JP2009235650A - Fibrous carbon-based insulator, resin composite material containing the fibrous carbon-based insulator, and method for manufacturing the fibrous carbon-based insulator - Google Patents

Fibrous carbon-based insulator, resin composite material containing the fibrous carbon-based insulator, and method for manufacturing the fibrous carbon-based insulator Download PDF

Info

Publication number
JP2009235650A
JP2009235650A JP2008086183A JP2008086183A JP2009235650A JP 2009235650 A JP2009235650 A JP 2009235650A JP 2008086183 A JP2008086183 A JP 2008086183A JP 2008086183 A JP2008086183 A JP 2008086183A JP 2009235650 A JP2009235650 A JP 2009235650A
Authority
JP
Japan
Prior art keywords
fibrous carbon
based material
insulator
cationic polymer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086183A
Other languages
Japanese (ja)
Other versions
JP4973569B2 (en
Inventor
Mitsumasa Matsushita
光正 松下
Kenzo Fukumori
健三 福森
Yoshihide Katagiri
好秀 片桐
Hideyuki Nakano
秀之 中野
Takuya Morishita
卓也 森下
Minoru Takahara
稔 高原
Takashi Ota
隆 太田
Masafumi Harada
雅史 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008086183A priority Critical patent/JP4973569B2/en
Publication of JP2009235650A publication Critical patent/JP2009235650A/en
Application granted granted Critical
Publication of JP4973569B2 publication Critical patent/JP4973569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fibrous carbon-based insulator which has excellent dispersibility, and which can enhance insulation property of a resin composite material by being blended into resin and maintain at least thermal conductivity of the resin composite material. <P>SOLUTION: In a fibrous carbon-based insulator which is made of a fibrous carbon-based material and an insulation coating formed on the fibrous carbon-based material, the insulation coating includes a cationic polymer layer containing cationic polymer electrolyte which is formed on the fibrous carbon-based material, and an oxide layer containing metal oxide or silicon oxide which is formed on the cationic polymer layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、繊維状炭素系材料絶縁物およびその製造方法に関し、より詳しくは、繊維状炭素系材料と前記繊維状炭素系材料上に形成された絶縁被膜とを備える繊維状炭素系材料絶縁物に関する。また、本発明は、前記繊維状炭素系材料絶縁物を含む複合材に関する。   The present invention relates to a fibrous carbon-based material insulator and a method for manufacturing the same, and more specifically, a fibrous carbon-based material insulator including a fibrous carbon-based material and an insulating coating formed on the fibrous carbon-based material. About. The present invention also relates to a composite material including the fibrous carbon-based material insulator.

カーボンファイバー(CF)やカーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)といった繊維状炭素系材料は、熱伝導性、機械的特性などに優れ、また貯蔵安定性も有することから注目され、例えば、顕微鏡探針、電界放出ディスプレイ用エミッタ、リチウム二次電池負極などの電極材料、燃料電池の拡散層やセパレーター、電界効果トランジスタ、ドラッグデリバリーシステム用材料などの医療用材料、樹脂やセラミックスとの複合材料、分子貯蔵材料などへの用途展開に向けた開発が進められている。   Fibrous carbon-based materials such as carbon fibers (CF), carbon nanotubes (CNT), and carbon nanofibers (CNF) are attracting attention because they have excellent thermal conductivity, mechanical properties, etc., and also have storage stability. Microscope probes, field emission display emitters, electrode materials such as lithium secondary battery negative electrodes, fuel cell diffusion layers and separators, field effect transistors, drug delivery system materials, and other composite materials with resins and ceramics The development of applications for molecular storage materials is underway.

このような繊維状炭素系材料は、一般に電気伝導性を示すため、そのままでは、絶縁性が要求される用途、例えば、電子デバイス材料などには使用できない。このため、このような繊維状炭素系材料に絶縁性を付与する方法として、特開2007−107151号公報(特許文献1)には、炭素繊維にシリカをコーティングする方法が提案されている。しかしながら、シリカをコーティングした炭素繊維は凝集しやすく、このシリカ被覆炭素繊維を含む樹脂複合材においては十分な絶縁性が発揮されない傾向にある。   Since such a fibrous carbon-based material generally exhibits electrical conductivity, it cannot be used as it is for applications requiring insulation, for example, electronic device materials. For this reason, as a method for imparting insulation to such a fibrous carbon-based material, Japanese Patent Application Laid-Open No. 2007-107151 (Patent Document 1) proposes a method of coating carbon fibers with silica. However, carbon fibers coated with silica are likely to aggregate, and there is a tendency that sufficient insulation is not exhibited in the resin composite material including the silica-coated carbon fibers.

一方、特開2006−49729号公報(特許文献2)には、金属と、この金属の表面にカチオン性ポリマーを含むポリマー層と、このポリマー層表面に負に帯電した金属酸化物を付着させることにより形成された酸化物層とを備え、必要に応じて前記ポリマー層と前記酸化物層とが交互に積層されている被覆金属が開示されている。また、Decher. Gら、Thin Solid Films、1992年、210−211、Part2、831−835頁(非特許文献1)には、基材を、カチオン性電解質ポリマーの水溶液とアニオン性電解質ポリマーの水溶液に交互に浸漬して基板上にカチオン性電解質ポリマーとアニオン性電解質ポリマーとの複合有機薄膜を形成する方法が開示されている。
特開2007−107151号公報 特開2006−49729号公報 Decher G.ら、Thin Solid Films、1992年、210−211、Part2、831−835頁
On the other hand, in Japanese Patent Application Laid-Open No. 2006-49729 (Patent Document 2), a metal, a polymer layer containing a cationic polymer on the surface of the metal, and a negatively charged metal oxide are attached to the surface of the polymer layer. And a coating metal in which the polymer layer and the oxide layer are alternately laminated as necessary. In addition, Decher. G et al., Thin Solid Films, 1992, 210-211, Part 2, pages 831-835 (Non-patent Document 1) describe a substrate as an aqueous solution of a cationic electrolyte polymer and an aqueous solution of an anionic electrolyte polymer. A method of forming a composite organic thin film of a cationic electrolyte polymer and an anionic electrolyte polymer on a substrate by alternately immersing them in a substrate is disclosed.
JP 2007-107151 A JP 2006-49729 A Decher G. et al., Thin Solid Films, 1992, 210-211, Part 2, 831-835.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、分散性に優れ、また、樹脂に配合することによって樹脂複合材の絶縁性を向上させることが可能であり、且つ樹脂複合材の熱伝導性を少なくとも維持することが可能である繊維状炭素系材料絶縁物を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, has excellent dispersibility, and can improve the insulating properties of the resin composite material by blending with the resin. An object of the present invention is to provide a fibrous carbon-based material insulator capable of maintaining at least the thermal conductivity of the material.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、繊維状炭素系材料上に、カチオン性ポリマー層と酸化物層とを順次形成した絶縁被膜を配置することにより、繊維状炭素系材料の凝集を防ぐことができ、さらにこのような絶縁被膜を備える繊維状炭素系材料絶縁物を樹脂に配合することによって樹脂複合材の絶縁性が高まり且つ熱伝導性が少なくとも維持されることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have arranged a fibrous film by disposing an insulating film in which a cationic polymer layer and an oxide layer are sequentially formed on a fibrous carbon-based material. Aggregation of the carbon-based material can be prevented, and further, by adding a fibrous carbon-based material insulator having such an insulating coating to the resin, the insulating property of the resin composite material is enhanced and at least the thermal conductivity is maintained. As a result, the present invention has been completed.

すなわち、本発明の繊維状炭素系材料絶縁物は、繊維状炭素系材料と前記繊維状炭素系材料上に形成された絶縁被膜とを備える繊維状炭素系材料絶縁物であって、前記絶縁被膜が、前記繊維状炭素系材料上に形成されたカチオン性高分子電解質を含むカチオン性ポリマー層と、前記カチオン性ポリマー層上に形成された金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層とを備えるものであることを特徴とするものである。   That is, the fibrous carbon-based material insulator of the present invention is a fibrous carbon-based material insulator comprising a fibrous carbon-based material and an insulating film formed on the fibrous carbon-based material, wherein the insulating film A cationic polymer layer including a cationic polymer electrolyte formed on the fibrous carbon-based material, and at least one of a metal oxide and a silicon oxide formed on the cationic polymer layer. And an oxide layer including the oxide layer.

また、前記絶縁被膜が2層以上のカチオン性高分子電解質を含むカチオン性ポリマー層と2層以上の金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層とを備えるものである場合には、本発明の繊維状炭素系材料絶縁物は、前記カチオン性ポリマー層と前記酸化物層とが交互に配置されていることを特徴とするものである。また、本発明の樹脂複合材は本発明の繊維状炭素系材料絶縁物と樹脂とを含有するものである。   The insulating coating includes a cationic polymer layer containing two or more cationic polymer electrolytes and an oxide layer containing at least one of metal oxides and silicon oxides of two or more layers. In the case, the fibrous carbon-based material insulator of the present invention is characterized in that the cationic polymer layer and the oxide layer are alternately arranged. The resin composite of the present invention contains the fibrous carbon-based material insulator of the present invention and a resin.

本発明の繊維状炭素系材料絶縁物においては、前記絶縁被膜が、前記繊維状炭素系材料上または前記酸化物層上に形成されたアニオン性高分子電解質を含むアニオン性ポリマー層をさらに備えるものであり、前記カチオン性ポリマー層が前記アニオン性ポリマー層上に形成されたものであることが好ましい。また、前記繊維状炭素系材料としてはカーボンナノファイバーおよびカーボンナノチューブのうちの少なくとも1種が好ましい。   In the fibrous carbon-based material insulator of the present invention, the insulating coating further includes an anionic polymer layer containing an anionic polymer electrolyte formed on the fibrous carbon-based material or the oxide layer. It is preferable that the cationic polymer layer is formed on the anionic polymer layer. The fibrous carbon-based material is preferably at least one of carbon nanofibers and carbon nanotubes.

本発明の繊維状炭素系材料絶縁物の製造方法は、カチオン性高分子電解質を含む溶液と繊維状炭素系材料とを混合し、前記繊維状炭素系材料上に前記カチオン性高分子電解質を含むカチオン性ポリマー層を形成する工程と、
前記カチオン性ポリマー層を備える繊維状炭素系材料と、負に帯電した金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む溶液とを混合し、前記カチオン性ポリマー層上に前記金属酸化物および前記ケイ素酸化物のうちの少なくとも1種を含む酸化物層を形成する工程と、
を含むことを特徴とする方法である。
The method for producing a fibrous carbon-based material insulator of the present invention includes mixing a solution containing a cationic polymer electrolyte and a fibrous carbon-based material, and including the cationic polymer electrolyte on the fibrous carbon-based material. Forming a cationic polymer layer;
A fibrous carbon-based material provided with the cationic polymer layer is mixed with a solution containing at least one of a negatively charged metal oxide and silicon oxide, and the metal oxide is formed on the cationic polymer layer. And forming an oxide layer containing at least one of the silicon oxides;
It is the method characterized by including.

また、本発明の繊維状炭素系材料絶縁物の製造方法においては、金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層を備える繊維状炭素系材料絶縁物と、カチオン性高分子電解質を含む溶液とを混合し、前記酸化物層上に前記カチオン性高分子電解質を含むカチオン性ポリマー層を形成する工程と、
前記工程で形成したカチオン性ポリマー層を備える繊維状炭素系材料絶縁物と、負に帯電した金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む溶液とを混合し、前記カチオン性ポリマー層上に前記金属酸化物および前記ケイ素酸化物のうちの少なくとも1種を含む酸化物層を形成する工程と、
がさらに含まれることが好ましい。
In the method for producing a fibrous carbon-based material insulator of the present invention, a fibrous carbon-based material insulator including an oxide layer containing at least one of a metal oxide and a silicon oxide, Mixing a solution containing a molecular electrolyte and forming a cationic polymer layer containing the cationic polymer electrolyte on the oxide layer;
Mixing a fibrous carbon-based material insulator provided with the cationic polymer layer formed in the above step and a solution containing at least one of a negatively charged metal oxide and silicon oxide, and the cationic polymer layer Forming an oxide layer containing at least one of the metal oxide and the silicon oxide thereon;
Is preferably further included.

さらに、本発明の繊維状炭素系材料絶縁物の製造方法においては、前記カチオン性ポリマー層形成工程の前に、前記繊維状炭素系材料または前記酸化物層を備える繊維状炭素系材料絶縁物と、アニオン性高分子電解質を含む溶液とを混合し、該繊維状炭素系材料上または該酸化物層上に前記アニオン性高分子電解質を含むアニオン性ポリマー層を形成する工程を含むことが好ましい。   Furthermore, in the method for producing a fibrous carbon-based material insulator of the present invention, before the cationic polymer layer forming step, a fibrous carbon-based material insulator provided with the fibrous carbon-based material or the oxide layer; It is preferable to include a step of mixing a solution containing an anionic polymer electrolyte and forming an anionic polymer layer containing the anionic polymer electrolyte on the fibrous carbonaceous material or the oxide layer.

なお、本発明の繊維状炭素系材料絶縁物を配合することによって樹脂複合体の絶縁性が高くなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の繊維状炭素系材料絶縁物の製造方法においては、電荷を利用してカチオン性ポリマー層と酸化物層とを備える絶縁被膜(好ましくは、さらにアニオン性ポリマー層を備えるもの)を繊維状炭素系材料上に形成するため、単層および単分子膜といった均質な絶縁被膜を形成することが可能であり、さらに絶縁処理回数を調整することによる膜厚制御が可能である。その結果、繊維状炭素系材料絶縁物の絶縁性を容易に確保することができるものと推察される。   The reason why the insulating property of the resin composite is increased by blending the fibrous carbon-based material insulator of the present invention is not necessarily clear, but the present inventors speculate as follows. That is, in the method for producing a fibrous carbon-based material insulator of the present invention, an insulating coating (preferably further comprising an anionic polymer layer) comprising a cationic polymer layer and an oxide layer using electric charges is used. Since it is formed on the fibrous carbon-based material, it is possible to form a uniform insulating film such as a single layer and a monomolecular film, and it is possible to control the film thickness by adjusting the number of insulating treatments. As a result, it is presumed that the insulating property of the fibrous carbon-based material insulator can be easily secured.

また、本発明の繊維状炭素系材料絶縁物は分散性に優れているため、樹脂複合体中に均一に分散し、樹脂複合体全体にわたって絶縁性が発現する。このため、本発明の樹脂複合体の絶縁性が高くなるものと推察される。   In addition, since the fibrous carbon-based material insulator of the present invention is excellent in dispersibility, it is uniformly dispersed in the resin composite, and insulation is exhibited throughout the resin composite. For this reason, it is guessed that the insulation of the resin composite of this invention becomes high.

本発明によれば、分散性に優れた繊維状炭素系材料絶縁物を得ることができ、また、これを樹脂に配合することによって樹脂複合材の絶縁性を向上させることが可能となり、さらに樹脂複合材の熱伝導性を少なくとも維持することが可能となる。   According to the present invention, it is possible to obtain a fibrous carbon-based material insulator excellent in dispersibility, and it is possible to improve the insulating properties of the resin composite by blending it with the resin. It becomes possible to maintain at least the thermal conductivity of the composite material.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

<繊維状炭素系材料絶縁物>
先ず、本発明の繊維状炭素系材料絶縁物について説明する。本発明の繊維状炭素系材料絶縁物は、繊維状炭素系材料と前記繊維状炭素系材料上に形成された絶縁被膜とを備えるものであり、前記絶縁被膜は、前記繊維状炭素系材料上に形成されたカチオン性高分子電解質を含むカチオン性ポリマー層と、前記カチオン性ポリマー層上に形成された金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層とを備えることを特徴とするものである。
<Fibrous carbon-based material insulator>
First, the fibrous carbon-based material insulator of the present invention will be described. The fibrous carbon-based material insulator of the present invention comprises a fibrous carbon-based material and an insulating film formed on the fibrous carbon-based material, and the insulating film is formed on the fibrous carbon-based material. A cationic polymer layer containing a cationic polyelectrolyte formed on the surface, and an oxide layer containing at least one of a metal oxide and a silicon oxide formed on the cationic polymer layer. It is a feature.

また、前記絶縁被膜が2層以上のカチオン性高分子電解質を含むカチオン性ポリマー層と2層以上の金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層とを備えるものである場合には、本発明の繊維状炭素系材料絶縁物は、前記カチオン性ポリマー層と前記酸化物層は交互に配置されていることを特徴とするものである。   The insulating coating includes a cationic polymer layer containing two or more cationic polymer electrolytes and an oxide layer containing at least one of metal oxides and silicon oxides of two or more layers. In some cases, the fibrous carbon-based material insulator of the present invention is characterized in that the cationic polymer layer and the oxide layer are alternately arranged.

さらに、本発明の繊維状炭素系材料絶縁物においては、前記絶縁被膜が、前記繊維状炭素系材料上または前記酸化物層上に形成されたアニオン性高分子電解質を含むアニオン性ポリマー層をさらに備えるものであり、前記カチオン性ポリマー層が前記アニオン性ポリマー層上に形成されたものであることが好ましい。   Furthermore, in the fibrous carbon-based material insulator of the present invention, the insulating coating further includes an anionic polymer layer containing an anionic polymer electrolyte formed on the fibrous carbon-based material or the oxide layer. It is preferable that the cationic polymer layer is formed on the anionic polymer layer.

(繊維状炭素系材料)
本発明に用いられる繊維状炭素系材料としては、カーボンファイバー系材料や、カーボンナノファイバー、カーボンナノホーン、カーボンナノコーン、カーボンナノチューブ、カーボンナノコイル、フラーレンおよびこれらの誘導体といったカーボンナノ構造体などが挙げられる。これらの繊維状炭素系材料は1種単独で用いても2種以上を併用してもよい。また、これらのうち、熱伝導性の向上および機械強度などの力学特性の向上という観点から、カーボンナノファイバーおよびカーボンナノチューブが好ましい。
(Fibrous carbon material)
Examples of the fibrous carbon-based material used in the present invention include carbon fiber-based materials and carbon nanostructures such as carbon nanofibers, carbon nanohorns, carbon nanocones, carbon nanotubes, carbon nanocoils, fullerenes, and derivatives thereof. It is done. These fibrous carbonaceous materials may be used alone or in combination of two or more. Of these, carbon nanofibers and carbon nanotubes are preferred from the viewpoint of improving thermal conductivity and mechanical properties such as mechanical strength.

また、繊維状炭素系材料としてカーボンナノファイバーおよび/またはカーボンナノチューブを用いる場合には、コスト面から多層カーボンナノファイバーおよび/または多層カーボンナノチューブを用いることが好ましい。   In addition, when carbon nanofibers and / or carbon nanotubes are used as the fibrous carbon-based material, it is preferable to use multi-walled carbon nanofibers and / or multi-walled carbon nanotubes from the viewpoint of cost.

前記繊維状炭素系材料の平均直径は特に制限されないが、前記繊維状炭素系材料としてカーボンファイバー系材料を用いる場合には30μm以下が好ましく、20μm以下がより好ましく、15μm以下が特に好ましい。また、前記繊維状炭素系材料としてカーボンナノ構造体を用いる場合には、500nm以下が好ましく、250nm以下がより好ましく、150nm以下が特に好ましい。平均直径が前記上限を超えると樹脂複合材の力学特性、熱伝導性および絶縁性が十分に向上しない傾向にある。なお、繊維状炭素系材料の平均直径の下限値は特に制限されないが、均質な絶縁層を形成するためには0.8nmが好ましく、1.0nmがより好ましい。   The average diameter of the fibrous carbon-based material is not particularly limited, but when a carbon fiber-based material is used as the fibrous carbon-based material, it is preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less. Moreover, when using a carbon nanostructure as the said fibrous carbonaceous material, 500 nm or less is preferable, 250 nm or less is more preferable, 150 nm or less is especially preferable. If the average diameter exceeds the upper limit, the mechanical properties, thermal conductivity and insulation properties of the resin composite material tend not to be sufficiently improved. The lower limit value of the average diameter of the fibrous carbonaceous material is not particularly limited, but is preferably 0.8 nm and more preferably 1.0 nm in order to form a homogeneous insulating layer.

前記繊維状炭素系材料のアスペクト比(長さ/直径)は特に制限されないが、5以上が好ましく、10以上がより好ましく、20以上がさらに好ましくは、50以上が特に好ましく、100以上が最も好ましい。アスペクト比が前記下限未満になると樹脂複合材の力学特性および熱伝導性が十分に向上しない傾向にある。   The aspect ratio (length / diameter) of the fibrous carbon-based material is not particularly limited, but is preferably 5 or more, more preferably 10 or more, still more preferably 20 or more, particularly preferably 50 or more, and most preferably 100 or more. . If the aspect ratio is less than the lower limit, the mechanical properties and thermal conductivity of the resin composite material tend not to be sufficiently improved.

本発明においては、ラマン分光光度計で測定して得られる繊維状炭素系材料のラマンスペクトルのピークのうち、グラフェン構造での炭素原子のずれ振動に起因する約1585cm−1付近に観察されるGバンドと、グラフェン構造にダングリングボンドのような欠陥があると観測される約1350cm−1付近に観察されるDバンドの比(G/D)は特に制限されないが、高熱伝導樹脂材料など高熱伝導性が要求される用途においては、1.0以上が好ましく、3.0以上がより好ましく、5.0以上が特に好ましい。G/D値が前記下限未満になると熱伝導性が十分に向上しない傾向にある。なお、G/D値が大きくなりすぎると繊維状炭素系材料の表面活性が低下しやすく、カチオン性高分子電解質および/またはアニオン性高分子電解質の被覆量が減少しやすい傾向にあるため、G/D値の上限は20が好ましい。 In the present invention, among the peaks of the Raman spectrum of the fibrous carbon-based material obtained by measurement with a Raman spectrophotometer, G observed in the vicinity of about 1585 cm −1 due to the displacement vibration of carbon atoms in the graphene structure. The ratio of the band and the D band (G / D) observed in the vicinity of about 1350 cm −1, where a defect such as a dangling bond is observed in the graphene structure, is not particularly limited. In applications where properties are required, 1.0 or higher is preferable, 3.0 or higher is more preferable, and 5.0 or higher is particularly preferable. When the G / D value is less than the lower limit, the thermal conductivity tends not to be sufficiently improved. If the G / D value becomes too large, the surface activity of the fibrous carbon-based material tends to decrease, and the coating amount of the cationic polymer electrolyte and / or anionic polymer electrolyte tends to decrease. The upper limit of the / D value is preferably 20.

本発明に用いられる繊維状炭素系材料は従来公知の方法により製造することができる。例えば、カーボンナノ構造体の場合には、レーザーアブレーション法、アーク放電法、化学気相成長法(CVD法)などの従来公知の製造方法を用途に応じて適宜選択することにより製造できるが、本発明に用いられるカーボンナノ構造体はこれらの方法により製造されたものに限定されるものではない。   The fibrous carbon-based material used in the present invention can be produced by a conventionally known method. For example, in the case of a carbon nanostructure, it can be produced by appropriately selecting a conventionally known production method such as a laser ablation method, arc discharge method, chemical vapor deposition method (CVD method) according to the application. The carbon nanostructure used in the invention is not limited to those produced by these methods.

また、本発明に用いられる繊維状炭素系材料は、通常、ファイバーが絡みあった凝集状態またはπ−πスタッキングにより凝集した状態のものであるため、超音波処理、ホモジナイザーによる処理、グラインダーミルやビーズミルによる処理、衝突混合処理などにより予め凝集を解砕することが好ましい。これにより、分散性に優れた繊維状炭素系材料絶縁物を得ることができる。このような凝集の解砕は、アスペクト比が20以上、および/または、直径が200nm以下の繊維状炭素系材料を使用する場合に特に有効である。   Further, since the fibrous carbon-based material used in the present invention is usually in an aggregated state in which fibers are entangled or in an aggregated state by π-π stacking, ultrasonic treatment, treatment with a homogenizer, grinder mill or bead mill It is preferable to disintegrate the agglomeration in advance by the process of the above, the collision mixing process or the like. Thereby, the fibrous carbonaceous material insulator excellent in dispersibility can be obtained. Such agglomeration crushing is particularly effective when a fibrous carbon-based material having an aspect ratio of 20 or more and / or a diameter of 200 nm or less is used.

また、本発明においては、繊維状炭素系材料の溶媒への分散性を向上させるために、前記繊維状炭素系材料の表面を酸化処理して繊維状炭素系材料の表面に官能基を形成させてもよい。前記酸化処理としては、発煙硝酸や発煙硫酸などを用いた化学的酸化、電解酸化、熱処理による空気酸化、プラズマ処理による酸化などが挙げられる。   In the present invention, in order to improve the dispersibility of the fibrous carbon-based material in the solvent, the surface of the fibrous carbon-based material is oxidized to form a functional group on the surface of the fibrous carbon-based material. May be. Examples of the oxidation treatment include chemical oxidation using fuming nitric acid or fuming sulfuric acid, electrolytic oxidation, air oxidation by heat treatment, oxidation by plasma treatment, and the like.

(アニオン性高分子電解質)
本発明の繊維状炭素系材料絶縁物においては、必要に応じてアニオン性高分子電解質などの両親媒性化合物を付着(吸着)させて前記繊維状炭素系材料の表面を負に帯電させることが好ましい。また、後述するようにカチオン性ポリマー層と酸化物層とを繰り返して形成する場合においても、必要に応じて繊維状炭素系材料絶縁物の表面(酸化物層の表面)にアニオン性高分子電解質を付着させることが好ましい。このようにアニオン性高分子電解質を付着させることによって、繊維状炭素系材料および繊維状炭素系材料絶縁物の分散性を向上させたり、カチオン性高分子電解質の被覆量を増大させたりすることが可能となる。
(Anionic polymer electrolyte)
In the fibrous carbon-based material insulator of the present invention, the surface of the fibrous carbon-based material may be negatively charged by adhering (adsorbing) an amphiphilic compound such as an anionic polymer electrolyte as necessary. preferable. In addition, when the cationic polymer layer and the oxide layer are repeatedly formed as described later, an anionic polymer electrolyte is formed on the surface of the fibrous carbon-based material insulator (the surface of the oxide layer) as necessary. Is preferably attached. By attaching the anionic polymer electrolyte in this way, the dispersibility of the fibrous carbon-based material and the fibrous carbon-based material insulator can be improved, or the coating amount of the cationic polymer electrolyte can be increased. It becomes possible.

前記アニオン性高分子電解質としては、ポリ(4−スチレンスルフォン酸ナトリウム)、カルボキシメチルセルロースナトリウム、アニオン化ポリビニルアルコール、ポリビニルフォスフェート、スチレンスルホン酸−マレイン酸コポリマー、アクリル酸アミド・アクリル酸ナトリウム共重合物などが挙げられる。これらのアニオン性高分子電解質は1種単独で用いても2種以上を併用してもよい。本発明においては、アニオン性高分子電解質として、π−πスタッキングなどの相互作用により繊維状炭素系材料のグラフェン構造に付着(吸着)する芳香環やマレイミド構造などを有する化合物を用いることは、アニオン性高分子電解質の被覆量の増大が期待できる点で好ましい。   Examples of the anionic polymer electrolyte include poly (4-styrene sodium sulfonate), sodium carboxymethyl cellulose, anionized polyvinyl alcohol, polyvinyl phosphate, styrene sulfonic acid-maleic acid copolymer, acrylic acid amide / sodium acrylate copolymer Etc. These anionic polymer electrolytes may be used alone or in combination of two or more. In the present invention, as an anionic polymer electrolyte, use of a compound having an aromatic ring or a maleimide structure that adheres (adsorbs) to the graphene structure of the fibrous carbon-based material by an interaction such as π-π stacking From the viewpoint that an increase in the coating amount of the conductive polymer electrolyte can be expected.

(カチオン性高分子電解質)
本発明に用いられるカチオン性高分子電解質は、容易にカチオンを生成することが可能であり、且つ前記繊維状炭素系材料またはその絶縁物に吸着可能な高分子または配位可能な官能基を有する高分子である。例えば、ポリジアリルジメチルアンモニウム塩酸塩、ポリエチルイミン、塩酸ポリアリルアミンなどが挙げられる。これらのカチオン性高分子電解質は1種単独で用いても2種以上を併用してもよい。
(Cationic polymer electrolyte)
The cationic polyelectrolyte used in the present invention can easily generate a cation, and has a polymer that can be adsorbed on the fibrous carbon-based material or its insulator, or a functional group that can be coordinated. It is a polymer. Examples thereof include polydiallyldimethylammonium hydrochloride, polyethylimine, and polyallylamine hydrochloride. These cationic polymer electrolytes may be used alone or in combination of two or more.

(金属酸化物およびケイ素酸化物)
本発明に用いられる金属酸化物およびケイ素酸化物(以下、これらをまとめて「金属酸化物類」という)は負に帯電したものであるが、その形状はシート状、微粒子状のいずれでもよく、これらの混合物であってもよい。シート状の金属酸化物類を用いた場合には、極めて薄く、均一な酸化物層を形成することが可能である。一方、微粒子状の金属酸化物類を用いた場合には、相対的に少ない絶縁処理回数で比較的厚い酸化物層を形成することができる。また、前記金属酸化物およびケイ素酸化物は1種単独で用いても2種以上を併用してもよい。
(Metal oxide and silicon oxide)
The metal oxide and silicon oxide used in the present invention (hereinafter collectively referred to as “metal oxides”) are negatively charged, but the shape thereof may be either a sheet or a fine particle, A mixture thereof may be used. When sheet-like metal oxides are used, an extremely thin and uniform oxide layer can be formed. On the other hand, when fine metal oxides are used, a relatively thick oxide layer can be formed with a relatively small number of insulation treatments. Moreover, the said metal oxide and silicon oxide may be used individually by 1 type, or may use 2 or more types together.

前記金属酸化物類の大きさは、溶媒中に分散させたときに自然沈降せず、且つチンダル現象を示す大きさ以下、すなわちコロイド状態を維持できる大きさ以下が好ましい。これにより薄く且つ均一な酸化物層を形成することが可能となる。このような金属酸化物類の具体的な大きさとしては、シート状の場合には、その厚さはナノメートルオーダであることが好ましく、0.7nm以上5nm以下がより好ましい。また、シート状金属酸化物類の横方向の長さは2μm以下が好ましく、500nm以下がより好ましく、100nm以下が特に好ましい。一方、微粒子状の場合には、その平均粒子径は2nm以上1μm以下が好ましく、4nm以上100nm以下がより好ましく、4nm以上20nm以下が特に好ましい。   The size of the metal oxides is preferably not more than a size that does not spontaneously settle when dispersed in a solvent and exhibits a Tyndall phenomenon, that is, a size that can maintain a colloidal state. Thereby, a thin and uniform oxide layer can be formed. As a specific size of such metal oxides, in the case of a sheet form, the thickness is preferably on the order of nanometers, and more preferably 0.7 nm or more and 5 nm or less. Further, the length in the horizontal direction of the sheet metal oxides is preferably 2 μm or less, more preferably 500 nm or less, and particularly preferably 100 nm or less. On the other hand, in the case of fine particles, the average particle diameter is preferably 2 nm or more and 1 μm or less, more preferably 4 nm or more and 100 nm or less, and particularly preferably 4 nm or more and 20 nm or less.

本発明に用いられるナノメートルオーダのシート状金属酸化物類(金属酸化物類ナノシート)としては、層状化合物と塩酸とを反応させ、これにより得られた水素型層状化合物をサイズの大きなイオンを含む溶液に加えて溶液を振とうし、ホスト層をはく離したもの、および層状粘土鉱物が挙げられる。これらのうち、層状粘土鉱物は、簡便に金属酸化物類ナノシートが得られる点で好ましい。具体的な層状粘土鉱物としては、モンモリロナイト、スメクタイト、合成サポナイトなどの膨潤性粘土鉱物が挙げられる。一方、層状化合物をはく離したナノシートとしては、層状シリコン化合物(CaSi、YbSiなど)を濃塩酸で処理して得られたシリカナノシート、層状チタン酸化物を濃塩酸で処理して得られたチタニアナノシートなどが挙がられる。 As nanometer-order sheet metal oxides (metal oxide nanosheets) used in the present invention, a layered compound and hydrochloric acid are reacted, and the resulting hydrogen-type layered compound contains large-sized ions. The solution is shaken in addition to the solution and the host layer is peeled off, and layered clay minerals. Among these, the layered clay mineral is preferable in that a metal oxide nanosheet can be easily obtained. Specific examples of the layered clay mineral include swelling clay minerals such as montmorillonite, smectite, and synthetic saponite. On the other hand, the peeled nanosheet layered compound was obtained layered silicon compound (CaSi 2, YbSi 2, etc.) silica nano sheet obtained was treated with concentrated hydrochloric acid, the layered titanic oxide was treated with concentrated hydrochloric acid titania Nanosheets are listed.

前記微粒子状の金属酸化物類としては、金属化合物、ケイ素化合物または無機塩化合物の加水分解などにより得られるもの、例えば、コロイダルシリカなどが挙げられる。   Examples of the fine metal oxides include those obtained by hydrolysis of metal compounds, silicon compounds, or inorganic salt compounds, such as colloidal silica.

(繊維状炭素系材料絶縁物の特性)
本発明の繊維状炭素系材料絶縁物は、繊維状炭素系材料とその上に形成された絶縁被膜とを備えるものであり、前記絶縁被膜は、前記繊維状炭素系材料上に形成されたカチオン性ポリマー層と、前記カチオン性ポリマー層上に形成された酸化物層とを備えるものであり、好ましくは、前記繊維状炭素系材料上に形成されたアニオン性ポリマー層と、前記アニオン性ポリマー層上に形成されたカチオン性ポリマー層と、前記カチオン性ポリマー層上に形成された酸化物層とを備えるものである。
(Characteristics of fibrous carbon-based material insulator)
The fibrous carbon-based material insulator of the present invention includes a fibrous carbon-based material and an insulating coating formed thereon, and the insulating coating is a cation formed on the fibrous carbon-based material. An anionic polymer layer formed on the fibrous carbon-based material, and an anionic polymer layer. A cationic polymer layer formed thereon and an oxide layer formed on the cationic polymer layer.

また、本発明の繊維状炭素系材料絶縁物においては、前記絶縁被膜が、2層以上のカチオン性ポリマー層と2層以上の酸化物層とを備えるものである場合には、前記カチオン性ポリマー層と前記酸化物層とは交互に配置され、さらに必要に応じて前記アニオン性ポリマー層が前記酸化物層上に配置され、このアニオン性ポリマー層上に前記カチオン性ポリマー層が配置されていることが好ましい。   In the fibrous carbon-based material insulator of the present invention, when the insulating coating includes two or more cationic polymer layers and two or more oxide layers, the cationic polymer Layers and the oxide layers are alternately arranged, and if necessary, the anionic polymer layer is disposed on the oxide layer, and the cationic polymer layer is disposed on the anionic polymer layer. It is preferable.

本発明の繊維状炭素系材料絶縁物において、繊維状炭素系材料を被覆するカチオン性高分子電解質の割合は、繊維状炭素系材料絶縁物100質量%に対して0.01質量%以上50質量%以下が好ましく、0.1質量%以上20質量%以下がより好ましい。カチオン性高分子電解質の被覆割合が前記下限未満になると前記カチオン性ポリマー層上に十分に前記酸化物層が形成されず、繊維状炭素系材料絶縁物の絶縁性が低下しやすい傾向にあり、他方、前記上限を超えると繊維状炭素系材料の特性を損ないやすい傾向にある。なお、カチオン性高分子電解質の被覆割合は、カチオン性高分子電解質の熱分解温度に基づいて熱重量分析における質量減少より求めることができる。   In the fibrous carbon-based material insulator of the present invention, the proportion of the cationic polymer electrolyte covering the fibrous carbon-based material is 0.01% by mass or more and 50% by mass with respect to 100% by mass of the fibrous carbon-based material insulator. % Or less is preferable, and 0.1% by mass or more and 20% by mass or less is more preferable. When the coating ratio of the cationic polymer electrolyte is less than the lower limit, the oxide layer is not sufficiently formed on the cationic polymer layer, and the insulating property of the fibrous carbon-based material insulator tends to decrease, On the other hand, when the upper limit is exceeded, the characteristics of the fibrous carbonaceous material tend to be impaired. The covering ratio of the cationic polymer electrolyte can be determined from the mass reduction in thermogravimetric analysis based on the thermal decomposition temperature of the cationic polymer electrolyte.

また、本発明の繊維状炭素系材料絶縁物において、繊維状炭素系材料を被覆する金属酸化物類の割合は、繊維状炭素系材料絶縁物100質量%に対して0.01質量%以上80質量%以下が好ましく、0.1質量%以上65質量%以下がより好ましく、1.0質量%以上50質量%以下がさらに好ましい。金属酸化物類の被覆割合が前記下限未満になると十分な酸化物層が形成されず、繊維状炭素系材料絶縁物の絶縁性が低下しやすい傾向にあり、他方、前記上限を超えると繊維状炭素系材料の特性を損ないやすい傾向にある。なお、金属酸化物類の被覆割合は、蛍光X線分析、誘導結合プラズマ励起発光分光分析、誘導結合プラズマ励起質量分析などにより求めることができ、また、熱重量分析おける残渣の割合によっても求めることができる。   In the fibrous carbon-based material insulator of the present invention, the ratio of metal oxides covering the fibrous carbon-based material is 0.01% by mass or more and 80% by mass with respect to 100% by mass of the fibrous carbon-based material insulator. % By mass or less is preferable, 0.1% by mass or more and 65% by mass or less is more preferable, and 1.0% by mass or more and 50% by mass or less is more preferable. When the coating ratio of the metal oxide is less than the lower limit, a sufficient oxide layer is not formed, and the insulating property of the fibrous carbon-based material insulator tends to be lowered. It tends to impair the characteristics of carbon-based materials. The coating ratio of metal oxides can be determined by fluorescent X-ray analysis, inductively coupled plasma excitation emission spectrometry, inductively coupled plasma excitation mass spectrometry, etc., and also by the ratio of the residue in thermogravimetric analysis. Can do.

さらに、本発明の繊維状炭素系材料絶縁物において、繊維状炭素系材料を被覆するアニオン性高分子電解質の割合は、繊維状炭素系材料絶縁物100質量%に対して0.01質量%以上50質量%以下が好ましく、0.1質量%以上20質量%以下がより好ましい。アニオン性高分子電解質の被覆割合が前記下限未満になるとアニオン性高分子電解質による効果が十分に発現されない傾向にあり、他方、前記上限を超えると繊維状炭素系材料の特性が損なわれやすい傾向にある。   Furthermore, in the fibrous carbon-based material insulator of the present invention, the proportion of the anionic polymer electrolyte covering the fibrous carbon-based material is 0.01% by mass or more with respect to 100% by mass of the fibrous carbon-based material insulator. 50 mass% or less is preferable and 0.1 mass% or more and 20 mass% or less are more preferable. If the coating ratio of the anionic polymer electrolyte is less than the lower limit, the effect of the anionic polymer electrolyte tends to be insufficiently expressed. On the other hand, if the upper limit is exceeded, the characteristics of the fibrous carbon-based material tend to be impaired. is there.

また、本発明の繊維状炭素系材料絶縁物において、アニオン性高分子電解質とカチオン性高分子電解質との被覆量の合計は、金属酸化物類の被覆量100質量部に対して0.1質量部以上50質量部以下が好ましく、0.5質量部以上40質量部以下がより好ましく、2.0質量部以上25質量部以下が特に好ましい。アニオン性およびカチオン性高分子電解質の被覆量が前記下限未満になると繊維状炭素系材料を被覆する金属酸化物類の絶対量が少ないため繊維状炭素系材料絶縁物の絶縁性が低下しやすい傾向にあり、他方、前記上限を超えると金属酸化物類の絶縁性が高分子電解質により阻害されて繊維状炭素系材料絶縁物の絶縁性が低下しやすい傾向にある。   Further, in the fibrous carbon-based material insulator of the present invention, the total coating amount of the anionic polymer electrolyte and the cationic polymer electrolyte is 0.1 mass with respect to 100 mass parts of the coating amount of the metal oxides. To 50 parts by mass, more preferably 0.5 to 40 parts by mass, and particularly preferably 2.0 to 25 parts by mass. If the coating amount of the anionic and cationic polymer electrolytes is less than the lower limit, the insulating property of the fibrous carbon-based material insulator tends to decrease because the absolute amount of metal oxides covering the fibrous carbon-based material is small. On the other hand, if the upper limit is exceeded, the insulating property of the metal oxides is hindered by the polymer electrolyte, and the insulating property of the fibrous carbon-based material insulator tends to be lowered.

本発明の繊維状炭素系材料絶縁物において、前記絶縁被膜の厚さは0.8nm以上1000nm以下が好ましく、0.8nm以上200nm以下がより好ましく、繊維状炭素系材料の直径以下がさらに好ましい。絶縁被膜の厚さが前記下限未満になると樹脂複合材の絶縁性が十分に向上しない傾向にあり、他方、前記上限を超えると繊維状炭素系材料の特性が損なわれやすい傾向にある。   In the fibrous carbon-based material insulator of the present invention, the thickness of the insulating coating is preferably 0.8 nm or more and 1000 nm or less, more preferably 0.8 nm or more and 200 nm or less, and even more preferably the diameter of the fibrous carbon-based material. If the thickness of the insulating coating is less than the lower limit, the insulating properties of the resin composite material tend not to be sufficiently improved. On the other hand, if the thickness exceeds the upper limit, the characteristics of the fibrous carbon-based material tend to be impaired.

本発明のように、酸化物層とカチオン性ポリマー層とを備える絶縁被膜(好ましくは、さらにアニオン性ポリマー層を備えるもの)を繊維状炭素系材料上に配置することにより、得られる繊維状炭素系材料絶縁物の表面抵抗率は、絶縁被膜のない繊維状炭素系材料の表面抵抗率の好ましくは10倍以上、より好ましくは100倍以上、特に好ましくは1000倍以上となる。   As in the present invention, the fibrous carbon obtained by disposing an insulating coating (preferably further comprising an anionic polymer layer) comprising an oxide layer and a cationic polymer layer on the fibrous carbonaceous material. The surface resistivity of the system material insulator is preferably 10 times or more, more preferably 100 times or more, and particularly preferably 1000 times or more of the surface resistivity of the fibrous carbon-based material having no insulating coating.

このような本発明の繊維状炭素系材料絶縁物は、通常そのまま使用されるが、熱処理などを施してアニオン性ポリマー層およびカチオン性ポリマー層を熱分解などにより除去または無機化して使用することもできる。   Such a fibrous carbon-based material insulator of the present invention is usually used as it is, but it can also be used after heat treatment or the like to remove or mineralize the anionic polymer layer and the cationic polymer layer by pyrolysis or the like. it can.

<繊維状炭素系材料絶縁物の製造方法>
次に、本発明の繊維状炭素系材料絶縁物の製造方法について説明する。本発明の繊維状炭素系材料絶縁物の製造方法は、前記繊維状炭素系材料上に前記カチオン性高分子電解質を含むカチオン性ポリマー層を形成する工程(カチオン処理工程)と、前記カチオン性ポリマー層上に前記金属酸化物類を含む酸化物層を形成する工程(酸化物処理工程)とを含む方法である。
<Method for producing fibrous carbon-based material insulator>
Next, the manufacturing method of the fibrous carbonaceous material insulator of this invention is demonstrated. The method for producing a fibrous carbon-based material insulator of the present invention includes a step of forming a cationic polymer layer containing the cationic polymer electrolyte on the fibrous carbon-based material (cation treatment step), and the cationic polymer. Forming an oxide layer containing the metal oxides on the layer (oxide treatment step).

また、本発明の繊維状炭素系材料絶縁物の製造方法においては、前記製造方法により製造されたカチオン性ポリマー層と酸化物層とを備える繊維状炭素系材料絶縁物上に前記カチオン性高分子電解質を含むカチオン性ポリマー層を形成する工程(カチオン処理工程)と、該カチオン性ポリマー層上に前記金属酸化物類を含む酸化物層を形成する工程(酸化物処理工程)とをさらに含んでいてもよい。   In the method for producing a fibrous carbon-based material insulator of the present invention, the cationic polymer is formed on the fibrous carbon-based material insulator comprising a cationic polymer layer and an oxide layer produced by the production method. A step of forming a cationic polymer layer containing an electrolyte (cation treatment step), and a step of forming an oxide layer containing the metal oxides on the cationic polymer layer (oxide treatment step). May be.

本発明の製造方法が2工程以上のカチオン性ポリマー層形成工程と2工程以上の酸化物層形成工程とを含むものである場合には、本発明の繊維状炭素系材料絶縁物の製造方法は、前記カチオン性ポリマー層形成と前記酸化物層形成とを交互に実施する方法、いわゆる交互吸着法であることが好ましい。   When the production method of the present invention includes a cationic polymer layer formation step of two or more steps and an oxide layer formation step of two or more steps, the production method of the fibrous carbon-based material insulator of the present invention includes: A method in which the cationic polymer layer formation and the oxide layer formation are alternately performed, that is, a so-called alternate adsorption method is preferable.

また、本発明においては、前記カチオン性ポリマー層形成工程の前に、繊維状炭素系材料またはその絶縁物上にアニオン性高分子電解質を含むアニオン性ポリマー層を形成する工程(アニオン処理工程)を含むことが好ましい。さらに、最初のカチオン性ポリマー層形成工程の前においては繊維状炭素系材料に前記酸化処理を施してもよい。これらにより前記繊維状炭素系材料またはその絶縁物の分散性を向上させたり、カチオン性高分子電解質の被覆量を増加させることが可能となる。   Further, in the present invention, before the cationic polymer layer forming step, a step of forming an anionic polymer layer containing an anionic polymer electrolyte on the fibrous carbonaceous material or its insulator (anion treatment step) is performed. It is preferable to include. Furthermore, before the first cationic polymer layer forming step, the fibrous carbon-based material may be subjected to the oxidation treatment. By these, it becomes possible to improve the dispersibility of the fibrous carbon-based material or its insulator, and to increase the coating amount of the cationic polymer electrolyte.

(酸化処理工程)
本発明にかかる酸化処理工程は、繊維状炭素系材料に、発煙硝酸や発煙硫酸などを用いた化学的酸化、電解酸化、または熱処理による空気酸化、プラズマ処理による酸化といった酸化処理を施す工程である。これにより繊維状炭素系材料の表面に官能基が生成し、この官能基とカチオン性高分子電解質とを反応または配位させることによりカチオン性高分子電解質が脱離しにくい繊維状炭素系材料絶縁物が得られ、カチオン性高分子電解質の被覆量を増加させることが可能となる。
(Oxidation process)
The oxidation treatment step according to the present invention is a step of subjecting the fibrous carbon-based material to an oxidation treatment such as chemical oxidation using fuming nitric acid or fuming sulfuric acid, electrolytic oxidation, air oxidation by heat treatment, or oxidation by plasma treatment. . As a result, a functional group is generated on the surface of the fibrous carbon-based material, and the functional carbon and the cationic polymer electrolyte react or coordinate with each other so that the cationic polymer electrolyte is not easily detached from the fibrous carbon-based material insulator. It is possible to increase the coating amount of the cationic polymer electrolyte.

(アニオン処理工程)
本発明にかかるアニオン処理工程は、繊維状炭素系材料またはその絶縁物と、アニオン性高分子電解質を含む溶液とを混合し、繊維状炭素系材料またはその絶縁物(具体的には、その酸化物層)上にアニオン性高分子電解質を付着(吸着)させてアニオン性ポリマー層を形成する工程である。これにより繊維状炭素系材料またはその絶縁物の表面が負に帯電し、カチオン性高分子電解質の被覆量を増加させることが可能となる。
(Anion treatment process)
In the anion treatment step according to the present invention, a fibrous carbon-based material or an insulator thereof and a solution containing an anionic polymer electrolyte are mixed, and the fibrous carbon-based material or an insulator thereof (specifically, the oxidation thereof) This is a step of forming an anionic polymer layer by adhering (adsorbing) an anionic polymer electrolyte onto the material layer. As a result, the surface of the fibrous carbon-based material or its insulator is negatively charged, and it becomes possible to increase the coating amount of the cationic polymer electrolyte.

前記混合後の分散液中の繊維状炭素系材料またはその絶縁物の濃度は、繊維状炭素系材料絶縁物の生産性の観点から、繊維状炭素系材料がカーボンファイバー系材料の場合には0.01質量%以上が好ましく、カーボンナノ構造体の場合には0.001質量%以上が好ましく、0.01質量%以上がより好ましい。また、分散液の流動性や繊維状炭素系材料またはその絶縁物の分散性の観点から、繊維状炭素系材料がカーボンファイバー系材料の場合には前記濃度は50質量%以下が好ましく、カーボンナノ構造体の場合にはさらに分散液の流動性が維持できる濃度がカーボンナノ構造体の直径が細く、アスペクト比が大きくなるほど低下する傾向にあるという観点から、例えば、アスペクト比50以上且つ直径150nmでは6質量%以下が好ましく、アスペクト比50以上且つ直径80nmでは2質量%以下が好ましい。   The concentration of the fibrous carbon-based material or its insulator in the dispersion after mixing is 0 when the fibrous carbon-based material is a carbon fiber-based material from the viewpoint of productivity of the fibrous carbon-based material insulator. 0.01 mass% or more is preferable, and in the case of a carbon nanostructure, 0.001 mass% or more is preferable, and 0.01 mass% or more is more preferable. From the viewpoint of the fluidity of the dispersion and the dispersibility of the fibrous carbonaceous material or its insulator, the concentration is preferably 50% by mass or less when the fibrous carbonaceous material is a carbon fiber material. In the case of a structure, from the viewpoint that the concentration at which the fluidity of the dispersion can be maintained tends to decrease as the diameter of the carbon nanostructure decreases and the aspect ratio increases, for example, at an aspect ratio of 50 or more and a diameter of 150 nm 6 mass% or less is preferable, and when the aspect ratio is 50 or more and the diameter is 80 nm, 2 mass% or less is preferable.

また、前記分散液中のアニオン性高分子電解質の濃度は、0.0001質量%以上5質量%以下が好ましく、0.001質量%以上1質量%以下がより好ましい。アニオン性高分子電解質の濃度が前記下限未満になるとアニオン性ポリマー層の形成効率が低下しやすく、また、均一なアニオン性ポリマー層を形成しにくい傾向にある。他方、前記上限を超えると分散液中に多量のアニオン性高分子電解質が残存するともにアニオン性高分子電解質同士が干渉して、薄く且つ均一なアニオン性ポリマー層を形成しにくい傾向にある。   The concentration of the anionic polymer electrolyte in the dispersion is preferably 0.0001% by mass to 5% by mass, and more preferably 0.001% by mass to 1% by mass. If the concentration of the anionic polymer electrolyte is less than the lower limit, the formation efficiency of the anionic polymer layer tends to be lowered, and it tends to be difficult to form a uniform anionic polymer layer. On the other hand, when the upper limit is exceeded, a large amount of anionic polymer electrolyte remains in the dispersion and the anionic polymer electrolytes interfere with each other, so that it is difficult to form a thin and uniform anionic polymer layer.

本発明においては、前記分散液中の繊維状炭素系材料またはその絶縁物、およびアニオン性高分子電解質の濃度が前記範囲となるように適宜溶媒を添加してもよい。   In the present invention, a solvent may be appropriately added so that the concentration of the fibrous carbonaceous material or its insulator and the anionic polymer electrolyte in the dispersion is within the above range.

(カチオン処理工程)
本発明にかかるカチオン処理工程は、前記繊維状炭素系材料またはその絶縁物(必要に応じて酸化処理を施したものやアニオン性ポリマー層を形成したものを含む)と、カチオン性高分子電解質を含む溶液とを混合し、前記繊維状炭素系材料またはその絶縁物上、あるいは前記アニオン性ポリマー層上にカチオン性高分子電解質を付着(吸着)させてカチオン性ポリマー層を形成する工程である。
(Cation treatment process)
The cation treatment step according to the present invention comprises the fibrous carbon-based material or an insulator thereof (including those subjected to oxidation treatment as necessary and those formed with an anionic polymer layer) and a cationic polymer electrolyte. A cationic polymer electrolyte is deposited (adsorbed) on the fibrous carbonaceous material or its insulator or on the anionic polymer layer to form a cationic polymer layer.

前記混合後の分散液中の繊維状炭素系材料またはその絶縁物の濃度は、繊維状炭素系材料絶縁物の生産性の観点から、繊維状炭素系材料がカーボンファイバー系材料の場合には0.01質量%以上が好ましく、カーボンナノ構造体の場合には0.001質量%以上が好ましく、0.01質量%以上がより好ましい。また、分散液の流動性や繊維状炭素系材料またはその絶縁物の分散性の観点から、繊維状炭素系材料がカーボンファイバー系材料の場合には前記濃度は50質量%以下が好ましく、カーボンナノ構造体の場合にはさらに分散液の流動性が維持できる濃度がカーボンナノ構造体の直径が細く、アスペクト比が大きくなるほど低下する傾向にあるという観点から、例えば、アスペクト比50以上且つ直径150nmでは6質量%以下が好ましく、アスペクト比50以上且つ直径80nmでは2質量%以下が好ましい。   The concentration of the fibrous carbon-based material or its insulator in the dispersion after mixing is 0 when the fibrous carbon-based material is a carbon fiber-based material from the viewpoint of productivity of the fibrous carbon-based material insulator. 0.01 mass% or more is preferable, and in the case of a carbon nanostructure, 0.001 mass% or more is preferable, and 0.01 mass% or more is more preferable. From the viewpoint of the fluidity of the dispersion and the dispersibility of the fibrous carbonaceous material or its insulator, the concentration is preferably 50% by mass or less when the fibrous carbonaceous material is a carbon fiber material. In the case of a structure, from the viewpoint that the concentration at which the fluidity of the dispersion can be maintained tends to decrease as the diameter of the carbon nanostructure decreases and the aspect ratio increases, for example, at an aspect ratio of 50 or more and a diameter of 150 nm 6 mass% or less is preferable, and when the aspect ratio is 50 or more and the diameter is 80 nm, 2 mass% or less is preferable.

また、前記分散液中のカチオン性高分子電解質の濃度は、0.0001質量%以上5質量%以下が好ましく、0.001質量%以上1質量%以下がより好ましい。カチオン性高分子電解質の濃度が前記下限未満になるとカチオン性ポリマー層の形成効率が低下しやすく、また、均一なカチオン性ポリマー層を形成しにくい傾向にある。他方、前記上限を超えると分散液中に多量のカチオン性高分子電解質が残存するとともにカチオン性高分子電解質同士が干渉して、薄く且つ均一なカチオン性ポリマー層を形成しにくい傾向にある。   The concentration of the cationic polymer electrolyte in the dispersion is preferably 0.0001% by mass to 5% by mass, and more preferably 0.001% by mass to 1% by mass. When the concentration of the cationic polymer electrolyte is less than the lower limit, the formation efficiency of the cationic polymer layer tends to be lowered, and a uniform cationic polymer layer tends to be difficult to form. On the other hand, when the upper limit is exceeded, a large amount of the cationic polymer electrolyte remains in the dispersion and the cationic polymer electrolytes tend to interfere with each other, making it difficult to form a thin and uniform cationic polymer layer.

本発明においては、前記分散液中の繊維状炭素系材料またはその絶縁物、およびカチオン性高分子電解質の濃度が前記範囲となるように適宜溶媒を添加してもよい。   In the present invention, a solvent may be appropriately added so that the concentration of the fibrous carbon-based material or its insulator and the cationic polymer electrolyte in the dispersion is within the above range.

(酸化物処理工程)
本発明にかかる酸化物処理工程は、前記カチオン処理工程で得た最外層としてカチオン性ポリマー層を備える繊維状炭素系材料またはその絶縁物(以下、「カチオン性ポリマー層含有繊維状炭素系材料またはその絶縁物」という)と、負に帯電した金属酸化物類を含む溶液とを混合し、前記カチオン性ポリマー層上に金属酸化物類を付着(吸着)させて酸化物層を形成する工程である。
(Oxide treatment process)
The oxide treatment step according to the present invention comprises a fibrous carbon-based material comprising a cationic polymer layer as an outermost layer obtained in the cation treatment step or an insulator thereof (hereinafter referred to as “cationic polymer layer-containing fibrous carbon-based material or In the step of forming an oxide layer by mixing a negatively charged solution containing metal oxides and adhering (adsorbing) the metal oxides onto the cationic polymer layer. is there.

前記混合後の分散液中のカチオン性ポリマー層含有繊維状炭素系材料またはその絶縁物の濃度は、繊維状炭素系材料絶縁物の生産性の観点から、繊維状炭素系材料がカーボンファイバー系材料の場合には0.01質量%以上が好ましく、カーボンナノ構造体の場合には0.001質量%以上が好ましく、0.01質量%以上がより好ましい。また、分散液の流動性や繊維状炭素系材料またはその絶縁物の分散性の観点から、繊維状炭素系材料がカーボンファイバー系材料の場合には前記濃度は50質量%以下が好ましく、カーボンナノ構造体の場合にはさらに分散液の流動性が維持できる濃度がカーボンナノ構造体の直径が細く、アスペクト比が大きくなるほど低下する傾向にあるという観点から、例えば、アスペクト比50以上且つ直径150nmでは6質量%以下が好ましく、アスペクト比50以上且つ直径80nmでは2質量%以下が好ましい。   The concentration of the fibrous carbon-based material containing the cationic polymer layer or the insulator in the dispersion after mixing is determined from the viewpoint of the productivity of the fibrous carbon-based material insulator. Is preferably 0.01% by mass or more, and in the case of a carbon nanostructure, 0.001% by mass or more is preferable, and 0.01% by mass or more is more preferable. From the viewpoint of the fluidity of the dispersion and the dispersibility of the fibrous carbonaceous material or its insulator, the concentration is preferably 50% by mass or less when the fibrous carbonaceous material is a carbon fiber material. In the case of a structure, from the viewpoint that the concentration at which the fluidity of the dispersion can be maintained tends to decrease as the diameter of the carbon nanostructure decreases and the aspect ratio increases, for example, at an aspect ratio of 50 or more and a diameter of 150 nm 6 mass% or less is preferable, and when the aspect ratio is 50 or more and the diameter is 80 nm, 2 mass% or less is preferable.

また、前記分散液中の金属酸化物類の濃度は、金属酸化物類がシート状のものの場合には0.0001質量%以上5質量%以下が好ましく、0.001質量%以上1質量%以下がより好ましく、一方、微粒子状のものの場合には0.001質量%以上20質量%以下が好ましく、0.01質量%以上5質量%以下がより好ましい。金属酸化物類の濃度が前記下限未満になると酸化物層の形成効率が低下しやすく、また、均一な酸化物層を形成しにくい傾向にある。他方、前記上限を超えると分散液中に多量の金属酸化物類が残存するため好ましくない。   The concentration of the metal oxides in the dispersion is preferably 0.0001% by mass or more and 5% by mass or less, and 0.001% by mass or more and 1% by mass or less when the metal oxides are in sheet form. On the other hand, in the case of fine particles, 0.001% by mass to 20% by mass is preferable, and 0.01% by mass to 5% by mass is more preferable. If the concentration of the metal oxides is less than the lower limit, the formation efficiency of the oxide layer tends to decrease, and a uniform oxide layer tends to be difficult to form. On the other hand, exceeding the upper limit is not preferable because a large amount of metal oxides remain in the dispersion.

本発明においては、前記分散液中のカチオン性ポリマー層含有繊維状炭素系材料またはその絶縁物、および金属酸化物類の濃度が前記範囲となるように適宜溶媒を添加してもよい。   In the present invention, a solvent may be appropriately added so that the concentration of the cationic polymer layer-containing fibrous carbon-based material or its insulator and metal oxide in the dispersion is within the above range.

本発明の繊維状炭素系材料絶縁物の製造方法において用いられる溶媒としては、水、有機溶媒(ケトン類、アルコール類、ハロゲン化炭化水素、エーテル類など)、および水と有機溶媒との混合溶媒が挙げられる。中でも、水および水を主成分とする混合溶媒が好ましい。また、これらの溶媒はいずれの工程においても使用することができる。   Solvents used in the method for producing the fibrous carbon-based material insulator of the present invention include water, organic solvents (ketones, alcohols, halogenated hydrocarbons, ethers, etc.), and mixed solvents of water and organic solvents. Is mentioned. Especially, the mixed solvent which has water and water as a main component is preferable. These solvents can be used in any step.

本発明の製造方法においては、前記各工程で用いられる分散液にはpH調整用の酸(塩酸、硫酸、リン酸など)やアルカリ(水酸化ナトリウム、アンモニアなど)、および繊維状炭素系材料の表面を帯電させるための金属塩化物(塩化ナトリウム、塩化カルシウムなど)を適量加えることができる。また、前記各工程で用いられる分散液の粘度は、処理時の温度において10000Pa・s以下が好ましく、1000Pa・s以下がより好ましく、100Pa・s以下が特に好ましい。   In the production method of the present invention, the dispersion used in each step includes an acid for adjusting the pH (hydrochloric acid, sulfuric acid, phosphoric acid, etc.), an alkali (sodium hydroxide, ammonia, etc.), and a fibrous carbonaceous material. An appropriate amount of metal chloride (sodium chloride, calcium chloride, etc.) for charging the surface can be added. Further, the viscosity of the dispersion used in each step is preferably 10000 Pa · s or less, more preferably 1000 Pa · s or less, and particularly preferably 100 Pa · s or less at the temperature during the treatment.

本発明の製造方法にかかる前記各工程においては、超音波処理、スターラーによる処理、ホモジナイザーによる処理、グラインダーミルによる処理、衝突混合、ビーズミルによる処理、ニーダーによる処理、攪拌羽根付きミキサーやシェイカーによる処理などの強制的な攪拌処理を施すことが好ましく、中でもより均一に分散可能な点で超音波処理およびホモジナイザーによる処理がより好ましい。   In each step according to the production method of the present invention, ultrasonic treatment, treatment with a stirrer, treatment with a homogenizer, treatment with a grinder mill, collision mixing, treatment with a bead mill, treatment with a kneader, treatment with a mixer or shaker with a stirring blade, etc. The forcible stirring treatment is preferably performed, and among these, ultrasonic treatment and treatment with a homogenizer are more preferred in that they can be more uniformly dispersed.

前記各工程における処理時の温度は特に制限されないが、加熱や冷却といった温度制御装置が不要な条件である室温が好ましい。なお、本発明においては付着や被覆を促進したり、遅延させるために加熱または冷却操作を実施してもよい。   The temperature at the time of the treatment in each of the steps is not particularly limited, but room temperature, which is a condition that does not require a temperature control device such as heating and cooling, is preferable. In the present invention, a heating or cooling operation may be performed in order to promote or delay adhesion and coating.

また、前記各工程における処理時間は0.1秒以上60分以下が好ましく、1秒以上30分以下がより好ましい。処理時間が前記下限未満になると均一なポリマー層(カチオン性およびアニオン性)や酸化物層を形成しにくい傾向にあり、他方、前記上限を超えると繊維状炭素系材料絶縁物の生産性が低下しやすい傾向にある。   In addition, the treatment time in each step is preferably from 0.1 second to 60 minutes, more preferably from 1 second to 30 minutes. If the treatment time is less than the lower limit, uniform polymer layers (cationic and anionic) and oxide layers tend to be difficult to form. On the other hand, if the upper limit is exceeded, the productivity of the fibrous carbon-based material insulator decreases. It tends to be easy to do.

さらに、本発明においては、遊離したカチオン性およびアニオン性高分子電解質や金属酸化物類を除去するために、前記各工程終了ごとに、得られた繊維状炭素系材料またはその絶縁物に洗浄処理を施すことが好ましい。   Furthermore, in the present invention, in order to remove free cationic and anionic polymer electrolytes and metal oxides, the obtained fibrous carbonaceous material or its insulator is washed at the end of each step. It is preferable to apply.

本発明の繊維状炭素系材料絶縁物の製造方法においては、このようにして形成されたカチオン性ポリマー層と酸化物層とを備える繊維状炭素系材料絶縁物(好ましくは、アニオン性ポリマー層を備えるもの)上に、さらに、前記カチオン処理工程および酸化物処理工程に記載の方法により、カチオン性ポリマー層と酸化物層とを順次繰り返して形成することが好ましい。すなわち、最外層として前記酸化物層を備える繊維状炭素系材料絶縁物と、カチオン性高分子電解質を含む溶液とを混合して前記酸化物層上にカチオン性ポリマー層を形成し、次いで、このカチオン性ポリマー層を備える繊維状炭素系材料絶縁物と、負に帯電した金属酸化物またはケイ素酸化物を含む溶液とを混合して前記カチオン性ポリマー層上に酸化物層を形成する。   In the method for producing a fibrous carbon-based material insulator of the present invention, a fibrous carbon-based material insulator (preferably an anionic polymer layer) comprising the cationic polymer layer and the oxide layer formed as described above. It is preferable that the cationic polymer layer and the oxide layer are sequentially and repeatedly formed by the method described in the cation treatment step and the oxide treatment step. That is, a fibrous carbon-based material insulator including the oxide layer as an outermost layer and a solution containing a cationic polymer electrolyte are mixed to form a cationic polymer layer on the oxide layer, A fibrous carbon-based material insulator provided with a cationic polymer layer and a solution containing a negatively charged metal oxide or silicon oxide are mixed to form an oxide layer on the cationic polymer layer.

また、前記カチオン性ポリマー層を形成する前に、前記繊維状炭素系材料絶縁物上にアニオン性ポリマー層を形成することがより好ましい。すなわち、先ず、最外層として前記酸化物層を備える繊維状炭素系材料絶縁物と、アニオン性高分子電解質を含む溶液とを混合して前記酸化物層上にアニオン性ポリマー層を形成し、次いで、前記方法に従って、このアニオン性ポリマー層上にカチオン性ポリマー層を形成し、さらに、このカチオン性ポリマー層上に酸化物層を形成する。   Moreover, it is more preferable to form an anionic polymer layer on the fibrous carbonaceous material insulator before forming the cationic polymer layer. That is, first, a fibrous carbon-based material insulator including the oxide layer as an outermost layer and a solution containing an anionic polymer electrolyte are mixed to form an anionic polymer layer on the oxide layer, and then According to the above method, a cationic polymer layer is formed on the anionic polymer layer, and an oxide layer is further formed on the cationic polymer layer.

本発明においては、これらの層形成を繰り返すことが特に好ましい。このようにカチオン性ポリマー層と酸化物層とを交互に(好ましくは、アニオン性ポリマー層とカチオン性ポリマー層と酸化物層とを繰り返して)形成することにより、より均一な絶縁被膜を形成することが可能となり、また、絶縁被膜の膜厚を容易に調整することができ、繊維状炭素系材料絶縁物の絶縁性を任意のレベルに制御することが可能となる。特に、前記の層形成を何度も繰り返すことによって繊維状炭素系材料絶縁物の絶縁性を高めることが可能となる。   In the present invention, it is particularly preferable to repeat these layer formations. By forming the cationic polymer layer and the oxide layer alternately (preferably, repeating the anionic polymer layer, the cationic polymer layer, and the oxide layer), a more uniform insulating film is formed. In addition, the film thickness of the insulating coating can be easily adjusted, and the insulating property of the fibrous carbon-based material insulator can be controlled to an arbitrary level. In particular, the insulating property of the fibrous carbon-based material insulator can be improved by repeating the layer formation many times.

本発明の製造方法においては、通常、溶媒に分散した状態の繊維状炭素系材料絶縁物が得られる。この場合、繊維状炭素系材料絶縁物を含有する分散液に樹脂などを溶解したり、前記分散液と樹脂とを溶融混合した後に溶媒を除去することによって繊維状炭素系材料絶縁物が均一に分散した樹脂組成物や樹脂複合材が得られる。例えば、キャスト法におけるポリマー溶解液や押出機中の溶融状態にある樹脂中に、前記繊維状炭素系材料絶縁物の分散液を加圧注入して混練すると繊維状炭素系材料絶縁物の凝集が抑制され、さらにベントから溶媒を除去すると繊維状炭素系材料絶縁物が均一に分散した樹脂複合材を得ることができる。   In the production method of the present invention, a fibrous carbon-based material insulator dispersed in a solvent is usually obtained. In this case, the fibrous carbon-based material insulator can be made uniform by dissolving the resin in the dispersion containing the fibrous carbon-based material insulator or by removing the solvent after melt-mixing the dispersion and the resin. A dispersed resin composition or resin composite is obtained. For example, when the dispersion of the fibrous carbon-based material insulator is pressurized and kneaded into a polymer solution in a casting method or a molten resin in an extruder, the fibrous carbon-based material insulator is agglomerated. When the solvent is further removed from the vent, a resin composite material in which the fibrous carbon-based material insulator is uniformly dispersed can be obtained.

また、溶媒に分散した状態の繊維状炭素系材料絶縁物に凍結乾燥またはスプレードライなどの乾燥処理を施すことによって凝集を抑制しながら固体状態の繊維状炭素系材料絶縁物を回収することができる。このように凝集を抑制しながら回収した繊維状炭素系材料絶縁物は溶媒や樹脂などへの分散性に優れている。また、前記乾燥処理は、樹脂粒子(粒径5mm以下、好ましくは1mm以下)および/またはフィラー(例えば、平均粒径100μm以下のアルミナ、シリカ、窒化ホウ素、窒化アルミニウムなどの無機フィラー)の共存下で実施することが好ましい。これにより繊維状炭素系材料絶縁物の凝集を十分に抑制することができる。また、この場合、樹脂粒子および/またはフィラーの量は繊維状炭素系材料絶縁物の10倍以上であることが好ましい。   Moreover, the fibrous carbon-based material insulator in a solid state can be recovered while suppressing aggregation by subjecting the fibrous carbon-based material insulator dispersed in a solvent to a drying treatment such as freeze drying or spray drying. . As described above, the fibrous carbon-based material insulator collected while suppressing aggregation is excellent in dispersibility in a solvent, a resin, or the like. In addition, the drying treatment is performed under the coexistence of resin particles (particle size of 5 mm or less, preferably 1 mm or less) and / or filler (for example, an inorganic filler such as alumina, silica, boron nitride, aluminum nitride having an average particle size of 100 μm or less). It is preferable to carry out. Thereby, aggregation of the fibrous carbonaceous material insulator can be sufficiently suppressed. In this case, the amount of the resin particles and / or filler is preferably 10 times or more that of the fibrous carbon-based material insulator.

<繊維状炭素系材料絶縁物を含む樹脂組成物および樹脂複合材>
本発明の樹脂複合材は、本発明の繊維状炭素系材料絶縁物および樹脂を含む樹脂組成物を成形加工することにより得られるものである。前記樹脂組成物および樹脂複合材における繊維状炭素系材料絶縁物の含有率は特に制限されないが、樹脂組成物または樹脂複合材100質量%に対して、繊維状炭素系材料がカーボンファイバー系材料の場合には0.1質量%以上が好ましく、0.5質量%以上がより好ましく、また、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。カーボンナノ構造体の場合には0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましく、0.2質量%以上が特に好ましく、また、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。繊維状炭素系材料絶縁物の含有率が前記下限未満になると本発明の樹脂複合材の熱伝導性および力学特性が低下しやすい傾向にあり、他方、前記上限を超えると樹脂組成物の流動性が低下しやすい傾向にある。また、本発明にかかる樹脂組成物の溶融粘度は特に制限されないが、熱可塑性樹脂組成物の場合にはその成形温度におけるMFRで0.1〜200g/(10分、荷重2.16kg)であることが好ましい。また、熱硬化性樹脂組成物の場合には成形方法、組成、用途などに応じて適宜最適な粘度に調整することが好ましい。
<Resin composition and resin composite material including fibrous carbon-based material insulator>
The resin composite material of the present invention is obtained by molding a resin composition containing the fibrous carbon-based material insulator of the present invention and a resin. The content ratio of the fibrous carbon-based material insulator in the resin composition and the resin composite is not particularly limited, but the fibrous carbon-based material is a carbon fiber-based material with respect to 100% by mass of the resin composition or the resin composite. In this case, 0.1% by mass or more is preferable, 0.5% by mass or more is more preferable, 50% by mass or less is preferable, 40% by mass or less is more preferable, and 30% by mass or less is more preferable. In the case of the carbon nanostructure, 0.01% by mass or more is preferable, 0.05% by mass or more is more preferable, 0.1% by mass or more is further preferable, 0.2% by mass or more is particularly preferable, and 20% % By mass or less is preferable, 10% by mass or less is more preferable, and 5% by mass or less is more preferable. When the content of the fibrous carbon-based material insulator is less than the lower limit, the thermal conductivity and mechanical properties of the resin composite of the present invention tend to be deteriorated. On the other hand, when the upper limit is exceeded, the fluidity of the resin composition tends to decrease. Tends to decrease. The melt viscosity of the resin composition according to the present invention is not particularly limited, but in the case of a thermoplastic resin composition, the MFR at the molding temperature is 0.1 to 200 g / (10 minutes, load 2.16 kg). It is preferable. Moreover, in the case of a thermosetting resin composition, it is preferable to adjust to the optimal viscosity suitably according to a molding method, a composition, a use, etc.

前記樹脂としては特に制限はないが、エポキシ樹脂、フェノール樹脂、ノボラックエポキシフェノール樹脂、メラミン樹脂、熱硬化性イミド樹脂、熱硬化性シリコーン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、およびウレタン樹脂といった熱硬化性樹脂;ABS樹脂、ポリスチレン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポリアリレートといったポリエステル樹脂、液晶ポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルスルフォン、ポリオキシメチレン、ポリオレフィン系樹脂、酸または酸無水物変性ポリオレフィン系樹脂、アクリル系エラストマー、酸または酸無水物変性アクリル系エラストマー、ポリテトラフルオロエチレン、ポリ乳酸、ポリスルフォン、熱可塑性ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルアミド、ポリアミドイミド、およびポリアミドといった熱可塑性樹脂;各種アロイ樹脂などが挙げられる。これらの樹脂は1種単独で用いても2種以上を併用してもよい。また、シリコーンゴム、エチレン−プロピレン−ジエンゴム、フッ素ゴム、アクリロニトリルゴム、NBRといったゴム架橋体およびこれらと樹脂との複合材なども用いることができる。   The resin is not particularly limited, but epoxy resin, phenol resin, novolac epoxy phenol resin, melamine resin, thermosetting imide resin, thermosetting silicone resin, urea resin, unsaturated polyester resin, alkyd resin, and urethane resin Thermosetting resins such as ABS resin, polystyrene, polyacrylonitrile, polymethyl methacrylate, polycarbonate, cyclic polyolefin, polyethylene terephthalate, polybutylene terephthalate and polyarylate, liquid crystal polyester, polyphenylene ether, polyphenylene sulfide, polyether sulfone, Polyoxymethylene, polyolefin resin, acid or acid anhydride modified polyolefin resin, acrylic elastomer, acid or acid free Material-modified acrylic elastomers, polytetrafluoroethylene, polylactic acid, polysulfone, thermoplastic polyimide, polyetherimide, polyetheretherketone, polyetheramide, polyamideimide, and polyamide; and various alloy resins It is done. These resins may be used alone or in combination of two or more. In addition, rubber cross-linked bodies such as silicone rubber, ethylene-propylene-diene rubber, fluororubber, acrylonitrile rubber, NBR, and a composite material of these with a resin can also be used.

本発明にかかる樹脂組成物および本発明の樹脂複合材においては、発明の効果を損なわない範囲で各種添加剤を配合することができる。具体的には、難燃剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、粘度調整剤、着色剤、シランカップリング剤などの表面処理剤、ガラス繊維、シリカや熱伝導性フィラーなどの充填剤、エラストマー類などが挙げられる。   In the resin composition according to the present invention and the resin composite material of the present invention, various additives can be blended within a range not impairing the effects of the invention. Specifically, surface treatment agents such as flame retardants, antioxidants, UV absorbers, antistatic agents, lubricants, mold release agents, viscosity modifiers, colorants, silane coupling agents, glass fibers, silica and heat conduction Examples thereof include fillers such as conductive fillers and elastomers.

前記熱伝導性フィラーとしては、アルミナ、窒化ホウ素、窒化アルミ、炭化ケイ素、ダイヤモンド、酸化亜鉛、酸化マグネシウムなどが挙げられる。これらの熱伝導性フィラーは1種単独で用いても2種以上を併用してもよい。この熱伝導性フィラーの熱伝導率は特に制限されないが、10W/mk以上が好ましく、20W/mk以上がより好ましい。本発明にかかる樹脂組成物における熱伝導性フィラーの含有率は特に制限されないが、樹脂組成物100質量%に対して0.5体積%以上80体積%以下が好ましく、1.0体積%以上70体積%以下がより好ましく、5.0体積%以上50体積%以下が特に好ましい。熱伝導性フィラーの含有率が前記下限未満になると得られる樹脂複合材の熱伝導性が十分に向上しない傾向にあり、前記上限を超えると樹脂組成物の流動性が低下しやすい傾向にある。   Examples of the thermally conductive filler include alumina, boron nitride, aluminum nitride, silicon carbide, diamond, zinc oxide, and magnesium oxide. These heat conductive fillers may be used alone or in combination of two or more. The thermal conductivity of the thermally conductive filler is not particularly limited, but is preferably 10 W / mk or more, and more preferably 20 W / mk or more. Although the content rate of the heat conductive filler in the resin composition concerning this invention is not restrict | limited in particular, 0.5 to 80 volume% is preferable with respect to 100 mass% of resin compositions, and 1.0 to 70 volume% is preferable. Volume% or less is more preferable, and 5.0 volume% or more and 50 volume% or less is especially preferable. If the content of the heat conductive filler is less than the lower limit, the thermal conductivity of the resin composite obtained tends not to be sufficiently improved, and if it exceeds the upper limit, the fluidity of the resin composition tends to decrease.

本発明にかかる樹脂組成物の製造方法としては特に制限はなく、樹脂中にフィラーを分散させる際に採用される従来公知の混合および/または混練方法が挙げられる。例えば、押出機、ロール、ニーダーなどを用いる方法、溶媒中で混合する方法などが挙げられる。また、樹脂として低粘度の熱硬化性樹脂を用いる場合には自公転ミキサーを用いて複合化処理を施すことにより混合することも可能である。本発明にかかる樹脂組成物を製造する際には、超音波処理、熱処理、攪拌処理、混練処理などを少なくとも1つ施すことが好ましい。   There is no restriction | limiting in particular as a manufacturing method of the resin composition concerning this invention, The conventionally well-known mixing and / or kneading | mixing method employ | adopted when disperse | distributing a filler in resin is mentioned. For example, a method using an extruder, a roll, a kneader, etc., a method of mixing in a solvent, and the like can be mentioned. Moreover, when using a low-viscosity thermosetting resin as resin, it is also possible to mix by performing a compounding process using a self-revolving mixer. When producing the resin composition according to the present invention, it is preferable to perform at least one of ultrasonic treatment, heat treatment, stirring treatment, kneading treatment and the like.

また、本発明においては、繊維状炭素系材料絶縁物の分散性を向上させるために、繊維状炭素系材料絶縁物を樹脂またはフィラーの一部に予備混合させることが好ましい。予備混合の方法としては、例えば、樹脂またはフィラーの一部を溶解(分散)させた溶液(分散液)に繊維状炭素系材料絶縁物を混合する方法、溶融させた樹脂と維状炭素系材料絶縁物とを混合させる方法、樹脂、フィラーおよび維状炭素系材料絶縁物をドライブレンドにより混合する方法などが挙げられる。ドライブレンド時の樹脂の形状は特に制限されず、例えば、粉状、ペレット状、粒状、タブレット状などが挙げられる。   Moreover, in this invention, in order to improve the dispersibility of a fibrous carbonaceous material insulator, it is preferable to premix the fibrous carbonaceous material insulator into a part of resin or filler. Examples of the premixing method include, for example, a method of mixing a fibrous carbon-based material insulator in a solution (dispersion) in which a part of a resin or filler is dissolved (dispersed), a molten resin and a fibrous carbon-based material Examples thereof include a method of mixing with an insulator, a method of mixing a resin, a filler, and a fibrous carbon-based material insulator by dry blending. The shape of the resin at the time of dry blending is not particularly limited, and examples thereof include powder, pellets, granules, and tablets.

本発明の樹脂複合材の製造方法としては特に制限はなく、樹脂の成形方法として一般的に採用される公知の成形方法を適宜採用することができ、目的に応じた形状の樹脂複合体を得ることができる。   There is no restriction | limiting in particular as a manufacturing method of the resin composite material of this invention, The well-known shaping | molding method generally employ | adopted as a molding method of resin can be employ | adopted suitably, and the resin composite of the shape according to the objective is obtained. be able to.

このように本発明の繊維状炭素系材料絶縁物を樹脂に配合することによって、樹脂複合体の絶縁性を高めることができるとともに、カーボン系ナノファイバーの特性(樹脂複合材の熱伝導率向上、力学特性向上、低熱膨張化など)も付与することができる。   Thus, by blending the fibrous carbon-based material insulator of the present invention into the resin, the insulation of the resin composite can be improved, and the characteristics of the carbon-based nanofiber (the thermal conductivity improvement of the resin composite, Mechanical properties, low thermal expansion, etc.) can also be imparted.

例えば、本発明の繊維状炭素系材料絶縁物を配合した樹脂複合材の体積抵抗率は、絶縁処理を施していない繊維状炭素系材料を配合したものに比べて好ましくは10倍以上、より好ましくは100倍以上に増大する。具体的には、本発明の樹脂複合材の体積抵抗率は好ましくは10Ω・m以上、より好ましくは1010Ω・m以上となる。また、絶縁破壊電圧は、絶縁処理を施していない繊維状炭素系材料を配合したものに比べて好ましくは10倍以上、より好ましくは100倍以上に増大する。具体的には、本発明の樹脂複合材の絶縁破壊電圧は好ましくは10V/mm以上、より好ましくは100V/mm以上となる。体積抵抗率や絶縁破壊電圧が前記いずれかの下限未満になると絶縁性が低く、絶縁性を要求される用途への適用が困難となる傾向にある。 For example, the volume resistivity of the resin composite material blended with the fibrous carbon-based material insulator of the present invention is preferably 10 times or more, more preferably compared with that blended with the fibrous carbon-based material not subjected to insulation treatment. Increases more than 100 times. Specifically, the volume resistivity of the resin composite material of the present invention is preferably 10 7 Ω · m or more, more preferably 10 10 Ω · m or more. In addition, the dielectric breakdown voltage is preferably increased by 10 times or more, more preferably by 100 times or more, compared with a material containing a fibrous carbon-based material not subjected to insulation treatment. Specifically, the dielectric breakdown voltage of the resin composite of the present invention is preferably 10 V / mm or more, more preferably 100 V / mm or more. If the volume resistivity or dielectric breakdown voltage is less than any one of the above lower limits, the insulation properties are low, and application to applications requiring insulation properties tends to be difficult.

さらに、本発明の繊維状炭素系材料絶縁物を配合した樹脂複合材の熱伝導率は、維状炭素系材料絶縁物を配合していないものに比べて、少なくとも維持されたものであるが、好ましくは1.1倍以上、より好ましくは1.2倍以上に増大する。また、本発明の繊維状炭素系材料絶縁物と熱伝導性フィラーとを併用すると繊維状炭素系材料絶縁物による熱伝導率向上と熱伝導性フィラーによる熱伝導率向上の相乗効果が期待できる。   Furthermore, the thermal conductivity of the resin composite material blended with the fibrous carbon-based material insulator of the present invention is at least maintained as compared with those not blended with the fibrous carbon-based material insulator, Preferably it increases 1.1 times or more, More preferably, it increases to 1.2 times or more. In addition, when the fibrous carbon-based material insulator of the present invention and the thermally conductive filler are used in combination, a synergistic effect of improving the thermal conductivity by the fibrous carbon-based material insulator and improving the thermal conductivity by the thermally conductive filler can be expected.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、繊維状炭素系材料絶縁物中の絶縁被膜の含有率、樹脂複合材の体積抵抗率、絶縁破壊電圧および熱伝導率は以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In addition, the content rate of the insulating film in the fibrous carbon-based material insulator, the volume resistivity, the dielectric breakdown voltage, and the thermal conductivity of the resin composite were measured by the following methods.

(絶縁被膜の含有率)
熱分析装置(リガク(株)製、熱示差天秤(TG−DTA)「Thermo plus」)を用い、測定温度範囲:室温〜1000℃、昇温速度:20℃/分、空気雰囲気およびガス流量:500ml/分の条件で繊維状炭素系材料絶縁物の質量変化を測定した。250〜400℃の範囲における質量減少率を有機成分(アニオン性高分子電解質およびカチオン性高分子電解質)の含有率とし、残渣の割合を金属酸化物類の含有率として求めた。なお、繊維状炭素系材料についても同様の測定を実施し、繊維状炭素系材料絶縁物についての含有率を補正した。
(Insulation coating content)
Using a thermal analyzer (manufactured by Rigaku Corporation, thermal differential balance (TG-DTA) “Thermo plus”), measurement temperature range: room temperature to 1000 ° C., temperature rising rate: 20 ° C./min, air atmosphere and gas flow rate: The change in mass of the fibrous carbon-based material insulator was measured under the condition of 500 ml / min. The mass reduction rate in the range of 250 to 400 ° C. was determined as the content of organic components (anionic polymer electrolyte and cationic polymer electrolyte), and the ratio of the residue was determined as the content of metal oxides. In addition, the same measurement was implemented also about the fibrous carbonaceous material, and the content rate about a fibrous carbonaceous material insulator was correct | amended.

(体積抵抗率および絶縁破壊電圧)
ハイ・レジスタンス・メータ(アジレント・テクノロジー社製「Agilent4339B」、測定範囲:10Ω・cm〜1015Ω・cm)を用い、JIS K6911(2重リング電極)に準拠して、印加電圧0.1V、1V、10V、100Vおよび1000Vの5条件、設定電圧印加時間20秒、電流リミット500μA、および室温の条件で定電圧印加方式による体積抵抗率を測定した。また、体積抵抗率の電圧依存性から絶縁破壊電圧を調べた。
(Volume resistivity and breakdown voltage)
A high resistance meter (“Agilent 4339B” manufactured by Agilent Technologies, measurement range: 10 7 Ω · cm to 10 15 Ω · cm) was used, and the applied voltage was 0. 0 according to JIS K6911 (double ring electrode). The volume resistivity by the constant voltage application method was measured under the following conditions: 5 conditions of 1 V, 1 V, 10 V, 100 V, and 1000 V, a setting voltage application time of 20 seconds, a current limit of 500 μA, and room temperature. In addition, the dielectric breakdown voltage was examined from the voltage dependency of the volume resistivity.

(熱伝導率)
定常法熱伝導率測定装置(アルバック理工(株)製「HG−1」)を用い、測定温度40℃(上下の温度差24℃)の条件で定常法により厚さ(流動方向に対して垂直)方向の熱伝導率を測定した。
(Thermal conductivity)
Using a steady-state thermal conductivity measurement device (“HG-1” manufactured by ULVAC-RIKO Co., Ltd.), the thickness (perpendicular to the flow direction) was measured by a steady-state method at a measurement temperature of 40 ° C. (temperature difference of 24 ° C. on the top and bottom) ) Direction thermal conductivity was measured.

また、実施例および比較例においては以下に示した原料を使用した。   In the examples and comparative examples, the following raw materials were used.

<繊維状炭素系材料>
VGCF:カーボンナノファイバー(昭和電工(株)製、商品名「VGCF」、平均直径
150nm、アスペクト比50以上、G/D値9.6)。
MWNT−7:多層カーボンナノチューブ(ナノカーボンテクノロジーズ(株)製、商品
名「MWNT−7」、平均直径80nm、アスペクト比100以上、G/D値
8)。
XN−100−15M:PAN系カーボンファイバー(日本グラファイトファイバー(株
)製、商品名「グラノックXN−100−15M」、直径9μm、長さ150
μm、G/D値4.8)。
<Fibrous carbon material>
VGCF: Carbon nanofiber (made by Showa Denko KK, trade name “VGCF”, average diameter)
150 nm, aspect ratio 50 or more, G / D value 9.6).
MWNT-7: Multi-walled carbon nanotube (manufactured by Nano Carbon Technologies, Inc., product)
Name “MWNT-7”, average diameter 80 nm, aspect ratio 100 or more, G / D value
8).
XN-100-15M: PAN-based carbon fiber (Nippon Graphite Fiber Co., Ltd.
) Product name “Granock XN-100-15M”, diameter 9 μm, length 150
μm, G / D value 4.8).

<カチオン性高分子電解質>
PDADMAC水溶液:ポリ(ジアリルジメチルアンモニウムクロライド)の水溶液(ア
ルドリッチ社製、固形分濃度20質量%、中分子量)。
<Cationic polymer electrolyte>
PDADMAC aqueous solution: An aqueous solution of poly (diallyldimethylammonium chloride) (manufactured by Aldrich, solid concentration 20 mass%, medium molecular weight).

<アニオン性高分子電解質>
PSS水溶液:ポリ(4−スチレンスルフォン酸ナトリウム)の水溶液(アルドリッチ社
製、固形分濃度30質量%、分子量20万)。
<Anionic polymer electrolyte>
PSS aqueous solution: An aqueous solution of poly (sodium 4-styrenesulfonate) (manufactured by Aldrich, solid content concentration 30% by mass, molecular weight 200,000).

<金属酸化物>
シリカ:コロイダルシリカ(日産化学工業(株)製、商品名「スノーテックスXS」、
固形分濃度20質量%)を使用。
チタニアナノシート:層状チタン酸(石原産業(株)製、商品名「LU−007」、固形
分濃度54質量%)に硫酸処理を施して薄片化した後、テトラブチルアンモニウ
ムヒドロキシドを用いて完全剥離し、さらに塩酸を用いてpH9に調整した固形
分濃度1.2質量%のチタニアナノシート分散液を使用。
サポナイト:クレイナノシート(クニミネ工業(株)製合成サポナイト、商品名「スメク
トンSA」)。
<Metal oxide>
Silica: Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name "Snowtex XS",
Use a solid content concentration of 20% by mass).
Titania nanosheet: layered titanic acid (trade name “LU-007”, manufactured by Ishihara Sangyo Co., Ltd., solid content concentration 54% by mass) was treated with sulfuric acid to make a flake, and then completely peeled off using tetrabutylammonium hydroxide. Furthermore, a titania nanosheet dispersion with a solid content of 1.2% by mass adjusted to pH 9 using hydrochloric acid is used.
Saponite: Clay nanosheet (synthetic saponite manufactured by Kunimine Industry Co., Ltd., trade name “Smecton SA”).

<樹脂>
PA6:ナイロン6(宇部興産(株)製、商品名「UBEナイロンP1011F」)。
エポキシ樹脂:2液混合型エポキシ樹脂(主剤成分(A液):ビスフェノールA型エポキ
シ樹脂、硬化剤成分(B液):メチルテトラヒドロ無水フタル酸(MTHPA)
、B液には硬化促進剤(イミダゾール化合物)を配合)。
<Resin>
PA6: Nylon 6 (manufactured by Ube Industries, trade name "UBE nylon P1011F").
Epoxy resin: Two-component mixed epoxy resin (main component (liquid A): bisphenol A type epoxy resin, curing agent (liquid B): methyltetrahydrophthalic anhydride (MTHPA)
, B liquid contains a curing accelerator (imidazole compound)).

(調製例1)
イオン交換水1000gにPDADMAC水溶液(固形分濃度20質量%)5gと塩化ナトリウム29.22g(0.5モル)とを添加し、0.001g/g(約0.1質量%)のPDADMAC水溶液を作製した。
(Preparation Example 1)
To 1000 g of ion-exchanged water, 5 g of PDADMAC aqueous solution (solid concentration 20% by mass) and 29.22 g (0.5 mol) of sodium chloride are added, and 0.001 g / g (about 0.1% by mass) of PDADMAC aqueous solution is added. Produced.

(調製例2)
イオン交換水1000gにPSS水溶液(固形分濃度30質量%)7gを添加し、0.0021g/g(約0.21質量%)のPSS水溶液を作製した。
(Preparation Example 2)
7 g of PSS aqueous solution (solid content concentration 30% by mass) was added to 1000 g of ion-exchanged water to prepare 0.0021 g / g (about 0.21% by mass) PSS aqueous solution.

(調製例3)
イオン交換水1000gに前記コロイダルシリカ(固形分濃度20質量%)50gを添加し、0.01g/g(約1質量%)のシリカ水分散液を作製した。
(Preparation Example 3)
50 g of the colloidal silica (solid content concentration 20% by mass) was added to 1000 g of ion-exchanged water to prepare a 0.01 g / g (about 1% by mass) silica water dispersion.

(調製例4)
イオン交換水1000gに前記チタニアナノシート分散液(固形分濃度1.2質量%)33gを添加し、0.0004g/g(約0.04質量%)のチタニア水分散液を作製した。
(Preparation Example 4)
33 g of the titania nanosheet dispersion (solid content concentration: 1.2% by mass) was added to 1000 g of ion-exchanged water to prepare a 0.0004 g / g (about 0.04% by mass) titania aqueous dispersion.

(調製例5)
イオン交換水1000gに前記サポナイト4gを添加し、0.004g/g(約0.4質量%)のサポナイト水分散液を作製した。
(Preparation Example 5)
The saponite 4g was added to the ion-exchange water 1000g, and the saponite water dispersion liquid of 0.004g / g (about 0.4 mass%) was produced.

(参考例1〜10)
表1に示す種類と量の繊維状炭素系材料とカチオン性高分子電解質水溶液またはイオン交換水とを混合して手攪拌した後、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施し、分散液の分散状態を目視で観察した。その結果を表1に示す。また、分散液(スラリー)の状態を示す写真を図1A〜1Iに示す。
(Reference Examples 1 to 10)
After mixing and manually stirring the fibrous carbon-based material of the type and amount shown in Table 1 and a cationic polyelectrolyte aqueous solution or ion-exchanged water, ultrasonic treatment (BRANSON's desktop ultrasonic cleaner “BRANSONIC B” -220 "and an oscillation frequency of 45 kHz) were applied for 20 minutes, and the dispersion state of the dispersion was visually observed. The results are shown in Table 1. Moreover, the photograph which shows the state of a dispersion liquid (slurry) is shown to FIG.

表1および図1A〜1Iに示した結果から明らかなように、分散媒としてPDADMAC水溶液を使用した場合(参考例1〜4、7〜8)とイオン交換水を使用した場合(参考例5〜6、9〜10)とを比較すると、PDADMACの存在により繊維状炭素系材料の水への分散性が向上することが確認された。   As is clear from the results shown in Table 1 and FIGS. 1A to 1I, when PDADMAC aqueous solution is used as a dispersion medium (Reference Examples 1 to 4 and 7 to 8) and ion-exchanged water is used (Reference Examples 5 to 5). 6 and 9 to 10), it was confirmed that the dispersibility of the fibrous carbon-based material in water was improved by the presence of PDADMAC.

また、PDADMAC水溶液中では、カーボンファイバーVGCFは0.06g/g以下の濃度で、カーボンナノチューブMWNT−7は0.02g/g以下の濃度で均一に分散し、それを超える濃度ではペースト状になることが確認された。一方、イオン交換水中では、カーボンファイバーVGCFはおよびカーボンナノチューブMWNT−7は凝集した状態で分散することが確認された。   Further, in the PDADMAC aqueous solution, the carbon fiber VGCF is uniformly dispersed at a concentration of 0.06 g / g or less and the carbon nanotube MWNT-7 is uniformly dispersed at a concentration of 0.02 g / g or less. It was confirmed. On the other hand, in the ion exchange water, it was confirmed that the carbon fiber VGCF and the carbon nanotube MWNT-7 were dispersed in an aggregated state.

(実施例A1)
図2〜図5に示すフローチャートに従って表2に示す絶縁処理条件でMWNT−7に6回の絶縁処理を施し、PSS層とPDADMAC層とシリカ層とを繰り返し6層ずつ備えるMWNT−7絶縁物を製造した。以下に具体的な製造方法を示す。
(Example A1)
According to the flow chart shown in FIGS. 2 to 5, the MWNT-7 is subjected to insulation treatment six times under the insulation treatment conditions shown in Table 2, and a MWNT-7 insulator including six PSS layers, PDADMAC layers, and silica layers is provided. Manufactured. A specific manufacturing method is shown below.

<1回目の絶縁処理>
(アニオン処理工程)
図3に示すように、先ず、水(900g)にMWNT−7(0.5g)を添加し、ホモジナイザーで5分間分散処理した(図示なし)。この水分散液に調製例2で得たPSS水溶液(100g)を添加し、ホモジナイザーで5分間分散処理してPSSが付着したMWNT−7の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
<First insulation treatment>
(Anion treatment process)
As shown in FIG. 3, first, MWNT-7 (0.5 g) was added to water (900 g), and dispersed with a homogenizer for 5 minutes (not shown). The aqueous PSS solution (100 g) obtained in Preparation Example 2 was added to this aqueous dispersion, and dispersed with a homogenizer for 5 minutes to obtain an aqueous dispersion of MWNT-7 to which PSS was adhered. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(1000g)に添加し、ホモジナイザーで5分間分散処理した後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離PSSを除去し、PSSが付着したMWNT−7を回収した。   Next, the filter cake obtained by the above filtration under reduced pressure was added to water (1000 g) and dispersed with a homogenizer for 5 minutes, and then this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free PSS. , MWNT-7 with PSS attached was recovered.

(カチオン処理工程)
次に、図4に示すように、このPSSが付着したMWNT−7を水(900g)に添加し、ホモジナイザーで5分間分散処理した(図示なし)。この水分散液に調製例1で得たPDADMAC水溶液(100g)を添加し、ホモジナイザーで5分間分散処理してPDADMAC層を備えるMWNT−7の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
(Cation treatment process)
Next, as shown in FIG. 4, the MWNT-7 to which this PSS was attached was added to water (900 g) and dispersed with a homogenizer for 5 minutes (not shown). The aqueous PDADMAC solution (100 g) obtained in Preparation Example 1 was added to this aqueous dispersion, and dispersed with a homogenizer for 5 minutes to obtain an aqueous dispersion of MWNT-7 having a PDADMAC layer. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(1000g)に添加し、ホモジナイザーで5分間分散処理した後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離PDADMACを除去し、PDADMAC層を備えるMWNT−7を回収した。   Next, the filter cake obtained by the vacuum filtration was added to water (1000 g) and dispersed with a homogenizer for 5 minutes. The aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free PDADMAC. MWNT-7 with PDADMAC layer was recovered.

(酸化物処理工程)
次に、図5に示すように、このPDADMAC層を備えるMWNT−7を水(900g)に添加し、ホモジナイザーで5分間分散処理した(図示なし)。この水分散液に調製例3で得たシリカ水分散液(100g)を添加し、ホモジナイザーで5分間分散処理してPDADMAC層とシリカ層とを備えるMWNT−7絶縁物の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
(Oxide treatment process)
Next, as shown in FIG. 5, MWNT-7 provided with this PDADMAC layer was added to water (900 g) and dispersed with a homogenizer for 5 minutes (not shown). The aqueous silica dispersion (100 g) obtained in Preparation Example 3 was added to this aqueous dispersion, and the dispersion was treated with a homogenizer for 5 minutes to obtain an aqueous dispersion of an MWNT-7 insulator having a PDADMAC layer and a silica layer. . Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(1000g)に添加し、ホモジナイザーで5分間分散処理した後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離シリカを除去し、濾紙上にMWNT−7絶縁物を回収した。   Next, the filter cake obtained by the vacuum filtration was added to water (1000 g) and dispersed with a homogenizer for 5 minutes. The aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free silica. The MWNT-7 insulator was recovered on the filter paper.

前記濾紙上のMWNT−7絶縁物の表面抵抗をテスターを用いて電極間隔1cmで5箇所以上測定した。その結果を表2に示す。   The surface resistance of the MWNT-7 insulator on the filter paper was measured using a tester at 5 or more locations with an electrode spacing of 1 cm. The results are shown in Table 2.

<2回目の絶縁処理>
次に、前記濾紙上のMWNT−7絶縁物を回収し、前記MWNT−7の代わりにこのMWNT−7絶縁物を用いた以外は上記と同様にして、前記MWNT−7絶縁物上にPSS層とPDADMAC層とシリカ層とを順次形成した(2回目の絶縁処理)。この2回目の絶縁処理を施したMWNT−7絶縁物の表面抵抗を上記と同様にして測定した。その結果を表2に示す。
<Second insulation process>
Next, the MWNT-7 insulator on the filter paper is recovered, and a PSS layer is formed on the MWNT-7 insulator in the same manner as above except that this MWNT-7 insulator is used instead of the MWNT-7. Then, a PDADMAC layer and a silica layer were sequentially formed (second insulation treatment). The surface resistance of the MWNT-7 insulator subjected to the second insulation treatment was measured in the same manner as described above. The results are shown in Table 2.

<3回目以降の絶縁処理>
その後、この絶縁処理を繰り返し、合計6回の絶縁処理を施したMWNT−7絶縁物を得た。このMWNT−7絶縁物についても上記と同様にして各回ごとに表面抵抗を測定した。その結果を表2に示す。
<Insulation treatment after the third>
Then, this insulation process was repeated and the MWNT-7 insulator which performed the insulation process 6 times in total was obtained. For this MWNT-7 insulator, the surface resistance was measured each time in the same manner as described above. The results are shown in Table 2.

この合計6回の絶縁処理を施したMWNT−7絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図6Aおよび6Bに示す。   The surface of the MWNT-7 insulator subjected to a total of six insulation treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 6A and 6B.

また、前記合計6回の絶縁処理を施したMWNT−7絶縁物中のシリカおよびポリマー含有率(アニオン性ポリマーとカチオン性ポリマーとの合計)を熱重量分析により測定した。その結果を表2に示す。   Moreover, the silica and polymer content rate (total of anionic polymer and cationic polymer) in the MWNT-7 insulator subjected to a total of 6 insulation treatments were measured by thermogravimetric analysis. The results are shown in Table 2.

(実施例A2)
図2および図4〜5に示すフローチャートに従って、表2に示す絶縁処理条件でMWNT−7に6回の絶縁処理を施し、PDADMAC層とチタニア層とを交互に6層ずつ備えるMWNT−7絶縁物を製造した。以下に具体的な製造方法を示す。
(Example A2)
In accordance with the flowchart shown in FIG. 2 and FIGS. 4 to 5, MWNT-7 insulator is provided with 6 MWNT-7 insulation treatments under the insulation treatment conditions shown in Table 2 and 6 PDADMAC layers and 6 titania layers alternately. Manufactured. A specific manufacturing method is shown below.

<1回目の絶縁処理>
(カチオン処理工程)
図4に示すように、先ず、MWNT−7(0.5g)、調製例1で得たPDADMAC水溶液(100g)および水(300g)を混合して超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施し、PDADMAC層を備えるMWNT−7の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
<First insulation treatment>
(Cation treatment process)
As shown in FIG. 4, first, MWNT-7 (0.5 g), the PDADMAC aqueous solution (100 g) obtained in Preparation Example 1 and water (300 g) were mixed and subjected to ultrasonic treatment (BRANSON's tabletop ultrasonic cleaning). Machine “BRANSONIC B-220”, oscillation frequency 45 kHz) was applied for 20 minutes to obtain an aqueous dispersion of MWNT-7 having a PDADMAC layer. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(400g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施して分散させた。その後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離PDADMACを除去し、PDADMAC層を備えるMWNT−7を回収した。   Next, the filter cake obtained by the vacuum filtration is added to water (400 g), and subjected to ultrasonic treatment (using a BRANSON tabletop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) for 20 minutes. Dispersed. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free PDADMAC, and MWNT-7 having a PDADMAC layer was recovered.

(酸化物処理工程)
次に、図5に示すように、このPDADMAC層を備えるMWNT−7を水(300g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した(図示なし)。この水分散液に調製例4で得たチタニア水分散液(100g)を添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施してPDADMAC層とチタニア層とを備えるMWNT−7絶縁物の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
(Oxide treatment process)
Next, as shown in FIG. 5, MWNT-7 having the PDADMAC layer is added to water (300 g), and ultrasonic treatment (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillation is performed. (Frequency 45 kHz) was applied for 20 minutes (not shown). To this aqueous dispersion, the aqueous titania dispersion (100 g) obtained in Preparation Example 4 was added, and ultrasonic treatment (using a BRANSON tabletop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) was performed. It was applied for a minute to obtain an aqueous dispersion of MWNT-7 insulator having a PDADMAC layer and a titania layer. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(400g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施して分散させた。その後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離チタニアを除去し、濾紙上にMWNT−7絶縁物を回収した。   Next, the filter cake obtained by the vacuum filtration is added to water (400 g), and subjected to ultrasonic treatment (using a BRANSON tabletop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) for 20 minutes. Dispersed. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free titania, and MWNT-7 insulation was recovered on the filter paper.

前記濾紙上のMWNT−7絶縁物の表面抵抗をテスターを用いて電極間隔1cmで5箇所以上測定した。その結果を表2に示す。   The surface resistance of the MWNT-7 insulator on the filter paper was measured using a tester at 5 or more locations with an electrode spacing of 1 cm. The results are shown in Table 2.

<2回目の絶縁処理>
次に、前記濾紙上のMWNT−7絶縁物を回収し、前記MWNT−7の代わりにこのMWNT−7絶縁物を用いた以外は上記と同様にして、前記MWNT−7絶縁物上にPDADMAC層およびチタニア層を順次形成した(2回目の絶縁処理)。この2回目の絶縁処理を施したMWNT−7絶縁物の表面抵抗を上記と同様にして測定した。その結果を表2に示す。
<Second insulation process>
Next, the MWNT-7 insulator on the filter paper was recovered, and a PDADMAC layer was formed on the MWNT-7 insulator in the same manner as above except that this MWNT-7 insulator was used instead of the MWNT-7. And the titania layer was formed sequentially (second insulation treatment). The surface resistance of the MWNT-7 insulator subjected to the second insulation treatment was measured in the same manner as described above. The results are shown in Table 2.

<3回目以降の絶縁処理>
その後、この絶縁処理を繰り返し、合計6回の絶縁処理を施したMWNT−7絶縁物を得た。このMWNT−7絶縁物についても上記と同様にして各回ごとに表面抵抗を測定した。その結果を表2に示す。
<Insulation treatment after the third>
Then, this insulation process was repeated and the MWNT-7 insulator which performed the insulation process 6 times in total was obtained. For this MWNT-7 insulator, the surface resistance was measured each time in the same manner as described above. The results are shown in Table 2.

この合計6回の絶縁処理を施したMWNT−7絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図7Aおよび7Bに示す。   The surface of the MWNT-7 insulator subjected to a total of six insulation treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 7A and 7B.

また、前記合計6回の絶縁処理を施したMWNT−7絶縁物中のチタニアおよびカチオン性ポリマー含有率を熱重量分析により測定した。その結果を表2に示す。   Moreover, the titania and cationic polymer content rate in the MWNT-7 insulator which performed the insulation process 6 times in total was measured by thermogravimetric analysis. The results are shown in Table 2.

(実施例A3)
図2〜図5に示すフローチャートに従って表2に示す絶縁処理条件でMWNT−7に6回の絶縁処理を施し、PSS層とPDADMAC層とサポナイト層とを繰り返し6層ずつ備えるMWNT−7絶縁物を製造した。以下に具体的な製造方法を示す。
(Example A3)
According to the flow chart shown in FIG. 2 to FIG. 5, MWNT-7 insulation having six layers of PSS layer, PDADMAC layer, and saponite layer is applied to MWNT-7 under the insulation treatment conditions shown in Table 2 for six times. Manufactured. A specific manufacturing method is shown below.

<1回目の絶縁処理>
(アニオン処理工程)
図3に示すように、先ず、水(200g)にMWNT−7(1.0g)を添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した(図示なし)。この水分散液に調製例2で得たPSS水溶液(200g)を添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施してPSSが付着したMWNT−7の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
<First insulation treatment>
(Anion treatment process)
As shown in FIG. 3, first, MWNT-7 (1.0 g) is added to water (200 g), and ultrasonic treatment (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) for 20 minutes (not shown). To this aqueous dispersion, the PSS aqueous solution (200 g) obtained in Preparation Example 2 was added, and subjected to ultrasonic treatment (using a BRANSON tabletop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) for 20 minutes. Thus, an aqueous dispersion of MWNT-7 to which PSS was attached was obtained. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(400g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離PSSを除去し、PSSが付着したMWNT−7を回収した。   Next, the filter cake obtained by the vacuum filtration was added to water (400 g), and subjected to ultrasonic treatment (using a desktop ultrasonic cleaner “BRANSONIC B-220” manufactured by BRANSON, oscillation frequency 45 kHz) for 20 minutes. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free PSS, and MWNT-7 to which PSS was attached was recovered.

(カチオン処理工程)
次に、図4に示すように、このPSSが付着したMWNT−7を水(200g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した(図示なし)。この水分散液に調製例1で得たPDADMAC水溶液(200g)を添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施してPDADMAC層を備えるMWNT−7の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
(Cation treatment process)
Next, as shown in FIG. 4, MWNT-7 to which this PSS is attached is added to water (200 g) and subjected to ultrasonic treatment (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillating. (Frequency 45 kHz) was applied for 20 minutes (not shown). To this aqueous dispersion, the PDADMAC aqueous solution (200 g) obtained in Preparation Example 1 is added, and subjected to ultrasonic treatment (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) for 20 minutes. Thus, an aqueous dispersion of MWNT-7 having a PDADMAC layer was obtained. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(400g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離PDADMACを除去し、PDADMAC層を備えるMWNT−7を回収した。   Next, the filter cake obtained by the vacuum filtration was added to water (400 g), and subjected to ultrasonic treatment (using a desktop ultrasonic cleaner “BRANSONIC B-220” manufactured by BRANSON, oscillation frequency 45 kHz) for 20 minutes. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free PDADMAC, and MWNT-7 having a PDADMAC layer was recovered.

(酸化物処理工程)
次に、図5に示すように、このPDADMAC層を備えるMWNT−7を水(200g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した(図示なし)。この水分散液に調製例5で得たサポナイト水分散液(200g)を添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施してPDADMAC層とサポナイト層とを備えるMWNT−7絶縁物の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)した。
(Oxide treatment process)
Next, as shown in FIG. 5, MWNT-7 having the PDADMAC layer is added to water (200 g), and ultrasonic treatment (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillation is performed. (Frequency 45 kHz) was applied for 20 minutes (not shown). To this aqueous dispersion, the saponite aqueous dispersion (200 g) obtained in Preparation Example 5 was added, and ultrasonic treatment (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) was performed. It was applied for a minute to obtain an aqueous dispersion of MWNT-7 insulator having a PDADMAC layer and a saponite layer. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40).

次いで、前記減圧濾過により得た濾滓を水(400g)に添加し、超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施した後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離サポナイトを除去し、濾紙上にMWNT−7絶縁物を回収した。   Next, the filter cake obtained by the vacuum filtration was added to water (400 g), and subjected to ultrasonic treatment (using a desktop ultrasonic cleaner “BRANSONIC B-220” manufactured by BRANSON, oscillation frequency 45 kHz) for 20 minutes. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free saponite, and the MWNT-7 insulator was recovered on the filter paper.

前記濾紙上のMWNT−7絶縁物の表面抵抗をテスターを用いて電極間隔1cmで5箇所以上測定した。その結果を表2に示す。   The surface resistance of the MWNT-7 insulator on the filter paper was measured using a tester at 5 or more locations with an electrode spacing of 1 cm. The results are shown in Table 2.

<2回目の絶縁処理>
次に、前記濾紙上のMWNT−7絶縁物を回収し、前記MWNT−7の代わりにこのMWNT−7絶縁物を用いた以外は上記と同様にして、前記MWNT−7絶縁物上にPSS層とPDADMAC層およびサポナイト層を順次形成した(2回目の絶縁処理)。この2回目の絶縁処理を施したMWNT−7絶縁物の表面抵抗を上記と同様にして測定した。その結果を表2に示す。
<Second insulation process>
Next, the MWNT-7 insulator on the filter paper is recovered, and a PSS layer is formed on the MWNT-7 insulator in the same manner as above except that this MWNT-7 insulator is used instead of the MWNT-7. And a PDADMAC layer and a saponite layer were sequentially formed (second insulation treatment). The surface resistance of the MWNT-7 insulator subjected to the second insulation treatment was measured in the same manner as described above. The results are shown in Table 2.

<3回目以降の絶縁処理>
その後、この絶縁処理を繰り返し、合計6回の絶縁処理を施したMWNT−7絶縁物を得た。このMWNT−7絶縁物についても上記と同様にして各回ごとに表面抵抗を測定した。その結果を表2に示す。
<Insulation treatment after the third>
Then, this insulation process was repeated and the MWNT-7 insulator which performed the insulation process 6 times in total was obtained. For this MWNT-7 insulator, the surface resistance was measured each time in the same manner as described above. The results are shown in Table 2.

この合計6回の絶縁処理を施したMWNT−7絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図8Aおよび8Bに示す。   The surface of the MWNT-7 insulator subjected to a total of six insulation treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 8A and 8B.

また、前記合計6回の絶縁処理を施したMWNT−7絶縁物中のサポナイトおよびポリマー含有率(アニオン性ポリマーとカチオン性ポリマーとの合計)を熱重量分析により測定した。その結果を表2に示す。   Moreover, the saponite and polymer content rate (total of anionic polymer and cationic polymer) in the MWNT-7 insulator subjected to the insulation treatment 6 times in total were measured by thermogravimetric analysis. The results are shown in Table 2.

(比較例A1)
<洗浄処理>
MWNT−7(0.5g)および水(400g)を混合して超音波処理(BRANSON社製卓上型超音波洗浄機「BRANSONIC B−220」を使用、発振周波数45kHz)を20分間施し、MWNT−7の水分散液を得た。その後、この水分散液を減圧濾過(Whatman濾紙#40)して水を除去し、濾紙上にMWNT−7を回収した。前記濾紙上のMWNT−7の表面抵抗をテスターを用いて電極間隔1cmで5箇所以上測定した。その結果を表2に示す。
(Comparative Example A1)
<Cleaning process>
MWNT-7 (0.5 g) and water (400 g) were mixed and subjected to sonication (using a BRANSON desktop ultrasonic cleaner “BRANSONIC B-220”, oscillation frequency 45 kHz) for 20 minutes. An aqueous dispersion of 7 was obtained. Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water, and MWNT-7 was recovered on the filter paper. The surface resistance of MWNT-7 on the filter paper was measured using a tester at 5 or more locations with an electrode spacing of 1 cm. The results are shown in Table 2.

前記洗浄処理を合計6回の繰り返し、各回ごとに表面抵抗を測定した。その結果を表2に示す。この合計6回の洗浄処理を施したMWNT−7の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図9Aおよび9Bに示す。また、前記合計6回の洗浄処理を施したMWNT−7について熱重量分析を実施した結果を表2に示す。   The cleaning treatment was repeated a total of 6 times, and the surface resistance was measured each time. The results are shown in Table 2. The surface of MWNT-7 subjected to a total of 6 washing treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 9A and 9B. Table 2 shows the results of thermogravimetric analysis of MWNT-7 that had been subjected to a total of 6 washing treatments.

(比較例A2)
カチオン処理を施さなかった以外は実施例A1と同様にして、MWNT−7に6回の絶縁処理(アニオン処理および酸化物処理)を施し、シリカ層を備えるMWNT−7絶縁物を製造した。このMWNT−7絶縁物についても実施例A1と同様にして各回ごとに表面抵抗を測定した。その結果を表2に示す。
(Comparative Example A2)
MWNT-7 was subjected to six insulating treatments (anion treatment and oxide treatment) in the same manner as in Example A1 except that the cation treatment was not performed, and a MWNT-7 insulator having a silica layer was produced. For this MWNT-7 insulator, the surface resistance was measured each time in the same manner as in Example A1. The results are shown in Table 2.

この合計6回の絶縁処理を施したMWNT−7絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図10Aおよび10Bに示す。   The surface of the MWNT-7 insulator subjected to a total of six insulation treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 10A and 10B.

また、前記合計6回の絶縁処理を施したMWNT−7絶縁物中のシリカおよびアニオン性ポリマー含有率を熱重量分析により測定した。その結果を表2に示す。   Moreover, the silica and anionic polymer content rate in the MWNT-7 insulator which performed the insulation process 6 times in total were measured by thermogravimetric analysis. The results are shown in Table 2.

表2および図6A〜10Bに示した結果から明らかなように、アニオン性ポリマー層とカチオン性ポリマー層と酸化物層とを繰り返し形成させた本発明の繊維状炭素系材料絶縁物(実施例A1、A3)およびカチオン性ポリマー層と酸化物層とを交互に形成させた本発明の繊維状炭素系材料絶縁物(実施例A2)は、絶縁物同士の凝集が少なく、その表面には均一な絶縁被膜が形成されていることが確認された。また、表面抵抗が大きく、絶縁性に優れるものであることが確認された。   As is apparent from the results shown in Table 2 and FIGS. 6A to 10B, the fibrous carbon-based material insulator of the present invention (Example A1) in which an anionic polymer layer, a cationic polymer layer, and an oxide layer were repeatedly formed. , A3) and the fibrous carbon-based material insulator of the present invention (Example A2) in which the cationic polymer layer and the oxide layer are alternately formed have little aggregation between the insulators, and the surface thereof is uniform. It was confirmed that an insulating film was formed. It was also confirmed that the surface resistance was high and the insulation was excellent.

一方、アニオン性ポリマー層と酸化物層(シリカ層)とを交互に形成させた繊維状炭素系材料絶縁物(比較例A2)は、酸化物層がほとんど形成していなかった。また、表面抵抗は洗浄処理のみを施した繊維状炭素系材料(比較例A1)と同程度であった。   On the other hand, in the fibrous carbon-based material insulator (Comparative Example A2) in which the anionic polymer layer and the oxide layer (silica layer) are alternately formed, the oxide layer was hardly formed. Moreover, the surface resistance was almost the same as that of the fibrous carbon-based material (Comparative Example A1) subjected to the cleaning treatment only.

(実施例B1)
実施例A2で得たMWNT−7絶縁物(チタニア層)と水とを混合してMWNT−7絶縁物濃度1.25mg/mgの水分散液を調製した。この水分散液340g(MWNT−7絶縁物量:約0.42g)をビーカーに秤量し、液体窒素により水分散液中の水を凍らせた状態で真空乾燥機に入れ、減圧処理により前記MWNT−7絶縁物(チタニア層)を凍結乾燥させた。この凍結乾燥させたMWNT−7絶縁物(チタニア層)を目視により観察した結果を表3に示す。
(Example B1)
The MWNT-7 insulator (titania layer) obtained in Example A2 and water were mixed to prepare an aqueous dispersion having a MWNT-7 insulator concentration of 1.25 mg / mg. 340 g of this aqueous dispersion (MWNT-7 insulation amount: about 0.42 g) was weighed in a beaker, and the water in the aqueous dispersion was frozen with liquid nitrogen and placed in a vacuum dryer. 7 Insulator (titania layer) was lyophilized. Table 3 shows the results of visual observation of the freeze-dried MWNT-7 insulator (titania layer).

(参考例B1)
実施例B1と同様にして調製したMWNT−7絶縁物(チタニア層)の水分散液340g(MWNT−7絶縁物量:約0.42g)をビーカーに秤量して熱風乾燥機に入れ、前記MWNT−7絶縁物(チタニア層)を80℃で12時間熱風乾燥させた。この熱風乾燥させたMWNT−7絶縁物(チタニア層)を目視により観察した結果を表3に示す。
(Reference Example B1)
A MWNT-7 insulator (titania layer) aqueous dispersion 340 g (MWNT-7 insulator amount: about 0.42 g) prepared in the same manner as in Example B1 was weighed into a beaker and placed in a hot air dryer, and the MWNT- 7 Insulator (titania layer) was dried with hot air at 80 ° C. for 12 hours. Table 3 shows the results of visual observation of this hot-air dried MWNT-7 insulator (titania layer).

(実施例B2)
実施例B1と同様にして調製したMWNT−7絶縁物(チタニア層)の水分散液340g(MWNT−7絶縁物量:約0.42g)とPA6パウダー22.58gとをビーカーに秤量して混合し、これに実施例B1と同様にして減圧処理を施して前記MWNT−7絶縁物(チタニア層)とPA6との混合物(PA6:MWNT−7絶縁物=100:1(体積比))を凍結乾燥させた。この凍結乾燥させた混合物を目視により観察した結果を表3に示す。
(Example B2)
340 g of MWNT-7 insulator (titania layer) aqueous dispersion (MWNT-7 insulator amount: about 0.42 g) prepared in the same manner as in Example B1 and 22.58 g of PA6 powder were weighed in a beaker and mixed. This was subjected to a decompression treatment in the same manner as in Example B1 to freeze-dry the mixture of the MWNT-7 insulator (titania layer) and PA6 (PA6: MWNT-7 insulator = 100: 1 (volume ratio)). I let you. Table 3 shows the results of visual observation of the freeze-dried mixture.

(参考例B2)
実施例B2と同様にして約0.42gのMWNT−7絶縁物(チタニア層)と22.58gのPA6パウダーとを含む水分散液を調製し、これを熱風乾燥機に入れ、参考例B1と同様にして前記MWNT−7絶縁物(チタニア層)とPA6との混合物(PA6:MWNT−7絶縁物=100:1(体積比))を熱風乾燥させた。この熱風乾燥させた混合物を目視により観察した結果を表3に示す。
(Reference Example B2)
An aqueous dispersion containing about 0.42 g of MWNT-7 insulator (titania layer) and 22.58 g of PA6 powder was prepared in the same manner as in Example B2, and this was placed in a hot air dryer. Similarly, a mixture of the MWNT-7 insulator (titania layer) and PA6 (PA6: MWNT-7 insulator = 100: 1 (volume ratio)) was dried with hot air. Table 3 shows the result of visual observation of the hot-air dried mixture.

(実施例B3)
実施例B1と同様にして調製したMWNT−7絶縁物(チタニア層)の水分散液205g(MWNT−7絶縁物量:約0.26g)とPA6パウダー13.54gとアルミナ28.80gとをビーカーに秤量して混合し、これに実施例B1と同様にして減圧処理を施して前記MWNT−7絶縁物(チタニア層)とPA6とアルミナとの混合物(PA6:MWNT−7絶縁物=100:1(体積比)、PA6+アルミナ:MWNT−7絶縁物=100:0.6(体積比))を凍結乾燥させた。この凍結乾燥させた混合物を目視により観察した結果を表3に示す。
(Example B3)
205 g of MWNT-7 insulator (titania layer) prepared in the same manner as Example B1 (MWNT-7 insulator amount: about 0.26 g), 13.54 g of PA6 powder and 28.80 g of alumina in a beaker. The mixture was weighed and mixed, and subjected to a pressure reduction treatment in the same manner as in Example B1, and the mixture of MWNT-7 insulator (titania layer), PA6 and alumina (PA6: MWNT-7 insulator = 100: 1 ( Volume ratio), PA6 + alumina: MWNT-7 insulator = 100: 0.6 (volume ratio)) was lyophilized. Table 3 shows the results of visual observation of the freeze-dried mixture.

(参考例B3)
実施例B3と同様にして約0.26gのMWNT−7絶縁物(チタニア層)と13.54gのPA6パウダーと28.80gのアルミナとを含む水分散液を調製し、これを熱風乾燥機に入れ、参考例B1と同様にして前記MWNT−7絶縁物(チタニア層)とPA6とアルミナとの混合物(PA6:MWNT−7絶縁物=100:1(体積比)、PA6+アルミナ:MWNT−7絶縁物=100:0.6(体積比))を熱風乾燥させた。この熱風乾燥させた混合物を目視により観察した結果を表3に示す。
(Reference Example B3)
In the same manner as in Example B3, an aqueous dispersion containing about 0.26 g of MWNT-7 insulator (titania layer), 13.54 g of PA6 powder and 28.80 g of alumina was prepared, and this was used in a hot air dryer. In the same manner as in Reference Example B1, a mixture of the MWNT-7 insulator (titania layer), PA6 and alumina (PA6: MWNT-7 insulator = 100: 1 (volume ratio), PA6 + alumina: MWNT-7 insulation) Product = 100: 0.6 (volume ratio)) was dried with hot air. Table 3 shows the result of visual observation of the hot-air dried mixture.

表3に示した結果から明らかなように、本発明の繊維状炭素系材料絶縁物またはそれに樹脂を配合したものを凍結乾燥させた場合(実施例B1〜B2)には、それらを熱風乾燥させた場合(参考例B1〜B2)に比べて繊維状炭素系材料絶縁物の凝集が抑制されることが確認された。また、繊維状炭素系材料絶縁物に樹脂やフィラーを配合したものを凍結乾燥(実施例B2〜B3)または熱風乾燥(参考例B2〜B3)させた場合には、繊維状炭素系材料絶縁物を凍結乾燥(実施例B1)または熱風乾燥(参考例B1)させた場合に比べて繊維状炭素系材料絶縁物の凝集が抑制されることが確認された。   As is apparent from the results shown in Table 3, when the fibrous carbon-based material insulator of the present invention or a resin blended with it is freeze-dried (Examples B1 to B2), they are dried with hot air. It was confirmed that aggregation of the fibrous carbon-based material insulator is suppressed as compared with the case (Reference Examples B1 and B2). In addition, when a carbon fiber material insulator blended with a resin or filler is freeze dried (Examples B2 to B3) or hot air dried (Reference Examples B2 to B3), the fiber carbon material insulator It was confirmed that agglomeration of the fibrous carbon-based material insulator was suppressed as compared with the case of freeze drying (Example B1) or hot air drying (Reference Example B1).

(実施例B4)
実施例B1で得たMWNT−7絶縁物(チタニア層)の凍結乾燥品約0.42gと、PA6パウダー22.58gとを混合し、単軸スクリュー連続混練押出機(CSI社製「MINI−MAX」)を用いて設定温度260℃、吐出量約2ml/分、スクリュー回転数100rpmの条件で混練してPA6組成物を調製した。得られたPA6組成物を250℃、圧力2MPa、成形時間5分間の条件でフィルム状(約100μm厚)にプレス成形した。得られたフィルムを光に透かして目視によりMWNT−7絶縁物の分散状態を観察した。その結果を表4に示す。
(Example B4)
About 0.42 g of lyophilized product of MWNT-7 insulator (titania layer) obtained in Example B1 and 22.58 g of PA6 powder were mixed and a single-screw continuous kneading extruder (“MINI-MAX manufactured by CSI”) was mixed. )) To prepare a PA6 composition by kneading under the conditions of a set temperature of 260 ° C., a discharge rate of about 2 ml / min, and a screw rotation speed of 100 rpm. The obtained PA6 composition was press-molded into a film (about 100 μm thickness) under the conditions of 250 ° C., pressure 2 MPa, and molding time 5 minutes. The dispersion state of the MWNT-7 insulator was visually observed through the obtained film through light. The results are shown in Table 4.

(参考例B4)
MWNT−7絶縁物(チタニア層)の凍結乾燥品の代わりに参考例B1で得たMWNT−7絶縁物(チタニア層)の熱風乾燥品約0.42gを用いた以外は実施例B4と同様にしてフィルムを作製し、MWNT−7絶縁物の分散状態を目視により観察した。その結果を表4に示す。
(Reference Example B4)
The same procedure as in Example B4 was conducted except that about 0.42 g of the MWNT-7 insulator (titania layer) hot-air dried product obtained in Reference Example B1 was used instead of the MWNT-7 insulator (titania layer) freeze-dried product. A film was prepared, and the dispersion state of the MWNT-7 insulator was visually observed. The results are shown in Table 4.

(実施例B5)
MWNT−7絶縁物(チタニア層)の凍結乾燥品とPA6との混合物の代わりに実施例B2で得た凍結乾燥混合物(MWNT−7絶縁物(チタニア層)+PA6)を用いた以外は実施例B4と同様にしてフィルムを作製し、MWNT−7絶縁物の分散状態を目視により観察した。その結果を表4に示す。
(Example B5)
Example B4 except that the lyophilized mixture (MWNT-7 insulator (titania layer) + PA6) obtained in Example B2 was used instead of the lyophilized product of MWNT-7 insulator (titania layer) and PA6. A film was prepared in the same manner as above, and the dispersion state of the MWNT-7 insulator was visually observed. The results are shown in Table 4.

(参考例B5)
凍結乾燥混合物(MWNT−7絶縁物(チタニア層)+PA6)の代わりに参考例B2で得た熱風乾燥混合物(MWNT−7絶縁物(チタニア層)+PA6)を用いた以外は実施例B4と同様にしてフィルムを作製し、MWNT−7絶縁物の分散状態を目視により観察した。その結果を表4に示す。
(Reference Example B5)
The same procedure as in Example B4 was conducted except that the hot-air dry mixture (MWNT-7 insulator (titania layer) + PA6) obtained in Reference Example B2 was used instead of the freeze-dried mixture (MWNT-7 insulator (titania layer) + PA6). A film was prepared, and the dispersion state of the MWNT-7 insulator was visually observed. The results are shown in Table 4.

(実施例B6)
MWNT−7絶縁物(チタニア層)の凍結乾燥品とPA6との混合物の代わりに実施例B3で得た凍結乾燥混合物(MWNT−7絶縁物(チタニア層)+PA6+アルミナ)を用いた以外は実施例B4と同様にしてフィルムを作製し、MWNT−7絶縁物の分散状態を目視により観察した。その結果を表4に示す。
(Example B6)
Example except that the freeze-dried mixture obtained in Example B3 (MWNT-7 insulator (titania layer) + PA6 + alumina) was used instead of the mixture of freeze-dried product of MWNT-7 insulator (titania layer) and PA6. A film was prepared in the same manner as B4, and the dispersion state of the MWNT-7 insulator was visually observed. The results are shown in Table 4.

(参考例B6)
凍結乾燥混合物(MWNT−7絶縁物(チタニア層)+PA6+アルミナ)の代わりに参考例B3で得た熱風乾燥混合物(MWNT−7絶縁物(チタニア層)+PA6+アルミナ)を用いた以外は実施例B4と同様にしてフィルムを作製し、MWNT−7絶縁物の分散状態を目視により観察した。その結果を表4に示す。
(Reference Example B6)
Example B4 except that the hot-air dried mixture (MWNT-7 insulator (titania layer) + PA6 + alumina) obtained in Reference Example B3 was used instead of the lyophilized mixture (MWNT-7 insulator (titania layer) + PA6 + alumina). A film was prepared in the same manner, and the dispersion state of the MWNT-7 insulator was visually observed. The results are shown in Table 4.

表4に示した結果から明らかなように、本発明の繊維状炭素系材料絶縁物またはそれに樹脂やフィラーを配合したものを凍結乾燥させた場合(実施例B4〜B6)には、それらを熱風乾燥させた場合(参考例B4〜B6)に比べて樹脂中において繊維状炭素系材料絶縁物の分散性が向上することが確認された。また、繊維状炭素系材料絶縁物に樹脂やフィラーを配合したものを凍結乾燥(実施例B5〜B6)または熱風乾燥(参考例B5〜B6)させた場合には、繊維状炭素系材料絶縁物を凍結乾燥(実施例B4)または熱風乾燥(参考例B4)させた場合に比べて樹脂中において繊維状炭素系材料絶縁物の分散性が向上することが確認された。   As is apparent from the results shown in Table 4, when the fibrous carbon-based material insulator of the present invention or the one containing a resin or filler is freeze-dried (Examples B4 to B6), they are heated with hot air. It was confirmed that the dispersibility of the fibrous carbon-based material insulator was improved in the resin as compared with the case of drying (Reference Examples B4 to B6). In addition, when a fibrous carbon-based material insulator is blended with a resin or filler and freeze-dried (Examples B5 to B6) or hot-air dried (Reference Examples B5 to B6), the fibrous carbon-based material insulator It was confirmed that the dispersibility of the fibrous carbon-based material insulator is improved in the resin as compared with the case of freeze drying (Example B4) or hot air drying (Reference Example B4).

(実施例C1)
エポキシ樹脂99.5質量部と実施例B1と同様にして得たMWNT−7絶縁物(チタニア層)の凍結乾燥品0.5質量部とを、真空式自公転ミキサー(シンキー社製「ARV−200AJ」)を用いて自転100rpm、公転2000rpm、真空度5torr、攪拌時間10分間の条件で混練し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物を、温度150℃、圧力2MPa、成形時間20分間の条件でプレス成形してエポキシ樹脂複合材(80mm×80mm×3mm)を作製した。さらに、このエポキシ樹脂複合材を、150℃に加熱した熱風乾燥機中に5時間放置して2次硬化処理を施した。
(Example C1)
99.5 parts by mass of an epoxy resin and 0.5 parts by mass of a freeze-dried product of MWNT-7 insulator (titania layer) obtained in the same manner as in Example B1 were mixed with a vacuum self-revolving mixer (“ARV-” manufactured by Shinky Corporation). 200AJ ”) and kneaded under conditions of 100 rpm for rotation, 2000 rpm for revolution, 5 torr vacuum, and 10 minutes stirring time to prepare an epoxy resin composition. This epoxy resin composition was press-molded under the conditions of a temperature of 150 ° C., a pressure of 2 MPa, and a molding time of 20 minutes to produce an epoxy resin composite (80 mm × 80 mm × 3 mm). Further, this epoxy resin composite material was left in a hot air dryer heated to 150 ° C. for 5 hours to perform a secondary curing treatment.

得られたエポキシ樹脂複合材について前記測定法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表5に示す。   The obtained epoxy resin composite was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the above-described measurement methods. The results are shown in Table 5.

(実施例C2)
実施例A2で得たMWNT−7絶縁物(チタニア層)の代わりに実施例A3で得たMWNT−7絶縁物(サポナイト層)を用いた以外は実施例B1と同様にして前記MWNT−7絶縁物(サポナイト層)を凍結乾燥させた。
(Example C2)
MWNT-7 insulation as in Example B1, except that the MWNT-7 insulator (saponite layer) obtained in Example A3 was used instead of the MWNT-7 insulator (titania layer) obtained in Example A2. The product (saponite layer) was lyophilized.

MWNT−7絶縁物(チタニア層)の凍結乾燥品の代わりに前記MWNT−7絶縁物(サポナイト層)の凍結乾燥品0.5質量部を用いた以外は実施例C1と同様にしてエポキシ樹脂複合材(80mm×80mm×3mm)を作製した。得られたエポキシ樹脂複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表5に示す。   An epoxy resin composite as in Example C1, except that 0.5 parts by mass of the lyophilized product of MWNT-7 insulator (saponite layer) was used instead of the lyophilized product of MWNT-7 insulator (titania layer). A material (80 mm × 80 mm × 3 mm) was produced. The obtained epoxy resin composite was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 5.

(比較例C1)
MWNT−7絶縁物を用いなかった以外は実施例C1と同様にしてエポキシ樹脂成形体(80mm×80mm×3mm)を作製した。得られたエポキシ樹脂成形体について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表5に示す。
(Comparative Example C1)
An epoxy resin molded body (80 mm × 80 mm × 3 mm) was produced in the same manner as in Example C1, except that the MWNT-7 insulator was not used. The obtained epoxy resin molded product was measured for volume resistivity, dielectric breakdown voltage and thermal conductivity according to the above measurement method. The results are shown in Table 5.

(比較例C2〜C3)
MWNT−7絶縁物(チタニア層)の凍結乾燥品の代わりに表5に示す量のMWNT−7を用いた以外は実施例C1と同様にしてエポキシ樹脂複合材(80mm×80mm×3mm)を作製した。得られたエポキシ樹脂複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表5に示す。
(Comparative Examples C2 to C3)
An epoxy resin composite (80 mm × 80 mm × 3 mm) was prepared in the same manner as in Example C1, except that the amount of MWNT-7 shown in Table 5 was used instead of the freeze-dried product of MWNT-7 insulator (titania layer). did. The obtained epoxy resin composite was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 5.

表5に示した結果から明らかなように、本発明の繊維状炭素系材料絶縁物を含むエポキシ樹脂複合材(実施例C1〜C2)は、本発明の繊維状炭素系材料絶縁物を含まないエポキシ樹脂成形体(比較例C1)に比べて熱伝導率に優れたものであり、繊維状炭素系材料を含むエポキシ樹脂複合材(比較例C2〜C3)に比べて体積抵抗率および絶縁破壊電圧が高く、絶縁性に優れたものであることが確認された。   As is apparent from the results shown in Table 5, the epoxy resin composites (Examples C1 to C2) including the fibrous carbon-based material insulator of the present invention do not include the fibrous carbon-based material insulator of the present invention. Compared to the epoxy resin composite (Comparative Examples C2 to C3), which has superior thermal conductivity compared to the epoxy resin molded body (Comparative Example C1), and has a volume resistivity and dielectric breakdown voltage. It was confirmed that it was high and was excellent in insulation.

(実施例D1)
図2〜図5に示すフローチャートに従って表6に示す絶縁処理条件でXN−100−15Mに2回の絶縁処理を施し、1層のPSS層と、交互に2層ずつ配置されたPDADMAC層およびシリカ層とを備えるXN−100−15M絶縁物を製造した。以下に具体的な製造方法を示す。
(Example D1)
In accordance with the flowcharts shown in FIGS. 2 to 5, XN-100-15M was subjected to insulation treatment twice under the insulation treatment conditions shown in Table 6, one PSS layer, and two PDADMAC layers and silica arranged alternately. An XN-100-15M insulator with layers was manufactured. A specific manufacturing method is shown below.

<1回目の絶縁処理>
(アニオン処理工程)
図3に示すように、先ず、PSS水溶液(100g)にXN−100−15M(15g)を添加し、マグネチックスターラー(300rpm)で20分間攪拌してPSSが付着したXN−100−15Mの水分散液を得た。その後、この水分散液に遠心分離(12000rpm、30分間)を施した。
<First insulation treatment>
(Anion treatment process)
As shown in FIG. 3, first, XN-100-15M (15 g) was added to an aqueous PSS solution (100 g), and stirred for 20 minutes with a magnetic stirrer (300 rpm). A dispersion was obtained. Thereafter, the aqueous dispersion was centrifuged (12000 rpm, 30 minutes).

次いで、前記遠心分離により得た固形分を水(300g)に添加した後、遠心分離(12000rpm、30分間)を施した。この操作を合計3回実施し、PSSが付着したXN−100−15Mを回収した。   Subsequently, after adding the solid content obtained by the centrifugation to water (300 g), centrifugation (12000 rpm, 30 minutes) was performed. This operation was performed three times in total, and XN-100-15M with PSS attached was recovered.

(カチオン処理工程)
次に、図4に示すように、このPSSが付着したXN−100−15Mを調製例1で得たPDADMAC水溶液(100g)に添加し、マグネチックスターラー(300rpm)で20分間攪拌してPSSが付着したXN−100−15Mの水分散液を得た。その後、この水分散液に遠心分離(12000rpm、30分間)を施した。
(Cation treatment process)
Next, as shown in FIG. 4, XN-100-15M to which this PSS is attached is added to the PDADMAC aqueous solution (100 g) obtained in Preparation Example 1 and stirred for 20 minutes with a magnetic stirrer (300 rpm). An attached XN-100-15M aqueous dispersion was obtained. Thereafter, the aqueous dispersion was centrifuged (12000 rpm, 30 minutes).

次いで、前記遠心分離により得た固形分を水(300g)に添加した後、遠心分離(12000rpm、30分間)を施した。この操作を合計3回実施し、PDADMAC層を備えるXN−100−15Mを回収した。   Subsequently, after adding the solid content obtained by the centrifugation to water (300 g), centrifugation (12000 rpm, 30 minutes) was performed. This operation was performed three times in total, and XN-100-15M equipped with a PDADMAC layer was recovered.

(酸化物処理工程)
次に、このPDADMAC層を備えるXN−100−15Mを調製例3で得たシリカ水分散液(100g)に添加し、マグネチックスターラー(300rpm)で20分間攪拌してPDADMAC層とシリカ層とを備えるXN−100−15M絶縁物の水分散液を得た。その後、この水分散液に遠心分離(12000rpm、30分間)を施した。
(Oxide treatment process)
Next, XN-100-15M provided with this PDADMAC layer is added to the silica aqueous dispersion (100 g) obtained in Preparation Example 3, and stirred with a magnetic stirrer (300 rpm) for 20 minutes to separate the PDADMAC layer and the silica layer. An aqueous dispersion of the provided XN-100-15M insulator was obtained. Thereafter, the aqueous dispersion was centrifuged (12000 rpm, 30 minutes).

次いで、前記遠心分離により得た固形分を水(300g)に添加した後、遠心分離(12000rpm、30分間)を施した。この操作を合計3回実施した後、固形分を水(300g)に分散させた。その後、この水分散液を減圧濾過(Whatman濾紙#40)して水および遊離シリカを除去し、濾紙上にXN−100−15M絶縁物を回収した。   Subsequently, after adding the solid content obtained by the centrifugation to water (300 g), centrifugation (12000 rpm, 30 minutes) was performed. After performing this operation three times in total, the solid content was dispersed in water (300 g). Thereafter, this aqueous dispersion was filtered under reduced pressure (Whatman filter paper # 40) to remove water and free silica, and XN-100-15M insulation was recovered on the filter paper.

<2回目の絶縁処理>
次に、前記濾紙上のXN−100−15M絶縁物を回収し、前記XN−100−15Mの代わりにこのXN−100−15M絶縁物を用い、アニオン処理を施さなかった以外は上記と同様にして、前記XN−100−15M絶縁物上にPDADMAC層およびシリカ層を順次形成した(2回目の絶縁処理)。
<Second insulation process>
Next, the XN-100-15M insulator on the filter paper was recovered, and this XN-100-15M insulator was used in place of the XN-100-15M, except that the anion treatment was not performed. Then, a PDADMAC layer and a silica layer were sequentially formed on the XN-100-15M insulator (second insulation treatment).

この合計2回の絶縁処理を施したXN−100−15M絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図11に示す。   The surface of the XN-100-15M insulator subjected to the insulation treatment twice in total was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG.

<PA6複合材の作製>
40質量部(25.5体積%換算)の前記XN−100−15M絶縁物(絶縁処理2回)と60質量部のナイロン6とを、単軸スクリュー連続混練押出機(CSI社製「NINI−MAX」)を用いて設定温度260℃、吐出量約2ml/分、スクリュー回転数100rpmの条件で混練し、PA6組成物を調製した。このPA6組成物を、温度250℃、圧力2MPa、成形時間5分間の条件でプレス成形してPA6複合材(80mm×80mm×3mm)を作製した。得られたPA6複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表6に示す。
<Preparation of PA6 composite material>
40 parts by mass (converted to 25.5% by volume) of the XN-100-15M insulator (insulation treatment twice) and 60 parts by mass of nylon 6 were mixed with a single screw continuous kneading extruder (“NINI-” manufactured by CSI). MAX ”) and kneaded under the conditions of a set temperature of 260 ° C., a discharge rate of about 2 ml / min, and a screw rotation speed of 100 rpm to prepare a PA6 composition. This PA6 composition was press-molded under the conditions of a temperature of 250 ° C., a pressure of 2 MPa, and a molding time of 5 minutes to prepare a PA6 composite material (80 mm × 80 mm × 3 mm). The obtained PA6 composite material was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 6.

(実施例D2)
絶縁処理回数を合計3回に変更し、3回目の絶縁処理を2回目の絶縁処理と同様に実施した以外は実施例D1と同様にして、1層のPSS層と、交互に3層ずつ配置されたPDADMAC層およびシリカ層とを備えるXN−100−15M絶縁物を製造した。この合計3回の絶縁処理を施したXN−100−15M絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図12に示す。
(Example D2)
The number of insulation treatments was changed to a total of 3 times, and the third insulation treatment was performed in the same manner as the second insulation treatment, and in the same manner as in Example D1, one PSS layer and three alternating layers were arranged. An XN-100-15M insulator with a fabricated PDADMAC layer and silica layer was fabricated. The surface of the XN-100-15M insulator subjected to the insulation treatment three times in total was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG.

XN−100−15M絶縁物(絶縁処理2回)の代わりに40質量部(25.5体積%換算)の前記XN−100−15M絶縁物(絶縁処理3回)を用いた以外は実施例D1と同様にして、PA6複合材(80mm×80mm×3mm)を作製した。得られたPA6複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表6に示す。   Example D1 except that 40 parts by mass (converted to 25.5% by volume) of the XN-100-15M insulator (insulation treatment 3 times) was used instead of the XN-100-15M insulator (insulation treatment 2 times). In the same manner, a PA6 composite material (80 mm × 80 mm × 3 mm) was produced. The obtained PA6 composite material was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 6.

(実施例D3)
絶縁処理回数を合計5回に変更し、3〜5回目の絶縁処理を2回目の絶縁処理と同様に実施した以外は実施例D1と同様にして、1層のPSS層と、交互に5層ずつ配置されたPDADMAC層およびシリカ層とを備えるXN−100−15M絶縁物を製造した。この合計5回の絶縁処理を施したXN−100−15M絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図13に示す。
(Example D3)
The number of insulation treatments was changed to a total of 5 times, and the PSS layers of 1 layer and 5 layers were alternately formed in the same manner as in Example D1 except that the third to fifth insulation treatments were performed in the same manner as the second insulation treatment. An XN-100-15M insulator with a PDADMAC layer and a silica layer arranged one by one was produced. The surface of the XN-100-15M insulator that had been subjected to a total of five insulation treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG.

XN−100−15M絶縁物(絶縁処理2回)の代わりに40質量部(25.5体積%換算)の前記XN−100−15M絶縁物(絶縁処理5回)を用いた以外は実施例D1と同様にして、PA6複合材(80mm×80mm×3mm)を作製した。得られたPA6複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表6に示す。   Example D1 except that 40 parts by mass (converted to 25.5% by volume) of the XN-100-15M insulator (insulation treatment 5 times) was used instead of the XN-100-15M insulator (insulation treatment 2 times). In the same manner, a PA6 composite material (80 mm × 80 mm × 3 mm) was produced. The obtained PA6 composite material was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 6.

(実施例D4)
絶縁処理回数を合計10回に変更し、3〜10回目の絶縁処理を2回目の絶縁処理と同様に実施した以外は実施例D1と同様にして、1層のPSS層と、交互に10層ずつ配置されたPDADMAC層およびシリカ層とを備えるXN−100−15M絶縁物を製造した。この合計10回の絶縁処理を施した前記XN−100−15M絶縁物の表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した。その結果を図14に示す。
(Example D4)
The number of insulation treatments was changed to a total of 10 times, and the PSS layer of one layer and 10 layers alternately were obtained in the same manner as in Example D1 except that the third to tenth insulation treatments were carried out in the same manner as the second insulation treatment. An XN-100-15M insulator with a PDADMAC layer and a silica layer arranged one by one was produced. The surface of the XN-100-15M insulator subjected to a total of 10 insulation treatments was observed using a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG.

XN−100−15M絶縁物(絶縁処理2回)の代わりに40質量部(25.5体積%換算)の前記XN−100−15M絶縁物(絶縁処理10回)を用いた以外は実施例D1と同様にして、PA6複合材(80mm×80mm×3mm)を作製した。得られたPA6複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表6に示す。   Example D1 except that 40 parts by mass (25.5% by volume) of the XN-100-15M insulator (insulation treatment 10 times) was used instead of the XN-100-15M insulator (insulation treatment 2 times). In the same manner, a PA6 composite material (80 mm × 80 mm × 3 mm) was produced. The obtained PA6 composite material was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 6.

(比較例D1)
XN−100−15M絶縁物を用いなかった以外は実施例D1と同様にしてPA6成形体(80mm×80mm×3mm)を作製した。得られたPA6成形体について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表7に示す。
(Comparative Example D1)
A PA6 molded body (80 mm × 80 mm × 3 mm) was produced in the same manner as in Example D1, except that the XN-100-15M insulator was not used. The obtained PA6 molded body was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 7.

(比較例D2)
XN−100−15M絶縁物(絶縁処理2回)の代わりに40質量部(25.5体積%換算)のXN−100−15Mを用いた以外は実施例D1と同様にしてPA6複合材(80mm×80mm×3mm)を作製した。得られたPA6複合材について前記測定方法に従って体積抵抗率、絶縁破壊電圧および熱伝導率を測定した。その結果を表7に示す。なお、XN−100−15Mの表面を走査電子顕微鏡(SEM、(株)日立ハイテクノロジーズ製「S−3600N」)を用いて観察した結果を図15に示す。
(Comparative Example D2)
PA6 composite (80 mm) as in Example D1, except that 40 parts by mass (25.5% by volume) of XN-100-15M was used instead of XN-100-15M insulator (insulation treatment twice). × 80 mm × 3 mm) was produced. The obtained PA6 composite material was measured for volume resistivity, dielectric breakdown voltage, and thermal conductivity according to the measurement method. The results are shown in Table 7. In addition, the result of having observed the surface of XN-100-15M using the scanning electron microscope (SEM, Hitachi High-Technologies Corporation "S-3600N") is shown in FIG.

図11〜14に示した結果から明らかなように、絶縁処理によりカーボンファイバー表面に均一な絶縁被膜が形成され、絶縁処理回数の増加に伴って絶縁被膜が厚くなる傾向が確認された。   As is clear from the results shown in FIGS. 11 to 14, it was confirmed that a uniform insulating film was formed on the carbon fiber surface by the insulating treatment, and that the insulating film tended to become thicker as the number of insulating treatments increased.

表6〜7に示した結果から明らかなように、本発明のカーボンファイバー絶縁物を用いた場合(実施例D1〜D4)には、樹脂複合材は体積抵抗率が高いものであり、絶縁処理回数の増加とともに高くなる傾向にあった。また、絶縁破壊電圧も高くなる傾向にあり、絶縁性に優れたものであることが確認された。一方、絶縁処理を施していないカーボンファイバーを用いた場合(比較例D2)には、樹脂複合材は、体積抵抗率が低く、絶縁性に劣るものであった。   As is clear from the results shown in Tables 6 to 7, when the carbon fiber insulator of the present invention is used (Examples D1 to D4), the resin composite has a high volume resistivity, and the insulation treatment is performed. There was a tendency to increase as the number of times increased. Moreover, the dielectric breakdown voltage also tends to increase, and it was confirmed that the dielectric breakdown voltage was excellent. On the other hand, when the carbon fiber not subjected to insulation treatment was used (Comparative Example D2), the resin composite had a low volume resistivity and was inferior in insulation.

また、本発明のカーボンファイバー絶縁物を用いた樹脂複合材(実施例D1〜D4)は、絶縁処理を施していないカーボンファイバーを用いた場合(比較例D2)と同等の熱伝導率を維持していることが確認された。   In addition, the resin composites (Examples D1 to D4) using the carbon fiber insulator of the present invention maintain the same thermal conductivity as when carbon fibers not subjected to insulation treatment are used (Comparative Example D2). It was confirmed that

以上説明したように、本発明によれば、交互吸着法により繊維状炭素系材料の表面に絶縁被膜を形成することが可能となり、分散性に優れ、任意の絶縁レベルの繊維状炭素系材料絶縁物を製造することができる。   As described above, according to the present invention, it is possible to form an insulating film on the surface of the fibrous carbon-based material by the alternate adsorption method, which is excellent in dispersibility and insulates the fibrous carbon-based material of any insulation level. Can be manufactured.

したがって、本発明の繊維状炭素系材料絶縁物を含む樹脂複合材は、絶縁性が高く且つ熱伝導率が少なくとも維持されたものであるため、プリント基板用樹脂、電気・電子部品の筐体、コイル封止材、モーター用材料、ラジエーターに代表される熱交換器用部品などとして有用である。   Therefore, since the resin composite material containing the fibrous carbon-based material insulator of the present invention has high insulation and thermal conductivity is maintained at least, a resin for printed circuit boards, a housing for electrical / electronic components, It is useful as a coil sealant, a motor material, a heat exchanger component typified by a radiator, and the like.

参考例1で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。4 is a photograph showing a slurry (colloid) of a fibrous carbon-based material obtained in Reference Example 1. 参考例2で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of a fibrous carbon-based material obtained in Reference Example 2. 参考例3で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of a fibrous carbon-based material obtained in Reference Example 3. 参考例5で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of a fibrous carbon-based material obtained in Reference Example 5. 参考例6で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of fibrous carbon-based material obtained in Reference Example 6. 参考例7で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of a fibrous carbon-based material obtained in Reference Example 7. 参考例8で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of a fibrous carbon-based material obtained in Reference Example 8. 参考例9で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。6 is a photograph showing a slurry (colloid) of fibrous carbon-based material obtained in Reference Example 9. 参考例10で得た繊維状炭素系材料のスラリー(コロイド)を示す写真である。4 is a photograph showing a fibrous carbon-based material slurry (colloid) obtained in Reference Example 10. 本発明の繊維状炭素系材料絶縁物の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the fibrous carbonaceous material insulator of this invention. 本発明の繊維状炭素系材料絶縁物の製造方法におけるアニオン処理方法の一例を示す工程図である。It is process drawing which shows an example of the anion treatment method in the manufacturing method of the fibrous carbonaceous material insulator of this invention. 本発明の繊維状炭素系材料絶縁物の製造方法におけるカチオン処理方法の一例を示す工程図である。It is process drawing which shows an example of the cation treatment method in the manufacturing method of the fibrous carbonaceous material insulator of this invention. 本発明の繊維状炭素系材料絶縁物の製造方法における酸化物処理方法の一例を示す工程図である。It is process drawing which shows an example of the oxide processing method in the manufacturing method of the fibrous carbonaceous material insulator of this invention. 実施例A1で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained in Example A1. 実施例A1で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained in Example A1. 実施例A2で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained in Example A2. 実施例A2で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained in Example A2. 実施例A3で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained in Example A3. 実施例A3で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained in Example A3. 比較例A1で得たカーボンナノチューブの表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube obtained by comparative example A1. 比較例A1で得たカーボンナノチューブの表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube obtained by comparative example A1. 比較例A2で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained by comparative example A2. 比較例A2で得たカーボンナノチューブ絶縁物の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon nanotube insulator obtained by comparative example A2. 実施例D1で得たカーボンファイバー絶縁物(絶縁処理2回)の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon fiber insulator (insulation process twice) obtained in Example D1. 実施例D2で得たカーボンファイバー絶縁物(絶縁処理3回)の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon fiber insulator (insulation process 3 times) obtained in Example D2. 実施例D3で得たカーボンファイバー絶縁物(絶縁処理5回)の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon fiber insulator (insulation process 5 times) obtained in Example D3. 実施例D4で得たカーボンファイバー絶縁物(絶縁処理10回)の表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon fiber insulator (insulation process 10 times) obtained in Example D4. 比較例D2で使用したカーボンファイバーの表面状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface state of the carbon fiber used by comparative example D2.

Claims (10)

繊維状炭素系材料と前記繊維状炭素系材料上に形成された絶縁被膜とを備える繊維状炭素系材料絶縁物であって、
前記絶縁被膜が、前記繊維状炭素系材料上に形成されたカチオン性高分子電解質を含むカチオン性ポリマー層と、前記カチオン性ポリマー層上に形成された金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層とを備えるものであることを特徴とする繊維状炭素系材料絶縁物。
A fibrous carbon-based material insulator comprising a fibrous carbon-based material and an insulating coating formed on the fibrous carbon-based material,
The insulating coating comprises a cationic polymer layer containing a cationic polymer electrolyte formed on the fibrous carbon-based material, and at least one of a metal oxide and a silicon oxide formed on the cationic polymer layer. A fibrous carbon-based material insulator comprising an oxide layer containing one kind.
前記絶縁被膜が、前記繊維状炭素系材料上に形成されたアニオン性高分子電解質を含むアニオン性ポリマー層をさらに備えるものであり、
前記カチオン性ポリマー層が前記アニオン性ポリマー層上に形成されたものであることを特徴とする請求項1に記載の繊維状炭素系材料絶縁物。
The insulating coating further comprises an anionic polymer layer containing an anionic polymer electrolyte formed on the fibrous carbonaceous material;
The fibrous carbon-based material insulator according to claim 1, wherein the cationic polymer layer is formed on the anionic polymer layer.
前記絶縁被膜が、2層以上のカチオン性高分子電解質を含むカチオン性ポリマー層と2層以上の金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層とを備えるものであり、且つ前記カチオン性ポリマー層と前記酸化物層とが交互に配置されているものである、ことを特徴とする請求項1または2に記載の繊維状炭素系材料絶縁物。   The insulating coating comprises a cationic polymer layer containing two or more cationic polymer electrolytes and an oxide layer containing at least one of two or more metal oxides and silicon oxides, The fibrous carbon-based material insulator according to claim 1 or 2, wherein the cationic polymer layer and the oxide layer are alternately arranged. 前記絶縁被膜が、前記酸化物層上に形成されたアニオン性高分子電解質を含むアニオン性ポリマー層をさらに備えるものであり、
前記カチオン性ポリマー層が前記アニオン性ポリマー層上に形成されたものであることを特徴とする請求項3に記載の繊維状炭素系材料絶縁物。
The insulating coating further comprises an anionic polymer layer containing an anionic polymer electrolyte formed on the oxide layer;
The fibrous carbon-based material insulator according to claim 3, wherein the cationic polymer layer is formed on the anionic polymer layer.
前記繊維状炭素系材料がカーボンナノファイバーおよびカーボンナノチューブのうちの少なくとも1種であることを特徴とする請求項1〜4のうちのいずれか一項に記載の繊維状炭素系材料絶縁物。   The fibrous carbon-based material insulator according to any one of claims 1 to 4, wherein the fibrous carbon-based material is at least one of carbon nanofibers and carbon nanotubes. 請求項1〜5のうちのいずれか一項に記載の繊維状炭素系材料絶縁物と樹脂とを含有することを特徴とする樹脂複合材。   A resin composite material comprising the fibrous carbon-based material insulator according to any one of claims 1 to 5 and a resin. カチオン性高分子電解質を含む溶液と繊維状炭素系材料とを混合し、前記繊維状炭素系材料上に前記カチオン性高分子電解質を含むカチオン性ポリマー層を形成する工程と、
前記カチオン性ポリマー層を備える繊維状炭素系材料と、負に帯電した金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む溶液とを混合し、前記カチオン性ポリマー層上に前記金属酸化物および前記ケイ素酸化物のうちの少なくとも1種を含む酸化物層を形成する工程と、
を含むことを特徴とする繊維状炭素系材料絶縁物の製造方法。
Mixing a solution containing a cationic polymer electrolyte and a fibrous carbonaceous material to form a cationic polymer layer containing the cationic polymer electrolyte on the fibrous carbonaceous material;
A fibrous carbon-based material provided with the cationic polymer layer is mixed with a solution containing at least one of a negatively charged metal oxide and silicon oxide, and the metal oxide is formed on the cationic polymer layer. And forming an oxide layer containing at least one of the silicon oxides;
The manufacturing method of the fibrous carbon-type material insulator characterized by including.
さらに、前記カチオン性ポリマー層形成工程の前に、前記繊維状炭素系材料とアニオン性高分子電解質を含む溶液とを混合し、該繊維状炭素系材料上に前記アニオン性高分子電解質を含むアニオン性ポリマー層を形成する工程を含むことを特徴とする請求項7に記載の繊維状炭素系材料絶縁物の製造方法。   Furthermore, before the cationic polymer layer forming step, the fibrous carbon-based material and a solution containing an anionic polymer electrolyte are mixed, and the anionic polymer electrolyte is contained on the fibrous carbon-based material. The manufacturing method of the fibrous carbon-type material insulator of Claim 7 including the process of forming a property polymer layer. 金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む酸化物層を備える繊維状炭素系材料絶縁物と、カチオン性高分子電解質を含む溶液とを混合し、前記酸化物層上に前記カチオン性高分子電解質を含むカチオン性ポリマー層を形成する工程と、
前記工程で形成したカチオン性ポリマー層を備える繊維状炭素系材料絶縁物と、負に帯電した金属酸化物およびケイ素酸化物のうちの少なくとも1種を含む溶液とを混合し、前記カチオン性ポリマー層上に前記金属酸化物および前記ケイ素酸化物のうちの少なくとも1種を含む酸化物層を形成する工程と、
をさらに含むことを特徴とする請求項7または8に記載の繊維状炭素系材料絶縁物の製造方法。
A fibrous carbon-based material insulator comprising an oxide layer containing at least one of a metal oxide and a silicon oxide is mixed with a solution containing a cationic polymer electrolyte, and the cation is formed on the oxide layer. Forming a cationic polymer layer containing a conductive polymer electrolyte;
Mixing a fibrous carbon-based material insulator provided with the cationic polymer layer formed in the step and a solution containing at least one of a negatively charged metal oxide and silicon oxide, and the cationic polymer layer Forming an oxide layer containing at least one of the metal oxide and the silicon oxide thereon;
The method for producing a fibrous carbon-based material insulator according to claim 7 or 8, further comprising:
さらに、前記カチオン性ポリマー層形成工程の前に、前記酸化物層を備える繊維状炭素系材料絶縁物とアニオン性高分子電解質を含む溶液とを混合し、該酸化物層上に前記アニオン性高分子電解質を含むアニオン性ポリマー層を形成する工程を含むことを特徴とする請求項9に記載の繊維状炭素系材料絶縁物の製造方法。   Further, before the cationic polymer layer forming step, a fibrous carbon-based material insulator provided with the oxide layer and a solution containing an anionic polymer electrolyte are mixed, and the anionic high layer is formed on the oxide layer. The method for producing a fibrous carbon-based material insulator according to claim 9, comprising a step of forming an anionic polymer layer containing a molecular electrolyte.
JP2008086183A 2008-03-28 2008-03-28 Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator Active JP4973569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086183A JP4973569B2 (en) 2008-03-28 2008-03-28 Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086183A JP4973569B2 (en) 2008-03-28 2008-03-28 Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator

Publications (2)

Publication Number Publication Date
JP2009235650A true JP2009235650A (en) 2009-10-15
JP4973569B2 JP4973569B2 (en) 2012-07-11

Family

ID=41249943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086183A Active JP4973569B2 (en) 2008-03-28 2008-03-28 Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator

Country Status (1)

Country Link
JP (1) JP4973569B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053033A (en) * 2008-08-29 2010-03-11 Qinghua Univ Method for manufacturing carbon nanotube/polymer composite
JP2010059303A (en) * 2008-09-03 2010-03-18 Bridgestone Corp Rubber composition and tire using the same
WO2011013840A1 (en) * 2009-07-28 2011-02-03 帝人株式会社 Insulated pitch-based graphitized short fibers
WO2011043271A1 (en) 2009-10-09 2011-04-14 三井・デュポンポリケミカル株式会社 Ionomer composition, and moldings and process for production thereof
JP2013129584A (en) * 2011-12-22 2013-07-04 Osaka Gas Co Ltd Zinc-compound-coated carbon material, manufacturing method thereof, and composite material using the zinc-compound-coated carbon material
JP2013193364A (en) * 2012-03-21 2013-09-30 Toppan Printing Co Ltd Thermal transfer recording medium
JP2015527961A (en) * 2012-06-29 2015-09-24 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Graphene film, and production method and use thereof
JP2016511314A (en) * 2013-06-17 2016-04-14 エルジー・ケム・リミテッド Photocurable and thermosetting resin composition and dry film solder resist
JP2016145363A (en) * 2010-12-14 2016-08-12 モレキュラー レバー デザイン エルエルシー Improved elastomer blending
WO2018168346A1 (en) * 2017-03-16 2018-09-20 日本ゼオン株式会社 Method for producing surface-treated carbon nano-structure
WO2019093360A1 (en) * 2017-11-13 2019-05-16 Aca株式会社 Carbon nanowire dispersion liquid and method for producing same
CN110637120A (en) * 2017-04-21 2019-12-31 日本制纸株式会社 Inorganic particle composite fiber, method for producing same, and molded body
US20210159762A1 (en) * 2019-11-27 2021-05-27 Milwaukee Electric Tool Corporation Stator for use in an electric motor
CN113445321A (en) * 2015-08-07 2021-09-28 迪睿合株式会社 Insulation-coated carbon fiber, method for producing insulation-coated carbon fiber, carbon fiber-containing composition, and heat conductive sheet
JP2022081144A (en) * 2020-11-19 2022-05-31 株式会社豊田中央研究所 Carbon-based material insulator and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122817A1 (en) 2016-01-14 2017-07-20 デクセリアルズ株式会社 Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
JP2006049729A (en) * 2004-08-06 2006-02-16 Toyota Central Res & Dev Lab Inc Surface layer coating metal and green compact
JP2007107151A (en) * 2005-10-17 2007-04-26 Showa Denko Kk Silica-coated carbon fiber
JP2008049607A (en) * 2006-08-25 2008-03-06 Teijin Ltd Heat-conductive laminate with bonded thin film of electrical insulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180372A (en) * 2000-12-15 2002-06-26 Toho Tenax Co Ltd Carbon fiber coated with metal oxide and method for producing the same
JP2002235279A (en) * 2001-02-08 2002-08-23 Showa Denko Kk Vapor-grown carbon fiber coated with electrical insulator, method for producing the same, and use thereof
JP2006049729A (en) * 2004-08-06 2006-02-16 Toyota Central Res & Dev Lab Inc Surface layer coating metal and green compact
JP2007107151A (en) * 2005-10-17 2007-04-26 Showa Denko Kk Silica-coated carbon fiber
JP2008049607A (en) * 2006-08-25 2008-03-06 Teijin Ltd Heat-conductive laminate with bonded thin film of electrical insulation

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053033A (en) * 2008-08-29 2010-03-11 Qinghua Univ Method for manufacturing carbon nanotube/polymer composite
JP2010059303A (en) * 2008-09-03 2010-03-18 Bridgestone Corp Rubber composition and tire using the same
WO2011013840A1 (en) * 2009-07-28 2011-02-03 帝人株式会社 Insulated pitch-based graphitized short fibers
WO2011043271A1 (en) 2009-10-09 2011-04-14 三井・デュポンポリケミカル株式会社 Ionomer composition, and moldings and process for production thereof
JP2016145363A (en) * 2010-12-14 2016-08-12 モレキュラー レバー デザイン エルエルシー Improved elastomer blending
JP2018003030A (en) * 2010-12-14 2018-01-11 モレキュラー レバー デザイン エルエルシー Improved elastomer blending
JP2013129584A (en) * 2011-12-22 2013-07-04 Osaka Gas Co Ltd Zinc-compound-coated carbon material, manufacturing method thereof, and composite material using the zinc-compound-coated carbon material
JP2013193364A (en) * 2012-03-21 2013-09-30 Toppan Printing Co Ltd Thermal transfer recording medium
JP2015527961A (en) * 2012-06-29 2015-09-24 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Graphene film, and production method and use thereof
JP2016511314A (en) * 2013-06-17 2016-04-14 エルジー・ケム・リミテッド Photocurable and thermosetting resin composition and dry film solder resist
CN113445321A (en) * 2015-08-07 2021-09-28 迪睿合株式会社 Insulation-coated carbon fiber, method for producing insulation-coated carbon fiber, carbon fiber-containing composition, and heat conductive sheet
CN110366536A (en) * 2017-03-16 2019-10-22 日本瑞翁株式会社 The manufacturing method for the carbon nano structure being surface-treated
WO2018168346A1 (en) * 2017-03-16 2018-09-20 日本ゼオン株式会社 Method for producing surface-treated carbon nano-structure
CN110366536B (en) * 2017-03-16 2022-11-08 日本瑞翁株式会社 Method for producing surface-treated carbon nanostructure
JPWO2018168346A1 (en) * 2017-03-16 2020-01-16 日本ゼオン株式会社 Method for producing surface-treated carbon nanostructure
JP7131543B2 (en) 2017-03-16 2022-09-06 日本ゼオン株式会社 Method for producing surface-treated carbon nanostructure
JPWO2018193751A1 (en) * 2017-04-21 2020-03-12 日本製紙株式会社 Inorganic particle composite fiber, method for producing the same, and molded article
EP3663459A1 (en) * 2017-04-21 2020-06-10 Nippon Paper Industries Co., Ltd Inorganic particle composite fiber, method for manufacturing same, and molded article
EP3613896A4 (en) * 2017-04-21 2020-04-29 Nippon Paper Industries Co., Ltd. Inorganic particle composite fiber, method for manufacturing same, and molded article
JP7138095B2 (en) 2017-04-21 2022-09-15 日本製紙株式会社 Inorganic particle composite fiber, method for producing the same, and molded article
CN110637120A (en) * 2017-04-21 2019-12-31 日本制纸株式会社 Inorganic particle composite fiber, method for producing same, and molded body
US11555270B2 (en) 2017-04-21 2023-01-17 Nippon Paper Industries Co., Ltd. Inorganic particle composite fiber, method for manufacturing same, and molded article
WO2019093360A1 (en) * 2017-11-13 2019-05-16 Aca株式会社 Carbon nanowire dispersion liquid and method for producing same
US20210159762A1 (en) * 2019-11-27 2021-05-27 Milwaukee Electric Tool Corporation Stator for use in an electric motor
JP2022081144A (en) * 2020-11-19 2022-05-31 株式会社豊田中央研究所 Carbon-based material insulator and method for producing the same
JP7292615B2 (en) 2020-11-19 2023-06-19 株式会社豊田中央研究所 Carbon-based material insulator and manufacturing method thereof

Also Published As

Publication number Publication date
JP4973569B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4973569B2 (en) Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator
EP3000849B1 (en) Graphite nanoplatelets, composites comprising them, preparation and uses thereof
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
EP2287244B1 (en) Highly thermally-conductive moldable thermoplastic composites and compositions
US10131752B2 (en) Polymer nanocomposites
Choudhary et al. Carbon nanotubes and their composites
Zhao et al. Aqueous-phase exfoliation and functionalization of boron nitride nanosheets using tannic acid for thermal management applications
JP6284019B2 (en) Boron nitride nanosheet-containing dispersion and production method thereof, boron nitride nanosheet composite and production method thereof
JP6225848B2 (en) Boron nitride nanosheet-containing dispersion, boron nitride nanosheet composite and production method thereof
JP2006265315A (en) Composite material
EP1794235A1 (en) Electroconductive resin composition, production method and use thereof
Li et al. Tuning dielectric properties and energy density of poly (vinylidene fluoride) nanocomposites by quasi core–shell structured BaTiO 3@ graphene oxide hybrids
Kumar et al. Study on epoxy resin-based thermal adhesive filled with hybrid expanded graphite and graphene nanoplatelet
KR20130091381A (en) Carbon nano material-polymer composite and method for producing the same
JP2019001701A (en) Carbon-modified boron nitride, production method thereof and high thermal conducting resin composition
He et al. A graphene oxide–polyvinylidene fluoride mixture as a precursor for fabricating thermally reduced graphene oxide–polyvinylidene fluoride composites
JP2007138039A (en) Recycled composite material
Morishita et al. Ultra-highly electrically insulating carbon materials and their use for thermally conductive and electrically insulating polymer composites
JP2007119647A (en) Composite material
JP2013166849A (en) Method of producing polysulfone composition and method of producing molded product
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
JP6642788B2 (en) Resin composite material and method for producing the same
JP7292615B2 (en) Carbon-based material insulator and manufacturing method thereof
JP6831534B2 (en) Composite particles, composite materials, and methods for producing composite particles
JP6677898B2 (en) Resin composite material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4973569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3