JP2009242312A - Process for producing 2,5-furandicarboxylic acid - Google Patents

Process for producing 2,5-furandicarboxylic acid Download PDF

Info

Publication number
JP2009242312A
JP2009242312A JP2008091762A JP2008091762A JP2009242312A JP 2009242312 A JP2009242312 A JP 2009242312A JP 2008091762 A JP2008091762 A JP 2008091762A JP 2008091762 A JP2008091762 A JP 2008091762A JP 2009242312 A JP2009242312 A JP 2009242312A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
cobalt
metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008091762A
Other languages
Japanese (ja)
Other versions
JP5252969B2 (en
Inventor
Yosuke Ebihara
陽介 海老原
Ryoichi Fujibayashi
良一 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2008091762A priority Critical patent/JP5252969B2/en
Publication of JP2009242312A publication Critical patent/JP2009242312A/en
Application granted granted Critical
Publication of JP5252969B2 publication Critical patent/JP5252969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing 2,5-furandicarboxylic acid (FDCA) by oxidizing 5-hydroxymethylfurfural (5HMF) of a starting material in the presence of a catalyst comprising Co, Mn, and Br with a molecular oxygen in an industrially employable high yield and preferably in high purity. <P>SOLUTION: The atomic ratio of Co in terms of metal to Mn in terms of metal in the catalyst is 2:1 to 4:1, and the oxygen concentration in an exhaust gas is measured while supplying an oxidizing gas containing a molecular oxygen into a reaction fluid, and after determining that the molecular oxygen has reached to a point of completing absorption in the reaction fluid, the oxidizing gas is further supplied to continue the oxidation reaction. Suitably, the obtained FDCA is dissolved in an aqueous solution of an alkali metal hydroxide, thereafter treated with sodium hypochlorite and/or hydrogen peroxide, then subjected to acid deposition, and is recovered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、植物由来プラスチックの原料、あるいは医薬、農薬の原料として利用価値の高い2,5−フランジカルボン酸の製造方法に関する。   The present invention relates to a method for producing 2,5-furandicarboxylic acid, which is highly useful as a raw material for plant-derived plastics, or as a raw material for pharmaceuticals and agricultural chemicals.

2,5−フランジカルボン酸(FDCA)は、植物に多く含まれるフルクトース(果糖)から合成可能でありながら、PETなどプラスチックの原料物質として使用されるテレフタル酸の代替物質となりうるものであり、また、その誘導体は医薬品や農薬としても使用しうる。このため、FDCAは、米国エネルギー省(Department of Energy)が選定したバイオリファイナリーのビルディングブロック材料の1つに選定されている。   2,5-furandicarboxylic acid (FDCA) can be synthesized from fructose (fructose) abundant in plants, and can be an alternative to terephthalic acid used as a raw material for plastics such as PET. The derivatives can also be used as pharmaceuticals and agricultural chemicals. For this reason, FDCA has been selected as one of the biorefinery building block materials selected by the US Department of Energy (Department of Energy).

このFDCAのフルクトースからの合成は、フルクトースを脱水環化し、5−ヒドロキシメチルフルフラール(5HMF)とした後に、5HMFを酸化することによってFDCAに誘導する方法が一般的である。   In general, FDCA is synthesized from fructose by dehydrating and cyclizing fructose into 5-hydroxymethylfurfural (5HMF) and then oxidizing 5HMF to FDCA.

5HMFの酸化方法としては、KMnO、硝酸、酸化銀などの酸化性固体や、酸素、空気等の酸化性気体など酸化剤を使用した例が報告されている(たとえば非特許文献1参照。)が、経済性、及び環境への影響の点から、空気を酸化剤として使用する方法が優れている。 As an oxidation method of 5HMF, an example using an oxidizing agent such as an oxidizing solid such as KMnO 4 , nitric acid or silver oxide, or an oxidizing gas such as oxygen or air has been reported (for example, see Non-Patent Document 1). However, the method of using air as an oxidizing agent is excellent from the viewpoints of economy and influence on the environment.

空気を酸化剤として使用する例としては特許文献1や非特許文献2に、金属臭素化物、Co,Mn触媒の存在下、酢酸溶媒中7MPaの空気により酸化する例が記載されている。
国際公開WO01/072732パンフレット React Kinet. Catal. Lett., 1979. 11. 215 Adv. Synth. Catal. 2001. 345. 102
As an example of using air as an oxidizing agent, Patent Document 1 and Non-Patent Document 2 describe an example in which oxidation is performed with 7 MPa air in an acetic acid solvent in the presence of a metal bromide and a Co, Mn catalyst.
International Publication WO01 / 072732 Pamphlet React Kinet. Catal. Lett. 1979. 11. 215 Adv. Synth. Catal. 2001. 345. 102

特許文献1および非特許文献2に記載される方法は、空気を酸化剤として使用する点で他の酸化剤を使用する方法より優れているが、収率は70mol%に達しておらず、工業的に採用しうる方法とはいえない。また酸化中間体である5−ホルミル−2−フランカルボン酸(FFCA)が残留しており、収率、品質共に満足できる方法ではない。   The methods described in Patent Document 1 and Non-Patent Document 2 are superior to the methods using other oxidizing agents in that air is used as the oxidizing agent, but the yield does not reach 70 mol%, It cannot be said that this method can be adopted. Further, 5-formyl-2-furancarboxylic acid (FFCA), which is an oxidation intermediate, remains, which is not a satisfactory method in terms of yield and quality.

そこで、本発明は、5HMFを酸化してFDCAを製造する方法について、工業的に採用しうる高い収率、および好ましくは高い純度で製造する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing FDCA by oxidizing 5HMF with a high yield that can be industrially employed, and preferably with a high purity.

上記課題を解決すべく、本発明者が鋭意研究した結果、酢酸等を溶媒として5HMFおよびコバルト−マンガン−臭素系の触媒を含む反応液に、分子状酸素を含む酸化性気体(典型的には空気)を供給して酸化するにあたって、その触媒における金属換算コバルトおよび金属換算マンガンの原子比が特定の範囲(2:1〜4:1)である場合には、反応液に対する酸化性気体の吸収がなくなった、すなわち分子状酸素の吸収終了点に到達した後に、酸化性気体の供給をさらに行って反応液における酸化反応を継続させることにより、収率を工業的に採用しうる70mol%以上にまで高めることが可能であることを見出した。   As a result of intensive research conducted by the present inventors in order to solve the above problems, an oxidizing gas (typically containing molecular oxygen) is added to a reaction solution containing 5HMF and a cobalt-manganese-bromine catalyst using acetic acid as a solvent. When the atomic ratio of metal-converted cobalt and metal-converted manganese in the catalyst is within a specific range (2: 1 to 4: 1) when oxidizing by supplying air), the oxidizing gas is absorbed into the reaction solution. After reaching the end point of absorption of molecular oxygen, the oxidizing gas is further supplied to continue the oxidation reaction in the reaction solution, whereby the yield can be increased to 70 mol% or more which can be industrially adopted. It was found that it is possible to increase up to.

本発明は係る知見に基づくものであり、コバルト、マンガン、および臭素を含む触媒を含む反応液中で、5−ヒドロキシメチルフルフラールを分子状酸素により酸化する2,5−フランジカルボン酸の製造方法において、触媒における金属換算コバルトおよび金属換算マンガンの原子比が2:1〜4:1であって、分子状酸素を含む酸化性気体を前記反応液に供給しつつ計測した排気ガス(反応器から排出される気体)の酸素濃度(分子状酸素の濃度)に基づいて、反応液に対する分子状酸素の吸収終了点に達したと判定した後に、さらに酸化性気体の供給を行って酸化反応を継続させることを特徴とする2,5−フランジカルボン酸の製造方法である。   The present invention is based on such knowledge, and in a method for producing 2,5-furandicarboxylic acid in which 5-hydroxymethylfurfural is oxidized with molecular oxygen in a reaction solution containing a catalyst containing cobalt, manganese, and bromine. The exhaust gas (exhaust from the reactor) was measured while supplying an oxidizing gas containing molecular oxygen to the reaction solution, the atomic ratio of metal-converted cobalt and metal-converted manganese in the catalyst being 2: 1 to 4: 1 Gas) is determined based on the oxygen concentration (molecular oxygen concentration), and after reaching the absorption end point of molecular oxygen to the reaction solution, an oxidizing gas is further supplied to continue the oxidation reaction. This is a process for producing 2,5-furandicarboxylic acid.

ここで、反応液に添加される触媒が、5−ヒドロキシメチルフルフラール1molに対する金属換算コバルトの比率が0.01〜0.3グラム原子、かつコバルトおよびマンガンの金属換算総和1グラム原子に対する臭素イオンの比率が0.05〜20molであるようにすることが好ましい。   Here, the catalyst added to the reaction solution has a ratio of cobalt equivalent to 0.01 to 0.3 gram atom of metal per 1 mol of 5-hydroxymethylfurfural, and bromine ions of 1 gram atom of the total metal equivalent of cobalt and manganese. The ratio is preferably 0.05 to 20 mol.

また、酸化性気体の酸化により得られた粗FDCAをアルカリ金属水酸化物の水溶液に溶解し、次亜塩素酸ナトリウムおよび過酸化水素から選ばれる一種または二種で処理した後、酸析することによって、さらに高純度のFDCAを得ることが可能である。   In addition, the crude FDCA obtained by oxidizing the oxidizing gas is dissolved in an alkali metal hydroxide aqueous solution, treated with one or two kinds selected from sodium hypochlorite and hydrogen peroxide, and then acidified. Thus, it is possible to obtain FDCA with higher purity.

本発明によれば、酸化反応の収率を、工業的に採用可能なレベルである70mol%以上に高めることが可能である。また、酸化反応による生成した粗FDCAを効率的に高純度化することも可能である。   According to the present invention, the yield of the oxidation reaction can be increased to 70 mol% or more, which is a level that can be industrially adopted. It is also possible to efficiently purify the crude FDCA produced by the oxidation reaction.

以下、本発明のFDCAの製造方法について詳細に説明する。
1.反応液
(1)5HMF
出発原料として使用する5HMFの製法には制限は無い。セルロース、デンプンなどの六糖類、ショ糖、マルトース、セロビオース、ラクトースなどの少糖類、フルクトース、グルコースなどの単糖類の脱水反応によって得られる植物由来品を使用してもよい。
Hereafter, the manufacturing method of FDCA of this invention is demonstrated in detail.
1. Reaction solution (1) 5HMF
There is no restriction | limiting in the manufacturing method of 5HMF used as a starting material. Plant-derived products obtained by dehydration reaction of hexasaccharides such as cellulose and starch, oligosaccharides such as sucrose, maltose, cellobiose and lactose, and monosaccharides such as fructose and glucose may be used.

(2)溶媒
本発明に係る酸化反応のための反応液の溶媒としては、従来技術に係る酸化反応の場合と同様に、酢酸、プロピオン酸または酢酸/無水酢酸の混合溶媒を使用する。この溶媒は少量の水を含有していてもよい。溶媒の使用量は重量比で出発原料(5HMF)の3〜20倍とするのが好ましい。
(2) Solvent As the solvent of the reaction solution for the oxidation reaction according to the present invention, acetic acid, propionic acid or a mixed solvent of acetic acid / acetic anhydride is used as in the case of the oxidation reaction according to the prior art. This solvent may contain a small amount of water. The amount of solvent used is preferably 3 to 20 times that of the starting material (5HMF) by weight.

(3)触媒
本発明では、酸化触媒としてコバルト触媒、マンガン触媒および臭素化合物からなる触媒系を用いる。コバルトおよびマンガン触媒としては、反応温度において反応溶媒に溶解可能なものであれば特に制限されない。
(3) Catalyst In the present invention, a catalyst system comprising a cobalt catalyst, a manganese catalyst and a bromine compound is used as the oxidation catalyst. The cobalt and manganese catalysts are not particularly limited as long as they are soluble in the reaction solvent at the reaction temperature.

例えば、コバルトでは、その無機酸(例えば、臭素化物、炭酸塩等)および有機酸塩(例えば、酢酸塩、プロピオン酸塩等)からなる群から選ばれる一種または二種以上を使用すればよい。同様にマンガンも、その無機酸(例えば、臭素化物、炭酸塩等)および有機酸塩(例えば、酢酸塩、プロピオン酸塩等)からなる群から選ばれる一種または二種以上を使用すればよい。   For example, for cobalt, one or more selected from the group consisting of inorganic acids (for example, bromides, carbonates, etc.) and organic acid salts (for example, acetates, propionates, etc.) may be used. Similarly, manganese may be used alone or in combination of two or more selected from the group consisting of inorganic acids (for example, bromides, carbonates, etc.) and organic acid salts (for example, acetates, propionates, etc.).

臭素化合物としては、反応温度において反応溶媒に溶解して臭素イオンを供給できるものであればよく、具体例としては、臭素、臭化水素、アルカリ金属およびアンモニウムの臭化物(例、臭化カリウム、臭化アンモニウム)、臭化コバルトなどの無機化合物、ならびに臭化ベンジル、ブロモエタンなどの有機臭化物が挙げられる。なお、臭化コバルトはコバルト触媒と臭化化合物の両方を兼ねる。   The bromine compound is not particularly limited as long as it can be dissolved in the reaction solvent at the reaction temperature to supply bromine ions. Specific examples include bromine, hydrogen bromide, alkali metal and ammonium bromides (eg, potassium bromide, odors). Inorganic compounds such as ammonium chloride) and cobalt bromide, and organic bromides such as benzyl bromide and bromoethane. Cobalt bromide serves as both a cobalt catalyst and a bromide compound.

触媒を構成する各物質の含有量に関し、本発明では、コバルト触媒およびマンガン触媒におけるコバルト金属およびマンガン金属の原子比を2:1〜4:1とする。コバルト金属のグラム原子数がマンガン金属のグラム原子数に対して2倍未満となると、収率が低下する傾向を示すようになる。一方、コバルトがマンガンに対して多くなっても収率には影響しないものの、コバルトは比較的高価であるから、経済的観点での不利益が大きくなる。   Regarding the content of each substance constituting the catalyst, in the present invention, the atomic ratio of cobalt metal and manganese metal in the cobalt catalyst and the manganese catalyst is 2: 1 to 4: 1. When the number of gram atoms of cobalt metal is less than twice the number of gram atoms of manganese metal, the yield tends to decrease. On the other hand, even if cobalt increases with respect to manganese, it does not affect the yield, but since cobalt is relatively expensive, the disadvantage from an economic viewpoint becomes large.

さらに、次の範囲とすると、FDCAを高い収率で得ることが安定的に実現される。
まず、原料物質(5HMF)1molに対するコバルト触媒(コバルト金属換算)の比率を0.01〜0.3グラム原子とすることが好ましく、0.03〜0.2グラム原子とすれば特に好ましい。この範囲から過剰に小さくなると、収率が低下する傾向を示す。なお、コバルト触媒の使用量を酸化反応の溶媒に対して規定すれば、コバルト金属換算で0.08重量%以上とすることが好ましい。より好ましくは0.14〜0.54重量%である。
Furthermore, when it is set as the following range, obtaining FDCA with a high yield is stably realized.
First, the ratio of the cobalt catalyst (in terms of cobalt metal) to 1 mol of the raw material (5HMF) is preferably 0.01 to 0.3 gram atom, and particularly preferably 0.03 to 0.2 gram atom. When it becomes excessively small from this range, the yield tends to decrease. In addition, if the usage-amount of a cobalt catalyst is prescribed | regulated with respect to the solvent of an oxidation reaction, it is preferable to set it as 0.08 weight% or more in conversion of a cobalt metal. More preferably, it is 0.14-0.54 weight%.

また、コバルト触媒およびマンガン触媒(いずれも金属換算)の総和の1グラム原子に対する臭素イオンの比率を、0.05〜20molとすることが好ましく、0.1〜5molとすれば特に好ましい。なお、臭素イオン量をコバルト触媒量に対して規定すれば、コバルト金属1グラム原子に対して臭素イオン量は0.2〜2.0molとすることが好ましい。   Moreover, it is preferable that the ratio of the bromine ion with respect to 1 gram atom of the sum total of a cobalt catalyst and a manganese catalyst (both metal conversion) shall be 0.05-20 mol, and it is especially preferable if it shall be 0.1-5 mol. If the bromine ion amount is defined with respect to the cobalt catalyst amount, the bromine ion amount is preferably 0.2 to 2.0 mol with respect to 1 gram atom of cobalt metal.

2.酸化反応
(1)概要
本発明に係る製造方法では、上記の反応液に酸化性気体を供給して、原料物質である5HMFを酸化することによりFDCAを製造する。この液相での空気酸化反応により5HMFのアルコール部位(ArCHOH)がアルデヒド(ArCHO)を経緯してカルボン酸(ArCOOH)に変換され、アルデヒド部位もカルボン酸に変換されたFDCAが生成する。
2. Oxidation reaction (1) Outline In the production method according to the present invention, an oxidizing gas is supplied to the reaction solution, and 5HMF as a raw material is oxidized to produce FDCA. By this air oxidation reaction in the liquid phase, the alcohol part (ArCH 2 OH) of 5HMF is converted into carboxylic acid (ArCOOH) through aldehyde (ArCHO), and FDCA in which the aldehyde part is also converted into carboxylic acid is generated.

本発明に係る製造方法では、分子状酸素を含む酸化性気体を供給しつつ、排気ガスの酸素濃度を計測し反応液に対する分子状酸素の吸収終了点に達したと判定した後に、さらに酸化性気体の供給を行って酸化反応を継続させることで収率を工業的に採用しうる70mol%以上にまで高めることを安定的に実現する。   In the production method according to the present invention, the oxygen concentration of the exhaust gas is measured while supplying an oxidizing gas containing molecular oxygen, and after determining that the molecular oxygen absorption end point for the reaction solution has been reached, the oxidizing method is further increased. By continuously supplying the gas and continuing the oxidation reaction, the yield can be stably increased to 70 mol% or more which can be industrially adopted.

(2)酸化性気体
酸化性気体とは、原料物質である5HMFを酸化することができる分子状酸素を含む気体であり、最も典型的には空気が例示される。
(2) Oxidizing gas The oxidizing gas is a gas containing molecular oxygen that can oxidize 5HMF, which is a raw material, and most typically air.

ここで、酸化性気体に含まれる分子状酸素の濃度(酸素濃度)は、たとえば実験室レベルなどにおいて、オートクレーブを用いて爆発の危険性を低下させた状態で酸化する場合には、約21体積%の酸素を含む空気をそのまま用いてもよいし、純酸素のように酸素濃度をさらに高めて酸化させてもよい。一方、工業的には、排気ガスの酸素濃度が爆発限界を超えない、すなわち11体積%未満となるように、窒素などいわゆる不活性気体によって空気を希釈して酸化性気体としてもよい。   Here, the molecular oxygen concentration (oxygen concentration) contained in the oxidizing gas is, for example, about 21 volumes in the laboratory level or the like when oxidation is performed using an autoclave while reducing the risk of explosion. % Of oxygen-containing air may be used as it is, or may be oxidized by further increasing the oxygen concentration like pure oxygen. On the other hand, industrially, air may be diluted with a so-called inert gas such as nitrogen to form an oxidizing gas so that the oxygen concentration of the exhaust gas does not exceed the explosion limit, that is, less than 11% by volume.

(3)酸化性気体の供給方法、圧力、流量
酸化性気体の供給方法は、所定の圧力・流量で供給されることが実現されれば、特に制限されない。典型的には、空気と希釈用不活性ガス(窒素、アルゴンなど)とを公知の混合器により混合し、酸素濃度が制御された混合ガスとして所定圧力および/または所定流量で反応器に供給する。
(3) Oxidizing gas supply method, pressure, and flow rate The oxidizing gas supply method is not particularly limited as long as it can be supplied at a predetermined pressure and flow rate. Typically, air and an inert gas for dilution (nitrogen, argon, etc.) are mixed by a known mixer and supplied to the reactor as a mixed gas with a controlled oxygen concentration at a predetermined pressure and / or a predetermined flow rate. .

酸化性気体の圧力は、反応溶媒が反応温度において液相を保つことができるのであれば、高ければ高いほど反応性が高まるため好ましい。しかしながら、圧力が過剰に高い場合には、機密性確保のための設備投資が大きくなってしまう。また、反応前後の準備時間が長くなる場合が多いため、生産性の低下を招く可能性が高まる。これらの観点から、酸化性気体の圧力は、1〜40kg/cmとすることが好ましく、10〜30kg/cm(いずれもゲージ圧)程度とすれば特に好ましい。 As long as the pressure of the oxidizing gas can maintain the liquid phase at the reaction temperature, the higher the pressure of the oxidizing gas, the higher the reactivity, which is preferable. However, if the pressure is excessively high, capital investment for securing confidentiality will increase. In addition, since the preparation time before and after the reaction often becomes long, the possibility of causing a decrease in productivity is increased. From these viewpoints, the pressure of the oxidizing gas is preferably in a 1~40kg / cm 2, particularly preferred if the degree (gauge pressure both) 10~30kg / cm 2.

酸化性気体の流量は、大きければ大きいほど反応性は高まるものの、流量が過剰に大きい場合には供給のための設備投資が大きくなる上に、排気ガス量も多くなるため、生産性の低下を招く。したがって、酸化性気体の流量は、仕込みの5HMF1mol当たり1〜20L/分とすることが好ましく、2〜10L/分とすれば特に好ましい。   As the flow rate of the oxidizing gas increases, the reactivity increases. However, if the flow rate is excessively large, the capital investment for supply increases and the amount of exhaust gas also increases. Invite. Therefore, the flow rate of the oxidizing gas is preferably 1 to 20 L / min per 1 mol of 5HMF charged, and particularly preferably 2 to 10 L / min.

(4)反応形式
酸化反応は、回分式、半連続式、および連続式のいずれの方式で実施してもよい。回分式は、原料物質(5HMF)および触媒の全量を反応器に予め装入しておき、酸化性気体を反応液に通気して酸化反応を行い、反応終了後に反応液を一度に回収する方法である。
(4) Reaction format The oxidation reaction may be carried out by any of batch, semi-continuous and continuous methods. The batch method is a method in which the raw material (5HMF) and the total amount of the catalyst are charged in the reactor in advance, an oxidizing gas is passed through the reaction solution to carry out the oxidation reaction, and the reaction solution is recovered at once after the reaction is completed. It is.

半連続式は、例えば、触媒の全量を反応器に装入し、原料物質と酸化性気体を連続的に反応器に供給しながら酸化反応を行い、反応終了後に反応液を一度に回収する方法である。   The semi-continuous method is, for example, a method in which the entire amount of the catalyst is charged into the reactor, the oxidation reaction is performed while continuously supplying the raw material and oxidizing gas to the reactor, and the reaction solution is recovered at once after the reaction is completed. It is.

連続式は、原料物質、触媒および酸化性気体のすべてを連続的に反応器に供給しながら酸化反応を行い、反応液を連続的に回収する方法である。
工業的実施においては、連続式または半連続式が操業効率の点から好ましい。
The continuous method is a method in which the reaction solution is continuously recovered by performing an oxidation reaction while continuously supplying all of the raw material, catalyst and oxidizing gas to the reactor.
In industrial implementation, a continuous type or a semi-continuous type is preferable from the viewpoint of operation efficiency.

(5)反応温度、時間
本発明に係る酸化反応は90〜150℃の範囲の温度で実施することが好ましく、90〜130℃とすれば特に好ましい。また、反応開始の1時間または1時間半を90℃に保ち、その後130℃に昇温するといった具合に反応温度を多段とする制御を行ってもよい。
(5) Reaction temperature and time The oxidation reaction according to the present invention is preferably carried out at a temperature in the range of 90 to 150 ° C, particularly preferably 90 to 130 ° C. In addition, the reaction temperature may be controlled in multiple stages such that the reaction start is kept at 90 ° C. for 1 hour or an hour and a half and then raised to 130 ° C.

酸化反応時間は温度、圧力、触媒組成等の条件により適宜設定され、通常は3〜6時間程度である。
(6)排気ガスの酸素濃度計測
本発明に係る酸化反応では、上記のように酸化性気体が所定の流量で反応器に供給されるため、反応器から排出されるガス(排気ガス)の酸素濃度は、反応器内での酸化反応の進行状況を図るためにもっとも適切なパラメータの一つである。本発明に係る酸化反応は、液相にある原料物質(5HMF)が液相にある触媒を用いて気相にある分子状酸素と反応するものであるから、分子状酸素の溶媒への溶解度が反応の進みやすさに大きく影響する。しかしながら、この酸素の溶解度は反応溶媒、温度、圧力、触媒などの影響を受けやすいため、必ずしも制御が容易でない。そこで、本発明に係る製造方法では、排気ガスの酸素濃度を計測し、その結果から供給された分子状酸素がどの程度吸収されたかの情報を得て、反応の進行程度を把握することとしている。この酸素濃度の計測は公知の方法により行うことができ、たとえば自動酸素濃度分析装置を用いて、連続的または定期的に計測すればよい。
The oxidation reaction time is appropriately set depending on conditions such as temperature, pressure, and catalyst composition, and is usually about 3 to 6 hours.
(6) Oxygen concentration measurement of exhaust gas In the oxidation reaction according to the present invention, since the oxidizing gas is supplied to the reactor at a predetermined flow rate as described above, oxygen in the gas (exhaust gas) discharged from the reactor The concentration is one of the most appropriate parameters for the progress of the oxidation reaction in the reactor. In the oxidation reaction according to the present invention, since the source material (5HMF) in the liquid phase reacts with molecular oxygen in the gas phase using the catalyst in the liquid phase, the solubility of molecular oxygen in the solvent is high. This greatly affects the progress of the reaction. However, since the solubility of oxygen is easily affected by the reaction solvent, temperature, pressure, catalyst, etc., it is not always easy to control. Therefore, in the production method according to the present invention, the oxygen concentration of the exhaust gas is measured, information on how much molecular oxygen supplied has been absorbed is obtained from the result, and the progress of the reaction is grasped. This oxygen concentration can be measured by a known method. For example, the oxygen concentration may be measured continuously or periodically using an automatic oxygen concentration analyzer.

さらに、本発明に係る製造方法では、この計測の結果に基づいて、分子状酸素が反応液に吸収されなくなった吸収終了点に達したか否かを判定する。
吸収終了点とは分子状酸素が反応液に吸収されなくなったときである。分子状酸素が反応液に吸収されている場合には、供給された酸化性気体の酸素濃度(供給酸素濃度)よりも排気ガスの酸素濃度(排気酸素濃度)の方が低くなっているが、分子状酸素が吸収されなくなると究極的には供給酸素濃度と排気酸素濃度とは同一の値となるため、この同一となったときが原理的な吸収終了点である。ただし、実務上は、計測誤差や計測時間遅れなどを考慮して、供給酸素濃度と排気酸素濃度との差が所定の数値以内になったときに吸収終了点に到達したと判定してもよい。この場合の例として、供給する空気(酸素濃度が21体積%)であるときに差を1%に設定して、吸収終了点の排気酸素濃度を20体積%とすることが挙げられる。
Furthermore, in the manufacturing method according to the present invention, based on the result of this measurement, it is determined whether or not the molecular oxygen has reached the absorption end point at which it is no longer absorbed by the reaction solution.
The absorption end point is when molecular oxygen is no longer absorbed by the reaction solution. When molecular oxygen is absorbed in the reaction solution, the oxygen concentration of the exhaust gas (exhaust oxygen concentration) is lower than the oxygen concentration of the supplied oxidizing gas (supply oxygen concentration). When molecular oxygen is no longer absorbed, the supply oxygen concentration and the exhaust oxygen concentration ultimately become the same value, and when this is the same, the fundamental absorption end point. However, in practice, it may be determined that the absorption end point has been reached when the difference between the supply oxygen concentration and the exhaust oxygen concentration is within a predetermined value in consideration of measurement errors and measurement time delays. . As an example in this case, it is possible to set the difference to 1% when supplying air (oxygen concentration is 21% by volume) and to set the exhaust oxygen concentration at the end of absorption to 20% by volume.

(7)ポストオキシデーション
本発明に係る製造方法は、反応液に対する酸化性気体の吸収がなくなった吸収終了点に到達したと判定した後に、酸化性気体の供給をさらに行って、反応液における酸化反応を継続させる(ポストオキシデーション)。
(7) Post-oxidation In the manufacturing method according to the present invention, after determining that the absorption end point at which the absorption of the oxidizing gas with respect to the reaction solution has ended is reached, the oxidizing gas is further supplied to oxidize the reaction solution. The reaction is continued (post oxidation).

このポストオキシデーションにおいて供給する酸化性気体の条件(酸素濃度、流量など)は、吸収終了点到達前の供給条件と同一でもよいし、異なっていてもよい。その他の条件(温度、圧力など)も吸収終了点到達前の供給条件と同一でもよいし、異なっていてもよい。ポストオキシデーションの時間はその条件により適宜設定されるべきものであるが、0.5〜2時間程度が一般的であり、最も典型的には1時間である。   The conditions (oxidation concentration, flow rate, etc.) of the oxidizing gas supplied in this post-oxidation may be the same as or different from the supply conditions before reaching the absorption end point. Other conditions (temperature, pressure, etc.) may be the same as or different from the supply conditions before reaching the absorption end point. The post-oxidation time should be appropriately set according to the conditions, but is generally about 0.5 to 2 hours, most typically 1 hour.

なお、上記の回分式および半連続式ではこのポストオキシデーションを追加することは容易である。連続式においても、原料物質および触媒の供給を一時的に停止し、酸化性気体の供給のみを継続することによってポストオキシデーションを行うようにすればよい。   In addition, it is easy to add this post-oxidation in said batch type and semi-continuous type. Even in the continuous type, post-oxidation may be performed by temporarily stopping the supply of the raw material and the catalyst and continuing the supply of the oxidizing gas.

3.酸化剤による処理
本発明に係る製造方法は、好適態様として、上記のポストオキシデーションを含む5HMFの液相での酸化反応により得られたFDCA(以下「粗FDCA」という。)を、酸化剤によって処理することにより、粗FDCAの純度を高める。
3. Treatment with Oxidizing Agent As a preferred embodiment of the production method according to the present invention, FDCA (hereinafter referred to as “crude FDCA”) obtained by an oxidation reaction in the liquid phase of 5HMF including the post-oxidation is used with an oxidizing agent. By processing, the purity of the crude FDCA is increased.

前述のように、本発明に係る酸化反応では、原料の5HMFはそのヒドロキシメチル基およびアルデヒド基のそれぞれが酸化されてFDCAとなるが、その反応中間体の一つとして、ヒドロキシメチル基だけがカルボン酸基まで酸化された5−ホルミル−2−フランカルボン酸(FFCA)が形成される。上記の酸化反応により得られたFDCAを固液分離法(例、濾過、遠心分離、沈降)により溶媒から単離すると、得られた粗FDCAには0.1〜20重量%のFFCAが含まれている。   As described above, in the oxidation reaction according to the present invention, 5HMF as a raw material is oxidized to FDCA by oxidizing each of its hydroxymethyl group and aldehyde group. However, as one of the reaction intermediates, only hydroxymethyl group is carboxylic acid. 5-Formyl-2-furancarboxylic acid (FFCA) oxidized to the acid group is formed. When the FDCA obtained by the above oxidation reaction is isolated from a solvent by a solid-liquid separation method (eg, filtration, centrifugation, sedimentation), the obtained crude FDCA contains 0.1 to 20% by weight of FFCA. ing.

そこで、酸化剤、典型的には次亜塩素酸ナトリウムおよび/または過酸化水素を粗FDCAと次のような方法で反応させることにより、残留するFFCAがFDCAに変換し、粗FDCAの純度を高めることが実現される。   Therefore, by reacting an oxidizing agent, typically sodium hypochlorite and / or hydrogen peroxide, with the crude FDCA in the following manner, the remaining FFCA is converted to FDCA and the purity of the crude FDCA is increased. Is realized.

まず、空気酸化で得られたFFCAを含有する粗FDCAを、アルカリ金属水酸化物の水溶液に溶解させる。使用するアルカリ金属水酸化物としては経済性の観点で水酸化ナトリウムが好ましい。アルカリ金属水酸化物の量は溶解させるFFCAに対して2倍以上のモル数であればよい。アルカリ金属水酸化物の水溶液濃度は操作性の面から2〜10重量%とすることが好ましい。   First, crude FDCA containing FFCA obtained by air oxidation is dissolved in an aqueous solution of an alkali metal hydroxide. As the alkali metal hydroxide to be used, sodium hydroxide is preferable from the viewpoint of economy. The amount of the alkali metal hydroxide may be at least twice the number of moles of FFCA to be dissolved. The aqueous solution concentration of the alkali metal hydroxide is preferably 2 to 10% by weight from the viewpoint of operability.

なお、アルカリ金属水酸化物の水溶液に溶解した時点で不溶分がある場合には濾過して除いても良い。
次に、この粗FDCAを含むアルカリ金属水酸化物の水溶液に次亜塩素酸ナトリウムおよび/または過酸化水素を添加する。添加する次亜塩素酸ナトリウムおよび/または過酸化水素の濃度に制限は無い。市販品をそのまま使用でき、場合によっては希釈して使用することも可能である。次亜塩素酸ナトリウムおよび/または過酸化水素水の添加量は、粗FDCA中に残留するFFCAに対してモル数換算で等量以上とすればよい。好ましくはモル数換算で2〜10倍である。反応温度は20〜80℃の範囲で実施できる。
反応時間は反応温度や使用する酸化剤の量により変わるが通常0.5〜10時間である。
In addition, when there exists an insoluble content at the time of melt | dissolving in the aqueous solution of an alkali metal hydroxide, you may filter and remove.
Next, sodium hypochlorite and / or hydrogen peroxide is added to the alkali metal hydroxide aqueous solution containing the crude FDCA. There is no restriction | limiting in the density | concentration of the sodium hypochlorite and / or hydrogen peroxide to add. Commercially available products can be used as they are, and in some cases they can be used after dilution. The amount of sodium hypochlorite and / or hydrogen peroxide solution added may be equal to or greater than the equivalent amount in terms of moles with respect to FFCA remaining in the crude FDCA. Preferably, it is 2 to 10 times in terms of the number of moles. Reaction temperature can be implemented in the range of 20-80 degreeC.
The reaction time varies depending on the reaction temperature and the amount of oxidizing agent used, but is usually 0.5 to 10 hours.

残存するFFCAをFDCAに酸化した後、酸析を行う。使用する酸の種類やその濃度には制限は無く、公知の方法にしたがって行えばよい。こうして着色の少ない高純度のFDCAが得られるが、必要に応じて水で再結晶を行えば、アルカリ金属の除去も可能である。   After remaining FFCA is oxidized to FDCA, acid precipitation is performed. There is no restriction | limiting in the kind of acid to be used, and its density | concentration, What is necessary is just to follow according to a well-known method. In this way, high-purity FDCA with little coloration can be obtained, but alkali metal can be removed by recrystallization with water as necessary.

以下に実施例、比較例によって本発明をより具体的に説明をするが、これらの例により本発明は何ら制限されるものではない。
(比較例1)
攪拌機、ガス吹込み管、還流冷却器付き排ガス抜出し管、原料導入管、および温度計を取り付けた内容積500mlのチタン製オートクレーブに、純度98.0重量%の5−ヒドロキシメチルフルフラール25g、酢酸225g、酢酸コバルト4水和物1.46g、酢酸マンガン4水和物1.39g、および臭化カリウム0.67gを仕込んだ。このときの、コバルト化合物のコバルト金属換算グラム原子数:マンガン化合物のマンガン金属換算グラム原子数:臭素イオンモル数(以下「触媒モル比」という。)は1:1:1であった。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(Comparative Example 1)
A titanium autoclave having an internal volume of 500 ml equipped with a stirrer, a gas blowing pipe, an exhaust gas extraction pipe with a reflux condenser, a raw material introduction pipe, and a thermometer, 25 g of 5-hydroxymethylfurfural with a purity of 98.0 wt% and 225 g of acetic acid. , 1.46 g of cobalt acetate tetrahydrate, 1.39 g of manganese acetate tetrahydrate, and 0.67 g of potassium bromide were charged. Cobalt metal conversion gram atom number of the cobalt compound at this time: Manganese metal conversion gram atom number of the manganese compound: Bromine ion mole number (hereinafter referred to as “catalyst molar ratio”) was 1: 1: 1.

オートクレーブ内雰囲気を窒素で置換した後、攪拌下に加熱して120℃まで昇温させてから、排ガス流量が1.0L/分となるようにガス吹込み管を通じて空気を導入し始め、反応系を温度120℃、圧力3.0MPaに保ちながら空気の供給を継続した。こうして反応させながら排気ガスの酸素濃度を計測したところ、排気ガスの酸素濃度は約1体積%であった。   After substituting the atmosphere in the autoclave with nitrogen, the mixture was heated to 120 ° C. with stirring, and then air was introduced through the gas blowing tube so that the exhaust gas flow rate was 1.0 L / min. Was maintained at a temperature of 120 ° C and a pressure of 3.0 MPa. When the oxygen concentration of the exhaust gas was measured while reacting in this way, the oxygen concentration of the exhaust gas was about 1% by volume.

1時間経過後、排気ガスの酸素濃度が5体積%となったため、空気の供給は維持しつつ、オートクレーブ内の温度を150℃に昇温し2時間反応を継続すると排気ガスの酸素濃度が20体積%に達した。この時点から更に1時間空気の供給を行い、その後、空気の導入を停止し、オートクレーブを冷却した。   After 1 hour, the oxygen concentration of the exhaust gas became 5% by volume. Therefore, when the temperature inside the autoclave was raised to 150 ° C. and the reaction was continued for 2 hours while maintaining the supply of air, the oxygen concentration of the exhaust gas was 20 Reached volume%. From this point, air was supplied for another hour, after which the introduction of air was stopped and the autoclave was cooled.

オートクレーブの冷却後、内容物を取り出して結晶を濾別し、2,5−フランジカルボン酸を含むケーキと濾液とを得た。得られたケーキを同体積の酢酸で洗浄した後、真空乾燥し、淡褐色の2,5−フランジカルボン酸22.4gを得た。以下に示す装置および測定条件で高速液体クロマトグラフィー(HPLC)により分析したところ、LC純度は87.5重量%であり、収率は64.8mol%であった。また、5−ホルミル−2−フランカルボン酸が2.99重量%ケーキ内に残留した。   After cooling the autoclave, the contents were taken out and the crystals were separated by filtration to obtain a cake containing 2,5-furandicarboxylic acid and a filtrate. The obtained cake was washed with the same volume of acetic acid and then vacuum-dried to obtain 22.4 g of light brown 2,5-furandicarboxylic acid. When analyzed by high performance liquid chromatography (HPLC) with the following apparatus and measurement conditions, the LC purity was 87.5 wt% and the yield was 64.8 mol%. In addition, 5-formyl-2-furancarboxylic acid remained in the 2.99 wt% cake.

分析機器:高速液体クロマトグラフィー
カラム:昭和電工(株)製 Shodex SugarSH10011
検出器:UV(284nm)
溶離液:3mM過塩素酸水溶液
流量:0.6mL/分 (0〜20分)、1.4mL/分 (20〜35分)
内部標準物質:フタル酸
Analytical instrument: High performance liquid chromatography Column: Shodex Sugar SH10011 manufactured by Showa Denko K.K.
Detector: UV (284 nm)
Eluent: 3 mM perchloric acid aqueous solution Flow rate: 0.6 mL / min (0-20 min), 1.4 mL / min (20-35 min)
Internal standard: phthalic acid

(実施例1)
比較例1において酢酸コバルト4水和物の仕込量を2.92gにし、触媒モル比を2:1:1にした以外は同様の操作を行い、淡紫色の2,5−フランジカルボン酸26.2gを得た。そのLC純度は89.1重量%であり、収率は77.1mol%であった。また、5−ホルミル−2−フランカルボン酸が4.01重量%ケーキ内に残留した。
Example 1
The same procedure as in Comparative Example 1 was carried out except that the amount of cobalt acetate tetrahydrate charged was 2.92 g and the catalyst molar ratio was 2: 1: 1. 2 g was obtained. Its LC purity was 89.1 wt% and the yield was 77.1 mol%. In addition, 5-formyl-2-furancarboxylic acid remained in the 4.01 wt% cake.

(実施例2)
実施例1において酢酸コバルト4水和物の仕込み量を5.84gにし、触媒モル比を4:1:1にした以外は同様の操作を行い、淡紫色の2,5−フランジカルボン酸27.5gを得た。そのLC純度は85.8重量%であり、収率は77.7mol%であった。また、5−ホルミル−2−フランカルボン酸が3.66重量%ケーキ内に残留した。
(Example 2)
The same procedure as in Example 1 was carried out except that the amount of cobalt acetate tetrahydrate charged was 5.84 g and the catalyst molar ratio was 4: 1: 1. 5 g was obtained. Its LC purity was 85.8 wt% and the yield was 77.7 mol%. In addition, 5-formyl-2-furancarboxylic acid remained in the 3.66 wt% cake.

(実施例3)
実施例1において反応温度を90℃として1.5時間反応させた後に、130℃で反応を2時間継続し酸素の吸収がほぼ無くなった時点から更に1時間反応を継続した以外は同様の操作を行い、淡紫色の2,5−フランジカルボン酸26.2gを得た。そのLC純度は90.2重量%であり、収率は76.7mol%であった。また、5−ホルミル−2−フランカルボン酸が6.54重量%ケーキ内に残留した。
(Example 3)
In Example 1, the reaction temperature was 90 ° C. and the reaction was carried out for 1.5 hours, then the reaction was continued at 130 ° C. for 2 hours, and the reaction was further continued for 1 hour from the point where oxygen absorption was almost lost. 26.2 g of pale purple 2,5-furandicarboxylic acid was obtained. Its LC purity was 90.2 wt% and the yield was 76.7 mol%. In addition, 5-formyl-2-furancarboxylic acid remained in the 6.54% by weight cake.

(実施例4)
攪拌機、温度計を取り付けた内容積500mLのガラス製3つ口フラスコに、純度97重量%の水酸化ナトリウム11.5gおよび水300gを仕込んだ。
Example 4
11.5 g of sodium hydroxide having a purity of 97% by weight and 300 g of water were charged into a 500-mL glass three-necked flask equipped with a stirrer and a thermometer.

実施例2で得られた2,5−フランジカルボン酸20gをその3つ口フラスコに添加し、撹拌下、反応系を温度25℃の状態で約1時間反応を継続した。
得られたフラスコ内容物についてパーライトを用いて濾過を行い、固体および濾液を得た。得られた濾液を攪拌機、還流冷却器、滴下ロート、および温度計を取り付けた内容積500mLのガラス製4つ口フラスコに仕込んだ。
20 g of 2,5-furandicarboxylic acid obtained in Example 2 was added to the three-necked flask, and the reaction was continued for about 1 hour at 25 ° C. with stirring.
The obtained flask contents were filtered using perlite to obtain a solid and a filtrate. The obtained filtrate was charged into a 500 mL glass four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer.

撹拌下に加熱して60℃まで昇温させ、10重量%の次亜塩素酸ナトリウム水溶液を28.5g添加して、反応系を温度60℃の状態で約7時間反応を継続した。
その後、加熱を停止し、フラスコを冷却した。冷却後、過剰量の次亜塩素酸ナトリウムを失活するために10重量%の亜硫酸水素ナトリウム水溶液を1.02g添加して、撹拌下、反応系を温度25℃の状態で30分間還元反応を行った。
The mixture was heated to 60 ° C. with stirring, 28.5 g of a 10% by weight aqueous sodium hypochlorite solution was added, and the reaction was continued for about 7 hours at a temperature of 60 ° C.
Thereafter, heating was stopped and the flask was cooled. After cooling, 1.02 g of 10% by weight aqueous sodium hydrogen sulfite solution was added to deactivate the excess amount of sodium hypochlorite, and the reaction was carried out for 30 minutes with stirring at a temperature of 25 ° C. went.

30分間経過後、35%塩酸32.4gを滴下して、撹拌下、反応系を温度25℃の状態で約1時間反応を継続した。
内容物を取り出して結晶を濾別し、2,5−フランジカルボン酸を含むケーキと濾液とを得た。得られたケーキを水100gで洗浄した後、攪拌機、温度計を取り付けた内容量300mLの3つ口フラスコにケーキを加え、水107gを仕込んだ。
After 30 minutes, 32.4 g of 35% hydrochloric acid was added dropwise, and the reaction was continued for about 1 hour at 25 ° C. with stirring.
The contents were taken out and the crystals were separated by filtration to obtain a cake containing 2,5-furandicarboxylic acid and a filtrate. The obtained cake was washed with 100 g of water, and then the cake was added to a 300 mL three-necked flask equipped with a stirrer and a thermometer to charge 107 g of water.

撹拌下に加熱して温度を30℃に昇温して、反応系を温度30℃に保ち約1時間撹拌を継続した。その後、加熱を停止し、フラスコを冷却した。
内容物を取り出して結晶を濾別し、2,5−フランジカルボン酸を含むケーキと濾液とを得た。30℃にあらかじめ加熱しておいた水100gで得られたケーキを洗浄した。この30℃での水洗工程を3回繰り返した後、得られたケーキを真空乾燥し、白色の2,5−フランジカルボン酸15.0gを得た。LC純度は99.9重量%であり、収率は87.6mol%であった。
The mixture was heated with stirring to raise the temperature to 30 ° C., and the reaction system was kept at 30 ° C. and stirring was continued for about 1 hour. Thereafter, heating was stopped and the flask was cooled.
The contents were taken out and the crystals were separated by filtration to obtain a cake containing 2,5-furandicarboxylic acid and a filtrate. The cake obtained was washed with 100 g of water preheated to 30 ° C. After repeating this water washing process at 30 ° C. three times, the obtained cake was vacuum-dried to obtain 15.0 g of white 2,5-furandicarboxylic acid. The LC purity was 99.9% by weight and the yield was 87.6 mol%.

(実施例5)
攪拌機、温度計を取り付けた内容積500mLのガラス製3つ口フラスコに、純度97重量%の水酸化ナトリウム11.5gおよび水300gを仕込んだ。
(Example 5)
11.5 g of sodium hydroxide having a purity of 97% by weight and 300 g of water were charged into a 500-mL glass three-necked flask equipped with a stirrer and a thermometer.

実施例3で得られた2,5−フランジカルボン酸20gをフラスコ内に添加し、撹拌下、反応系を温度25℃の状態で約1時間反応を継続した。
得られたフラスコ内容物についてパーライトを用いて濾過を行い、固体および濾液を得た。得られた濾液を攪拌機、還流冷却器、滴下ロート、および温度計を取り付けた内容積500mLのガラス製4つ口フラスコに仕込んだ。
20 g of 2,5-furandicarboxylic acid obtained in Example 3 was added to the flask, and the reaction was continued for about 1 hour under stirring at a temperature of 25 ° C.
The obtained flask contents were filtered using perlite to obtain a solid and a filtrate. The obtained filtrate was charged into a 500 mL glass four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer.

撹拌下に加熱して30℃まで昇温させ、30重量%の過酸化水素水溶液を8.68g添加して、反応系を温度30℃の状態で約6時間反応を継続した。
その後、t−ブチルメチルケトンを18.2g添加し、加熱して60℃まで昇温した。昇温後、35%塩酸31.5gを滴下し、4つ口フラスコをオイルバスから外し、撹拌下で1時間保持した。
The mixture was heated with stirring to 30 ° C., 8.68 g of a 30 wt% aqueous hydrogen peroxide solution was added, and the reaction was continued for about 6 hours at a temperature of 30 ° C.
Thereafter, 18.2 g of t-butyl methyl ketone was added and heated to 60 ° C. After raising the temperature, 31.5 g of 35% hydrochloric acid was added dropwise, the four-necked flask was removed from the oil bath, and held for 1 hour with stirring.

1時間経過後、フラスコ内の内容物を取り出して結晶を濾別して得られたケーキの真空乾燥を行い。白色の2,5−フランジカルボン酸を17.0g、収率93.6mol%で回収した。回収した17.0g中、5gを水で再結晶を行うと収率91.8mol%で白色の2,5−フランジカルボン酸が回収され、そのLC純度は99.9重量%であった。   After 1 hour, the contents in the flask were taken out and the cake obtained by filtering the crystals was vacuum-dried. 17.0 g of white 2,5-furandicarboxylic acid was recovered in a yield of 93.6 mol%. When 5 g of the recovered 17.0 g was recrystallized with water, white 2,5-furandicarboxylic acid was recovered in a yield of 91.8 mol%, and its LC purity was 99.9 wt%.

Claims (3)

コバルト、マンガン、および臭素を含む触媒を含む反応液中で、5−ヒドロキシメチルフルフラールを分子状酸素により酸化する2,5−フランジカルボン酸の製造方法において、
前記触媒における金属換算コバルトおよび金属換算マンガンの原子比が2:1〜4:1であって、
分子状酸素を含む酸化性気体を前記反応液に供給しつつ計測した排気ガスの酸素濃度に基づいて、前記反応液に対する分子状酸素の吸収終了点に達したと判定した後に、さらに酸化性気体の供給を行って酸化反応を継続させること
を特徴とする2,5−フランジカルボン酸の製造方法。
In a method for producing 2,5-furandicarboxylic acid in which 5-hydroxymethylfurfural is oxidized with molecular oxygen in a reaction solution containing a catalyst containing cobalt, manganese, and bromine,
The atomic ratio of metal-converted cobalt and metal-converted manganese in the catalyst is 2: 1 to 4: 1,
Based on the oxygen concentration of the exhaust gas measured while supplying the oxidizing gas containing molecular oxygen to the reaction solution, after determining that the molecular oxygen absorption end point for the reaction solution has been reached, the oxidizing gas is further added. A process for producing 2,5-furandicarboxylic acid, characterized in that the oxidation reaction is continued by supplying
前記反応液に添加される触媒が、
5−ヒドロキシメチルフルフラール1molに対する金属換算コバルトの比率が0.01〜0.3グラム原子、かつコバルトおよびマンガンの金属換算総和1グラム原子に対する臭素イオンの比率が0.05〜20molである、請求項1記載の2,5−フランジカルボン酸の製造方法。
The catalyst added to the reaction solution is
The ratio of cobalt in terms of metal to 1 mol of 5-hydroxymethylfurfural is 0.01 to 0.3 gram atom, and the ratio of bromine ions to 1 gram atom in total of metal in terms of cobalt and manganese is 0.05 to 20 mol. 2. The method for producing 2,5-furandicarboxylic acid according to 1.
請求項1または2に記載される製造方法により製造された2,5−フランジカルボン酸をアルカル金属水酸化物の水溶液に溶解後、次亜塩素酸ナトリウムおよび過酸化水素から選ばれる一種または二種で処理した後、酸析して回収することを特徴とする2,5−フランジカルボン酸の製造方法。   One or two kinds selected from sodium hypochlorite and hydrogen peroxide after the 2,5-furandicarboxylic acid produced by the production method according to claim 1 or 2 is dissolved in an aqueous solution of an alkane metal hydroxide. A process for producing 2,5-furandicarboxylic acid, characterized in that after acid treatment, acid precipitation is carried out to recover.
JP2008091762A 2008-03-31 2008-03-31 Process for producing 2,5-furandicarboxylic acid Active JP5252969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091762A JP5252969B2 (en) 2008-03-31 2008-03-31 Process for producing 2,5-furandicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091762A JP5252969B2 (en) 2008-03-31 2008-03-31 Process for producing 2,5-furandicarboxylic acid

Publications (2)

Publication Number Publication Date
JP2009242312A true JP2009242312A (en) 2009-10-22
JP5252969B2 JP5252969B2 (en) 2013-07-31

Family

ID=41304661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091762A Active JP5252969B2 (en) 2008-03-31 2008-03-31 Process for producing 2,5-furandicarboxylic acid

Country Status (1)

Country Link
JP (1) JP5252969B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043661A1 (en) * 2009-10-07 2011-04-14 Furanix Technologies B.V. Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid
WO2014014981A1 (en) * 2012-07-20 2014-01-23 Eastman Chemical Company An oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
WO2014014979A1 (en) 2012-07-20 2014-01-23 Eastman Chemical Company An oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US8658810B2 (en) 2012-06-22 2014-02-25 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate vapor
WO2014035813A1 (en) * 2012-08-30 2014-03-06 Eastman Chemical Company An oxidation process to produce a crude dry carboxylic acid product
US8748479B2 (en) 2012-06-22 2014-06-10 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US8791278B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8791277B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8796477B2 (en) 2011-05-24 2014-08-05 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8846960B2 (en) 2011-05-24 2014-09-30 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8859788B2 (en) 2012-06-22 2014-10-14 Eastman Chemical Company Esterification of furan-2,5-dicarboxylic acid to a dialkyl-furan-2,5-dicarboxylate vapor with rectification
JP2014531422A (en) * 2011-08-31 2014-11-27 ザ・ユニヴァーシティ・オブ・カンザス Process for producing both bio-based succinic acid and 2,5-furandicarboxylic acid
US8912349B2 (en) 2012-06-22 2014-12-16 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate separation and solid liquid separation
US8916720B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US8916719B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US8969404B2 (en) 2012-06-22 2015-03-03 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
US9156805B2 (en) 2012-11-20 2015-10-13 Eastman Chemical Company Oxidative purification method for producing purified dry furan-2,5-dicarboxylic acid
WO2015155784A1 (en) * 2014-04-09 2015-10-15 Natco Pharma Limited Process for the preparation of 2,5-furandicarboxylic acid and its ester derivative
US9199958B2 (en) 2011-05-24 2015-12-01 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US9321744B1 (en) 2015-06-26 2016-04-26 Industrial Technology Research Institute Method for preparing 2,5-furan dicarboxylic acid
US9504994B2 (en) 2014-05-08 2016-11-29 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
KR20160136849A (en) 2015-05-21 2016-11-30 한국생산기술연구원 Method for preparing 2,5-furandicarboxylic acid
JP2017190316A (en) * 2016-04-15 2017-10-19 三菱ケミカル株式会社 Method of purifying 2,5-furandicarboxylic acid
US9943834B2 (en) 2014-05-08 2018-04-17 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
CN108314667A (en) * 2017-01-18 2018-07-24 中国科学院过程工程研究所 A kind of preparation method of non-alkali systems biology base 2,5- furandicarboxylic acids
EP2714672B1 (en) 2011-05-24 2018-12-19 Eastman Chemical Company An oxidation process to produce a crude and/or purified carboxylic acid product
CN109293608A (en) * 2018-09-21 2019-02-01 中国科学技术大学 A kind of preparation method of 5- formoxyl furancarboxylic acid
CN110586114A (en) * 2019-09-19 2019-12-20 天津大学 Preparation method of copper-chromium-aluminum hydrotalcite catalyst and application of catalyst in catalytic oxidation of 5-hydroxymethylfurfural
US10696645B2 (en) 2017-07-20 2020-06-30 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate
US10865190B2 (en) 2015-07-24 2020-12-15 E I Du Pont De Nemours And Company Processes for preparing 2,5-furandicarboxylic acid and esters thereof
CN112898251A (en) * 2019-11-19 2021-06-04 中国科学院宁波材料技术与工程研究所 Method for preparing 2, 5-furandicarboxylic acid
CN113121477A (en) * 2021-06-02 2021-07-16 宁波国生科技有限公司 Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid
WO2023125067A1 (en) * 2021-12-30 2023-07-06 中国石油天然气股份有限公司 Catalyst, preparation method therefor and method for preparing 2,5-furandicarboxylic acid from catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688988B (en) 2014-12-16 2018-11-27 财团法人工业技术研究院 Oxidation reaction catalyst for furfural compound and oxidation method for furfural compound
TWI650318B (en) 2017-10-30 2019-02-11 財團法人工業技術研究院 Method for purifying crude product of 2,5-furandicarboxylic acid by crystallization method and method for forming polyester
CN108484892B (en) * 2018-04-14 2020-07-14 浙江理工大学 Method for preparing poly (1,6-hexanediol 2, 5-furandicarboxylate) by using biomass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528868A (en) * 2000-03-27 2003-09-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Oxidation of 5- (hydroxymethyl) furfural to 2,5-diformylfuran and subsequent decarbonylation to unsubstituted furan
JP2011506478A (en) * 2007-12-12 2011-03-03 アーチャー ダニエルズ ミッドランド カンパニー Conversion of carbohydrates to hydroxymethylfurfural (HMF) and derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528868A (en) * 2000-03-27 2003-09-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Oxidation of 5- (hydroxymethyl) furfural to 2,5-diformylfuran and subsequent decarbonylation to unsubstituted furan
JP2011506478A (en) * 2007-12-12 2011-03-03 アーチャー ダニエルズ ミッドランド カンパニー Conversion of carbohydrates to hydroxymethylfurfural (HMF) and derivatives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012066731; Catalysis Today 23, 1995, 69-158 *
JPN6012066732; Adv. Synth. Catal. 343, 2001, 102-111 *

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043661A1 (en) * 2009-10-07 2011-04-14 Furanix Technologies B.V. Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid
CN102666521A (en) * 2009-10-07 2012-09-12 福兰尼克斯科技公司 Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid
US8865921B2 (en) 2009-10-07 2014-10-21 Furanix Technologies B.V. Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid
EP3666764A1 (en) * 2009-10-07 2020-06-17 Furanix Technologies B.V Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid
US8791278B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US10350584B2 (en) 2011-05-24 2019-07-16 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
EP2714672B1 (en) 2011-05-24 2018-12-19 Eastman Chemical Company An oxidation process to produce a crude and/or purified carboxylic acid product
EP3333159A1 (en) * 2011-05-24 2018-06-13 Eastman Chemical Company An oxidation process to produce a crude and/or purified carboxylic acid product
EP2714674A4 (en) * 2011-05-24 2015-03-18 Eastman Chem Co An oxidation process to produce a crude and/or purified carboxylic acid product
US8791277B2 (en) 2011-05-24 2014-07-29 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US8796477B2 (en) 2011-05-24 2014-08-05 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
EP2714674B1 (en) 2011-05-24 2019-03-13 Eastman Chemical Company An oxidation process to produce a crude and/or purified carboxylic acid product
US8846960B2 (en) 2011-05-24 2014-09-30 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
EP2714671B1 (en) 2011-05-24 2016-09-07 Eastman Chemical Company An oxidation process to produce a crude and/or purified carboxylic acid product
EP3686192A1 (en) * 2011-05-24 2020-07-29 Eastman Chemical Company An oxidation process to produce a crude and/or purified carboxylic acid product
US9199958B2 (en) 2011-05-24 2015-12-01 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
US9428480B2 (en) 2011-05-24 2016-08-30 Eastman Chemical Company Oxidation process to produce a crude and/or purified carboxylic acid product
JP2014531422A (en) * 2011-08-31 2014-11-27 ザ・ユニヴァーシティ・オブ・カンザス Process for producing both bio-based succinic acid and 2,5-furandicarboxylic acid
US9458122B2 (en) 2012-06-22 2016-10-04 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
EP3653612A1 (en) 2012-06-22 2020-05-20 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate by physical separation and solid liquid separation
EP4092017A1 (en) * 2012-06-22 2022-11-23 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
US9029581B2 (en) 2012-06-22 2015-05-12 Eastman Chemical Company Esterification of furan-2,5-dicarboxylic acid to a dialkyl-furan-2,5-dicarboxylate vapor with rectification
EP3321260B1 (en) * 2012-06-22 2022-07-13 Eastman Chemical Company Composition obtained by purifying crude furan 2,5-dicarboxylic acid by hydrogenation
US9156806B2 (en) 2012-06-22 2015-10-13 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US8969404B2 (en) 2012-06-22 2015-03-03 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
EP3590930A1 (en) 2012-06-22 2020-01-08 Eastman Chemical Company Purified dialkyl-furan-2,5-dicarboxylate vapor
US9169229B2 (en) 2012-06-22 2015-10-27 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate by physical separation and solid liquid separation
US8658810B2 (en) 2012-06-22 2014-02-25 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate vapor
US8748479B2 (en) 2012-06-22 2014-06-10 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US9249118B2 (en) 2012-06-22 2016-02-02 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation
EP3333158A1 (en) 2012-06-22 2018-06-13 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate by physical separation and solid liquid separation
EP2864307B1 (en) 2012-06-22 2018-03-07 Eastman Chemical Company Process for purifying crude furan 2,5-dicarboxylic acid using hydrogenation
US8912349B2 (en) 2012-06-22 2014-12-16 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate separation and solid liquid separation
US8859788B2 (en) 2012-06-22 2014-10-14 Eastman Chemical Company Esterification of furan-2,5-dicarboxylic acid to a dialkyl-furan-2,5-dicarboxylate vapor with rectification
EP3239140A1 (en) 2012-06-22 2017-11-01 Eastman Chemical Company Purified dialkyl-furan-2,5-dicarboxylate vapor
US9029580B2 (en) 2012-07-20 2015-05-12 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
WO2014014981A1 (en) * 2012-07-20 2014-01-23 Eastman Chemical Company An oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
WO2014014979A1 (en) 2012-07-20 2014-01-23 Eastman Chemical Company An oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9676740B2 (en) 2012-07-20 2017-06-13 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
EP3617200A1 (en) 2012-07-20 2020-03-04 Eastman Chemical Company An oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US8809556B2 (en) 2012-07-20 2014-08-19 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
EP3578552A1 (en) 2012-07-20 2019-12-11 Eastman Chemical Company An oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9266850B2 (en) 2012-07-20 2016-02-23 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US10011579B2 (en) 2012-07-20 2018-07-03 Eastman Chemical Company Oxidation process to produce a purified carboxylic acid product via solvent displacement and post oxidation
US9206149B2 (en) 2012-08-30 2015-12-08 Eastman Chemical Company Oxidation process to produce a crude dry carboxylic acid product
WO2014035813A1 (en) * 2012-08-30 2014-03-06 Eastman Chemical Company An oxidation process to produce a crude dry carboxylic acid product
US8772513B2 (en) 2012-08-30 2014-07-08 Eastman Chemical Company Oxidation process to produce a crude dry carboxylic acid product
US8916720B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US8916719B2 (en) 2012-11-20 2014-12-23 Eastman Chemical Company Process for producing dry purified furan-2,5-dicarboxylic acid with oxidation off-gas treatment
US9156805B2 (en) 2012-11-20 2015-10-13 Eastman Chemical Company Oxidative purification method for producing purified dry furan-2,5-dicarboxylic acid
WO2015155784A1 (en) * 2014-04-09 2015-10-15 Natco Pharma Limited Process for the preparation of 2,5-furandicarboxylic acid and its ester derivative
US9504994B2 (en) 2014-05-08 2016-11-29 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9943834B2 (en) 2014-05-08 2018-04-17 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9604202B2 (en) 2014-05-08 2017-03-28 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9573120B2 (en) 2014-05-08 2017-02-21 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
KR20160136849A (en) 2015-05-21 2016-11-30 한국생산기술연구원 Method for preparing 2,5-furandicarboxylic acid
US9321744B1 (en) 2015-06-26 2016-04-26 Industrial Technology Research Institute Method for preparing 2,5-furan dicarboxylic acid
US10865190B2 (en) 2015-07-24 2020-12-15 E I Du Pont De Nemours And Company Processes for preparing 2,5-furandicarboxylic acid and esters thereof
JP2017190316A (en) * 2016-04-15 2017-10-19 三菱ケミカル株式会社 Method of purifying 2,5-furandicarboxylic acid
CN108314667B (en) * 2017-01-18 2021-10-26 中国科学院过程工程研究所 Preparation method of non-alkaline system bio-based 2, 5-furandicarboxylic acid
CN108314667A (en) * 2017-01-18 2018-07-24 中国科学院过程工程研究所 A kind of preparation method of non-alkali systems biology base 2,5- furandicarboxylic acids
US10696645B2 (en) 2017-07-20 2020-06-30 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate
US11603360B2 (en) 2017-07-20 2023-03-14 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate
CN109293608A (en) * 2018-09-21 2019-02-01 中国科学技术大学 A kind of preparation method of 5- formoxyl furancarboxylic acid
CN109293608B (en) * 2018-09-21 2023-06-16 中国科学技术大学 Preparation method of 5-formyl furoic acid
CN110586114A (en) * 2019-09-19 2019-12-20 天津大学 Preparation method of copper-chromium-aluminum hydrotalcite catalyst and application of catalyst in catalytic oxidation of 5-hydroxymethylfurfural
CN112898251A (en) * 2019-11-19 2021-06-04 中国科学院宁波材料技术与工程研究所 Method for preparing 2, 5-furandicarboxylic acid
CN113121477A (en) * 2021-06-02 2021-07-16 宁波国生科技有限公司 Preparation method of 2, 5-tetrahydrofuran dicarboxylic acid
WO2023125067A1 (en) * 2021-12-30 2023-07-06 中国石油天然气股份有限公司 Catalyst, preparation method therefor and method for preparing 2,5-furandicarboxylic acid from catalyst
CN116408081A (en) * 2021-12-30 2023-07-11 中国石油天然气股份有限公司 Catalyst and preparation method thereof, and method for preparing 2, 5-furandicarboxylic acid by using catalyst

Also Published As

Publication number Publication date
JP5252969B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5252969B2 (en) Process for producing 2,5-furandicarboxylic acid
JP5550303B2 (en) Process for producing 2,5-furandicarboxylic acid
EP2601182B1 (en) Process for the synthesis of 2,5-furandicarboxylic acid.
JPS6247864B2 (en)
JP2018528171A (en) Process for preparing furan-2,5-dicarboxylic acid
US9365531B2 (en) Method for selectively oxidizing 5-hydroxymethyl furaldehyde
JP2008088134A (en) Furan derivative and its production method
KR101715169B1 (en) Method for preparing 2,5-furandicarboxylic acid
JP2016512826A (en) Method for producing dicarboxylic acids and derivatives from compositions containing ketocarboxylic acids
JP4788022B2 (en) Process for producing aromatic polycarboxylic acid
CN109574814B (en) Method for preparing benzaldehyde and benzyl alcohol by liquid-phase catalytic oxidation of toluene
JPWO2017014214A1 (en) Process for producing 4- (trifluoromethylsulfonyl) phenol compound
WO2007117027A1 (en) Process for the production of organic oxides
CN104829449B (en) Method for synthesizing 2,5-dihydroxy terephthalic acid
JP7007885B2 (en) Method for producing an aldehyde compound having an aromatic ring
JP4352191B2 (en) Production of pyromellitic acid
JP7101361B1 (en) Method for producing flange carboxylic acid
JPH03101672A (en) Preparation of 2,5-furandicarboxyaldehyde
KR100605468B1 (en) Process for the production of anthraquinone
JP4678081B2 (en) Method for producing trimellitic acid
CN115057768A (en) Synthetic method of 3, 5-dichloro-4-methoxybenzoic acid
JP2019142842A (en) Method for producing carbonyl compound
JP2006199627A (en) Method for producing 9-fluorenone-2-carboxylic acid
JPH01294650A (en) Production of ester compound
JP4367591B2 (en) Production of pyromellitic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5252969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250