものであってもよい。また、この実施形態では、損耗が生じる電極材料として導電性ダイヤモンドを説明したが、これ以外に、経時的な損耗が問題になる電極材料で構成される電極構造においても同様に本願発明を適用することが可能である。
また、上記実施形態では、硫酸の電解を行うものとして説明をしたが、本発明としてはこれに限定をされるものではなく、炭酸、酢酸、ホウ酸、などの弱酸にも適用が可能である。なお上記には無隔模式の電解セルについてのみ説明しているが、本発明はこれに限定されず、隔模式の電解セルについても適用される。
In the above embodiment, both the anode and the cathode are described as conductive diamond electrodes. However, for example, one electrode such as the cathode may be made of an electrode material other than the diamond electrode. In this embodiment, conductive diamond has been described as an electrode material causing wear. However, the present invention is similarly applied to an electrode structure composed of an electrode material that causes wear over time. It is possible.
In the above embodiment, the sulfuric acid electrolysis is described. However, the present invention is not limited to this, and can be applied to weak acids such as carbonic acid, acetic acid, and boric acid. . In addition, although only the non-separation type electrolysis cell has been described above, the present invention is not limited to this, and can be applied to the electrolysis cell of the separation type.

以下に、本発明の実施例および比較例について説明する。
[比較例1]
内部抵抗0.04Ωのダイヤモンド電極を陽極、陰極、バイポーラ電極として電解セルに組み込んだ。バイポーラ電極は3枚とした。
この電解セル内に硫酸濃度85wt%、電解セル入口温度40℃の硫酸溶液を流入し、電流密度50A/dmで連続50時間通電したところ、陽極、陰極のダイヤモンド電極には損耗は見られなかったが、バイポーラ電極には4μmの損耗が見られた。
Examples of the present invention and comparative examples will be described below.
[Comparative Example 1]
A diamond electrode having an internal resistance of 0.04Ω was incorporated into an electrolytic cell as an anode, a cathode, and a bipolar electrode. Three bipolar electrodes were used.
When a sulfuric acid solution having a sulfuric acid concentration of 85 wt% and an electrolytic cell inlet temperature of 40 ° C. was flowed into this electrolytic cell and energized continuously for 50 hours at a current density of 50 A / dm 2 , there was no wear on the anode and cathode diamond electrodes. However, wear of 4 μm was observed on the bipolar electrode.

[比較例2]
内部抵抗0.04Ωのダイヤモンド電極を陽極、陰極、バイポーラ電極として、電解セルに組み込んだ。バイポーラ電極は3枚とした。
この電解セル内に硫酸濃度85wt%、電解セル入口温度30℃の硫酸溶液を流入し、電流密度50A/dmで連続50時間通電したところ、陰極のダイヤモンド電極には損耗は見られなかったが、陽極のダイヤモンド電極には3μmの損耗が、バイポーラ電極のダイヤモンド電極には7μmの損耗が見られた。比較例1と比べ、電極面温度が下がったために、より大きな損耗に繋がったことが示された。
[Comparative Example 2]
A diamond electrode having an internal resistance of 0.04Ω was incorporated into an electrolytic cell as an anode, a cathode, and a bipolar electrode. Three bipolar electrodes were used.
When a sulfuric acid solution having a sulfuric acid concentration of 85 wt% and an electrolytic cell inlet temperature of 30 ° C. was flowed into this electrolytic cell and energized continuously for 50 hours at a current density of 50 A / dm 2 , there was no wear on the diamond electrode of the cathode. The anode diamond electrode showed 3 μm wear and the bipolar electrode diamond electrode showed 7 μm wear. Compared to Comparative Example 1, it was shown that the electrode surface temperature decreased, leading to greater wear.

[実施例1]
内部抵抗0.04Ωのダイヤモンド電極を陽極及び陰極として電解セルに組み込んだ。このとき接触抵抗は0.14Ωであった。また、導電性ダイヤモンド薄膜の内部抵抗を高め、電極全体の内部抵抗を0.08Ωに調整したダイヤモンド電極をバイポーラ電極として3枚電解セルに組み込んだ。これにより電解セル内の各電極の電極抵抗を近づけるように調整した。
この電解セル内に硫酸濃度85wt%、電解セル入口温度40℃の硫酸溶液を流入し、電流密度50A/dmで連続50時間通電したところ、陽極、陰極のダイヤモンド電極には損耗は見られなかったが、バイポーラ電極には損耗が見られた。ただし損耗を1μmに軽減することができた。
[Example 1]
A diamond electrode having an internal resistance of 0.04Ω was incorporated into the electrolytic cell as an anode and a cathode. At this time, the contact resistance was 0.14Ω. Moreover, the diamond electrode which raised the internal resistance of the electroconductive diamond thin film and adjusted the internal resistance of the whole electrode to 0.08 (ohm) was integrated in the three-sheet electrolysis cell as a bipolar electrode. Thus, the electrode resistance of each electrode in the electrolytic cell was adjusted to be close.
When a sulfuric acid solution having a sulfuric acid concentration of 85 wt% and an electrolytic cell inlet temperature of 40 ° C. was flowed into this electrolytic cell and energized continuously for 50 hours at a current density of 50 A / dm 2 , there was no wear on the anode and cathode diamond electrodes. However, the bipolar electrode showed wear. However, the wear could be reduced to 1 μm.

[実施例2]
内部抵抗0.04Ωのダイヤモンド電極を陽極及び陰極として電解セルに組み込んだ。このとき接触抵抗は0.14Ωであった。また、基板の内部抵抗を高め、電極全体の内部抵抗を0.14Ωに調整したダイヤモンド電極をバイポーラ電極として3枚電解セルに組み込んだ。これにより電解セル内の各電極の電極抵抗を近づけるように調整した。
この電解セル内に硫酸濃度85wt%、電解セル入口温度40℃の硫酸溶液を流入し、電流密度50A/dmで連続50時間通電したところ、陽極、陰極のダイヤモンド電極には損耗は見られなかったが、バイポーラ電極には損耗が見られた。ただし損耗を0.5μmに軽減することができた。
[Example 2]
A diamond electrode having an internal resistance of 0.04Ω was incorporated into the electrolytic cell as an anode and a cathode. At this time, the contact resistance was 0.14Ω. Moreover, the diamond electrode which raised the internal resistance of the board | substrate and adjusted the internal resistance of the whole electrode to 0.14 (ohm) was integrated in the three electrolysis cell as a bipolar electrode. Thus, the electrode resistance of each electrode in the electrolytic cell was adjusted to be close.
When a sulfuric acid solution having a sulfuric acid concentration of 85 wt% and an electrolytic cell inlet temperature of 40 ° C. was flowed into this electrolytic cell and energized continuously for 50 hours at a current density of 50 A / dm 2 , there was no wear on the anode and cathode diamond electrodes. However, the bipolar electrode showed wear. However, the wear could be reduced to 0.5 μm.

[実施例3]
内部抵抗0.04Ωのダイヤモンド電極を陽極及び陰極として電解セルに組み込んだ。このとき接触抵抗は0.14Ωであった。また、導電性ダイヤモンド薄膜の内部抵抗および基板の内部抵抗を高め、電極全体の内部抵抗を0.18Ωに調整したダイヤモンド電極をバイポーラ電極として3枚電解セルに組み込んだ。これにより電解セル内の各電極の電極抵抗が同等となるように調整した。
この電解セル内に硫酸濃度85wt%、電解セル入口温度40℃の硫酸溶液を流入し、電流密度50A/dmで連続50時間通電したところ、陽極、陰極、パイポーラ電極いずれのダイヤモンド電極にも損耗は見られなかった。
[Example 3]
A diamond electrode having an internal resistance of 0.04Ω was incorporated into the electrolytic cell as an anode and a cathode. At this time, the contact resistance was 0.14Ω. Moreover, the diamond electrode which raised the internal resistance of the electroconductive diamond thin film and the internal resistance of the board | substrate, and adjusted the internal resistance of the whole electrode to 0.18 (ohm) was integrated in the three electrolysis cell as a bipolar electrode. Thus, the electrode resistance of each electrode in the electrolytic cell was adjusted to be equal.
When a sulfuric acid solution having a sulfuric acid concentration of 85 wt% and an electrolytic cell inlet temperature of 40 ° C. was flowed into this electrolytic cell and energized continuously for 50 hours at a current density of 50 A / dm 2 , the diamond electrode of the anode, cathode, or bipolar electrode was worn out Was not seen.

本発明の一実施形態における電極構造を示すものである。1 shows an electrode structure in one embodiment of the present invention.

符号の説明Explanation of symbols

1 電解セル
2 陽極
3 陰極
4 バイポーラ電極
5 集電体
DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2 Anode 3 Cathode 4 Bipolar electrode 5 Current collector

Claims (7)

陽極と陰極との間にバイポーラ電極を介在させた電極構造において、
前記バイポーラ電極の内部抵抗が、前記陽極および陰極のうち、前記バイポーラ電極と同材質の電極の内部抵抗より大きくされていることを特徴とする電極構造。
In the electrode structure in which a bipolar electrode is interposed between the anode and the cathode,
2. The electrode structure according to claim 1, wherein an internal resistance of the bipolar electrode is made larger than an internal resistance of an electrode made of the same material as the bipolar electrode among the anode and the cathode.
前記バイポーラ電極と、前記陽極および陰極のうち該バイポーラ電極と同材質の電極とが導電性ダイヤモンド電極であることを特徴とする請求項1記載の電極構造。   2. The electrode structure according to claim 1, wherein the bipolar electrode and an electrode made of the same material as the bipolar electrode among the anode and the cathode are conductive diamond electrodes. 前記導電性ダイヤモンド電極が自立型導電性ダイヤモンドまたは基板に導電性ダイヤモンド膜を形成したものであることを特徴とする請求項1または2に記載の電極構造。   The electrode structure according to claim 1 or 2, wherein the conductive diamond electrode is a self-supporting conductive diamond or a substrate in which a conductive diamond film is formed. 導電性ダイヤモンド電極からなる前記バイポーラ電極は、前記陽極および陰極のうち導電性ダイヤモンド電極からなる電極より導電性ダイヤモンドの内部抵抗を大きくしていることを特徴とする請求項2または3に記載の電極構造。   The electrode according to claim 2 or 3, wherein the bipolar electrode made of a conductive diamond electrode has a larger internal resistance of conductive diamond than the electrode made of a conductive diamond electrode among the anode and the cathode. Construction. 導電性ダイヤモンド電極からなる前記バイポーラ電極は、前記陽極および陰極のうち導電性ダイヤモンド電極からなる電極より基板の内部抵抗を大きくしていることを特徴とする請求項3または4に記載の電極構造。   5. The electrode structure according to claim 3, wherein the bipolar electrode made of a conductive diamond electrode has a larger internal resistance of the substrate than the electrode made of a conductive diamond electrode among the anode and the cathode. 前記バイポーラ電極の内部抵抗が、前記陽極および陰極のうち、前記バイポーラ電極と同材質の電極の接触抵抗を含む電極抵抗と略同等にされていることを特徴とする請求項1〜5のいずれかに記載の電極構造。   6. The internal resistance of the bipolar electrode is substantially equal to an electrode resistance including a contact resistance of an electrode made of the same material as the bipolar electrode among the anode and the cathode. The electrode structure described in 1. 硫酸を電解する電解装置に備えるものであることを特徴する請求項1〜6のいずれかに記載の電極構造。
The electrode structure according to claim 1, wherein the electrode structure is provided in an electrolytic device for electrolyzing sulfuric acid.
JP2008092616A 2008-03-31 2008-03-31 Electrode structure Pending JP2009242898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092616A JP2009242898A (en) 2008-03-31 2008-03-31 Electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092616A JP2009242898A (en) 2008-03-31 2008-03-31 Electrode structure

Publications (1)

Publication Number Publication Date
JP2009242898A true JP2009242898A (en) 2009-10-22

Family

ID=41305128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092616A Pending JP2009242898A (en) 2008-03-31 2008-03-31 Electrode structure

Country Status (1)

Country Link
JP (1) JP2009242898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541644A (en) * 2010-10-14 2013-11-14 エレメント、シックス、リミテッド Bipolar cell for reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541644A (en) * 2010-10-14 2013-11-14 エレメント、シックス、リミテッド Bipolar cell for reactor
US9656884B2 (en) 2010-10-14 2017-05-23 Element Six Limited Bipolar cell for a reactor

Similar Documents

Publication Publication Date Title
WO2017054392A1 (en) Electrolytic cell apparatus with separated anode and cathode chambers for electrolytic preparation of ozone water
CN105283963B (en) The formation of metal structure in solar cell
WO2010035448A1 (en) Diamond electrode and method for manufacturing diamond electrode
CN110004472A (en) The method of contact structures is formed on the solar cell
JP2009534813A (en) Method for producing electrode for solar cell and electrochemical deposition apparatus therefor
TWI453302B (en) Sulfuric acid electrolysis process
JP2014510362A5 (en)
WO2017054391A1 (en) Ozone water electrolytic apparatus directly connected to plating film electrode
JP5524877B2 (en) Aluminum alloy plate and manufacturing method thereof
CN106835193B (en) A kind of Pb bases/3D-PbO2/MeOx composite anodes and preparation method thereof
JP2009242898A (en) Electrode structure
JP7006481B2 (en) Fuel cell separator
CN104213151B (en) Method for preparing lead-antimony alloy by directly electrolyzing lead-antimony oxide
Joo et al. Ultrahigh purification in concentrated NaOH by electrowinning for solar cell application
KR101449101B1 (en) Method for Manufacturing Fe-Ni substrate for OLED with Improved Lifetime
KR101406417B1 (en) Metal substrate for oleds and fabrication method of the same
KR101353619B1 (en) Method of manufacturing iron and nickel alloy substrate coated with resin for oled
CN101824639B (en) Anode of electrodeposition device for recovery of lead-acid battery and manufacturing method thereof
JP2015067872A (en) Electrolytic aluminum foil, electrode using the same and electricity storage device
KR101353808B1 (en) Method of manufacturing iron and nickel alloy substrate for solar cell
JP2008285728A (en) Method for producing sodium, and sodium production device
CN104178781B (en) The electrolysis unit of electrorefining metal
US20180191000A1 (en) Titanium product
KR101986693B1 (en) Ion removal electrode plate structure using hastelloy titanium coating
CN107630233A (en) A kind of method using rare earth-iron-boron Electrowinning rare earth metal