JP2009242449A - Thermosetting resin composition and printed wiring board - Google Patents

Thermosetting resin composition and printed wiring board Download PDF

Info

Publication number
JP2009242449A
JP2009242449A JP2008087469A JP2008087469A JP2009242449A JP 2009242449 A JP2009242449 A JP 2009242449A JP 2008087469 A JP2008087469 A JP 2008087469A JP 2008087469 A JP2008087469 A JP 2008087469A JP 2009242449 A JP2009242449 A JP 2009242449A
Authority
JP
Japan
Prior art keywords
resin
resin composition
insulating layer
plating
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008087469A
Other languages
Japanese (ja)
Other versions
JP5074981B2 (en
Inventor
Akira Hayashi
亮 林
Koshin Nakai
弘進 中居
Katsuto Murata
勝人 邑田
Shigeru Michiwaki
茂 道脇
Hiroshi Shimada
浩 島田
Yasuaki Seki
保明 関
Hideo Honma
英夫 本間
Mitsuhiro Watanabe
充広 渡辺
Katsuhiko Tashiro
雄彦 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Gakuin University Surface Engineering Research Institute
Meiko Co Ltd
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Ink Mfg Co Ltd
Kanto Gakuin University Surface Engineering Research Institute
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Mfg Co Ltd, Kanto Gakuin University Surface Engineering Research Institute, Meiko Co Ltd filed Critical Taiyo Ink Mfg Co Ltd
Priority to JP2008087469A priority Critical patent/JP5074981B2/en
Publication of JP2009242449A publication Critical patent/JP2009242449A/en
Application granted granted Critical
Publication of JP5074981B2 publication Critical patent/JP5074981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition forming a conductor layer having high adhesion strength to a resin insulating layer when the conductor layer is formed on the surface of the resin insulating layer by means of a plating, to provide a resin sheet formed by using the thermosetting resin composition, and to provide a printed wiring board on which the resin insulating layer is formed using these. <P>SOLUTION: In the manufacturing method of the printed wiring boad by which the conductor layer is formed by plating after the surface of the resin insulating layer is irradiated with UV, the thermosetting resin composition used for forming the resin insulating layer contains (A) an epoxy resin, (B) a monoepoxide addition product of dicyandiamide, (C) a filler and (D) a polyhydroxy carboxylic acid or its derivative. The resin sheet formed by applying the thermosetting resin composition on a carrier sheet and then drying the same or the resin sheet formed by impregnating a sheet-shaped fibrous base material with the thermosetting resin composition and then drying the same are also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、紫外線処理により導体層との密着性(ピール強度)に優れた樹脂絶縁層を形成するのに好適な熱硬化性樹脂組成物、該熱硬化性樹脂組成物からなる樹脂シート、並びにこれらを用いて樹脂絶縁層が形成されてなるプリント配線板に関する。   The present invention relates to a thermosetting resin composition suitable for forming a resin insulating layer excellent in adhesion (peel strength) to a conductor layer by ultraviolet treatment, a resin sheet comprising the thermosetting resin composition, and The present invention relates to a printed wiring board in which a resin insulating layer is formed using these.

近年、多層プリント配線板の製造方法として、内層回路板の導体層上に有機絶縁層と導体層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。例えば、回路形成された内層回路板にエポキシ樹脂組成物を塗布し、加熱硬化した後、粗化剤により表面に凸凹状の粗化面を形成し、導体層をめっきにより形成する多層プリント配線板の製造法が提案されている(特許文献1及び特許文献2参照)。また、回路形成された内層回路板にエポキシ樹脂組成物の接着シートをラミネートし、加熱硬化した後、粗化剤により表面に凸凹状の粗化面を形成し、導体層をめっきにより形成する多層プリント配線板の製造法が提案されている(特許文献3参照)。   In recent years, as a method for producing a multilayer printed wiring board, a build-up production technique in which an organic insulating layer and a conductor layer are alternately stacked on a conductor layer of an inner circuit board has attracted attention. For example, a multilayer printed wiring board in which an epoxy resin composition is applied to a circuit-formed inner layer circuit board, heat-cured, a roughened surface is formed on the surface with a roughening agent, and a conductor layer is formed by plating Has been proposed (see Patent Document 1 and Patent Document 2). Also, after laminating an adhesive sheet of an epoxy resin composition on a circuit-formed inner layer circuit board and heat-curing it, a roughening surface is formed on the surface with a roughening agent, and a conductor layer is formed by plating A method for manufacturing a printed wiring board has been proposed (see Patent Document 3).

従来、めっき処理により樹脂絶縁層の表面に導体層を形成する場合、めっき処理により形成した導体層と樹脂絶縁層との密着性は導体回路パターンや実装部品の衝撃耐性試験を満足する必要がある。そのため、樹脂絶縁層の表面に粗面化処理(デスミア処理)を行った後、めっきを施す工法が行われている。粗面化処理は、過マンガン酸ナトリウム、過マンガン酸カリウム等の酸化剤を用いて樹脂絶縁層の表面をエッチングすることによって行われる。   Conventionally, when a conductor layer is formed on the surface of a resin insulating layer by plating, the adhesion between the conductor layer formed by plating and the resin insulating layer must satisfy the impact resistance test of the conductor circuit pattern and the mounted component. . Therefore, after the surface of the resin insulating layer is roughened (desmeared), plating is performed. The roughening treatment is performed by etching the surface of the resin insulating layer using an oxidizing agent such as sodium permanganate or potassium permanganate.

高い密着性は、粗面化処理によって凹凸に形成された樹脂絶縁層表面の凹部に導体層が入り込むことによるアンカー効果により得られる。しかしながら、樹脂絶縁層の表面凹凸が大きくなると、導体層をエッチングして導体回路パターンを形成する際に、エッチング液が導体回路パターン側面に入り込み易くなることでパターン精度に影響を及ぼし、極めて微細な導体回路パターンを精度良く形成することができないといった問題が生じる。また、パターン側面の形状が悪化することにより、配線基板における電気的特性において高周波信号の伝送損失が大きくなるという問題も挙げられる。   High adhesion is obtained by an anchor effect due to the conductor layer entering into the recesses on the surface of the resin insulating layer formed into irregularities by the roughening treatment. However, when the surface unevenness of the resin insulating layer becomes large, when the conductor layer is etched to form the conductor circuit pattern, the etching solution easily enters the side surface of the conductor circuit pattern, thereby affecting the pattern accuracy and extremely fine. There arises a problem that the conductor circuit pattern cannot be formed with high accuracy. Another problem is that the high-frequency signal transmission loss increases in the electrical characteristics of the wiring board due to the deterioration of the shape of the pattern side surface.

また、配線基板の設計においては、樹脂絶縁層の凹凸における深度が大きくなるほど上下導体層を電気的に絶縁するために必要な層の厚みが大きくなり、配線基板の軽薄化が困難になる。
さらに、表面粗化に用いる過マンガン酸カリウムや過マンガン酸ナトリウムは、危険性があり、また環境汚染等の公害問題を発生し易いため、これらを使用しないめっき処理技術は市場から強く要望されている。
Further, in designing a wiring board, as the depth of the resin insulating layer in the unevenness increases, the thickness of the layer necessary to electrically insulate the upper and lower conductor layers increases, making it difficult to reduce the thickness of the wiring board.
Furthermore, since potassium permanganate and sodium permanganate used for surface roughening are dangerous and easily cause pollution problems such as environmental pollution, plating technology that does not use them is strongly demanded by the market. Yes.

これらの問題を解決する手法として、紫外線照射による前処理後にめっき処理を行う方法が開示されている(例えば、特許文献4、5参照)。この方法は、無電解めっき工程の前に、樹脂絶縁層表面に紫外線を照射することにより、樹脂表面にカルボキシル基(−COOH)、カルボニル基(C=O)、OH基等の極性基が導入され、その表面エネルギーが増大して樹脂表面を活性化することができ、それにより、活性化された樹脂表面の極性基が、直接めっき材料である活性な金属粒子と化学的な結合を生じ、樹脂表面上に形成される金属膜との密着性を強固なものとするものである。しかしながら、このような方法の場合、樹脂表面が平坦であることに加えて、樹脂表面の極性基とめっき材料の金属粒子との化学的結合力も不充分なため、導体回路パターンや実装部品の衝撃耐性試験を満足できる導体層と樹脂絶縁層との密着強度が得られない。   As a technique for solving these problems, a method of performing a plating process after a pretreatment by ultraviolet irradiation is disclosed (for example, see Patent Documents 4 and 5). In this method, polar groups such as carboxyl groups (—COOH), carbonyl groups (C═O), and OH groups are introduced to the resin surface by irradiating the resin insulating layer surface with ultraviolet rays before the electroless plating step. And the surface energy can be increased to activate the resin surface, whereby the polar groups on the activated resin surface are chemically bonded to the active metal particles that are the direct plating material, The adhesiveness with the metal film formed on the resin surface is strengthened. However, in the case of such a method, in addition to the resin surface being flat, the chemical bonding force between the polar group on the resin surface and the metal particles of the plating material is insufficient, so that the impact of the conductor circuit pattern and the mounted component Adhesive strength between the conductor layer and the resin insulating layer that can satisfy the resistance test cannot be obtained.

また、樹脂絶縁層にプラズマ処理及び紫外線処理の両処理を施すことにより、導体層と樹脂絶縁層との密着性を向上させる方法も提案されているが(特許文献6参照)、樹脂絶縁層にプラズマ処理及び紫外線処理の両処理を施す必要があることに加え、用いる紫外線波長は172nmであることから、酸素、窒素等に吸収され易く、さらに、照射ランプから近距離で処理を行う必要があることから、処理面に斑無く均一に処理を行うことが困難となる。
特開平7−304931号公報(特許請求の範囲) 特開平7−304933号公報(特許請求の範囲) 特開平11−87927号公報(特許請求の範囲) 特開平8−253869号公報(特許請求の範囲) 特開平10−88361号公報(特許請求の範囲) 特開2002−57456号公報(特許請求の範囲)
In addition, a method for improving the adhesion between the conductor layer and the resin insulation layer by performing both plasma treatment and ultraviolet treatment on the resin insulation layer has been proposed (see Patent Document 6). In addition to the necessity of performing both plasma treatment and ultraviolet treatment, since the ultraviolet wavelength used is 172 nm, it is easily absorbed by oxygen, nitrogen, etc., and it is necessary to perform treatment at a short distance from the irradiation lamp. For this reason, it becomes difficult to uniformly perform the processing without any unevenness on the processing surface.
JP-A-7-304931 (Claims) JP-A-7-304933 (Claims) JP-A-11-87927 (Claims) JP-A-8-253869 (Claims) JP-A-10-88361 (Claims) JP 2002-57456 A (Claims)

本発明は、主として、内層回路板の導体層上に樹脂絶縁層と導体層を交互に積み上げていくビルドアップ方式のプリント配線板の製造における前記したような従来技術の問題を解決するためになされたものであり、その目的は、めっき処理により樹脂絶縁層の表面に導体層を形成する際に、従来の有害な酸化剤を用いることなく、紫外線照射により前処理を行うことにより、樹脂絶縁層の表面粗度を極めて小さく抑えることができ、且つ、樹脂絶縁層と導体層との密着性を向上させることによって、極めて微細な導体回路パターンの形成を可能とする熱硬化性樹脂組成物、該熱硬化性樹脂組成物からなる樹脂シート、並びにこれらを用いて樹脂絶縁層が形成されてなる電気的特性に優れたプリント配線板を提供することにある。   The present invention is mainly made to solve the above-described problems in the prior art in the production of a build-up type printed wiring board in which a resin insulation layer and a conductor layer are alternately stacked on a conductor layer of an inner layer circuit board. The purpose of the resin insulation layer is to perform pretreatment by ultraviolet irradiation without using a conventional harmful oxidant when forming a conductor layer on the surface of the resin insulation layer by plating. A thermosetting resin composition capable of forming a very fine conductor circuit pattern by improving the adhesion between the resin insulating layer and the conductor layer, An object of the present invention is to provide a resin sheet made of a thermosetting resin composition, and a printed wiring board having excellent electrical characteristics, in which a resin insulating layer is formed using these.

前記目的を達成するために、本発明によれば、樹脂絶縁層の表面に紫外線を照射した後、めっき処理により導体層を形成するプリント配線板の製造において、上記樹脂絶縁層の形成に用いられる組成物であって、(A)エポキシ樹脂、(B)ジシアンジアミドのモノエポキシド付加物、(C)フィラー、及び(D)ポリヒドロキシカルボン酸もしくはその誘導体を含有することを特徴とする熱硬化性樹脂組成物が提供される。
好適な態様においては、前記フィラー(C)をエポキシ樹脂100質量部に対し15〜150質量部含有する。また、前記フィラー(C)としては炭酸カルシウムが好ましい。
In order to achieve the above object, according to the present invention, in the production of a printed wiring board in which a conductor layer is formed by plating after the surface of a resin insulating layer is irradiated with ultraviolet rays, the resin insulating layer is used to form the resin insulating layer. A thermosetting resin comprising a composition (A) an epoxy resin, (B) a monoepoxide adduct of dicyandiamide, (C) a filler, and (D) polyhydroxycarboxylic acid or a derivative thereof A composition is provided.
In a suitable aspect, the said filler (C) contains 15-150 mass parts with respect to 100 mass parts of epoxy resins. The filler (C) is preferably calcium carbonate.

さらに本発明によれば、前記熱硬化性樹脂組成物をキャリアフィルム上に塗工した後、乾燥してなる樹脂シート、あるいは前記熱硬化性樹脂組成物をシート状繊維質基材に含浸させた後、乾燥してなる樹脂シートも提供される。
さらにまた、本発明によれば、前記熱硬化性樹脂組成物の硬化物又は樹脂シートから形成された樹脂絶縁層の表面に、紫外線を照射した後、めっき処理により導体層が形成されてなることを特徴とするプリント配線板が提供される。好適な態様においては、前記めっき処理は、無電解めっき及び電解めっきからなる。
Furthermore, according to this invention, the said thermosetting resin composition was coated on the carrier film, and then the resin sheet formed by drying, or the sheet-like fibrous base material was impregnated with the thermosetting resin composition. Thereafter, a dried resin sheet is also provided.
Furthermore, according to the present invention, the surface of the resin insulation layer formed from the cured product or resin sheet of the thermosetting resin composition is irradiated with ultraviolet rays, and then a conductor layer is formed by plating. A printed wiring board characterized by the above is provided. In a preferred embodiment, the plating treatment includes electroless plating and electrolytic plating.

本発明の熱硬化性樹脂組成物は、(A)エポキシ樹脂と共に、(B)ジシアンジアミドのモノエポキシド付加物、(C)フィラー、及び(D)ポリヒドロキシカルボン酸もしくはその誘導体を組み合わせて含有するため、該組成物から形成された樹脂絶縁層の表面に、紫外線を照射した後、めっき処理により導体層を形成する際に、めっき液との濡れ性に優れ、比較的平坦な面であるにも拘わらず、樹脂絶縁層と導体層との密着強度が高く、極めて微細な導体回路パターンの形成が可能となる。
従って、本発明の熱硬化性樹脂組成物、その樹脂シート(ドライフィルム又はプリプレグ)を、導体回路層と絶縁層とを交互に積み上げるビルドアップ方式に用いることにより、めっき導体層の密着強度が高く、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を製造することができる。
The thermosetting resin composition of the present invention contains (B) a dicyandiamide monoepoxide adduct, (C) filler, and (D) polyhydroxycarboxylic acid or a derivative thereof together with (A) an epoxy resin. When the conductor layer is formed by plating after the surface of the resin insulating layer formed from the composition is irradiated with ultraviolet rays, it has excellent wettability with the plating solution and is a relatively flat surface. Regardless of this, the adhesion strength between the resin insulating layer and the conductor layer is high, and an extremely fine conductor circuit pattern can be formed.
Therefore, by using the thermosetting resin composition of the present invention and the resin sheet (dry film or prepreg) in a build-up system in which conductor circuit layers and insulating layers are alternately stacked, the adhesion strength of the plated conductor layer is high. A multilayer printed wiring board on which an interlayer insulating layer excellent in heat resistance, electrical insulation and the like is formed can be produced.

本発明者らは、前記した課題を解決すべく鋭意研究した結果、(A)エポキシ樹脂と共に、(B)ジシアンジアミドのモノエポキシド付加物、(C)フィラー、及び(D)ポリヒドロキシカルボン酸もしくはその誘導体を組み合わせて含有する熱硬化性樹脂組成物から形成された樹脂絶縁層は、その表面に紫外線を照射した後、めっき処理により導体層を形成する際に、めっき液との濡れ性に優れ、比較的平坦な面であるにも拘わらず、導体層の密着強度が著しく高くなり、多層プリント配線板の層間絶縁層として最適であることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have (A) an epoxy resin, (B) a monoepoxide adduct of dicyandiamide, (C) a filler, and (D) a polyhydroxycarboxylic acid or its The resin insulation layer formed from the thermosetting resin composition containing the derivative in combination is excellent in wettability with the plating solution when the conductor layer is formed by plating after irradiating the surface with ultraviolet rays, In spite of the relatively flat surface, the adhesion strength of the conductor layer is remarkably increased, and it has been found that it is optimal as an interlayer insulating layer of a multilayer printed wiring board, and the present invention has been completed.

即ち、樹脂絶縁層表面に紫外線を照射することによる効果(樹脂表面にカルボキシル基(−COOH)、カルボニル基(C=O)、OH基等の極性基が導入され、その表面エネルギーが増大して樹脂表面を活性化することができ、それにより、活性化された樹脂表面の極性基が、直接めっき材料である活性な金属粒子と化学的な結合を生じ、樹脂表面上に形成される金属膜との密着性を向上できる。)に加えて、(B)ジシアンジアミドのモノエポキシド付加物、(C)フィラー、及び(D)ポリヒドロキシカルボン酸もしくはその誘導体を組み合わせて含有することにより、これらの化合物の極性基が樹脂絶縁層表面に存在し易くなり、めっき液との濡れ性に優れ、比較的平坦な面であるにも拘わらず、導体層の密着強度が著しく高くなる。特に、ポリヒドロキシカルボン酸もしくはその誘導体は、その官能基(水酸基、カルボキシル基、アミド基、エステル基等)の存在により、めっき液、特に触媒液の浸透を促進し、また上記紫外線照射による効果を増大し、その上に形成される導体層の密着強度向上に大きく貢献できる。その結果、めっき導体層の密着強度が高く、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を製造することができる。   That is, the effect of irradiating the surface of the resin insulation layer with ultraviolet rays (polar groups such as carboxyl groups (—COOH), carbonyl groups (C═O), OH groups, etc. are introduced on the resin surface), and the surface energy increases. The resin surface can be activated, whereby the polar group on the activated resin surface forms a chemical bond directly with the active metal particles that are the plating material, and the metal film formed on the resin surface In addition to (B) dicyandiamide monoepoxide adduct, (C) filler, and (D) polyhydroxycarboxylic acid or a derivative thereof in combination, these compounds can be improved. The polar group is easily present on the surface of the resin insulation layer, has excellent wettability with the plating solution, and the adhesion strength of the conductor layer is remarkably increased even though it is a relatively flat surface.In particular, polyhydroxycarboxylic acid or its derivative promotes the penetration of the plating solution, particularly the catalyst solution, due to the presence of its functional group (hydroxyl group, carboxyl group, amide group, ester group, etc.), and also has the effect of the above ultraviolet irradiation. This greatly increases the adhesion strength of the conductor layer formed thereon. As a result, it is possible to manufacture a multilayer printed wiring board in which an interlayer insulating layer having high adhesion strength of the plated conductor layer and excellent heat resistance, electrical insulation, and the like is formed.

また、エポキシ樹脂硬化剤としてジシアンジアミドのモノエポキシド付加物を用いることにより、従来一般に使用されているジシアンジアミドを用いる場合に比べて、エポキシ樹脂の熱硬化反応がマイルドになる。その結果、硬化塗膜の靱性や熱的安定性が向上し、力学的衝撃や熱衝撃によるクラック耐性に優れたものとなる。しかも、ジシアンジアミドのモノエポキシド付加物はエポキシ樹脂との相溶性に優れ、得られる硬化物は、エポキシ樹脂本来の耐湿性(絶縁信頼性)や耐熱性、密着性に極めて優れた特性を示す。   In addition, by using a monoepoxide adduct of dicyandiamide as an epoxy resin curing agent, the thermosetting reaction of the epoxy resin becomes milder than in the case of using dicyandiamide that is generally used conventionally. As a result, the toughness and thermal stability of the cured coating film are improved, and the crack resistance due to mechanical shock and thermal shock is excellent. In addition, the monoepoxide adduct of dicyandiamide is excellent in compatibility with the epoxy resin, and the obtained cured product exhibits extremely excellent characteristics such as the inherent moisture resistance (insulation reliability), heat resistance and adhesion of the epoxy resin.

以下、本発明の熱硬化性樹脂組成物の各構成成分について詳細に説明する。
まず、前記エポキシ樹脂(A)としては、1分子中に少なくとも2つのエポキシ基を有する多官能エポキシ化合物であれば全て用いることができ、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビキシレノール型もしくはビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジグリシジルフタレート樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、又はそれらの臭素原子含有エポキシ樹脂やりん原子含有エポキシ樹脂、トリグリシジルイソシアヌレート等のエポキシ樹脂、脂環式エポキシ樹脂など公知慣用のものを、単独であるいは2種以上組み合わせて使用することができる。また、反応性希釈剤としての単官能エポキシ樹脂を含有していてもよい。
Hereinafter, each component of the thermosetting resin composition of the present invention will be described in detail.
First, as the epoxy resin (A), any polyfunctional epoxy compound having at least two epoxy groups in one molecule can be used, for example, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin. Bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bixylenol type or biphenol type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type Epoxy resin, glycidylamine type epoxy resin, trihydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin, diglycidyl phthalate resin, phenols Epoxidized products of condensates with aromatic aldehydes having an enolic hydroxyl group, or bromine atom-containing epoxy resins, phosphorus atom-containing epoxy resins, epoxy resins such as triglycidyl isocyanurate, and alicyclic epoxy resins Can be used alone or in combination of two or more. Moreover, you may contain the monofunctional epoxy resin as a reactive diluent.

前記したようなエポキシ樹脂は、単独で使用してもよいが、2種以上を組み合わせて用いることが好ましく、例えば室温で液状のエポキシ樹脂と固体のエポキシ樹脂を併用した場合、低分子量の液状のエポキシ樹脂が、得られる硬化皮膜の可撓性及び密着性向上に寄与し、固体のエポキシ樹脂が、ガラス転移点を上昇させるのに寄与するので、これらの比率を調整することにより上記特性のバランスを調整することが可能となる。また、他の方法としては、エポキシ当量が200以下のエポキシ樹脂と200を超えるエポキシ樹脂を併用することも好ましい。エポキシ当量が200を超えるエポキシ樹脂は、硬化収縮が少なく、基材のそり防止と硬化物への柔軟性付与に効果的である。また加熱ラミネート時やレベリング時の溶融粘度を高くすることができ、成型後の樹脂染み出し量のコントロールに有効である。一方、エポキシ当量が200以下のエポキシ樹脂は、反応性が高く、硬化物に機械的強度を与える。また、加熱ラミネート時の溶融粘度が低いため、内層回路間の隙間への樹脂組成物の充填性や銅箔の凹凸粗面に対する追随性に寄与する。   The above-mentioned epoxy resins may be used alone, but are preferably used in combination of two or more. For example, when a liquid epoxy resin and a solid epoxy resin are used in combination at room temperature, a low molecular weight liquid resin is used. The epoxy resin contributes to improving the flexibility and adhesion of the resulting cured film, and the solid epoxy resin contributes to raising the glass transition point, so the balance of the above characteristics can be achieved by adjusting these ratios. Can be adjusted. Moreover, as another method, it is also preferable to use together an epoxy resin having an epoxy equivalent of 200 or less and an epoxy resin exceeding 200. Epoxy resins having an epoxy equivalent of more than 200 have little cure shrinkage and are effective in preventing warpage of the substrate and imparting flexibility to the cured product. In addition, the melt viscosity at the time of heating lamination and leveling can be increased, which is effective in controlling the amount of resin oozing after molding. On the other hand, an epoxy resin having an epoxy equivalent of 200 or less has high reactivity and gives mechanical strength to the cured product. Moreover, since the melt viscosity at the time of heat lamination is low, it contributes to the filling property of the resin composition into the gaps between the inner layer circuits and the followability to the rough surface of the copper foil.

次に、本発明の熱硬化性樹脂組成物は、前記エポキシ樹脂と共に必須成分として用いるエポキシ樹脂硬化剤として、ジシアンジアミドのモノエポキシド付加物(B)が用いられる。このジシアンジアミドのモノエポキシド付加物の配合量は、前記エポキシ樹脂(A)中のエポキシ基1当量に対して、これら硬化剤中の活性水素量が0.1〜0.4当量、好ましくは0.1〜0.3当量となる範囲が適当である。また、このジシアンジアミドのモノエポキシド付加物は、当該付加物100重量部に対して100重量部以下、好ましくは20〜80重量部の割合でジエチレングリコール系又はジプロピレングリコール系のエーテル系溶剤に溶解されていることが好ましい。このジシアンジアミドのモノエポキシド付加物は、ジシアンジアミドをモノエポキシ化合物と反応させて得られる。このようなジシアンジアミドの変性に使用し得るモノエポキシドは、エポキシ基を1個有する化合物であり、該化合物は、飽和もしくは不飽和の脂肪族、脂環式、芳香族又は複素環式化合物であることができ、さらに化合物中にエーテル基等の置換基を含んでいてもよい。エポキシ基を2個もしくはそれ以上有するエポキシ化合物、例えばジエポキシドは、付加物生成時にゲル化して硬化剤としての使用に耐えなくなる。   Next, in the thermosetting resin composition of the present invention, dicyandiamide monoepoxide adduct (B) is used as an epoxy resin curing agent used as an essential component together with the epoxy resin. The compounding amount of this dicyandiamide monoepoxide adduct is such that the amount of active hydrogen in these curing agents is 0.1 to 0.4 equivalents, preferably 0. 1 equivalent to 1 equivalent of epoxy groups in the epoxy resin (A). A range of 1 to 0.3 equivalent is appropriate. In addition, the monoepoxide adduct of dicyandiamide is dissolved in a diethylene glycol-based or dipropylene glycol-based ether solvent at a ratio of 100 parts by weight or less, preferably 20 to 80 parts by weight with respect to 100 parts by weight of the adduct. Preferably it is. This monoepoxide adduct of dicyandiamide is obtained by reacting dicyandiamide with a monoepoxy compound. The monoepoxide that can be used for the modification of dicyandiamide is a compound having one epoxy group, and the compound is a saturated or unsaturated aliphatic, alicyclic, aromatic or heterocyclic compound. Furthermore, the compound may contain a substituent such as an ether group. Epoxy compounds having two or more epoxy groups, such as diepoxide, gel when adducts are formed and cannot withstand use as curing agents.

モノエポキシドの好ましい具体例としては、フェニルグリシジルエーテル、トリルグリシジルエーテル、キシリルグリシジルエーテル、クミルグリシジルエーテル、シミルグリシジルエーテル、p−セカンダリブチルフェニルグリシジルエーテル等を挙げることができる。一般的には、アリールグリシジルエーテルである。   Preferable specific examples of the monoepoxide include phenyl glycidyl ether, tolyl glycidyl ether, xylyl glycidyl ether, cumyl glycidyl ether, simil glycidyl ether, p-secondary butyl phenyl glycidyl ether and the like. Generally, it is an aryl glycidyl ether.

本発明の熱硬化性樹脂組成物においては、必要に応じて硬化促進剤を用いることができる。硬化促進剤の具体例としては、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン、ジエチルベンジルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミンなどの第3級アミン、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライドなどの4級アンモニウム塩、トリエチルホスフィン、トリフェニルホスフィンなどのホスフィン類、n−ブチルトリフェニルホスホニウムブロマイドなどのホスホニウム塩、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾールなどのイミダゾール類又はこれらの有機酸塩類、アセトグアナミン、ベンゾグアナミン等のグアナミン類を挙げることができる。これらの中で好ましい硬化促進剤はイミダゾール類及びホスフィン類である。   In the thermosetting resin composition of the present invention, a curing accelerator can be used as necessary. Specific examples of the curing accelerator include triethylamine, tributylamine, dimethylbenzylamine, diethylbenzylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4 Tertiary amines such as methyl-N, N-dimethylbenzylamine, quaternary ammonium salts such as benzyltrimethylammonium chloride and benzyltriethylammonium chloride, phosphines such as triethylphosphine and triphenylphosphine, n-butyltriphenylphosphonium Phosphonium salts such as bromide, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2 Ethyl-4-imidazole or an organic acid salts such as methyl imidazole, may be mentioned acetoguanamine, guanamine such as benzoguanamine. Of these, preferred curing accelerators are imidazoles and phosphines.

次に、前記フィラー(C)としては従来公知の全ての無機フィラー及び有機フィラーが使用でき、特定のものに限定されないが、めっき液との親和性が良好な無機フィラーが好ましい。無機フィラーとしては、例えば、硫酸バリウム、チタン酸バリウム、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等の体質顔料や、銅、錫、亜鉛、ニッケル、銀、パラジウム、アルミニウム、鉄、コバルト、金、白金等の金属粉体が挙げられる。これらの無機フィラーは、塗膜の硬化収縮を抑制し、密着性、硬度などの特性を向上させるのにも寄与する。これらの中でも、炭酸カルシウム及びシリカ、特に炭酸カルシウムが好ましい。また、これらのフィラーは、組成物中に高い割合で配合可能な点から、球状フィラーが好ましく、その平均粒径は3μm以下であることが好ましい。   Next, as the filler (C), all conventionally known inorganic fillers and organic fillers can be used, and the filler (C) is not limited to a specific one, but an inorganic filler having good affinity with the plating solution is preferable. Examples of inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and aluminum nitride. And extender pigments such as copper, tin, zinc, nickel, silver, palladium, aluminum, iron, cobalt, gold and platinum. These inorganic fillers also suppress the curing shrinkage of the coating film and contribute to improving properties such as adhesion and hardness. Among these, calcium carbonate and silica, particularly calcium carbonate are preferable. Further, these fillers are preferably spherical fillers from the viewpoint that they can be blended in a high proportion in the composition, and the average particle diameter is preferably 3 μm or less.

フィラー(C)の配合量は、前記エポキシ樹脂(A)100質量部に対して、15〜150質量部、好ましくは20〜150質量部の割合が適当である。フィラーの配合量が上記範囲よりも少なくなると、導体回路層との良好な密着強度が得られ難くなり、一方、上記範囲を超えると、組成物の流動性が悪くなるので好ましくない。   The blending amount of the filler (C) is appropriately 15 to 150 parts by mass, preferably 20 to 150 parts by mass with respect to 100 parts by mass of the epoxy resin (A). When the blending amount of the filler is less than the above range, it is difficult to obtain good adhesion strength with the conductor circuit layer. On the other hand, when it exceeds the above range, the fluidity of the composition is deteriorated.

また、前記ポリヒドロキシカルボン酸もしくはその誘導体(D)としては、特定の化合物に限定されるものではないが、ポリヒドロキシカルボン酸のアマイド又はエステルを好適に用いることができる。市販品としては、ビックケミージャパン(株)製のBYK−405(ポリヒドロキシカルボン酸のアマイド)、BYK−LPR6795(ポリヒドロキシカルボン酸のエステル)等が挙げられる。
ポリヒドロキシカルボン酸もしくはその誘導体(D)の配合量は、前記エポキシ樹脂(A)100質量部に対して、0.1〜15質量部、好ましくは0.3〜10質量部の割合が適当である。ポリヒドロキシカルボン酸もしくはその誘導体(D)の配合量が上記範囲よりも少なくなると、導体回路層との良好な密着強度が得られ難くなり、一方、上記範囲を超えて多量に配合しても、導体回路層との密着強度の更なる向上は望めないので、経済性の点で好ましくない。
The polyhydroxycarboxylic acid or its derivative (D) is not limited to a specific compound, but an amide or ester of polyhydroxycarboxylic acid can be preferably used. Examples of commercially available products include BYK-405 (polyhydroxycarboxylic acid amide) and BYK-LPR6795 (polyhydroxycarboxylic acid ester) manufactured by BYK Japan.
The blending amount of the polyhydroxycarboxylic acid or derivative (D) is 0.1 to 15 parts by weight, preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin (A). is there. If the blending amount of the polyhydroxycarboxylic acid or derivative (D) is less than the above range, it becomes difficult to obtain a good adhesion strength with the conductor circuit layer. Since further improvement of the adhesion strength with the conductor circuit layer cannot be expected, it is not preferable in terms of economy.

さらに、本発明の熱硬化性樹脂組成物は、必要に応じて、固型樹脂を溶解したり、組成物の粘度を調整するため、有機溶剤を含有することができる。有機溶剤としては、通常の溶剤、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素の他、ジメチルホルムアミド、ジメチルアセトアミドなどを、単独で又は2種以上組み合わせて使用することができる。   Furthermore, the thermosetting resin composition of the present invention can contain an organic solvent in order to dissolve the solid resin or adjust the viscosity of the composition, if necessary. Organic solvents include ordinary solvents such as ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and cellosolves such as cellosolve and butylcellosolve. , Carbitols such as carbitol and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide and the like can be used alone or in combination of two or more.

本発明の熱硬化性樹脂組成物は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知慣用の着色剤、アスベスト、オルベン、ベントン、微紛シリカ等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤及び/又はレベリング剤、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、チタネート系、アルミニウム系の公知慣用の添加剤類を用いることができる。   The thermosetting resin composition of the present invention may further include a known and commonly used colorant such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc. , Known and commonly used thickeners such as asbestos, olben, benton, fine silica, etc., defoamers and / or leveling agents such as silicones, fluorines and polymers, thiazoles, triazoles, silane coupling agents, etc. Adhesiveness imparting agents, titanate-based, and aluminum-based commonly used additives can be used.

本発明の熱硬化性樹脂組成物の形態は、適度に粘度調整されたコーティング材料として提供されてもよいし、キャリアフィルム(支持ベースフィルム)上に熱硬化性樹脂組成物を塗布し、溶剤を乾燥させた樹脂シート(ドライフィルム)としてもよい。さらにはガラスクロス、ガラス及びアラミド不織布等のシート状繊維質基材に塗工及び/叉は含浸させて半硬化させた樹脂シート(プリプレグシート)としてもよい。キャリアフィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、さらには離型紙や銅箔、アルミニウム箔の如き金属箔などが挙げられる。尚、キャリアフィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The form of the thermosetting resin composition of the present invention may be provided as a coating material whose viscosity is appropriately adjusted, or the thermosetting resin composition is applied onto a carrier film (support base film), and a solvent is used. It is good also as a dried resin sheet (dry film). Further, a resin sheet (prepreg sheet) obtained by coating and / or impregnating a sheet-like fibrous base material such as glass cloth, glass, and aramid nonwoven fabric may be used. Examples of the carrier film include polyolefin such as polyethylene and polyvinyl chloride, polyester such as polyethylene terephthalate, polycarbonate and polyimide, and metal foil such as release paper, copper foil, and aluminum foil. The carrier film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.

前記熱硬化性樹脂組成物を用いたコーティング材料、ドライフィルム、又はプリプレグは、回路が形成された内層回路基板に直接コーティングし、乾燥、硬化を行うか、又はドライフィルムを加熱ラミネートして一体成形し、その後オーブン中で硬化、もしくは熱板プレスで硬化させてもよい。プリプレグの場合には、内層回路基板に重ね、離型フィルムを介して金属板で挟み、加圧・加熱してプレスする。   The coating material, dry film, or prepreg using the thermosetting resin composition is directly coated on the inner circuit board on which the circuit is formed and dried or cured, or the dry film is laminated by heating to be integrally formed. Then, it may be cured in an oven or cured by a hot plate press. In the case of a prepreg, it is placed on an inner circuit board, sandwiched between metal plates through a release film, and pressed by pressing and heating.

上記工程のうち、ラミネートもしくは熱板プレスする方法は、内層回路による凹凸が加熱溶融する際に解消され、そのまま硬化するので、最終的にはフラットな表面状態の多層板が得られるので好ましい。また、内層回路が形成された基材と本発明の熱硬化性樹脂組成物のドライフィルム又はプリプレグをラミネートもしくは熱板プレスする際に、銅箔もしくは回路形成された基材を同時に積層することもできる。   Among the above steps, the method of laminating or hot plate pressing is preferable because the unevenness due to the inner layer circuit is eliminated when it is melted by heating and is cured as it is, so that a multilayer plate having a flat surface state is finally obtained. Further, when laminating or hot plate pressing the base material on which the inner layer circuit is formed and the dry film or prepreg of the thermosetting resin composition of the present invention, the copper foil or the base material on which the circuit is formed may be laminated at the same time. it can.

このようにして得られた基板に、COレーザーやUV−YAGレーザー等の半導体レーザー又はドリルにて穴をあける。穴は、基板の表と裏を導通させることを目的とする貫通穴(スルーホール)でも、内層の回路と層間絶縁層表面の回路を導通させることを目的とする部分穴(コンフォーマルビア)のどちらでもよい。 A hole is made in the substrate thus obtained with a semiconductor laser such as a CO 2 laser or a UV-YAG laser or a drill. The hole is a through hole (through hole) that is intended to connect the front and back of the substrate, but it is also a partial hole (conformal via) that is intended to connect the inner layer circuit and the circuit on the surface of the interlayer insulating layer. either will do.

穴明け後、必要に応じてデスミヤ液で穴の内壁や底部に存在する残渣(スミヤ)を除去した後、好ましくはプラズマ処理し、次いで導体層(その後に形成する金属めっき層)との密着強度を向上させるために紫外線処理する。   After drilling, if necessary, remove the residue (smear) present on the inner wall and bottom of the hole with desmear liquid, preferably plasma treatment, and then the adhesion strength with the conductor layer (the metal plating layer to be formed thereafter) UV treatment to improve.

本発明においては、樹脂絶縁層表面に無電解めっきによる導体層を形成する前に、樹脂絶縁層表面に、好ましくは少なくとも照射強度10mW/cm以上の紫外光を照射する。この際の紫外光の主波長は310nm程度以下、好ましくは260nm程度以下、さらに好ましくは150〜200nm程度である。特に、紫外線の波長が約184nmと約254nmの2種からなることが好ましい。紫外光の光源は、低圧水銀ランプ、エキシマレーザー、バリア放電ランプ、誘電体バリア放電ランプ、マイクロ波無電極放電ランプ、過渡放電ランプ等を用いることができる。例えば、低圧水銀ランプを用いた場合、184.9nm、253.7nmの主波長が特に有効である。また、エキシマランプを用いた場合は、具体的にはAr (126nm),Kr (146nm),F (153nm),ArBr(165nm),Xe (172nm),ArCl(175nm),ArF(193nm),KrBr(207nm),KrCl(222nm),KrF(248nm),Xel(253nm),Cl (259nm),XeBr(283nm),Br (289nm),XeCl(308nm)の波長の光が望ましい。特にXe とKrClは安定性があり、波長も比較的小さくエネルギーが大きいため表面改質効果が大きく好ましい。紫外光の照射時間は、用いる樹脂材料、紫外光の強さ(照射量)により異なるが、(紫外光の強さが5〜20mW/cm程度の場合、)10秒〜30分程度の範囲で適宜調整することができ、20秒〜10分程度がより好ましい。なお、この場合の紫外光の照射は、無電解めっきによって導体層を形成する前に複数回にわたって行ってもよい。 In the present invention, before forming a conductor layer by electroless plating on the surface of the resin insulation layer, the surface of the resin insulation layer is preferably irradiated with ultraviolet light having an irradiation intensity of at least 10 mW / cm 2 . In this case, the main wavelength of the ultraviolet light is about 310 nm or less, preferably about 260 nm or less, and more preferably about 150 to 200 nm. In particular, it is preferable that the wavelength of ultraviolet rays is composed of two types of about 184 nm and about 254 nm. As the ultraviolet light source, a low-pressure mercury lamp, excimer laser, barrier discharge lamp, dielectric barrier discharge lamp, microwave electrodeless discharge lamp, transient discharge lamp, or the like can be used. For example, when a low-pressure mercury lamp is used, a dominant wavelength of 184.9 nm and 253.7 nm is particularly effective. When an excimer lamp is used, specifically, Ar 2 * (126 nm), Kr 2 * (146 nm), F 2 * (153 nm), ArBr * (165 nm), Xe 2 * (172 nm), ArCl * (175 nm), ArF (193 nm), KrBr * (207 nm), KrCl * (222 nm), KrF (248 nm), Xel * (253 nm), Cl 2 * (259 nm), XeBr * (283 nm), Br 2 * (289 nm) ), XeCl * (308 nm) light is desirable. In particular, Xe 2 * and KrCl * are preferable because they have stability and have a relatively small wavelength and large energy, so that the surface modification effect is large. The irradiation time of the ultraviolet light varies depending on the resin material used and the intensity (irradiation amount) of the ultraviolet light, but in the range of about 10 seconds to 30 minutes (when the intensity of the ultraviolet light is about 5 to 20 mW / cm 2 ). Can be adjusted as appropriate, and about 20 seconds to 10 minutes is more preferable. In this case, the irradiation with ultraviolet light may be performed a plurality of times before the conductor layer is formed by electroless plating.

次に、紫外線処理した皮膜表面に、サブトラクティブ法やセミアディティブ法等により回路を形成する。いずれの方法においても、無電解めっき又は電解めっき後、あるいは両方のめっきを施した後に、金属のストレス除去、強度向上の目的で、約80〜180℃で10〜60分程度のアニールと呼ばれる熱処理を施してもよい。
ここで用いる金属めっきとしては、銅、ズズ、はんだ、ニッケル等、特に制限は無く、複数組み合わせて使用することもできる。
Next, a circuit is formed on the surface of the ultraviolet-treated film by a subtractive method or a semi-additive method. In either method, after electroless plating or electrolytic plating, or after both plating, a heat treatment called annealing at about 80 to 180 ° C. for about 10 to 60 minutes for the purpose of removing stress from the metal and improving the strength. May be applied.
The metal plating used here is not particularly limited, such as copper, tin, solder, nickel, etc., and a plurality of them can be used in combination.

樹脂絶縁層の表面に銅めっきを施す場合は、無電解銅めっきを施し、次いで電解銅めっきを施して所定の厚さの導体層(銅層)を形成する。無電解銅めっきは、電解銅めっきを施すための給電層を形成するためのものであり、通常は0.1〜2.0μm程度の厚さに形成する。なお、銅めっきはニッケルめっき等と比較して樹脂との密着性が低いという難点があるが、本発明に従って形成された樹脂絶縁層の表面に銅めっきを施して導体層を形成する場合には、前述したような作用により優れた密着強度が得られる。   When copper plating is applied to the surface of the resin insulating layer, electroless copper plating is performed, and then electrolytic copper plating is performed to form a conductor layer (copper layer) having a predetermined thickness. Electroless copper plating is for forming a power feeding layer for performing electrolytic copper plating, and is usually formed to a thickness of about 0.1 to 2.0 μm. In addition, although copper plating has the difficulty that adhesiveness with resin is low compared with nickel plating etc., when performing copper plating on the surface of the resin insulation layer formed according to the present invention, and forming a conductor layer Excellent adhesion strength can be obtained by the above-described action.

樹脂絶縁層の表面に施す無電解めっき及び電解めっきは公知の方法であればよく、特定の方法に限定されるものではないが、無電解めっき処理工程の触媒がパラジウム−すず混合触媒からなり、触媒の1次粒子径が10nm以下であることが好ましい。また、無電解めっき処理工程のめっき組成が次亜リン酸を還元剤として含有することが好ましい。無電解めっきについては、例えば前掲した特許文献4、6や特開2000−212762号公報に記載されているので参照されたい。
また、前記したようにして樹脂絶縁層と導体回路層の形成を、必要に応じて数回繰り返すことにより、所望の多層プリント配線板を得ることができる。
The electroless plating and electrolytic plating performed on the surface of the resin insulating layer may be any known method, and are not limited to a specific method, but the catalyst in the electroless plating treatment step is a palladium-tin mixed catalyst, The primary particle size of the catalyst is preferably 10 nm or less. Moreover, it is preferable that the plating composition of the electroless plating treatment step contains hypophosphorous acid as a reducing agent. The electroless plating is described in, for example, the above-mentioned Patent Documents 4 and 6 and Japanese Patent Application Laid-Open No. 2000-212762.
Moreover, a desired multilayer printed wiring board can be obtained by repeating the formation of the resin insulating layer and the conductor circuit layer several times as necessary as described above.

以下、本発明の実施例、比較例及び試験例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。なお、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。   EXAMPLES Hereinafter, although an Example, a comparative example, and a test example of this invention are shown and this invention is demonstrated concretely, it cannot be overemphasized that this invention is not limited to the following Example. In the following, “parts” and “%” are based on mass unless otherwise specified.

実施例1〜9
下記表1に示す処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
Examples 1-9
The components of the main agent and the curing agent are mixed together with the formulation shown in Table 1 below, kneaded and dispersed with a three-roll mill, and the viscosity is adjusted to about 30 dPa · s (rotary viscometer, 25 ° C.) with a solvent (cyclohexanone). And the thermosetting resin composition was obtained, respectively.

試験基板の作製工程:
上記のようにして得られた各熱硬化性樹脂組成物を、1.6mm厚のFR−T基板(エッチアウト基板、前処理:バフ研磨)に、アプリケーターにて塗布した。次いで、熱風循環式乾燥炉にて110℃で20分間乾燥させた後、熱風循環式乾燥炉にて150℃×30分の条件で硬化させ、試験基板を得た。
Test board production process:
Each thermosetting resin composition obtained as described above was applied to a 1.6 mm thick FR-T substrate (etch-out substrate, pretreatment: buffing) with an applicator. Subsequently, after drying at 110 degreeC for 20 minute (s) with a hot-air circulation type drying furnace, it was made to harden | cure on the conditions of 150 degreeC * 30 minutes in a hot-air circulation type drying furnace, and the test board | substrate was obtained.

紫外線処理工程:
以上のようにして得られた試験基板に対して、紫外線洗浄改質装置(センエンジニアリング(株)製、電源:UVE−200J、光源:PL16−110D)を用い、以下の条件で紫外線処理した。
試験基板表面からランプ間距離:30mm、
照射時間:5〜10分、
照射強度:20〜30mW/cm
波長分布:184nm、254nm(1:4)。
UV treatment process:
The test substrate obtained as described above was subjected to ultraviolet treatment under the following conditions using an ultraviolet cleaning reformer (manufactured by Sen Engineering Co., Ltd., power supply: UVE-200J, light source: PL16-110D).
The distance between the test substrate surface and the lamp: 30 mm,
Irradiation time: 5-10 minutes,
Irradiation intensity: 20-30 mW / cm 2
Wavelength distribution: 184 nm, 254 nm (1: 4).

無電解銅めっき及び電解銅めっき処理工程:
以上のように紫外線処理した試験基板に対して、以下の条件で無電解銅めっきを30分間行い、約0.3μmの厚さの無電解銅めっき被膜を得、次いで無電解銅めっき上に電解銅めっきを約20μmの厚さになるまで行った。
Electroless copper plating and electrolytic copper plating process:
The test substrate treated with ultraviolet rays as described above is subjected to electroless copper plating for 30 minutes under the following conditions to obtain an electroless copper plating film having a thickness of about 0.3 μm, and then electrolysis is performed on the electroless copper plating. Copper plating was performed until the thickness was about 20 μm.

前処理工程:
試験基板を脱脂した後、ロームアンドハース社製CLEANER−CONDITIONER231(100ml/l)を用いてクリーナー・コンディショナー工程を60℃で5分行い、次いで、水洗工程を25℃で1分、塩酸(50ml/l)へのプレディップ工程を25℃で2分、荏原ユージライト社製PB−318(20ml/l)、塩酸(50ml/l)を用いたキャタライジング工程を50℃で5分、水洗工程を25℃で1分、塩化パラジウム(0.5g/l)を用いたパラジウムイオン溶液処理工程を40℃で2分、水洗工程を25℃で1分、次亜リン酸ナトリウム(57g/l)を用いた還元工程を25℃で10分、水洗工程を25℃で1分行った。
無電解銅めっきの浴組成:硫酸銅(6水和物)8g/l、クエン酸ナトリウム(2水和物)14g/l、次亜リン酸ナトリウム(1水和物)57g/l、ホウ酸31g/l、<浴条件>浴温60℃、pH8.0〜11.0。
電解銅めっきの電流密度:1A/dm
Pretreatment process:
After degreasing the test substrate, the CLEANER-CONDITIONER 231 (100 ml / l) manufactured by Rohm and Haas was used to perform the cleaner / conditioner process at 60 ° C. for 5 minutes, followed by a water washing process at 25 ° C. for 1 minute, hydrochloric acid (50 ml / liter). l) Pre-dip process to 25 ° C. for 2 minutes, Catalyzing process using PB-318 (20 ml / l) and hydrochloric acid (50 ml / l) manufactured by Sugawara Eugelite Co., Ltd. for 5 minutes at 50 ° C., water washing process 1 minute at 25 ° C., palladium ion solution treatment step using palladium chloride (0.5 g / l) at 40 ° C. for 2 minutes, water washing step at 25 ° C. for 1 minute, sodium hypophosphite (57 g / l) The reduction process used was performed at 25 ° C. for 10 minutes, and the water washing process was performed at 25 ° C. for 1 minute.
Electroless copper plating bath composition: copper sulfate (hexahydrate) 8 g / l, sodium citrate (dihydrate) 14 g / l, sodium hypophosphite (monohydrate) 57 g / l, boric acid 31 g / l, <bath conditions> bath temperature 60 ° C., pH 8.0 to 11.0.
Current density of electrolytic copper plating: 1 A / dm 2 .

以上のようにめっき処理した試験基板について、導体層と樹脂絶縁層との密着性(ピール強度)を測定した。ピール強度の測定は、ピール強度測定装置として(株)島津製作所製AGS−G 100Nを用い、ピール速度50mm/minの条件で、JIS C 6481に準拠して測定し、以下の基準で評価した。尚、測定は2回行い、それらの平均値を用いた。
評価基準:
◎:ピール強度が3N/cm以上。
○:ピール強度が2N/cm以上、3N/cm未満。
×:ピール強度が2N/cm未満。
その結果を、表1に併せて示す。
The test substrate plated as described above was measured for adhesion (peel strength) between the conductor layer and the resin insulating layer. The peel strength was measured according to JIS C 6481 using AGS-G 100N manufactured by Shimadzu Corporation as a peel strength measuring device under the condition of a peel speed of 50 mm / min and evaluated according to the following criteria. In addition, the measurement was performed twice and the average value thereof was used.
Evaluation criteria:
A: Peel strength is 3 N / cm or more.
○: Peel strength is 2 N / cm or more and less than 3 N / cm.
X: Peel strength is less than 2 N / cm.
The results are also shown in Table 1.

Figure 2009242449
Figure 2009242449

実施例10及び比較例1〜4
下記表2に示す処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
次いで、前記実施例1〜9と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
その結果を、表2に併せて示す。
Example 10 and Comparative Examples 1-4
The main component and the curing agent are mixed together in the formulation shown in Table 2 below, kneaded and dispersed with a three-roll mill, and the viscosity is adjusted to about 30 dPa · s (rotary viscometer, 25 ° C.) with a solvent (cyclohexanone) And the thermosetting resin composition was obtained, respectively.
Next, test substrates were prepared in the same manner as in Examples 1 to 9, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 2.

Figure 2009242449
Figure 2009242449

前記表2に示す結果から明らかなように、本願発明の実施例10では、ピール強度が高く、導体層と樹脂絶縁層との密着性に優れていたが、フィラーを含有しない比較例1、ポリヒドロキシカルボン酸のアマイドを含有しない比較例2、ジシアンジアミドのフェニルグリシジルエーテル付加物を含有しない比較例3、4では、いずれもピール強度が低く、密着性が悪かった。   As is clear from the results shown in Table 2, in Example 10 of the present invention, the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent, but Comparative Example 1 containing no filler and poly In Comparative Example 2 containing no amide of hydroxycarboxylic acid and in Comparative Examples 3 and 4 containing no phenylglycidyl ether adduct of dicyandiamide, the peel strength was low and the adhesion was poor.

実施例11
下記表3に示すように、フィラーの含有量を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
次いで、前記実施例1〜9と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
その結果を、表3に併せて示す。
Example 11
As shown in Table 3 below, each component of the main agent and the curing agent was mixed together in various formulations with different filler contents, kneaded and dispersed with a three-roll mill, and about 30 dPa · The viscosity was adjusted to s (rotary viscometer, 25 ° C.) to obtain thermosetting resin compositions.
Next, test substrates were prepared in the same manner as in Examples 1 to 9, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 3.

Figure 2009242449
Figure 2009242449

前記表3に示す結果から明らかなように、フィラーを含有する例No.2〜6ではピール強度が高く、導体層と樹脂絶縁層との密着性に優れていたが、フィラーを含有しない例No.1ではピール強度が低く、密着性が悪かった。このことから、導体層と樹脂絶縁層との密着性を向上させるためには、フィラーの含有は必須であることがわかる。   As is apparent from the results shown in Table 3, Example No. 1 containing a filler was used. In Nos. 2 to 6, the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent, but Example No. In No. 1, the peel strength was low and the adhesion was poor. From this, it can be seen that the inclusion of the filler is essential in order to improve the adhesion between the conductor layer and the resin insulating layer.

実施例12
下記表4に示すように、ポリヒドロキシカルボン酸誘導体の含有量を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
次いで、前記実施例1〜9と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
その結果を、表4に併せて示す。
Example 12
As shown in Table 4 below, the main component and the curing agent are mixed together in various formulations with different contents of the polyhydroxycarboxylic acid derivative, kneaded and dispersed in a three-roll mill, and added to the solvent (cyclohexanone). The viscosity was adjusted to about 30 dPa · s (rotary viscometer, 25 ° C.) to obtain a thermosetting resin composition.
Next, test substrates were prepared in the same manner as in Examples 1 to 9, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 4.

Figure 2009242449
Figure 2009242449

前記表4に示す結果から明らかなように、ポリヒドロキシカルボン酸誘導体を含有する例No.2〜5ではピール強度が高く、導体層と樹脂絶縁層との密着性に優れていたが、ポリヒドロキシカルボン酸誘導体を含有しない例No.1ではピール強度が低く、密着性が悪かった。このことから、導体層と樹脂絶縁層との密着性を向上させるためには、ポリヒドロキシカルボン酸誘導体の含有は必須であることがわかる。   As is clear from the results shown in Table 4 above, Example No. 1 containing a polyhydroxycarboxylic acid derivative was used. In Nos. 2 to 5, the peel strength was high and the adhesiveness between the conductor layer and the resin insulating layer was excellent, but no polyhydroxycarboxylic acid derivative was contained. In No. 1, the peel strength was low and the adhesion was poor. From this, it can be seen that the inclusion of the polyhydroxycarboxylic acid derivative is essential in order to improve the adhesion between the conductor layer and the resin insulating layer.

実施例13
下記表5に示すように、ジシアンジアミドのフェニルグリシジルエーテル付加物の含有量を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
次いで、前記実施例1〜9と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
その結果を、表5に併せて示す。
Example 13
As shown in Table 5 below, each component of the main agent and the curing agent was mixed together in various formulations with different contents of the dicyandiamide phenylglycidyl ether adduct, kneaded and dispersed with a three-roll mill, and a solvent (cyclohexanone). ) To adjust the viscosity to about 30 dPa · s (rotary viscometer, 25 ° C.) to obtain a thermosetting resin composition, respectively.
Next, test substrates were prepared in the same manner as in Examples 1 to 9, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 5.

Figure 2009242449
Figure 2009242449

前記表5に示す結果から明らかなように、ジシアンジアミドのフェニルグリシジルエーテル付加物の含有量が高くなりすぎると、導体層と樹脂絶縁層との密着性が悪くなることがわかる。   As apparent from the results shown in Table 5, it can be seen that when the content of the glycidyl ether adduct of dicyandiamide is too high, the adhesion between the conductor layer and the resin insulating layer is deteriorated.

実施例14
下記表6に示すように、硬化促進剤の種類を変えた種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
次いで、前記実施例1〜9と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
その結果を、表6に併せて示す。
Example 14
As shown in Table 6 below, each component of the main agent and the curing agent is mixed together in various formulations with different types of curing accelerators, kneaded and dispersed with a three roll mill, and about 30 dPa with a solvent (cyclohexanone). -Viscosity adjustment was carried out to s (rotary viscometer, 25 degreeC), and the thermosetting resin composition was obtained, respectively.
Next, test substrates were prepared in the same manner as in Examples 1 to 9, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 6.

Figure 2009242449
Figure 2009242449

前記表6に示す結果から明らかなように、硬化促進剤としてジシアンジアミドやイミダゾール誘導体のみを用いた場合、導体層と樹脂絶縁層との密着性が悪くなるため、ジシアンジアミドのフェニルグリシジルエーテル付加物を用いることが必要であることがわかる。   As is apparent from the results shown in Table 6, when only dicyandiamide or an imidazole derivative is used as the curing accelerator, the adhesion between the conductor layer and the resin insulating layer is deteriorated, so that a phenylglycidyl ether adduct of dicyandiamide is used. It turns out that it is necessary.

実施例15
下記表7に示す種々の処方にて主剤と硬化剤の各成分を一括混合し、3本ロールミルにて混練分散し、溶剤(シクロヘキサノン)にて約30dPa・s(回転粘度計、25℃)に粘度調整し、それぞれ熱硬化性樹脂組成物を得た。
次いで、めっき処理前の紫外線照射量を変えた以外は前記実施例1〜9と同様にして試験基板を作製し、同様に導体層と樹脂絶縁層との密着性(ピール強度)を測定した。
その結果を、表7に併せて示す。
Example 15
Each component of the main agent and the curing agent is mixed together in various formulations shown in Table 7 below, kneaded and dispersed with a three roll mill, and about 30 dPa · s (rotary viscometer, 25 ° C.) with a solvent (cyclohexanone). The viscosity was adjusted to obtain thermosetting resin compositions.
Next, a test substrate was prepared in the same manner as in Examples 1 to 9 except that the ultraviolet irradiation amount before the plating treatment was changed, and the adhesion (peel strength) between the conductor layer and the resin insulating layer was measured in the same manner.
The results are also shown in Table 7.

Figure 2009242449
Figure 2009242449

前記表7に示す結果から明らかなように、めっき処理前に紫外線処理することにより、導体層と樹脂絶縁層との密着性を著しく向上できるがことがわかる。   As is apparent from the results shown in Table 7, it can be seen that the adhesion between the conductor layer and the resin insulating layer can be remarkably improved by the ultraviolet treatment before the plating treatment.

Claims (7)

樹脂絶縁層の表面に紫外線を照射した後、めっき処理により導体層を形成するプリント配線板の製造において、上記樹脂絶縁層の形成に用いられる組成物であって、(A)エポキシ樹脂、(B)ジシアンジアミドのモノエポキシド付加物、(C)フィラー、及び(D)ポリヒドロキシカルボン酸もしくはその誘導体を含有することを特徴とする熱硬化性樹脂組成物。   In the production of a printed wiring board in which a conductor layer is formed by plating after the surface of a resin insulating layer is irradiated with ultraviolet rays, the composition is used for forming the resin insulating layer, and includes (A) an epoxy resin, (B A thermosetting resin composition comprising a monoepoxide adduct of dicyandiamide, (C) a filler, and (D) polyhydroxycarboxylic acid or a derivative thereof. 前記フィラー(C)をエポキシ樹脂100質量部に対し15〜150質量部含有することを特徴とする請求項1に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the filler (C) is contained in an amount of 15 to 150 parts by mass with respect to 100 parts by mass of the epoxy resin. 前記フィラー(C)が炭酸カルシウムであることを特徴とする請求項1又は2に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the filler (C) is calcium carbonate. 請求項1乃至3のいずれか一項に記載の熱硬化性樹脂組成物をキャリアフィルム上に塗工した後、乾燥してなる樹脂シート。   A resin sheet obtained by coating the thermosetting resin composition according to any one of claims 1 to 3 on a carrier film and then drying. 請求項1乃至3のいずれか一項に記載の熱硬化性樹脂組成物をシート状繊維質基材に含浸させた後、乾燥してなる樹脂シート。   A resin sheet obtained by impregnating a sheet-like fibrous base material with the thermosetting resin composition according to any one of claims 1 to 3, and then drying the sheet. 請求項1乃至3のいずれか一項に記載の熱硬化性樹脂組成物の硬化物又は請求項4又は5に記載の樹脂シートから形成された樹脂絶縁層の表面に、紫外線を照射した後、めっき処理により導体層が形成されてなることを特徴とするプリント配線板。   After irradiating the surface of the resin insulating layer formed from the cured product of the thermosetting resin composition according to any one of claims 1 to 3 or the resin sheet according to claim 4 or 5, A printed wiring board comprising a conductor layer formed by plating. 前記めっき処理が、無電解めっき及び電解めっきからなることを特徴とする請求項6に記載のプリント配線板。   The printed wiring board according to claim 6, wherein the plating treatment includes electroless plating and electrolytic plating.
JP2008087469A 2008-03-28 2008-03-28 Thermosetting resin composition and printed wiring board Active JP5074981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087469A JP5074981B2 (en) 2008-03-28 2008-03-28 Thermosetting resin composition and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087469A JP5074981B2 (en) 2008-03-28 2008-03-28 Thermosetting resin composition and printed wiring board

Publications (2)

Publication Number Publication Date
JP2009242449A true JP2009242449A (en) 2009-10-22
JP5074981B2 JP5074981B2 (en) 2012-11-14

Family

ID=41304747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087469A Active JP5074981B2 (en) 2008-03-28 2008-03-28 Thermosetting resin composition and printed wiring board

Country Status (1)

Country Link
JP (1) JP5074981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286889A (en) * 2008-05-29 2009-12-10 Taiyo Ink Mfg Ltd Thermosetting resin composition and printed circuit board
WO2013008684A1 (en) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357631A (en) * 1986-08-29 1988-03-12 Mitsui Petrochem Ind Ltd Curing agent for epoxy resin
JP2002232148A (en) * 2001-02-02 2002-08-16 Taiyo Ink Mfg Ltd Thermosetting resin composition for wiring board, its molding and multilayer printed wiring board
JP2009149727A (en) * 2007-12-19 2009-07-09 Nippon Steel Chem Co Ltd Film-like adhesive, semiconductor package using it, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357631A (en) * 1986-08-29 1988-03-12 Mitsui Petrochem Ind Ltd Curing agent for epoxy resin
JP2002232148A (en) * 2001-02-02 2002-08-16 Taiyo Ink Mfg Ltd Thermosetting resin composition for wiring board, its molding and multilayer printed wiring board
JP2009149727A (en) * 2007-12-19 2009-07-09 Nippon Steel Chem Co Ltd Film-like adhesive, semiconductor package using it, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286889A (en) * 2008-05-29 2009-12-10 Taiyo Ink Mfg Ltd Thermosetting resin composition and printed circuit board
WO2013008684A1 (en) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
JPWO2013008684A1 (en) * 2011-07-14 2015-02-23 三菱瓦斯化学株式会社 Resin composition for printed wiring board

Also Published As

Publication number Publication date
JP5074981B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5238342B2 (en) Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same
JP2020023714A (en) Resin material and multilayer printed board
JP7385344B2 (en) Thermosetting resin composition and multilayer substrate
WO2002044274A1 (en) Liquid thermosetting resin composition, printed wiring boards and process for their production
JP2007254710A (en) Resin composition for interlayer insulation layer of multi-layer printed circuit board
JP2010001403A (en) Thermosetting resin composition
JP2012097283A (en) Resin composition for insulation layer of multi-layer printed circuit board
JPWO2008087890A1 (en) Thermosetting resin composition
JP5325462B2 (en) Thermosetting resin composition and printed wiring board
TW200932825A (en) Resin composition and laminated resin film using the same
JP2018115334A (en) Epoxy resin material and multilayer substrate
JP2013036042A (en) Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
JP5074981B2 (en) Thermosetting resin composition and printed wiring board
JP2013185089A (en) Thermosetting resin material, and multi-layer substrate
JP5767540B2 (en) B-stage film, multilayer substrate and laminated film which are episulfide resin materials
JP2017066399A (en) Resin composition, laminate, and manufacturing method of laminate structure
JP2013082873A (en) B-stage film and multilayer board
JP2006176795A (en) Interlaminar insulating resin composition for multilayer printed wiring board
JP7241569B2 (en) Curable resin composition, dry film or prepreg, cured product, and wiring board
JP2013076004A (en) Thermosetting resin composition for laser beam machining, cured product, and printed wiring board
TW202206540A (en) Curable resin composition, dry film, cured product, wiring board, and electronic component
JP3703143B2 (en) Interlayer insulating adhesive for multilayer printed wiring board and copper foil with interlayer insulating adhesive for multilayer printed wiring board
JP5116921B2 (en) Thermosetting resin composition for wiring board, molded product thereof and multilayer printed wiring board
JP2012140570A (en) Epoxy resin material and multilayer substrate
JP2005317986A (en) Process for producing printed wiring board by use of liquid thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250