JP2009233642A - Composite oxide for exhaust gas cleaning catalyst and exhaust gas cleaning filter using the same - Google Patents

Composite oxide for exhaust gas cleaning catalyst and exhaust gas cleaning filter using the same Download PDF

Info

Publication number
JP2009233642A
JP2009233642A JP2008086804A JP2008086804A JP2009233642A JP 2009233642 A JP2009233642 A JP 2009233642A JP 2008086804 A JP2008086804 A JP 2008086804A JP 2008086804 A JP2008086804 A JP 2008086804A JP 2009233642 A JP2009233642 A JP 2009233642A
Authority
JP
Japan
Prior art keywords
exhaust gas
molar ratio
composite oxide
ratio
gas cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086804A
Other languages
Japanese (ja)
Other versions
JP5541843B2 (en
Inventor
Shin Hamada
心 濱田
Takuya Yano
拓哉 矢野
Tatsuro Miyazaki
達郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008086804A priority Critical patent/JP5541843B2/en
Publication of JP2009233642A publication Critical patent/JP2009233642A/en
Application granted granted Critical
Publication of JP5541843B2 publication Critical patent/JP5541843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite oxide for an exhaust gas cleaning catalyst, which is not easily poisoned by sulfur oxide components included in an exhaust gas and is capable of suppressing the decline of catalyst activity, and an exhaust gas cleaning filter using it. <P>SOLUTION: In the composite oxide for the exhaust gas cleaning catalyst constituted of Ce, Bi, Pr and oxygen, when the mole ratio of Ce, Bi and Pr in a bulk composition is defined as Ce:Bi:Pr=(1-x-y):x:y, 0<x≤0.3 and 0<y≤0.5 are satisfied. When the mole ratio of Ce, Bi and Pr in a surface composition is defined as Ce:Bi:Pr=(1-p-q):p:q, 0<p≤0.5 and 0<q≤0.5 (except for the case that p and q are both 0.5) are satisfied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排ガス浄化触媒用複合酸化物およびそれを用いた排ガス浄化用フィルタに関し、特に、ディーゼルエンジンから排出される粒子状物質の燃焼に適した排ガス浄化触媒用複合酸化物およびそれを用いた排ガス浄化用フィルタに関する。   The present invention relates to a composite oxide for exhaust gas purification catalyst and a filter for exhaust gas purification using the same, and more particularly to a composite oxide for exhaust gas purification catalyst suitable for combustion of particulate matter discharged from a diesel engine and the same. The present invention relates to an exhaust gas purification filter.

ディーゼルエンジンの排ガスには、カーボンを主体とする粒子状物質(以下「PM」という)が含まれており、ディーゼルエンジンの排ガスからPMを除去する方法として、一般に、排気ガス流路に多孔質体セラミックスからなるディーゼル・パーティキュレート・フィルタ(以下、「DPF」という)を設置してPMを捕集(トラップ)する方法が用いられている。DPFに捕集されたPMは間欠的または連続的に燃焼処理され、DPFはPMの捕集前の状態に再生される。このDPFの再生処理には、一般に、電気ヒーターやバーナーなどによって外部から強制加熱してPMを燃焼させる方法や、DPFよりもエンジン側に酸化触媒を設置し、排ガス中に含まれるNOを酸化触媒によってNOにして、NOの酸化力によってPMを燃焼させる方法などが用いられている。 Diesel engine exhaust gas contains particulate matter mainly composed of carbon (hereinafter referred to as “PM”). As a method for removing PM from diesel engine exhaust gas, a porous body is generally provided in the exhaust gas passage. A method of collecting (trapping) PM by installing a diesel particulate filter (hereinafter referred to as “DPF”) made of ceramics is used. The PM collected in the DPF is burned intermittently or continuously, and the DPF is regenerated to the state before the PM is collected. This DPF regeneration process is generally performed by a method of burning PM by forcibly heating from the outside with an electric heater, a burner, or the like, or by installing an oxidation catalyst on the engine side of the DPF, and converting NO contained in the exhaust gas into an oxidation catalyst. in the NO 2 by a method for combusting PM by the oxidation force of the NO 2 is used.

また、酸化雰囲気下で酸素を吸収し、還元雰囲気下で酸素を放出するというセリウム酸化物の酸素吸蔵放出能を利用して、セリウム酸化物をディーゼルエンジンの排ガス浄化触媒として使用することが知られており、また、セリウム酸化物にプラセオジムなどを添加して、セリウム酸化物内の酸素イオンの移動を促進させることも知られている(例えば、特許文献1参照)。また、セリウム酸化物にビスマスを添加して、酸素貯蔵容量を向上させることも知られている(例えば、特許文献2参照)。   It is also known to use cerium oxide as an exhaust gas purification catalyst for diesel engines by utilizing the oxygen storage and release ability of cerium oxide, which absorbs oxygen in an oxidizing atmosphere and releases oxygen in a reducing atmosphere. It is also known to add praseodymium or the like to cerium oxide to promote the movement of oxygen ions in the cerium oxide (see, for example, Patent Document 1). It is also known to improve oxygen storage capacity by adding bismuth to cerium oxide (see, for example, Patent Document 2).

特開平10−151348号公報(段落番号0001、0012−0015)JP 10-151348 A (paragraph numbers 0001, 0012-0015) 特開平6−211525号公報(段落番号0005)Japanese Patent Application Laid-Open No. 6-211525 (paragraph number 0005)

しかし、セリウム酸化物や、セリウムの他にビスマスやプラセオジムなどを構成元素として含む複合酸化物をディーゼルエンジンの排ガス浄化触媒として使用しても、ディーゼルエンジンの排ガス中に含まれる硫黄酸化物成分による被毒を受け易く、長期間にわたって触媒活性を維持することができなくなる場合がある。   However, even if cerium oxide or a composite oxide containing bismuth or praseodymium as a constituent element in addition to cerium is used as an exhaust gas purification catalyst for a diesel engine, the amount of sulfur oxide contained in the exhaust gas of the diesel engine It may be easily poisoned and may not be able to maintain catalytic activity for a long period of time.

したがって、本発明は、このような従来の問題点に鑑み、排ガス中に含まれる硫黄酸化物成分による被毒を受け難く、触媒活性の低下を抑制することができる、排ガス浄化触媒用複合酸化物およびそれを用いた排ガス浄化用フィルタを提供することを目的とする。   Therefore, in view of such conventional problems, the present invention is difficult to be poisoned by the sulfur oxide component contained in the exhaust gas, and can suppress a decrease in catalyst activity, and can be a composite oxide for an exhaust gas purification catalyst. And it aims at providing the filter for exhaust gas purification using the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、セリウム(Ce)とビスマス(Bi)とプラセオジム(Pr)と酸素から構成される排ガス浄化触媒用複合酸化物において、バルク組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−x−y):x:yとすると、0<x≦0.3且つ0<y≦0.5にするとともに、表面組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−p−q):p:qとすると、0<p≦0.5且つ0<q≦0.5(但し、pとqがいずれも0.5の場合を除く)にすれば、排ガス中に含まれる硫黄酸化物成分による被毒を受け難く、触媒活性の低下を抑制することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that in a composite oxide for an exhaust gas purification catalyst composed of cerium (Ce), bismuth (Bi), praseodymium (Pr), and oxygen, When the molar ratio of Ce, Bi, and Pr is Ce: Bi: Pr = (1-xy): x: y, 0 <x ≦ 0.3 and 0 <y ≦ 0.5, and the surface composition Assuming that the molar ratio of Ce, Bi, and Pr is Ce: Bi: Pr = (1-pq): p: q, 0 <p ≦ 0.5 and 0 <q ≦ 0.5 (where p and It is found that if q is not 0.5), it is difficult to be poisoned by the sulfur oxide component contained in the exhaust gas, and the decrease in catalytic activity can be suppressed, and the present invention is completed. It came to.

すなわち、本発明による排ガス浄化触媒用複合酸化物は、Ce、Bi、Prおよび酸素から構成される複合酸化物において、バルク組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−x−y):x:yとすると、0<x≦0.3且つ0<y≦0.5であり、表面組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−p−q):p:qとすると、0<p≦0.5且つ0<q≦0.5(但し、pとqがいずれも0.5の場合を除く)であることを特徴とする。   That is, the composite oxide for exhaust gas purification catalyst according to the present invention is a composite oxide composed of Ce, Bi, Pr and oxygen, and the molar ratio of Ce, Bi, and Pr in the bulk composition is Ce: Bi: Pr = (1 −xy): When x: y, 0 <x ≦ 0.3 and 0 <y ≦ 0.5, and the molar ratio of Ce, Bi, and Pr in the surface composition is Ce: Bi: Pr = (1 -P-q): When p: q, 0 <p ≦ 0.5 and 0 <q ≦ 0.5 (provided that both p and q are not 0.5) To do.

この排ガス浄化触媒用複合酸化物において、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yが、0.5≦q/y≦2.0であるのが好ましい。また、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}が、0.5≦{q/(1−p−q)}/{y/(1−x−y)}≦3.5であるのが好ましい。さらに、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}が、0.5≦{q/(1−q)}/{y/(1−y)}≦2.5であるのが好ましい。   In the composite oxide for exhaust gas purification catalyst, the ratio q / y of the Pr molar ratio q in the surface composition to the Pr molar ratio y in the bulk composition is 0.5 ≦ q / y ≦ 2.0. preferable. Further, the ratio of Pr to Ce molar ratio q / (1-pq) in the surface composition to the molar ratio y / (1-xy) of Pr to Ce in the bulk composition {q / (1-p- q)} / {y / (1-xy)} is 0.5 ≦ {q / (1-p−q)} / {y / (1-xy)} ≦ 3.5. Is preferred. Further, the ratio of the molar ratio q / (1-q) of Pr to the sum of Ce and Bi in the surface composition to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the bulk composition {q / ( 1-q)} / {y / (1-y)} is preferably 0.5 ≦ {q / (1-q)} / {y / (1-y)} ≦ 2.5.

また、本発明による排ガス浄化用フィルタは、上記の排ガス浄化触媒用複合酸化物が触媒としてフィルタ母材に担持されていることを特徴とする。   In addition, the exhaust gas purifying filter according to the present invention is characterized in that the composite oxide for exhaust gas purifying catalyst is supported on a filter base material as a catalyst.

本発明によれば、排ガス中に含まれる硫黄酸化物成分による被毒を受け難く、触媒活性の低下を抑制することができる、排ガス浄化触媒用複合酸化物およびそれを用いた排ガス浄化用フィルタを提供することができる。   According to the present invention, there is provided a composite oxide for an exhaust gas purification catalyst that is difficult to be poisoned by a sulfur oxide component contained in exhaust gas and that can suppress a decrease in catalytic activity, and an exhaust gas purification filter using the same. Can be provided.

本発明による排ガス浄化触媒用複合酸化物の実施の形態は、Ce、Bi、Prおよび酸素から構成される複合酸化物であり、バルク組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−x−y):x:yとすると、0<x≦0.3且つ0<y≦0.5、好ましくは0.09≦x≦0.28且つ0.11≦y≦0.43であり、表面組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−p−q):p:qとすると、0<p≦0.5且つ0<q≦0.5(但し、pとqがいずれも0.5の場合を除く)、好ましくは0.32≦p≦0.46且つ0.12≦q≦0.47である。   The embodiment of the composite oxide for exhaust gas purification catalyst according to the present invention is a composite oxide composed of Ce, Bi, Pr, and oxygen, and the molar ratio of Ce, Bi, and Pr in the bulk composition is Ce: Bi: Pr. = (1-xy): When x: y, 0 <x ≦ 0.3 and 0 <y ≦ 0.5, preferably 0.09 ≦ x ≦ 0.28 and 0.11 ≦ y ≦ 0 When the molar ratio of Ce, Bi, and Pr in the surface composition is Ce: Bi: Pr = (1-pq): p: q, 0 <p ≦ 0.5 and 0 <q ≦ 0 0.5 (except when p and q are both 0.5), preferably 0.32 ≦ p ≦ 0.46 and 0.12 ≦ q ≦ 0.47.

このような複合酸化物を排ガス浄化触媒としてディーゼル排ガス浄化用フィルタに用いれば、従来の酸化触媒を用いたディーゼル排ガス浄化用フィルタと比べて、ディーゼルエンジン排ガス中に含まれる硫黄酸化物成分による被毒を受け難く、優れた触媒活性を長期間にわたって維持することができる。   If such a composite oxide is used as a diesel exhaust gas purification filter as an exhaust gas purification catalyst, compared to a diesel exhaust gas purification filter using a conventional oxidation catalyst, poisoning due to sulfur oxide components contained in diesel engine exhaust gas It is difficult to receive and excellent catalytic activity can be maintained over a long period of time.

特に、Ce、Bi、Prおよび酸素から構成される複合酸化物において、バルク組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−x−y):x:yとすると、0.09≦x≦0.28且つ0.11≦y≦0.43にするとともに、表面組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−p−q):p:qとすると、0.32≦p≦0.46且つ0.12≦q≦0.47にすれば、Prを含まずCe、Biおよび酸素から構成される複合酸化物や、酸化セリウム(CeO)と比べて、硫黄被毒処理前のPM燃焼温度と硫黄被毒処理後のPM燃焼温度を低くすることができるとともに、これらのPM燃焼温度の差ΔTを小さくすることができる。 In particular, in a composite oxide composed of Ce, Bi, Pr, and oxygen, when the molar ratio of Ce, Bi, and Pr in the bulk composition is Ce: Bi: Pr = (1-xy): x: y, 0.09 ≦ x ≦ 0.28 and 0.11 ≦ y ≦ 0.43, and the molar ratio of Ce, Bi, and Pr in the surface composition is Ce: Bi: Pr = (1-pq): p : When q is 0.32 ≦ p ≦ 0.46 and 0.12 ≦ q ≦ 0.47, a complex oxide composed of Ce, Bi and oxygen not containing Pr, cerium oxide (CeO Compared with 2 ), the PM combustion temperature before the sulfur poisoning treatment and the PM combustion temperature after the sulfur poisoning treatment can be lowered, and the difference ΔT between these PM combustion temperatures can be reduced.

また、上記の排ガス浄化触媒用複合酸化物において、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yが、0.5≦q/y≦2.0であるのが好ましく、0.57≦q/y≦1.82であるのがさらに好ましい。また、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}が、0.5≦{q/(1−p−q)}/{y/(1−x−y)}≦3.5であるのが好ましく、0.94≦{q/(1−p−q)}/{y/(1−x−y)}≦3.20であるのがさらに好ましい。さらに、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}が、0.5≦{q/(1−q)}/{y/(1−y)}≦2.5であるのが好ましく、0.51≦{q/(1−q)}/{y/(1−y)}≦2.02であるのがさらに好ましい。   In the above composite oxide for exhaust gas purification catalyst, the ratio q / y of the Pr molar ratio q in the surface composition to the Pr molar ratio y in the bulk composition is 0.5 ≦ q / y ≦ 2.0. It is preferable that there is 0.57 ≦ q / y ≦ 1.82. Further, the ratio of Pr to Ce molar ratio q / (1-pq) in the surface composition to the molar ratio y / (1-xy) of Pr to Ce in the bulk composition {q / (1-p- q)} / {y / (1-xy)} is 0.5 ≦ {q / (1-p−q)} / {y / (1-xy)} ≦ 3.5. It is more preferable that 0.94 ≦ {q / (1-pq)} / {y / (1-xy)} ≦ 3.20. Further, the ratio of the molar ratio q / (1-q) of Pr to the sum of Ce and Bi in the surface composition to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the bulk composition {q / ( 1-q)} / {y / (1-y)} is preferably 0.5 ≦ {q / (1-q)} / {y / (1-y)} ≦ 2.5, More preferably, 0.51 ≦ {q / (1-q)} / {y / (1-y)} ≦ 2.02.

特に、上記の排ガス浄化触媒用複合酸化物において、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yを、0.57≦q/y≦1.82にし、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}を、0.94≦{q/(1−p−q)}/{y/(1−x−y)}≦3.20にし、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}を、0.51≦{q/(1−q)}/{y/(1−y)}≦2.02にすれば、Prを含まずCe、Biおよび酸素から構成される複合酸化物や、酸化セリウム(CeO)と比べて、硫黄被毒処理前のPM燃焼温度と硫黄被毒処理後のPM燃焼温度を低くすることができるとともに、これらのPM燃焼温度の差ΔTを小さくすることができる。 In particular, in the composite oxide for exhaust gas purification catalyst described above, the ratio q / y of the Pr molar ratio q in the surface composition to the Pr molar ratio y in the bulk composition is 0.57 ≦ q / y ≦ 1.82. The ratio of Pr to Ce molar ratio q / (1-p-q) in the surface composition to the molar ratio y / (1-xy) of Pr to Ce in the bulk composition {q / (1-p-q) )} / {Y / (1-xy)} to be 0.94 ≦ {q / (1-p−q)} / {y / (1-xy)} ≦ 3.20 Ratio of Pr molar ratio q / (1-q) to the sum of Ce and Bi in the surface composition to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the composition {q / (1-q )} / {Y / (1-y)}, 0.51 ≦ {q / (1-q)} / {y / (1-y)} ≦ If the .02, Ce free of Pr, composite oxides and consists of Bi and oxygen, as compared with cerium oxide (CeO 2), sulfur before treatment of poisoning PM combustion temperature and after sulfur poisoning treatment The PM combustion temperature can be lowered, and the difference ΔT between these PM combustion temperatures can be reduced.

以下、本発明による排ガス浄化触媒用複合酸化物の実施例について詳細に説明する。   Examples of the composite oxide for exhaust gas purification catalyst according to the present invention will be described in detail below.

[実施例1]
まず、Ce源として硝酸セリウム六水和物(Ce(NO・6HO)、Bi源として硝酸ビスマス五水和物(Bi(NO・5HO)、Pr源としてPr酸化物の粉末を濃硝酸溶液に溶解したPr硝酸溶液を用意した。これらの硝酸セリウム六水和物、硝酸ビスマス五水和物およびPr硝酸溶液を、CeとBiとPrのモル比が0.30:0.28:0.42になるような配合割合で混合し、この混合硝酸溶液中のCeとBiとPrの合計が0.2モル/Lになるように水を加えて原料溶液を得た。この溶液を撹拌しながら、沈殿剤として炭酸アンモニウム水溶液を添加した後、30分間撹拌し続けて沈殿反応を十分に進行させた。得られた沈殿物をろ過した後、水洗し、その後、125℃で約15時間乾燥して、前駆体としての乾燥粉末を得た。この前駆体を大気雰囲気下において800℃で2時間焼成して、CeとBiとPrを主成分とする複合酸化物(バルク組成におけるCeとBiとPrのモル比が0.30:0.28:0.42の複合酸化物)を得た。
[Example 1]
First, cerium nitrate hexahydrate (Ce (NO 3 ) 3 .6H 2 O) as a Ce source, bismuth nitrate pentahydrate (Bi (NO 3 ) 3 .5H 2 O) as a Bi source, and Pr as a Pr source A Pr nitric acid solution in which an oxide powder was dissolved in a concentrated nitric acid solution was prepared. These cerium nitrate hexahydrate, bismuth nitrate pentahydrate and Pr nitric acid solution were mixed at a blending ratio such that the molar ratio of Ce, Bi, and Pr was 0.30: 0.28: 0.42. Then, water was added so that the total of Ce, Bi, and Pr in the mixed nitric acid solution was 0.2 mol / L to obtain a raw material solution. While stirring this solution, an aqueous ammonium carbonate solution was added as a precipitating agent, and then stirring was continued for 30 minutes to sufficiently advance the precipitation reaction. The obtained precipitate was filtered, washed with water, and then dried at 125 ° C. for about 15 hours to obtain a dry powder as a precursor. This precursor was calcined at 800 ° C. for 2 hours in an air atmosphere, and a composite oxide containing Ce, Bi, and Pr as main components (the molar ratio of Ce, Bi, and Pr in the bulk composition was 0.30: 0.28). : 0.42 composite oxide).

得られた複合酸化物について、X線光電子分光分析(XPS)装置(VG社のSIGMAPROBE SPECTROMETER)により、X線源としてAl−kα線を使用して、XPSスペクトルを得た。このXPSスペクトルのCe3d、Pr3dおよびBi4fのピーク面積を算出し、これらのピーク面積の比率から、複合酸化物の粒子の表面におけるCeとBiとPrのモル比(表面組成におけるCeとBiとPrのモル比)を求めたところ、0.17:0.36:0.47であった。   With respect to the obtained composite oxide, an XPS spectrum was obtained using an Al-kα ray as an X-ray source by an X-ray photoelectron spectroscopy (XPS) apparatus (SIGMAPROBE SPECTROMETER, VG). The peak areas of Ce3d, Pr3d and Bi4f of this XPS spectrum are calculated, and the molar ratio of Ce, Bi and Pr on the surface of the composite oxide particles (the ratio of Ce, Bi and Pr in the surface composition) is calculated from the ratio of these peak areas. The molar ratio was 0.17: 0.36: 0.47.

次に、得られた複合酸化物の粉体と、模擬PMとしての市販のカーボンブラック(三菱化学株式会社製の平均粒径2.09μmのカーボンブラック)とを、質量比が6:1になるように秤量して、自動乳鉢機(石川工場製のAGA型)で20分間混合し、複合酸化物とカーボンブラックの混合粉体を得た。この混合粉体20mgをTG/DTA装置(セイコーインスツルメンツ社製のTG/DTA6300型)にセットし、大気中において昇温速度10℃/分で常温から700℃まで昇温し、混合粉体の重量の減少量を測定した。なお、カーボンブラックは燃焼により二酸化炭素として系外に排出されるので、初期重量から減少傾向になる。得られたDTA曲線のピークが最大となる点(TG曲線において重量の減少が最も急激に起こる点)の温度をPM燃焼温度として評価したところ、PM燃焼温度は336℃であった。   Next, the obtained composite oxide powder and commercially available carbon black as simulated PM (carbon black with an average particle diameter of 2.09 μm manufactured by Mitsubishi Chemical Corporation) have a mass ratio of 6: 1. The mixture was weighed in an automatic mortar machine (AGA type manufactured by Ishikawa Factory) for 20 minutes to obtain a mixed powder of composite oxide and carbon black. 20 mg of this mixed powder was set in a TG / DTA apparatus (TG / DTA6300 type manufactured by Seiko Instruments Inc.), heated in the atmosphere from room temperature to 700 ° C. at a heating rate of 10 ° C./min, and the weight of the mixed powder The amount of decrease was measured. Since carbon black is discharged out of the system as carbon dioxide by combustion, it tends to decrease from the initial weight. When the temperature at the point at which the peak of the obtained DTA curve was maximum (the point at which the weight decrease occurs most rapidly in the TG curve) was evaluated as the PM combustion temperature, the PM combustion temperature was 336 ° C.

また、得られた複合酸化物を、硫黄酸化物を含むガス(200ppmのSOと、10%のOと、10%のHOを含む窒素ガス)を流量0.5L/分で流した電気炉中に入れ、この電気炉中おいて300℃で10時間熱処理を行い、さらに大気中において600℃で2時間熱処理を行うことによって、複合酸化物に硫黄被毒処理を施した。この硫黄被毒処理は、DPFに捕集されたPMを燃焼させてDPFの再処理を行う際の温度条件を想定して行った。 In addition, a gas containing sulfur oxide (nitrogen gas containing 200 ppm SO 2 , 10% O 2 , and 10% H 2 O) was supplied to the obtained composite oxide at a flow rate of 0.5 L / min. The composite oxide was subjected to sulfur poisoning treatment by heat treatment at 300 ° C. for 10 hours in the electric furnace and further heat treatment at 600 ° C. for 2 hours in the air. This sulfur poisoning treatment was performed assuming a temperature condition when the DPF was reprocessed by burning PM collected in the DPF.

この硫黄被毒処理後の複合酸化物について、上記と同様のPM燃焼温度を評価したところ、硫黄被毒処理後の複合酸化物のPM燃焼温度は419℃であった。また、硫黄被毒処理後の複合酸化物のPM燃焼温度と、硫黄被毒処理前の複合酸化物のPM燃焼温度との温度差ΔTは82℃であった。   When the PM combustion temperature similar to the above was evaluated for the composite oxide after this sulfur poisoning treatment, the PM combustion temperature of the composite oxide after the sulfur poisoning treatment was 419 ° C. Further, the temperature difference ΔT between the PM combustion temperature of the composite oxide after the sulfur poisoning treatment and the PM combustion temperature of the composite oxide before the sulfur poisoning treatment was 82 ° C.

[実施例2〜6、比較例1、2]
CeとBiとPrの配合割合をモル比が0.42:0.15:0.43(実施例2)、0.50:0.29:0.21(実施例3)、0.50:0.10:0.40(実施例4)、0.69:0.09:0.21(実施例5)、0.74:0.15:0.11(実施例6)、0.90:0.10:0.00(比較例1)、1.00:0.00:0.00(比較例2)になるようにした以外は、実施例1と同様の方法により、それぞれバルク組成におけるモル比が0.42:0.15:0.43(実施例2)、0.50:0.29:0.21(実施例3)、0.50:0.10:0.40(実施例4)、0.69:0.09:0.21(実施例5)、0.74:0.15:0.11(実施例6)、0.90:0.10:0.00(比較例1)、1.00:0.00:0.00(比較例2)の複合酸化物を得た。
[Examples 2 to 6, Comparative Examples 1 and 2]
The molar ratio of Ce, Bi, and Pr is 0.42: 0.15: 0.43 (Example 2), 0.50: 0.29: 0.21 (Example 3), 0.50: 0.10: 0.40 (Example 4), 0.69: 0.09: 0.21 (Example 5), 0.74: 0.15: 0.11 (Example 6), 0.90 : 0.10: 0.00 (Comparative Example 1), 1.00: 0.00: 0.00 (Comparative Example 2) The molar ratio in the above is 0.42: 0.15: 0.43 (Example 2), 0.50: 0.29: 0.21 (Example 3), 0.50: 0.10: 0.40 (Example 3). Example 4), 0.69: 0.09: 0.21 (Example 5), 0.74: 0.15: 0.11 (Example 6), 0.90: 0.10: 0.00 (Comparative Example 1), .00: 0.00: to obtain a composite oxide of 0.00 (Comparative Example 2).

得られた複合酸化物について、実施例1と同様の方法により、粒子の表面におけるCeとBiとPrのモル比(表面組成におけるCeとBiとPrのモル比)を求めたところ、それぞれ0.21:0.33:0.46(実施例2)、0.28:0.41:0.31(実施例3)、0.31:0.32:0.38(実施例4)、0.42:0.46:0.12(実施例5)、0.42:0.38:0.20(実施例6)、0.63:0.37:0.00(比較例1)、1.00:0.00:0.00(比較例2)であった。   For the obtained composite oxide, the molar ratio of Ce, Bi, and Pr (the molar ratio of Ce, Bi, and Pr in the surface composition) on the surface of the particles was determined in the same manner as in Example 1. 21: 0.33: 0.46 (Example 2), 0.28: 0.41: 0.31 (Example 3), 0.31: 0.32: 0.38 (Example 4), 0 .42: 0.46: 0.12 (Example 5), 0.42: 0.38: 0.20 (Example 6), 0.63: 0.37: 0.00 (Comparative Example 1), It was 1.00: 0.00: 0.00 (Comparative Example 2).

また、得られた複合酸化物について、実施例1と同様の方法により、硫黄被毒処理前と硫黄被毒処理後のPM燃焼温度を評価し、温度差ΔTを算出したところ、それぞれ、実施例2では、339℃、420℃、81℃、実施例3では、325℃、421℃、96℃、実施例4では、348℃、439℃、91℃、実施例5では、339℃、441℃、103℃、実施例6では、326℃、454℃、127℃、比較例1では、346℃、500℃、155℃、比較例2では、354℃、532℃、178℃であった。   Further, for the obtained composite oxide, the PM combustion temperature before and after the sulfur poisoning treatment was evaluated by the same method as in Example 1, and the temperature difference ΔT was calculated. 2 is 339 ° C., 420 ° C., 81 ° C., Example 3 is 325 ° C., 421 ° C., 96 ° C., Example 4 is 348 ° C., 439 ° C., 91 ° C., and Example 5 is 339 ° C., 441 ° C. 103 ° C., Example 6 was 326 ° C., 454 ° C., 127 ° C., Comparative Example 1 was 346 ° C., 500 ° C., 155 ° C., and Comparative Example 2 was 354 ° C., 532 ° C., 178 ° C.

これらの実施例1〜7および比較例1〜2の結果を表1に示す。   The results of Examples 1-7 and Comparative Examples 1-2 are shown in Table 1.

Figure 2009233642
Figure 2009233642

表1からわかるように、実施例1〜6の複合酸化物は、Ce、Bi、Prおよび酸素から構成される複合酸化物であり、バルク組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−x−y):x:yとすると、0.09≦x≦0.28且つ0.11≦y≦0.43であり、表面組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−p−q):p:qとすると、0.32≦p≦0.46且つ0.12≦q≦0.47である。これらの実施例1〜6の複合酸化物では、比較例1の複合酸化物(Ce、Biおよび酸素から構成される複合酸化物)や比較例2の複合酸化物(酸化セリウムCeO)と比べて、硫黄被毒処理前のPM燃焼温度と硫黄被毒処理後のPM燃焼温度を低くすることができるとともに、これらのPM燃焼温度の差ΔTを小さくすることができることがわかる。 As can be seen from Table 1, the composite oxides of Examples 1 to 6 are composite oxides composed of Ce, Bi, Pr, and oxygen, and the molar ratio of Ce, Bi, and Pr in the bulk composition is Ce: Bi. : Pr = (1-xy): When x: y, 0.09 ≦ x ≦ 0.28 and 0.11 ≦ y ≦ 0.43, and the molar ratio of Ce, Bi, and Pr in the surface composition Is Ce: Bi: Pr = (1-pq): p: q, 0.32 ≦ p ≦ 0.46 and 0.12 ≦ q ≦ 0.47. The composite oxides of Examples 1 to 6 are compared with the composite oxide of Comparative Example 1 (composite oxide composed of Ce, Bi and oxygen) and the composite oxide of Comparative Example 2 (cerium oxide CeO 2 ). Thus, it can be seen that the PM combustion temperature before the sulfur poisoning treatment and the PM combustion temperature after the sulfur poisoning treatment can be lowered, and the difference ΔT between these PM combustion temperatures can be reduced.

また、実施例および比較例で得られたそれぞれの複合酸化物について、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yを算出したところ、それぞれ1.12(実施例1)、1.07(実施例2)、1.48(実施例3)、0.95(実施例4)、0.57(実施例5)、1.82(実施例6)、0.00(比較例1)、0.00(比較例2)であった。また、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}を算出したところ、それぞれ1.97(実施例1)、2.14(実施例2)、2.64(実施例3)、1.53(実施例4)、0.94(実施例5)、3.20(実施例6)、0.00(比較例1)、0.00(比較例2)であった。さらに、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}を算出したところ、それぞれ1.22(実施例1)、1.13(実施例2)、1.69(実施例3)、0.90(実施例4)、0.51(実施例5)、2.02(実施例6)、0.00(比較例1)、0.00(比較例2)であった。これらの結果と、硫黄被毒処理前と硫黄被毒処理後のPM燃焼温度の差ΔTとの関係をそれぞれ図1〜図3に示す。   For each composite oxide obtained in Examples and Comparative Examples, the ratio q / y of Pr molar ratio q in the surface composition to Pr molar ratio y in the bulk composition was calculated to be 1.12 respectively. (Example 1), 1.07 (Example 2), 1.48 (Example 3), 0.95 (Example 4), 0.57 (Example 5), 1.82 (Example 6) 0.00 (Comparative Example 1) and 0.00 (Comparative Example 2). Further, the ratio of Pr to Ce molar ratio q / (1-pq) in the surface composition to the molar ratio y / (1-xy) of Pr to Ce in the bulk composition {q / (1-p- q)} / {y / (1-xy)} was calculated to be 1.97 (Example 1), 2.14 (Example 2), 2.64 (Example 3), 1. 53 (Example 4), 0.94 (Example 5), 3.20 (Example 6), 0.00 (Comparative Example 1), and 0.00 (Comparative Example 2). Further, the ratio of the molar ratio q / (1-q) of Pr to the sum of Ce and Bi in the surface composition to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the bulk composition {q / ( 1-q)} / {y / (1-y)} were calculated to be 1.22 (Example 1), 1.13 (Example 2), 1.69 (Example 3),. They were 90 (Example 4), 0.51 (Example 5), 2.02 (Example 6), 0.00 (Comparative Example 1), and 0.00 (Comparative Example 2). The relationship between these results and the PM combustion temperature difference ΔT before and after the sulfur poisoning treatment is shown in FIGS.

図1〜図3に示すように、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yが、0.5≦q/y≦2.0である場合や、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}が、0.5≦{q/(1−p−q)}/{y/(1−x−y)}≦3.5である場合や、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}が、0.5≦{q/(1−q)}/{y/(1−y)}≦2.5である場合に、硫黄被毒処理前のPM燃焼温度と硫黄被毒処理後のPM燃焼温度の差ΔTを小さくすることができることがわかる。   As shown in FIGS. 1 to 3, the ratio q / y of the molar ratio q of Pr in the surface composition to the molar ratio y of Pr in the bulk composition is 0.5 ≦ q / y ≦ 2.0 or The ratio of Pr to Ce molar ratio q / (1-p-q) in the surface composition to the molar ratio y / (1-xy) of Pr to Ce in the bulk composition {q / (1-p-q) )} / {Y / (1-xy)} is 0.5 ≦ {q / (1-p−q)} / {y / (1-xy)} ≦ 3.5 Or the ratio of Pr molar ratio q / (1-q) to the sum of Ce and Bi in the surface composition to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the bulk composition {q / ( 1-q)} / {y / (1-y)} is 0.5 ≦ {q / (1-q)} / {y / (1-y)} ≦ 2.5 It can be seen that it is possible to reduce the difference ΔT of the PM combustion temperature of the sulfur poisoning pretreatment PM combustion temperature and after sulfur poisoning treatment.

特に、実施例1〜6の複合酸化物のように、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yが、0.57≦q/y≦1.82であり、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}が、0.94≦{q/(1−p−q)}/{y/(1−x−y)}≦3.20であり、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}が、0.51≦{q/(1−q)}/{y/(1−y)}≦2.02であれば、比較例1の複合酸化物(Ce、Biおよび酸素から構成される複合酸化物)や比較例2の複合酸化物(酸化セリウムCeO)と比べて、硫黄被毒処理前のPM燃焼温度と硫黄被毒処理後のPM燃焼温度を低くすることができるとともに、これらのPM燃焼温度の差ΔTを小さくすることができることがわかる。 In particular, as in the composite oxides of Examples 1 to 6, the ratio q / y of the Pr molar ratio q in the surface composition to the Pr molar ratio y in the bulk composition is 0.57 ≦ q / y ≦ 1. The ratio of the Pr to Ce molar ratio q / (1-pq) in the surface composition q / (1-pq) to the molar ratio y / (1-xy) of Ce in the bulk composition {q / (1- p−q)} / {y / (1-xy)} is 0.94 ≦ {q / (1-p−q)} / {y / (1−xy)} ≦ 3.20. Ratio of Pr to the sum of Ce and Bi in the surface composition to the molar ratio of Pr to the sum of Ce and Bi in the bulk composition q / (1-q) ratio {q / (1-q)} / {y / (1-y)} is 0.51 ≦ {q / (1-q)} / {y / (1-y)} ≦ 2. If 2, complex oxide of Comparative Example 1 (Ce, Bi and a composite oxide composed of oxygen) or a composite oxide of Comparative Example 2 as compared (cerium oxide CeO 2) and sulfur poisoning pretreatment It can be seen that the PM combustion temperature and the PM combustion temperature after sulfur poisoning can be lowered, and the difference ΔT between these PM combustion temperatures can be reduced.

このような実施例1〜6の複合酸化物を排ガス浄化触媒としてディーゼル排ガス浄化用フィルタに用いれば、従来の酸化触媒を用いたディーゼル排ガス浄化用フィルタと比べて、ディーゼルエンジン排ガス中に含まれる硫黄酸化物成分による被毒を受け難く、優れた触媒活性を長期間にわたって維持することができる。   If such composite oxides of Examples 1 to 6 are used as a diesel exhaust gas purification filter as an exhaust gas purification catalyst, sulfur contained in diesel engine exhaust gas as compared with a conventional diesel exhaust gas purification filter using an oxidation catalyst. It is difficult to be poisoned by the oxide component, and excellent catalytic activity can be maintained over a long period of time.

実施例および比較例で得られたそれぞれの複合酸化物について、バルク組成におけるPrのモル比yに対する、表面組成におけるPrのモル比qの比率q/yと、硫黄被毒処理前と硫黄被毒処理後のPM燃焼温度の差ΔTとの関係を示すグラフである。For each of the composite oxides obtained in Examples and Comparative Examples, the ratio q / y of the Pr molar ratio q in the surface composition to the Pr molar ratio y in the bulk composition, and before and after sulfur poisoning treatment It is a graph which shows the relationship with difference (DELTA) T of PM combustion temperature after a process. 実施例および比較例で得られたそれぞれの複合酸化物について、バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}と、硫黄被毒処理前と硫黄被毒処理後のPM燃焼温度の差ΔTとの関係を示すグラフである。For each of the composite oxides obtained in Examples and Comparative Examples, the molar ratio of Pr to Ce in the surface composition, q / (1−, relative to the molar ratio of Pr to Ce in the bulk composition, y / (1-xy). pq) ratio {q / (1-pq)} / {y / (1-xy)} and PM combustion temperature difference ΔT before and after sulfur poisoning It is a graph which shows the relationship. 実施例および比較例で得られたそれぞれの複合酸化物について、バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}と、硫黄被毒処理前と硫黄被毒処理後のPM燃焼温度の差ΔTとの関係を示すグラフである。For each of the composite oxides obtained in the examples and comparative examples, the molar ratio of Pr to the sum of Ce and Bi in the surface composition relative to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the bulk composition. The ratio {q / (1-q)} / {y / (1-y)} of the ratio q / (1-q) and the difference ΔT between the PM combustion temperatures before and after the sulfur poisoning treatment It is a graph which shows the relationship.

Claims (5)

Ce、Bi、Prおよび酸素から構成される複合酸化物において、バルク組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−x−y):x:yとすると、0<x≦0.3且つ0<y≦0.5であり、表面組成におけるCeとBiとPrのモル比をCe:Bi:Pr=(1−p−q):p:qとすると、0<p≦0.5且つ0<q≦0.5(但し、pとqがいずれも0.5の場合を除く)であることを特徴とする、排ガス浄化触媒用複合酸化物。 In a composite oxide composed of Ce, Bi, Pr, and oxygen, when the molar ratio of Ce, Bi, and Pr in the bulk composition is Ce: Bi: Pr = (1-xy): x: y, 0 < When x ≦ 0.3 and 0 <y ≦ 0.5, and the molar ratio of Ce, Bi, and Pr in the surface composition is Ce: Bi: Pr = (1-pq): p: q, 0 < A composite oxide for an exhaust gas purifying catalyst, wherein p ≦ 0.5 and 0 <q ≦ 0.5 (except when both p and q are 0.5). 前記バルク組成におけるPrのモル比yに対する、前記表面組成におけるPrのモル比qの比率q/yが、0.5≦q/y≦2.0であることを特徴とする、請求項1に記載の排ガス浄化触媒用複合酸化物。 The ratio q / y of the molar ratio q of Pr in the surface composition to the molar ratio y of Pr in the bulk composition is 0.5 ≦ q / y ≦ 2.0. The composite oxide for exhaust gas purification catalyst as described. 前記バルク組成におけるCeに対するPrのモル比y/(1−x−y)に対する、前記表面組成におけるCeに対するPrのモル比q/(1−p−q)の比率{q/(1−p−q)}/{y/(1−x−y)}が、0.5≦{q/(1−p−q)}/{y/(1−x−y)}≦3.5であることを特徴とする、請求項1または2に記載の排ガス浄化触媒用複合酸化物。 Ratio of Pr to Ce molar ratio q / (1-p-q) in the surface composition to q / (1-p-q) molar ratio of Pr to Ce in the bulk composition {q / (1-p- q)} / {y / (1-xy)} is 0.5 ≦ {q / (1-p−q)} / {y / (1-xy)} ≦ 3.5. The composite oxide for an exhaust gas purification catalyst according to claim 1 or 2, characterized in that 前記バルク組成におけるCeとBiの合計に対するPrのモル比y/(1−y)に対する、前記表面組成におけるCeとBiの合計に対するPrのモル比q/(1−q)の比率{q/(1−q)}/{y/(1−y)}が、0.5≦{q/(1−q)}/{y/(1−y)}≦2.5であることを特徴とする、請求項1乃至3のいずれかに記載の排ガス浄化触媒用複合酸化物。 Ratio of Pr molar ratio q / (1-q) to the sum of Ce and Bi in the surface composition to the molar ratio y / (1-y) of Pr to the sum of Ce and Bi in the bulk composition {q / ( 1-q)} / {y / (1-y)} is 0.5 ≦ {q / (1-q)} / {y / (1-y)} ≦ 2.5 The composite oxide for exhaust gas purification catalyst according to any one of claims 1 to 3. 請求項1乃至4のいずれかに記載の排ガス浄化触媒用複合酸化物が触媒としてフィルタ母材に担持されていることを特徴とする、排ガス浄化用フィルタ。 An exhaust gas purification filter, wherein the composite oxide for exhaust gas purification catalyst according to any one of claims 1 to 4 is supported on a filter base material as a catalyst.
JP2008086804A 2008-03-28 2008-03-28 Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same Expired - Fee Related JP5541843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086804A JP5541843B2 (en) 2008-03-28 2008-03-28 Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086804A JP5541843B2 (en) 2008-03-28 2008-03-28 Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same

Publications (2)

Publication Number Publication Date
JP2009233642A true JP2009233642A (en) 2009-10-15
JP5541843B2 JP5541843B2 (en) 2014-07-09

Family

ID=41248286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086804A Expired - Fee Related JP5541843B2 (en) 2008-03-28 2008-03-28 Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same

Country Status (1)

Country Link
JP (1) JP5541843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038410A1 (en) * 2008-10-03 2010-04-08 Dowaエレクトロニクス株式会社 Composite oxide for exhaust-gas purification catalyst, process for producing same, coating material for exhaust-gas purification catalyst, and filter for diesel exhaust-gas purification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061432A (en) * 2007-09-10 2009-03-26 Osaka Univ Compound oxide, particulate oxidation catalyst, and diesel particulate filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061432A (en) * 2007-09-10 2009-03-26 Osaka Univ Compound oxide, particulate oxidation catalyst, and diesel particulate filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038410A1 (en) * 2008-10-03 2010-04-08 Dowaエレクトロニクス株式会社 Composite oxide for exhaust-gas purification catalyst, process for producing same, coating material for exhaust-gas purification catalyst, and filter for diesel exhaust-gas purification
JP2010104981A (en) * 2008-10-03 2010-05-13 Dowa Electronics Materials Co Ltd Composite oxide for exhaust-cleaning catalyst, method of manufacturing the same, paint for exhaust-cleaning catalyst and filter for cleaning diesel exhaust
US9006131B2 (en) 2008-10-03 2015-04-14 Dowa Electronics Materials Co., Ltd. Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification

Also Published As

Publication number Publication date
JP5541843B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5598421B2 (en) Method for desulfurization / denitration of exhaust gas from sintering furnace and method for producing carbon monoxide oxidation catalyst
JP5190196B2 (en) Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter
JP5528040B2 (en) COMPOSITE OXIDE FOR EXHAUST GAS PURIFYING CATALYST, ITS MANUFACTURING METHOD, COATING FOR EXHAUST GAS PURIFYING CATALYST, DIESEL EXHAUST PURIFYING FILTER
JP5063980B2 (en) Composite oxide and filter for exhaust gas purification catalyst
WO2006134787A1 (en) Exhaust gas purifying catalyst
JP5119508B2 (en) PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same
WO2009131118A1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
CN103619471A (en) Exhaust gas purifying catalyst and carrier
JP6145763B2 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP5541843B2 (en) Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same
JP6248423B2 (en) Carbon monoxide oxidation catalyst, and desulfurization / denitration method and equipment for sintering furnace exhaust gas
JP4508693B2 (en) Carbon monoxide combustion catalyst and method for producing the same
JP5973914B2 (en) Method for producing catalyst composition for exhaust gas treatment
JP5345063B2 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
WO2018055894A1 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP2007260564A (en) Exhaust gas-purifying catalyst and method for regenerating the same
JP2011218297A (en) Catalyst material for cleaning exhaust gas
JP2007260567A (en) Catalyst for purifying exhaust gas and its regenerating method
JP2007260568A (en) Catalyst for controlling exhaust gas and its regenerating method
WO2018055893A1 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP4265276B2 (en) Exhaust gas purification catalyst
JP2015208712A (en) Catalyst for exhaust gas purification and selective reduction method of nitrogen oxide and oxidative removal method of solid carbon ingredient using the same
JP5154890B2 (en) Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140502

R150 Certificate of patent or registration of utility model

Ref document number: 5541843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees