JP2009233575A - Tubular body of tungsten oxide and photocatalyst using the same - Google Patents

Tubular body of tungsten oxide and photocatalyst using the same Download PDF

Info

Publication number
JP2009233575A
JP2009233575A JP2008083032A JP2008083032A JP2009233575A JP 2009233575 A JP2009233575 A JP 2009233575A JP 2008083032 A JP2008083032 A JP 2008083032A JP 2008083032 A JP2008083032 A JP 2008083032A JP 2009233575 A JP2009233575 A JP 2009233575A
Authority
JP
Japan
Prior art keywords
tubular body
tungsten oxide
tungsten
body according
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008083032A
Other languages
Japanese (ja)
Inventor
Masahiro Miyauchi
雅浩 宮内
志▲剛▼ ▲趙▼
Shitaka Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008083032A priority Critical patent/JP2009233575A/en
Publication of JP2009233575A publication Critical patent/JP2009233575A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • B01J35/30
    • B01J35/392
    • B01J35/393
    • B01J35/643
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tubular body of tungsten oxide which can be synthesized inexpensively in large quantities and exhibits high-level photocatalytic activity when irradiated with visible light and to provide a photocatalyst using the tubular body of tungsten oxide. <P>SOLUTION: The tubular body of tungsten oxide consists of an aggregate of fine particles of the tungsten oxide shown by formula, WO<SB>3</SB>. It is preferable that each fine particle has 10-200 nm particle diameter and the tubular body of tungsten oxide has an outside diameter of 100 nm to 2 μm, an inside diameter of 20 nm to 1 μm, a length of 1-50 μm and a specific surface area of ≥5 m<SP>2</SP>/g. The visible light-responsive photocatalyst using the tubular body of tungsten oxide is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タングステン化合物の微粒子の集合体から形成された管状体およびこれを用いた殊に可視光での光触媒活性に優れた光触媒に関する。   TECHNICAL FIELD The present invention relates to a tubular body formed from an aggregate of fine particles of a tungsten compound and a photocatalyst using the same, particularly excellent in photocatalytic activity with visible light.

代表的な光触媒材料として酸化チタンが良く知られ、励起光の照射により有機物を分解し、また表面の濡れ性が向上する光誘起親水化反応を発現することが知られている。光触媒反応を起こすためにはその光触媒のバンドギャップ以上のエネルギーをもった光子(フォトン)が必要である。酸化チタンを光触媒として使用した場合、光触媒反応を起こすために必要なフォトンのエネルギーは酸化チタンのバンドギャップに相当する3.0eV以上、すなわち、光の波長に換算すると400nm以下の紫外線が必要となる。蛍光灯や白熱電灯等の室内の照明装置から照射される紫外線強度は微弱なため、酸化チタンの室内の照明装置による親水化は充分でなかった。
近年、酸化チタンに窒素等のアニオンをドーピングすることで可視光の照射でも光触媒反応が発現する材料が報告されている(非特許文献1)。しかしながら、非特許文献2に開示されているように、窒素等のドーパントの準位は酸化チタンの価電子帯の上に孤立準位として存在するために光励起によって生成した正孔の移動度が低く、アニオンドープ酸化チタンの可視光での量子効率は紫外線での効率よりも著しく低いことが報告されている。
Titanium oxide is well known as a typical photocatalyst material, and it is known to develop a photoinduced hydrophilization reaction that decomposes organic matter by irradiation with excitation light and improves surface wettability. In order to cause a photocatalytic reaction, photons having energy higher than the band gap of the photocatalyst are required. When titanium oxide is used as a photocatalyst, the photon energy required for causing the photocatalytic reaction requires 3.0 eV or more corresponding to the band gap of titanium oxide, that is, ultraviolet light of 400 nm or less when converted to the wavelength of light. Since the intensity of ultraviolet rays emitted from indoor lighting devices such as fluorescent lamps and incandescent lamps is weak, hydrophilicity of titanium oxide by indoor lighting devices has not been sufficient.
In recent years, a material has been reported in which a photocatalytic reaction is exhibited even by irradiation with visible light by doping titanium oxide with an anion such as nitrogen (Non-patent Document 1). However, as disclosed in Non-Patent Document 2, since the level of a dopant such as nitrogen exists as an isolated level on the valence band of titanium oxide, the mobility of holes generated by photoexcitation is low. It has been reported that the quantum efficiency in visible light of anion-doped titanium oxide is significantly lower than that in ultraviolet light.

一方、不純物をドーピングした材料ではなく、単純酸化物を用いる方が電子正孔対の高い移動度が期待できる。単純酸化物の中でも酸化タングステンはバンドギャップが2.6eV〜2.8eVで可視光を吸収することが知られている。酸化タングステンの価電子帯のレベルは深く、光励起で生成した正孔は強い酸化力を持つ。しかしながら、酸化タングステンの伝導帯のレベルは酸化チタンに比べると低く、電子の還元力が弱いため、必ずしも大気中における有機物の分解活性が高いとは言えない。近年、酸化タングステンに助触媒を添加することで高度な有機物の光触媒分解反応が報告されている。例えば、非特許文献3では白金、非特許文献4では銅ビスマス酸化物を助触媒として使用した場合、可視光照射下でアセトアルデヒド等のガス状の有機物が光触媒反応によって二酸化炭素まで分解しうることが報告されている。   On the other hand, higher mobility of electron-hole pairs can be expected by using a simple oxide rather than a material doped with impurities. Among simple oxides, tungsten oxide is known to absorb visible light with a band gap of 2.6 eV to 2.8 eV. Tungsten oxide has a deep valence band level, and holes generated by photoexcitation have strong oxidizing power. However, the conduction band level of tungsten oxide is lower than that of titanium oxide, and the reducing power of electrons is weak. Therefore, it cannot be said that the decomposition activity of organic substances in the atmosphere is necessarily high. In recent years, a highly organic photocatalytic decomposition reaction has been reported by adding a promoter to tungsten oxide. For example, when platinum is used as a co-catalyst in Non-Patent Document 3 and copper bismuth oxide is used as a co-catalyst in Non-Patent Document 4, gaseous organic substances such as acetaldehyde can be decomposed to carbon dioxide by photocatalytic reaction under visible light irradiation. It has been reported.

特に光触媒を空気浄化や水処理へ応用する場合、光触媒粒子のサイズは小さく、大きな表面積を持つことが好ましい。酸化タングステン微粒子の合成は、タングステン酸塩を出発源とする焼成法などが知られているが、こうした方法で合成した酸化タングステン粒子の大きさは数μmと大きくなる。また、酸化タングステンの出発原料として使用されるタングステン酸塩や金属タングステン塩は不安定なため、ナノ構造を制御するのは困難であり、こうした原料を利用した酸化タングステンの合成例は乏しい。粒子径の小さい微粒子状の酸化タングステンを得る方法として、例えば非特許文献3に開示されているように、遠心分離によって粒径の小さい粒子を選択的に回収する方法が提案されているが、こうした方法では大きな粒子は廃棄することになり、微粒子状の酸化タングステンを得る収率が非常に悪いことが予想される。   Particularly when the photocatalyst is applied to air purification or water treatment, the photocatalyst particles are preferably small in size and have a large surface area. For the synthesis of tungsten oxide fine particles, a firing method using tungstate as a starting source is known, but the size of tungsten oxide particles synthesized by such a method is as large as several μm. In addition, since tungstate and metal tungsten salts used as starting materials for tungsten oxide are unstable, it is difficult to control the nanostructure, and there are few examples of synthesizing tungsten oxide using such materials. As a method for obtaining particulate tungsten oxide having a small particle size, for example, as disclosed in Non-Patent Document 3, a method for selectively collecting particles having a small particle size by centrifugation has been proposed. In the method, large particles are discarded, and it is expected that the yield of obtaining fine particulate tungsten oxide is very poor.

また、最近、式W18O49で示される単結晶酸化タングステンナノチューブが報告されている(特許文献1)。しかし、このナノチューブは単結晶からなるものであって、たとえばミクロ孔とメソ孔が共存するような複数の細孔系分布を有するものではなかった。また、このナノチューブは、酸素欠陥型であり、優位な電子正孔対の再結合点を持ち導電性であるので電子放出素子としては有用なものであるが、高い電荷分離効率を備えることを必要とする光触媒、特に可視光応答性光触媒として適用することには困難性があるものであった。また、このナノチューブは、タングステン箔をタンタル基板に真空加熱(1000℃以上)下で成長させるといった過酷な条件を必要とするものであった。 Recently, a single crystal tungsten oxide nanotube represented by the formula W 18 O 49 has been reported (Patent Document 1). However, this nanotube is made of a single crystal and does not have a plurality of pore system distributions in which, for example, micropores and mesopores coexist. In addition, this nanotube is oxygen-deficient and has an excellent electron-hole pair recombination point and is conductive, so it is useful as an electron-emitting device, but it must have high charge separation efficiency. It was difficult to apply as a photocatalyst, particularly a visible light responsive photocatalyst. Further, the nanotubes required severe conditions such as growing tungsten foil on a tantalum substrate under vacuum heating (1000 ° C. or higher).

一方、光触媒材料をナノチューブ化することで、大表面積化、光の散乱効果等が一般には期待できるが、前述のように酸化タングステン(WO3)の出発原料は極めて不安定なため、ナノ構造を精密に制御するのは困難であった。 On the other hand, by making the photocatalyst material into a nanotube, a large surface area, light scattering effect, etc. can be generally expected. However, as described above, the starting material of tungsten oxide (WO 3 ) is extremely unstable, It was difficult to control precisely.

特開2005−75654号公報JP-A-2005-75654 R. Asahi et al. Science, 293, 269 (2001)R. Asahi et al. Science, 293, 269 (2001) H. Irie et al. J. Phys. Chem. B, 107, 5483 (2003)H. Irie et al. J. Phys. Chem. B, 107, 5483 (2003) 阿部、大谷、第26回 「光がかかわる触媒化学シンポジウム」、予稿集、東京 (2007)Abe, Otani, The 26th Symposium on Catalytic Chemistry Involving Light, Proceedings, Tokyo (2007) K. Sayama et al. J. Phys. Chem. C, 111, 7574 (2007)K. Sayama et al. J. Phys. Chem. C, 111, 7574 (2007)

本発明は、安価で大量合成可能な可能であり、しかも可視光照射下で高度な光触媒活性を有する酸化タングステンの管状体及びこれを用いた光触媒を提供することを目的とする。   An object of the present invention is to provide a tungsten oxide tubular body that can be synthesized at a low cost and can be synthesized in large quantities, and has high photocatalytic activity under irradiation with visible light, and a photocatalyst using the same.

この出願によれば、以下の発明が提供される。
〈1〉式WOで示される酸化タングステンの微粒子の集合体からなる酸化タングステン管状体。
〈2〉微粒子の粒径が10nm〜200nmであり、外径が100nm〜2μm、内径が20nm〜1μm、長さが1μm〜50μmで、かつ比表面積が5m2/g以上であることを特徴とする〈1〉に記載の酸化タングステン管状体。
〈3〉窒素吸着法により測定した細孔径分布が複数存在することを特徴とする〈1〉又は〈2〉に記載の酸化タングステン管状体。
〈4〉前記複数存在する細孔径分布の範囲が、1nm〜5nmのミクロ孔と、20nm〜100nmのメソ孔として存在することを特徴とする〈1〉から〈3〉3のいずれかに記載の酸化タングステン管状体。
〈5〉前記タングステン化合物のバンドギャップが2.8eV以下であることを特徴とする〈1〉から〈4〉のいずれかに記載の酸化タングステン管状体。
〈6〉前記管状体の表面に、助触媒が分散されていることを特徴とする〈1〉から〈5〉のいずれかに記載の酸化タングステン管状体。
〈7〉助触媒が、白金、銀、金、パラジウム、ニッケル、銅、鉄、クロム、ルテニウム、鉛、チタンからなる群から選択される少なくとも一種の金属もしくは該金属を含む化合物であることを特徴とする〈6〉に記載の酸化タングステン管状体。
〈8〉助触媒である、金属もしくは金属化合物の割合が、前記管状体に対して0.05wt%〜10wt%であることを特徴とする〈6〉または〈7〉に記載の酸化タングステン管状体。
〈9〉〈1〉から〈8〉のいずれかに記載の管状体を含む分散液。
〈10〉〈1〉から〈9〉のいずれかに記載の管状体またはその分散液を用いた可視光応答性光触媒。
〈11〉前記管状体0.1gを500mLの密閉容器に入れ、前記容器に500ppmのアセトアルデヒドを含む相対湿度30%の空気を満たし、波長410nm以上で、エネルギー20mW/cm2の可視光を照射した際の二酸化炭素の発生速度が250ppm/hour以上であることを特徴とする〈10〉に記載の光触媒。
〈12〉タングステン水酸化物の微粒子の集合体からなる、〈1〉から〈8〉のいずれかに記載の管状体を製造するための前駆体。
〈13〉微粒子の粒径が10nm〜200nmであり、外径が100nm〜2μm、内径が20nm〜1μm、長さが1μm〜50μmであることを特徴とする〈12〉に記載の前駆体。
〈14〉密閉容器中でタングステン塩、アミノ基を持つ化合物および有機溶媒を混合し加熱処理することを特徴とする〈12〉または〈13〉に記載の前駆体の製造方法。
〈15〉前記アミノ基をもつ化合物が尿素であることを特徴とする〈12〉から〈14〉のいずれかに記載の前駆体の製造方法。
〈16〉前記有機溶媒がアルコールであることを特徴とする〈12〉から〈15〉いずれかに前駆体の製造方法。
〈17〉前記加熱処理の温度が100℃以上であることを特徴とする〈12〉から〈16〉のいずれかに記載の前駆体の製造方法。
〈18〉〈12〉から〈17〉のいずれかに記載の前駆体を大気中で300℃以上の温度で加熱することを特徴とする〈1〉から〈8〉のいずれかに記載の酸化タングステン管状体の製造方法。
According to this application, the following invention is provided.
<1> formula WO 3 tungsten oxide tubular body formed of an aggregate of fine particles of tungsten oxide indicated.
<2> The fine particles have a particle size of 10 nm to 200 nm, an outer diameter of 100 nm to 2 μm, an inner diameter of 20 nm to 1 μm, a length of 1 μm to 50 μm, and a specific surface area of 5 m 2 / g or more. The tungsten oxide tubular body according to <1>.
<3> The tungsten oxide tubular body according to <1> or <2>, wherein there are a plurality of pore size distributions measured by a nitrogen adsorption method.
<4> The range of the plurality of existing pore diameter distributions exists as micropores of 1 nm to 5 nm and mesopores of 20 nm to 100 nm, according to any one of <1> to <3> 3 Tungsten oxide tubular body.
<5> The tungsten oxide tubular body according to any one of <1> to <4>, wherein a band gap of the tungsten compound is 2.8 eV or less.
<6> The tungsten oxide tubular body according to any one of <1> to <5>, wherein a promoter is dispersed on a surface of the tubular body.
<7> The promoter is at least one metal selected from the group consisting of platinum, silver, gold, palladium, nickel, copper, iron, chromium, ruthenium, lead and titanium, or a compound containing the metal. The tungsten oxide tubular body according to <6>.
<8> The tungsten oxide tubular body according to <6> or <7>, wherein a ratio of a metal or a metal compound which is a promoter is 0.05 wt% to 10 wt% with respect to the tubular body.
<9> A dispersion containing the tubular body according to any one of <1> to <8>.
<10> A visible light-responsive photocatalyst using the tubular body according to any one of <1> to <9> or a dispersion thereof.
<11> When 0.1 g of the tubular body is placed in a 500 mL airtight container, the container is filled with 30% air containing 500 ppm of acetaldehyde and irradiated with visible light having a wavelength of 410 nm or more and an energy of 20 mW / cm 2 The photocatalyst according to <10>, wherein the generation rate of carbon dioxide is 250 ppm / hour or more.
<12> A precursor for producing a tubular body according to any one of <1> to <8>, comprising an aggregate of fine particles of tungsten hydroxide.
<13> The precursor according to <12>, wherein the fine particles have a particle diameter of 10 nm to 200 nm, an outer diameter of 100 nm to 2 μm, an inner diameter of 20 nm to 1 μm, and a length of 1 μm to 50 μm.
<14> The method for producing a precursor according to <12> or <13>, wherein a tungsten salt, a compound having an amino group, and an organic solvent are mixed and heat-treated in a sealed container.
<15> The method for producing a precursor according to any one of <12> to <14>, wherein the compound having an amino group is urea.
<16> The method for producing a precursor according to any one of <12> to <15>, wherein the organic solvent is an alcohol.
<17> The method for producing a precursor according to any one of <12> to <16>, wherein the temperature of the heat treatment is 100 ° C. or higher.
<18> The tungsten oxide according to any one of <1> to <8>, wherein the precursor according to any one of <12> to <17> is heated in the atmosphere at a temperature of 300 ° C. or higher. A method for producing a tubular body.

本発明の式WOで示される管状体は表面積が大きく光触媒活性が高いため、空気浄化や水浄化用の光触媒として使用することができる。特に、可視光での活性を有するため、紫外線の少ない室内照明で使用する用途への応用が可能となる。また、微粒子の集合体から形成されるので、その内壁にはミクロ孔とメソ孔の少なくとも複数の細孔径分布が存在し、前者のミクロ細孔によりガス状物質の拡散が可能で、ガス吸着分解に適したものとなり、一方、後者の細孔により水や溶媒などの液体物質の拡散に有利で、分子量の大きい物質の拡散が可能となり、こうした分子の吸着分解に対して優れた特性を有する。
また、このような光触媒の応用に限らず、フォトクロミック素子、エレクトロクロミック素子、色素増感型太陽電池、表示素子等のデバイスへの応用が期待できる。
Since the tubular body represented by the formula WO 3 of the present invention has a large surface area and high photocatalytic activity, it can be used as a photocatalyst for air purification or water purification. In particular, since it has an activity with visible light, it can be applied to uses for indoor lighting with less ultraviolet light. In addition, since it is formed from an aggregate of fine particles, there is at least a plurality of pore size distributions of micropores and mesopores on its inner wall, and the former micropores allow diffusion of gaseous substances and gas adsorption decomposition. On the other hand, the latter pores are advantageous for the diffusion of liquid substances such as water and solvents, and allow the diffusion of substances having a large molecular weight, and have excellent properties for the adsorption decomposition of such molecules.
In addition to the application of such a photocatalyst, application to devices such as a photochromic element, an electrochromic element, a dye-sensitized solar cell, and a display element can be expected.

本発明の管状体(中空の棒状体)の特徴は、式WOで示される酸化タングステンの微粒子の集合体から形成されている点にある。
本発明の管状体の代表例を図1に示す模式図によって説明する。図1の部分拡大図から明らかなように、本発明の管状体は、式WOで示されるタングステン化合物の微粒子の集合体から形成されている。式WOで示されるタングステン化合物の結晶構造は三斜晶ないし単斜晶の少なくともいずれか一方からなり、基本となる結晶構造が三斜晶ないし単斜晶から変わらない範囲であれば、酸素欠陥を若干含んでいても構わない。
この微粒子の粒径は特に制限はないが、好適な大きさの範囲は10nm〜200nmである。微粒子の大きさをこの範囲にすることで、5m2/g以上の大きな表面積が得られる。
本発明の管状体の表面積はこのように従来の酸化タングステン粒子よりも大きく、気相や液相中の拡散物質との接触確率が高まるため、高度な光触媒活性を発現する。比表面積の測定は窒素吸着等温線を測定し、BET法による解析によって算出することができる。
前記タングステン化合物の微粒子はエネルギーギャップが2.8eV以下のため、可視光を吸収することが可能となる。
Features of the tubular body of the present invention (hollow rod member) is that formed of an aggregate of fine particles of tungsten oxide of the formula WO 3.
A typical example of the tubular body of the present invention will be described with reference to the schematic diagram shown in FIG. As is apparent from the partial enlarged view of FIG. 1, the tubular body of the present invention is formed of an aggregate of fine particles of the tungsten compound represented by the formula WO 3. If the crystal structure of the tungsten compound represented by the formula WO 3 is composed of at least one of triclinic crystals or monoclinic crystals and the basic crystal structure does not change from triclinic crystals or monoclinic crystals, oxygen defects May be included a little.
The particle size of the fine particles is not particularly limited, but a preferable size range is 10 nm to 200 nm. By setting the size of the fine particles within this range, a large surface area of 5 m 2 / g or more can be obtained.
Thus, the surface area of the tubular body of the present invention is larger than that of the conventional tungsten oxide particles, and the contact probability with the diffusing substance in the gas phase or liquid phase is increased, so that high photocatalytic activity is expressed. The specific surface area can be calculated by measuring the nitrogen adsorption isotherm and analyzing by the BET method.
Since the tungsten compound fine particles have an energy gap of 2.8 eV or less, visible light can be absorbed.

また、本発明の管状体は、図1に示されるように、内部が中空で一定の長さを有する。外径および内径に特に制限はないが、外径を100nm〜2μm、内径を20nm〜1μm、長さを1μm〜50μmとすることが好ましい。このような外径の大きさはほぼ可視光の波長に相当するので、可視光を散乱する効果が期待でき、光触媒として励起光を有効に使うことができる。
また、前記管状体の断面の形状は円形や楕円形でも構わないし、多角形であっても構わない。
Further, as shown in FIG. 1, the tubular body of the present invention is hollow and has a certain length. The outer diameter and inner diameter are not particularly limited, but it is preferable that the outer diameter is 100 nm to 2 μm, the inner diameter is 20 nm to 1 μm, and the length is 1 μm to 50 μm. Since the size of such an outer diameter substantially corresponds to the wavelength of visible light, an effect of scattering visible light can be expected, and excitation light can be used effectively as a photocatalyst.
In addition, the cross-sectional shape of the tubular body may be a circle, an ellipse, or a polygon.

さらに、本発明の管状体には、微粒子の集合体から形成されるので、その内壁には複数の細孔径分布が存在する。前記細孔径分布の測定は、窒素吸着等温線を利用したBJH法等の解析から評価することができる(参考文献:E.P. Barrett et al. J. Am. Chem. Soc.
73, 373 (1951))。
本発明の管状体において複数存在する細孔径分布の範囲は、1nm〜5nmのミクロ孔と、20nm〜100nmのメソ孔に分類される。前者のミクロ細孔は微粒子内に存在する小さな細孔で、後者のメソ孔は前記微粒子間の空壁からなる壁細孔であると推測される。前者の細孔はガス状物質の拡散が可能で、ガス吸着分解に適している。一方、後者の細孔は水や溶媒などの液体物質の拡散に有利で、分子量の大きい物質の拡散が可能となり、こうした分子の吸着分解に対して優れた特性を有する。
Furthermore, since the tubular body of the present invention is formed from an aggregate of fine particles, a plurality of pore size distributions exist on the inner wall. The measurement of the pore size distribution can be evaluated from analysis such as BJH method using nitrogen adsorption isotherm (reference: EP Barrett et al. J. Am. Chem. Soc.
73, 373 (1951)).
A plurality of pore diameter distribution ranges present in the tubular body of the present invention are classified into 1 to 5 nm micropores and 20 to 100 nm mesopores. The former micropores are small pores present in the fine particles, and the latter mesopores are presumed to be wall pores composed of empty walls between the fine particles. The former pores can diffuse gaseous substances and are suitable for gas adsorption decomposition. On the other hand, the latter pores are advantageous for the diffusion of liquid substances such as water and solvents, enable the diffusion of substances having a large molecular weight, and have excellent characteristics for such adsorption decomposition of molecules.

本発明に係る酸化タングステンのバンドギャップは2.8eV以下で可視光を吸収することができる。バンドギャップは粉末のUV-Vis拡散反射スペクトルを計測することで測定することができる。酸化タングステンのバンド間遷移は間接遷移であるため、吸収係数の平方根と光のエネルギーの間に比例関係がある。Kubelka-Munk法によって吸収係数αを算出し、光のエネルギーに対してαの平方根をプロットし、X軸との切片をバンドギャップとして見積もることが可能である(参考文献:P. Kubelka et al. Z. Tek. Fiz. 12, 593 (1931).)。拡散反射率をRとした場合、Kubelka-Munk法によってα=(1−R)2/2Rの式で算出される。 The band gap of the tungsten oxide according to the present invention can absorb visible light at 2.8 eV or less. The band gap can be measured by measuring the UV-Vis diffuse reflectance spectrum of the powder. Since the transition between bands of tungsten oxide is an indirect transition, there is a proportional relationship between the square root of the absorption coefficient and the energy of light. It is possible to calculate the absorption coefficient α by the Kubelka-Munk method, plot the square root of α against light energy, and estimate the intercept with the X axis as a band gap (reference: P. Kubelka et al. Z. Tek. Fiz. 12, 593 (1931).). When the diffuse reflectance is R, it is calculated by the equation of α = (1-R) 2 / 2R by the Kubelka-Munk method.

本発明の管状体に対して、助触媒として、その表面に白金、銀、金、パラジウム、ニッケル、銅、鉄、クロム、ルテニウム、鉛、チタンからなる群から選択される少なくとも一種の金属もしくは該金属を含む化合物を分散したものは、前記管状体に比し更にその光触媒活性を高められる。
これらの助触媒の作用機構は定かではないが、白金等の貴金属粒子を分散させた場合、本発明のタングステン化合物の伝導帯にある電子が貴金属粒子に移動し、多電子還元を起こすことが期待できる。一方、鉄、銅、クロム等の金属塩を分散させた場合、これらの金属塩も可視光を吸収することが可能となり、こうした金属塩の増感効果によって、より多くの可視光を吸収することが可能となる。
前記金属もしくは該金属を含む化合物(金属塩や金属酸化物など)の割合は前記管状体に対して0.05wt%〜10wt%であることが好ましい。その割合が0.05wt%以下の場合には顕著な触媒効果は見られず、10wt%以上の場合、管状体に届くべき光を遮蔽してしまう。また、前記金属、金属塩、ないし金属酸化物は本発明にかかる棒状体の表面に小さなサイズで高分散していることが好ましく、好適な粒子径は20nm以下である。
For the tubular body of the present invention, as a co-catalyst, at least one metal selected from the group consisting of platinum, silver, gold, palladium, nickel, copper, iron, chromium, ruthenium, lead, titanium on the surface, or the What disperse | distributed the compound containing a metal can raise the photocatalytic activity further compared with the said tubular body.
Although the mechanism of action of these promoters is not clear, it is expected that when noble metal particles such as platinum are dispersed, electrons in the conduction band of the tungsten compound of the present invention move to the noble metal particles and cause multielectron reduction. it can. On the other hand, when metal salts such as iron, copper, and chromium are dispersed, these metal salts can also absorb visible light, and the sensitizing effect of such metal salts can absorb more visible light. Is possible.
The ratio of the metal or a compound containing the metal (metal salt, metal oxide, etc.) is preferably 0.05 wt% to 10 wt% with respect to the tubular body. When the ratio is 0.05 wt% or less, no remarkable catalytic effect is observed, and when it is 10 wt% or more, light that should reach the tubular body is blocked. The metal, metal salt, or metal oxide is preferably highly dispersed in a small size on the surface of the rod-like body according to the present invention, and a suitable particle size is 20 nm or less.

前記金属もしくはこれを含む化合物は、上記管状体内孔および外壁の表面の少なくともどちらか一方に分散している。特に、これらが内孔に選択的に分散固定された場合、管状体に届く光を遮蔽することがなく、効率的に光吸収することができる。   The metal or a compound containing the metal is dispersed in at least one of the tubular body pores and the outer wall surface. In particular, when these are selectively dispersed and fixed in the inner hole, light reaching the tubular body is not shielded and light can be absorbed efficiently.

これらの本発明の管状体は波長410nm以上の可視光の照射において光触媒活性を有する。
本発明の管状体を励起するための光源として、例えば、ブラックライト、殺菌ランプ、低圧水銀ランプ、高圧水銀ランプ、キセノンランプ、水銀−キセノンランプ、ハロゲンランプ、メタルハライドランプ、LED(白色、青、緑、赤)、レーザー光、太陽光等が好適に使用できる。
本発明の管状体は、特に、紫外線の少ない室内照明の照射でも高度な光触媒活性を示す。例えば、本発明の管状体0.1gを500mLの密閉容器に入れ、前記容器に500ppmのアセトアルデヒドを含む相対湿度30%の空気を満たし、波長410nm以上で、エネルギー20mW/cm2の可視光を照射した際の二酸化炭素の発生速度が250ppm/hour以上を示す。
These tubular bodies of the present invention have photocatalytic activity when irradiated with visible light having a wavelength of 410 nm or more.
As a light source for exciting the tubular body of the present invention, for example, black light, sterilization lamp, low pressure mercury lamp, high pressure mercury lamp, xenon lamp, mercury-xenon lamp, halogen lamp, metal halide lamp, LED (white, blue, green) , Red), laser light, sunlight and the like can be suitably used.
The tubular body of the present invention exhibits a high degree of photocatalytic activity, particularly even when irradiated with room light with less ultraviolet light. For example, 0.1 g of the tubular body of the present invention is put in a 500 mL sealed container, and the container is filled with air with a relative humidity of 30% containing 500 ppm of acetaldehyde, and irradiated with visible light having a wavelength of 410 nm or more and an energy of 20 mW / cm 2 . The generation rate of carbon dioxide at the time shows 250 ppm / hour or more.

このため、本発明の管状体は、揮発性有害物質の分解機能や抗ウイルス機能を持つ室内の住宅部材に応用することが可能である。また、空気清浄機や水浄化のための装置に応用することもできる。更に、表面の高い水濡れ性を利用して曇りや水滴形成を防止する防曇部材や雨水によるセルフクリーニング機能を持つ部材へと応用することができる。   For this reason, the tubular body of the present invention can be applied to indoor housing members having a function of decomposing volatile harmful substances and an antiviral function. Further, it can be applied to an air purifier or a device for water purification. Furthermore, it can be applied to an anti-fogging member for preventing fogging and water droplet formation by utilizing high wettability of the surface and a member having a self-cleaning function by rainwater.

本発明の管状体は、これを水や有機溶媒へ分散させ、その分散液とすることもできる。分散液をコーティング施工する際の人体への悪影響を低減するため、前記分散液の溶媒は水であることが好ましい。酸化タングステンの表面の等電点でのpHは1〜2程度であるので、分散性を高めるため、前記分散液の溶媒のpHは3以上であることが好ましい。分散液中には水酸化ナトリウム、水酸化カリウム、アンモニア、アミン類などのアルカリ成分や、硝酸、塩酸、硫酸、過塩素酸、フッ酸、臭素酸、沃素酸、亜硝酸、酢酸、蓚酸、リンゴ酸、硝酸、塩酸、硫酸などの酸成分が含まれていても構わない。前記分散液の好ましい固形分濃度の範囲は10%以下である。この範囲であれば、分散性が高く、沈殿を生じることなく、室温で長期間安定である。   The tubular body of the present invention can be dispersed in water or an organic solvent to obtain a dispersion. In order to reduce the adverse effect on the human body when coating the dispersion, it is preferable that the solvent of the dispersion is water. Since the pH at the isoelectric point of the surface of tungsten oxide is about 1 to 2, the pH of the solvent of the dispersion is preferably 3 or more in order to improve dispersibility. The dispersion contains alkaline components such as sodium hydroxide, potassium hydroxide, ammonia, amines, nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, hydrofluoric acid, bromic acid, iodic acid, nitrous acid, acetic acid, oxalic acid, apple An acid component such as acid, nitric acid, hydrochloric acid, or sulfuric acid may be contained. A preferable solid content concentration range of the dispersion is 10% or less. Within this range, the dispersibility is high and stable at room temperature for a long time without causing precipitation.

本発明においては、前記分散液の分散性を高めるために、前記管状体の表面に、更に、アルミニウム、ケイ素、チタニウム、ジルコニウム、スズ、アンチモン、亜鉛からなる群より選択される少なくとも一種の金属の水酸化物もしくは酸化物を被覆しておくことが好ましい。
また、管状体の表面を、カルボン酸、アミン、ポリオール、シロキサンやシランカップリング剤等の有機物の少なくとも一種により修飾しておいても構わない。
更に、リンゴ酸ジイソステアリル、イソノナン酸イソトリデシル、ステアリン酸、トリイソステアリン酸トリメチロールプロパン等の有機物で表面処理しても構わない。表面修飾物は物理的に接触していても化学的に結合していても構わない。
In the present invention, in order to improve the dispersibility of the dispersion, the surface of the tubular body is further made of at least one metal selected from the group consisting of aluminum, silicon, titanium, zirconium, tin, antimony, and zinc. It is preferable to coat with hydroxide or oxide.
In addition, the surface of the tubular body may be modified with at least one organic substance such as carboxylic acid, amine, polyol, siloxane, and silane coupling agent.
Furthermore, the surface treatment may be performed with an organic substance such as diisostearyl malate, isotridecyl isononanoate, stearic acid, trimethylolpropane triisostearate. The surface modification product may be in physical contact or chemically bonded.

前記分散液には更にバインダー成分が含まれていてもよい。バインダー成分を加えることで、塗膜の強度や基材との密着性を向上させることができる。バインダーとして、例えば、シロキサン結合を有する物質を好適に使用することができる。シロキサン結合は化学的な安定性や耐候性も高い。前記シロキサン結合を有する物質としては水ガラス等のアルカリシリケート、コロイダルシリカ、アルミノシリケート化合物を使用することもできる。アルミノシリケート化合物はシリケート化合物のSiの一部をAlで置換した化合物であって、更に電荷を補償するためにH+やLi+、Na+、K+、Rb+、Cs+、Fr+などのアルカリ金属イオンやBe2+、Mg2+、Ca2+、Sr2+、Ba2+、Ra2+などのアルカリ土類金属イオンが含有されていてもよい。前記シリケート結合を有する化合物のSiの一部をAlで置換した物や、ゼオライトなどを使用することができる。また、前記シロキサン結合を有する物質として、更に好ましい態様において、シリコーンエマルジョンを用いることができる。 The dispersion may further contain a binder component. By adding a binder component, the strength of the coating film and the adhesion to the substrate can be improved. As the binder, for example, a substance having a siloxane bond can be suitably used. Siloxane bonds have high chemical stability and weather resistance. As the substance having a siloxane bond, an alkali silicate such as water glass, colloidal silica, or an aluminosilicate compound may be used. The aluminosilicate compound is a compound in which a part of Si of the silicate compound is substituted with Al, and in order to further compensate the charge, such as H + , Li + , Na + , K + , Rb + , Cs + , Fr +, etc. Alkali metal ions and alkaline earth metal ions such as Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Ra 2+ may be contained. A substance obtained by substituting a part of Si of the compound having a silicate bond with Al, zeolite, or the like can be used. In a more preferred embodiment, a silicone emulsion can be used as the substance having a siloxane bond.

シリコーンエマルジョンとしては、メチルトリクロルシラン、メチルトリブロムシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリt−ブトキシシラン;エチルトリクロルシラン、エチルトリブロムシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリt−ブトキシシラン;n−プロピルトリクロルシラン、n−プロピルトリブロムシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリイソプロポキシシラン、n−プロピルトリt−ブトキシシラン;n−ヘキシルトリクロルシラン、n−ヘキシルトリブロムシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、n−ヘキシルトリイソプロポキシシラン、n−ヘキシルトリt−ブトキシシラン;n−デシルトリクロルシラン、n−デシルトリブロムシラン、n−デシルトリメトキシシラン、n−デシルトリエトキシシラン、n−デシルトリイソプロポキシシラン、n−デシルトリt−ブトキシシラン;n−オクタデシルトリクロルシラン、n−オクタデシルトリブロムシラン、n−オクタデシルトリメトキシシラン、n−オクタデシルトリエトキシシラン、n−オクタデシルトリイソプロポキシシラン、n−オクタデシルトリt−ブトキシシラン;フェニルトリクロルシラン、フェニルトリブロムシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリt−ブトキシシラン;テトラクロルシラン、テトラブロムシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン;ジメチルジクロルシラン、ジメチルジブロムシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン;ジフェニルジクロルシラン、ジフェニルジブロムシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン;フェニルメチルジクロルシラン、フェニルメチルジブロムシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン;トリクロルヒドロシラン、トリブロムヒドロシラン、トリメトキシヒドロシラン、トリエトキシヒドロシラン、トリイソプロポキシヒドロシラン、トリt−ブトキシヒドロシラン;ビニルトリクロルシラン、ビニルトリブロムシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリt−ブトキシシラン;トリフルオロプロピルトリクロルシラン、トリフルオロプロピルトリブロムシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、トリフルオロプロピルトリt−ブトキシシラン;γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリイソプロポキシシラン、γ−グリシドキシプロピルトリt−ブトキシシラン;γ−メタアクリロキシプロピルメチルジメトキシシラン、γ−メタアクリロキシプロピルメチルジエトキシシラン、γ−メタアクリロキシプロピルトリメトキシシラン、γ−メタアクリロキシプロピルトリエトキシシラン、γ−メタアクリロキシプロピルトリイソプロポキシシラン、γ−メタアクリロキシプロピルトリt−ブトキシシラン;γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルトリt−ブトキシシラン;γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルトリイソプロポキシシラン、γ−メルカプトプロピルトリt−ブトキシシラン;β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリエトキシシランの部分加水分解物、脱水宿重合物を好適に使用することができる。   Examples of silicone emulsions include methyltrichlorosilane, methyltribromosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltrit-butoxysilane; ethyltrichlorosilane, ethyltribromosilane, ethyltrimethoxysilane, Ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltri-t-butoxysilane; n-propyltrichlorosilane, n-propyltribromosilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltriisopropoxy Silane, n-propyltri-t-butoxysilane; n-hexyltrichlorosilane, n-hexyltribromosilane, n-hexyltrimethoxysilane, n-hexyltrieto Sisilane, n-hexyltriisopropoxysilane, n-hexyltri-t-butoxysilane; n-decyltrichlorosilane, n-decyltribromosilane, n-decyltrimethoxysilane, n-decyltriethoxysilane, n-decyltriisoiso Propoxysilane, n-decyltri-t-butoxysilane; n-octadecyltrichlorosilane, n-octadecyltribromosilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltriisopropoxysilane, n-octadecyltri t-butoxysilane; phenyltrichlorosilane, phenyltribromosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, phenyltrit-butoxysilane Tetrachlorosilane, tetrabromosilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane; dimethyldichlorosilane, dimethyldibromosilane, dimethyldimethoxysilane, dimethyldiethoxysilane; diphenyldichlorosilane, diphenyl Dibromosilane, diphenyldimethoxysilane, diphenyldiethoxysilane; phenylmethyldichlorosilane, phenylmethyldibromosilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane; trichlorohydrosilane, tribromohydrosilane, trimethoxyhydrosilane, triethoxyhydrosilane , Triisopropoxyhydrosilane, tri-t-butoxyhydrosilane; vinyltrichlorosilane, vinyltribro Silane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrit-butoxysilane; trifluoropropyltrichlorosilane, trifluoropropyltribromosilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane , Trifluoropropyltriisopropoxysilane, trifluoropropyltri-t-butoxysilane; γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ -Glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyltri-t-butoxysilane; γ-methacryloxy Propylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltriisopropoxysilane, γ-meta Acryloxypropyltri-t-butoxysilane; γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane Γ-aminopropyltri-t-butoxysilane; γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-merca P-propyltriethoxysilane, γ-mercaptopropyltriisopropoxysilane, γ-mercaptopropyltri-t-butoxysilane; β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) A partial hydrolyzate or dehydration polymer of ethyltriethoxysilane can be preferably used.

前記分散液のバインダー成分として、フッ素樹脂エマルジョンを使用することもできる。フッ素樹脂を含む塗膜は化学的安定性が高く、また、耐候性も高く、柔軟性にも優れている。フッ素樹脂エマルジョンとしては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー、エチレン−テトラフルオロエチレンコポリマー、エチレン−クロロトリフルオロエチレンコポリマー、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマー、パーフルオロシクロポリマー、ビニルエーテル−フルオロオレフィンコポリマー、ビニルエステル−フルオロオレフィンコポリマー、テトラフルオロエチレン−ビニルエーテルコポリマー、クロロトリフルオロエチレン−ビニルエーテルコポリマー、テトラフルオロエチレンウレタン架橋体、テトラフルオロエチレンエポキシ架橋体、テトラフルオロエチレンアクリル架橋体、テトラフルオロエチレンメラミン架橋体等フルオロ基を含有するポリマーのエマルジョン等から選択される少なくとも一つが好適に利用できる。   A fluororesin emulsion can also be used as a binder component of the dispersion. A coating film containing a fluororesin has high chemical stability, high weather resistance, and excellent flexibility. Examples of the fluororesin emulsion include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, perfluorocyclopolymer, vinyl ether-fluoroolefin copolymer, vinyl ester-fluoroolefin copolymer, tetrafluoroethylene-vinyl ether copolymer, chlorotrifluoroethylene-vinyl ether copolymer, cross-linked tetrafluoroethylene urethane, Tetrafluoroethylene epoxy crosslinked product, tetra Le Oro ethylene acrylic crosslinked, at least one selected from the emulsion such as polymers containing tetrafluoroethylene melamine crosslinked body and the like fluoro group can be suitably used.

前記分散液を基材に塗布することによって容易に被膜を形成することができる。塗布方法としては、スピンコート法、ローラ法、ディップ法、スプレー法、エアーナイフ法、ブレード法、LB法等を用いることができる。また、前記分散液と、カチオン性ポリマーを含む溶液に対し、基材を交互に浸漬することによって製造する方法も用いることができる。
本発明に係る被膜の機械的強度を高めるため、前記被膜にバインダー成分が含まれていても構わない。バインダー成分として、アモルファスシリカ、アルミナ、ジルコニア、アルカリシリケート等の無機物やフッ素樹脂、アクリル樹脂、シリコーン樹脂等の有機物の少なくともいずれか一項を含んでいても構わない。また、前記基材として、例えば、ガラス、セラミックス等の無機多結晶体や単結晶基板、金属などの導電性基板、プラスチック、フィルムやそれらの組み合わせ、ないし、それらの積層体などが利用できる。また、色素増感型太陽電池として使用する場合、インジウム−スズ酸化物(ITO)やフッ素ドープした酸化スズ(FTO)等をコートしたガラス基材を好適に使用する。
A coating can be easily formed by applying the dispersion to a substrate. As a coating method, a spin coating method, a roller method, a dipping method, a spray method, an air knife method, a blade method, an LB method, or the like can be used. Moreover, the method of manufacturing by immersing a base material alternately with respect to the said dispersion liquid and the solution containing a cationic polymer can also be used.
In order to increase the mechanical strength of the coating according to the present invention, the coating may contain a binder component. The binder component may contain at least one of inorganic substances such as amorphous silica, alumina, zirconia, and alkali silicate, and organic substances such as fluorine resin, acrylic resin, and silicone resin. In addition, as the base material, for example, an inorganic polycrystal such as glass or ceramic, a single crystal substrate, a conductive substrate such as metal, a plastic, a film, a combination thereof, or a laminate thereof can be used. When used as a dye-sensitized solar cell, a glass substrate coated with indium-tin oxide (ITO), fluorine-doped tin oxide (FTO), or the like is preferably used.

つぎに、本発明の管状体を製造する方法について述べる。
本発明の管状体は、タングステン水酸化物からなる前駆体を経由して好適に製造することができる。前記タングステン水酸化物からなる前駆体は好ましくは、外径が100nm〜2μm、内径が20nm〜1μm、長さが1μm〜50μmの管状体である。
前記前駆体は、出発原料としてタングステン塩、構造制御剤としてアミノ基を持つ化合物、溶媒として有機溶媒を用い、密閉容器中で加熱することによって、好適に製造することができる。前記容器中での加熱温度は100℃〜250℃の範囲である。更に好ましい範囲として150℃〜180℃の加熱によって収率良く、管状の前駆体を製造することができる。
Next, a method for producing the tubular body of the present invention will be described.
The tubular body of the present invention can be suitably manufactured via a precursor made of tungsten hydroxide. The precursor made of tungsten hydroxide is preferably a tubular body having an outer diameter of 100 nm to 2 μm, an inner diameter of 20 nm to 1 μm, and a length of 1 μm to 50 μm.
The precursor can be suitably produced by heating in a sealed container using a tungsten salt as a starting material, a compound having an amino group as a structure control agent, and an organic solvent as a solvent. The heating temperature in the container is in the range of 100 ° C to 250 ° C. As a more preferable range, a tubular precursor can be produced with good yield by heating at 150 ° C. to 180 ° C.

前記前駆体を製造する際に使用するタングステン塩として、塩化タングステン、炭化タングステン、硫化タングステン、ホウ化タングステン、タングステン酸、タングステンカルボニル、タングステン酸アンモニウム、タングステン酸ナトリウム、タングステンを含有するアルコキシドからなる群より選択される少なくとも一つの化合物を好適に使用することができる。特に、六塩化タングステンを利用した場合、管状の前駆体を製造する収率が高い。また、前記金属ないし金属塩の助触媒を複合する場合、有機溶媒中での加熱処理にこれらの金属や金属塩を含む物質を含めて合成することができる。   As a tungsten salt used in manufacturing the precursor, tungsten chloride, tungsten carbide, tungsten sulfide, tungsten boride, tungstic acid, tungsten carbonyl, ammonium tungstate, sodium tungstate, alkoxide containing tungsten is used. At least one selected compound can be suitably used. In particular, when tungsten hexachloride is used, the yield for producing a tubular precursor is high. Moreover, when combining the said metal thru | or metal salt cocatalyst, it can synthesize | combine including the substance containing these metals and metal salts in the heat processing in an organic solvent.

前記前駆体を製造する際に使用する構造制御剤となるアミノ基を持つ化合物は、尿素、チオ尿素、ヘキサメチレンテトラミン、テトラメチルアンモニウム水酸化物、テトラエチルアンモニウム水酸化物、テトラブチルアンモニウム水酸化物からなる群より選択する少なくとも一つの化合物を使用することで好適に製造することができる。特に、前記アミノ基を持つ化合物として尿素を用いた場合、尿素間の強い水素結合により高い収率で本発明に係る管状体を合成することができる。   The compound having an amino group that serves as a structure control agent used in the production of the precursor is urea, thiourea, hexamethylenetetramine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide. It can be suitably produced by using at least one compound selected from the group consisting of: In particular, when urea is used as the compound having an amino group, the tubular body according to the present invention can be synthesized with a high yield due to strong hydrogen bonding between urea.

前記前駆体を製造する際に使用する有機溶媒としてアルコール類を使用することができる。出発原料である前記タングステン塩はアルコール中では加水分解が抑制され安定であり、かつ、尿素等のアミノ基を持つ化合物を溶解させることができる。アルコール類の中でも、特にエチルアルコールは安価で、かつ、高い収率で管状体を製造することが可能である。   Alcohols can be used as the organic solvent used when producing the precursor. The tungsten salt, which is a starting material, is stable and stable in alcohol, and can dissolve a compound having an amino group such as urea. Among alcohols, particularly ethyl alcohol is inexpensive and can produce a tubular body with a high yield.

前記タングステンの水酸化物からなる前駆体を大気中で加熱処理することより、後記の実施例でいう本発明の酸化タングステン管状体が得られる。前記大気中での加熱処理は300℃以上であることが好ましい。より好ましくは、400℃以上の加熱処理によって、結晶性が高く、可視光での高い光触媒活性を示す管状体が得られる。   The tungsten oxide tubular body of the present invention described in the examples described later is obtained by heat-treating the precursor made of tungsten hydroxide in the atmosphere. The heat treatment in the air is preferably 300 ° C. or higher. More preferably, a heat treatment at 400 ° C. or higher yields a tubular body with high crystallinity and high photocatalytic activity with visible light.

また、本発明において、前記管状体の表面に助触媒が分散された管状体を得るには、前記した管状体の表面に、前記白金、銀、金、パラジウム、ニッケル、銅、鉄、クロム、ルテニウム、鉛、チタンからなる群から選択される少なくとも一種の金属もしくは該金属を含む化合物を表面に分散させることにより製造することができる。
この場合、助触媒として、白金等の貴金属粒子を使用する場合、出発原料として貴金属の微粒子が分散したコロイドを用いることができる。また、前記助触媒は前駆体を製造するための有機溶媒中での加熱処理の後に複合し、その後大気中で焼成してもよいし、また、前駆体を大気中で加熱し、酸化タングステンの管状体を製造した後に複合しても構わない。
また、前記貴金属粒子の別の態様として、本発明の管状体の光触媒還元力を利用した光電着法によって、貴金属粒子を表面に固定化することもできる。光電着法の具体的な方法として、本発明の管状体を貴金属イオン水溶液に含浸させ、励起光を照射することによって、管状体の表面に貴金属粒子を析出させることができる。また、前記貴金属粒子の別の態様として、貴金属イオンを含む前駆体や管状体を水素や真空の雰囲気で加熱することによって貴金属粒子を管状体の表面に析出させることもできる。
Further, in the present invention, in order to obtain a tubular body in which a promoter is dispersed on the surface of the tubular body, the platinum, silver, gold, palladium, nickel, copper, iron, chromium, It can be produced by dispersing on the surface at least one metal selected from the group consisting of ruthenium, lead and titanium or a compound containing the metal.
In this case, when noble metal particles such as platinum are used as a cocatalyst, a colloid in which noble metal fine particles are dispersed can be used as a starting material. The cocatalyst may be combined after heat treatment in an organic solvent for producing the precursor, and then calcined in the air. Alternatively, the precursor may be heated in the air to form tungsten oxide. You may combine after manufacturing a tubular body.
As another aspect of the noble metal particles, the noble metal particles can be immobilized on the surface by a photo-deposition method using the photocatalytic reduction force of the tubular body of the present invention. As a specific method of the photo-deposition method, noble metal particles can be deposited on the surface of the tubular body by impregnating the tubular body of the present invention into a noble metal ion aqueous solution and irradiating with excitation light. Moreover, as another aspect of the noble metal particles, the noble metal particles can be deposited on the surface of the tubular body by heating a precursor or tubular body containing noble metal ions in an atmosphere of hydrogen or vacuum.

本発明の前記管状体は高い可視光活性を有するため、特に、板ガラス、壁材、壁紙、タイル等の建築内装材に適用した場合、室内照明によって揮発性有害物質を分解することができ、また抗ウイルス効果が発揮する。また、本発明の管状体は、大気浄化や水質浄化に使用することもできる。更に、本発明の管状体は大表面積を有しているため、フォトクロミック素子、エレクトロクロミック素子、光学薄膜、センサ電極等、広範な用途への応用が期待できる。   Since the tubular body of the present invention has high visible light activity, volatile harmful substances can be decomposed by room lighting, particularly when applied to building interior materials such as sheet glass, wall materials, wallpaper, tiles, etc. Antiviral effect is exerted. The tubular body of the present invention can also be used for air purification and water purification. Furthermore, since the tubular body of the present invention has a large surface area, it can be expected to be applied to a wide range of applications such as photochromic elements, electrochromic elements, optical thin films, sensor electrodes, and the like.

つぎに、本発明を実施例により更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

[管状体の合成]
六塩化タングステン0.397g、尿素0.6g、40mLのエチルアルコールを容量100mlのフッ素樹脂製の耐圧反応容器に入れて密閉し、180℃で12時間保持した。反応終了後、室温まで自然放冷させた。沈殿物を含む溶液から、上澄み液をまずスポイトにて除去し、残った沈殿物に純水を添加し、攪拌後、遠心分離によって上澄み液を除去した。前記純水の添加と遠心分離の洗浄工程2回繰り返した。これらの洗浄工程の後、沈殿物を60℃で12時間乾燥し、粉末状物質を得た(#1試料:前駆体)。また、この粉末状物質に対し、大気中で450℃の焼成をおこない黄色の粉末を得た(#2試料:本発明の管状体)。焼成の温度プロファイルは、450℃までの昇温に6時間かけ、450℃で3時間維持し、その後室温まで自然放冷した。
一方、白金微粒子と複合するため、乾燥して得られた#1試料と白金粒子を含むコロイド水溶液を一時間混合し、60℃で12時間乾燥した後、大気中で450℃の焼成をおこなった。焼成の温度プロファイルは、前記と同様である。前記白金コロイドの作製は非特許文献7と同様におこなった。また、白金の添加量は粉末に対して0.1wt%、0.5wt%、1.0wt%とした。比較例として、高純度化学社製の酸化タングステン粒子に対し、前記と同様に白金を複合した。
[Synthesis of tubular body]
Tungsten hexachloride 0.397 g, urea 0.6 g, and 40 mL of ethyl alcohol were put in a pressure-resistant reaction vessel made of fluororesin having a capacity of 100 ml and sealed, and kept at 180 ° C. for 12 hours. After completion of the reaction, it was allowed to cool to room temperature. From the solution containing the precipitate, the supernatant was first removed with a dropper, pure water was added to the remaining precipitate, and after stirring, the supernatant was removed by centrifugation. The pure water addition and centrifugation washing steps were repeated twice. After these washing steps, the precipitate was dried at 60 ° C. for 12 hours to obtain a powdery substance (# 1 sample: precursor). Further, this powdery substance was fired at 450 ° C. in the atmosphere to obtain a yellow powder (# 2 sample: tubular body of the present invention). The temperature profile of firing was 6 hours for raising the temperature to 450 ° C., maintained at 450 ° C. for 3 hours, and then allowed to cool naturally to room temperature.
On the other hand, the # 1 sample obtained by drying and a colloidal solution containing platinum particles were mixed for 1 hour to be combined with platinum fine particles, dried at 60 ° C for 12 hours, and then fired at 450 ° C in the atmosphere. . The firing temperature profile is the same as described above. The platinum colloid was prepared in the same manner as in Non-Patent Document 7. The amount of platinum added was 0.1 wt%, 0.5 wt%, and 1.0 wt% with respect to the powder. As a comparative example, platinum was compounded in the same manner as described above with respect to tungsten oxide particles manufactured by Kojundo Chemical Co., Ltd.

F. A. Henglein et al. J. Phys. Chem. B, 101, 5889 (1997)F. A. Henglein et al. J. Phys. Chem. B, 101, 5889 (1997)

[管状体のキャラクタリゼーション]
上記で得た乾燥粉末と白金微粒子を担持後に焼成した粉末に対し、X線回折(XRD:リガク社製、Rint Ultima-X)で結晶構造を解析した。この結果を図2に示すが、#1試料の結晶構造はタングステン酸水酸化物である一方、#2試料は三斜晶の酸化タングステンであった。
[Characterization of tubular body]
The crystal structure of the dry powder obtained above and the powder fired after supporting platinum fine particles was analyzed by X-ray diffraction (XRD: Rint Ultima-X, manufactured by Rigaku Corporation). The results are shown in FIG. 2, where the crystal structure of the # 1 sample was tungstate hydroxide, while the # 2 sample was triclinic tungsten oxide.

また、#1試料、#2試料を走査型電子顕微鏡(SEM:日立製作所(株)、S-4800)、透過型電子顕微鏡(TEM:日本電子(株)、JEM 2010F)で観察した結果を図3に示す。(a)、(b)のSEM像からも明らかなように、#1試料は管状体(中空の棒状物質)であり、(c)の結果から管状体は大きさが10〜200nmの微粒子の集合体であることが明らかとなった。
また、#1試料を大気中で加熱処理した#2試料も#1試料と同様に管状体で、大きさが10〜200nmの微粒子からなる集合体であることが、(d)、(e)のSEM像わかった。(f)に#2試料のTEM像を示したが、酸化タングステンの(112)面に相当する格子縞が観測でき、中空構造であることも確認できた。
In addition, the results of observing the # 1 and # 2 samples with a scanning electron microscope (SEM: Hitachi, Ltd., S-4800) and a transmission electron microscope (TEM: JEOL Ltd., JEM 2010F) are shown in FIG. 3 shows. As is clear from the SEM images of (a) and (b), the # 1 sample is a tubular body (hollow rod-like substance), and from the result of (c), the tubular body is a fine particle having a size of 10 to 200 nm. It became clear that it was an aggregate.
In addition, the # 2 sample obtained by heat-treating the # 1 sample in the atmosphere is a tubular body like the # 1 sample, and is an aggregate composed of fine particles having a size of 10 to 200 nm. (D), (e) SEM image of (F) shows a TEM image of the # 2 sample, and lattice fringes corresponding to the (112) plane of tungsten oxide were observed, and it was also confirmed that the structure was hollow.

#2試料の細孔径分布を測定するため、窒素の吸脱着等温線を測定した(Micrometrics社、ASAP2010)。比表面積はBET法、細孔径分布はBJH法により算出した。試料の前処理として、真空中で90℃の加熱処理をおこなった。結果を図4に示したが、#2試料には複数の細孔径分布が存在した。細孔径は、1nm〜5nm、20nm〜100nm、100nm以上に存在した。#2試料の比表面積は9.8m2/gであった。 In order to measure the pore size distribution of the # 2 sample, nitrogen adsorption and desorption isotherms were measured (Micrometrics, ASAP 2010). The specific surface area was calculated by the BET method, and the pore size distribution was calculated by the BJH method. As a sample pretreatment, heat treatment at 90 ° C. was performed in vacuum. The results are shown in FIG. 4, and the # 2 sample had a plurality of pore size distributions. The pore diameters were 1 nm to 5 nm, 20 nm to 100 nm, 100 nm or more. The specific surface area of # 2 sample was 9.8 m 2 / g.

#2の光吸収特性を測定するため、粉末のUV-Visスペクトルを拡散反射法で測定した(島津製作所、UV-2100)。また、バンドギャップを見積もるため、拡散反射法で得られた反射率からKubelka-Munk法を用いて吸収係数αを算出し、αの平方根を光子のエネルギーに対してプロットした。結果を図5に示したが、#2試料のバンドギャップは2.6eVで、波長400nm以上の可視光を吸収することが可能であることがわかった。この実施例では#1、#2とも白金を複合しないサンプルの結果を示したが、白金を複合したサンプルについても、#1、#2と同様の形態、結晶性を示した。   In order to measure the light absorption characteristics of # 2, the UV-Vis spectrum of the powder was measured by the diffuse reflection method (Shimadzu Corporation, UV-2100). In order to estimate the band gap, the absorption coefficient α was calculated from the reflectance obtained by the diffuse reflection method using the Kubelka-Munk method, and the square root of α was plotted against the photon energy. The result is shown in FIG. 5, and it was found that the band gap of the # 2 sample was 2.6 eV and visible light having a wavelength of 400 nm or more could be absorbed. In this example, the results of a sample that does not combine platinum with both # 1 and # 2 are shown, but the sample combined with platinum also showed the same form and crystallinity as # 1 and # 2.

実施例2
[管状体の光触媒特性]
実施例1で得た粉末状のサンプル(#2試料)、および、比較例となる粉末(市販のWO:高純度化学社製)0.1gをガラスシャーレに載せ、500mLのガラス製の密閉容器に設置した。密閉容器を相対湿度30%の合成空気で置換し、高濃度のアセトアルデヒドをシリンジで注入して初期濃度500ppmになるようにした。暗所にて吸着飽和になったことを確認した後、可視光の照射をおこなった。可視光の照射は300Wのキセノンランプ(林時計工業)を用い、UVカットフィルター(旭テクノグラス、Y-43)、長波長カットフィルター(旭テクノグラス、C-50S)を介して照射した。この照射条件で、波長は410nm以上、照射エネルギーはスペクトロラディオメータ(ウシオ電機)で計測した値で20mW/cm2となった。密閉容器内のアセトアルデヒドと二酸化炭素の濃度をガスクロマトグラフ(島津製作所、GC-2014)を用いて測定した。
白金を担持していない管状体である#2試料粉末と白金を担持していない比較例の粉末を触媒とした、アセトアルデヒドの減少(a)と二酸化炭素の発生(b)を測定した結果を図6に示す。アセトアルデヒドの酸化分解生成物である二酸化炭素の発生速度が速いほど、光触媒活性が高い。この結果、管状体である#2試料は比較例よりも二酸化炭素の生成速度が速く、250ppm/hourであった。
一方、白金を担持したサンプルを測定した結果を図7に示す。(a)はアセトアルデヒド、(b)は二酸化炭素の濃度変化を示し、(c)は各白金担持量における二酸化炭素の生成速度を示す。
この結果、本発明の管状体は市販の酸化タングステンの粉末よりも高い可視光活性を示し、白金の添加量が0.5wt%で最も高い活性を示した。本発明の管状体の二酸化炭素生成速度は、いずれも、250ppm/hour以上であった。また、最も高い活性を示すサンプルにおいて、可視光照射下でのアセトアルデヒドの完全分解、すなわち、1000ppmの濃度まで二酸化炭素が発生することを確認した。
Example 2
[Photocatalytic properties of tubular bodies]
A powdered sample (# 2 sample) obtained in Example 1 and 0.1 g of a powder as a comparative example (commercially available WO 3 : manufactured by High Purity Chemical Co., Ltd.) were placed on a glass petri dish, and a 500 mL glass sealed container Installed. The sealed container was replaced with synthetic air having a relative humidity of 30%, and high concentration acetaldehyde was injected with a syringe so that the initial concentration was 500 ppm. After confirming that adsorption was saturated in a dark place, irradiation with visible light was performed. Visible light was irradiated using a 300W xenon lamp (Hayashi Watch Industry) through a UV cut filter (Asahi Techno Glass, Y-43) and a long wavelength cut filter (Asahi Techno Glass, C-50S). Under these irradiation conditions, the wavelength was 410 nm or more, and the irradiation energy was 20 mW / cm 2 as measured by a spectroradiometer (USHIO). The concentration of acetaldehyde and carbon dioxide in the sealed container was measured using a gas chromatograph (Shimadzu Corporation, GC-2014).
Figure 2 shows the results of measurement of acetaldehyde reduction (a) and carbon dioxide generation (b) using the # 2 sample powder which is a tubular body not supporting platinum and the powder of a comparative example not supporting platinum as catalysts. It is shown in FIG. The higher the generation rate of carbon dioxide, which is an oxidative decomposition product of acetaldehyde, the higher the photocatalytic activity. As a result, the # 2 sample which was a tubular body had a higher carbon dioxide production rate than the comparative example, and was 250 ppm / hour.
On the other hand, the result of measuring a sample carrying platinum is shown in FIG. (A) shows acetaldehyde, (b) shows the change in carbon dioxide concentration, and (c) shows the carbon dioxide production rate at each platinum loading.
As a result, the tubular body of the present invention showed higher visible light activity than commercially available tungsten oxide powder, and showed the highest activity when the amount of platinum added was 0.5 wt%. The carbon dioxide production rates of the tubular bodies of the present invention were all 250 ppm / hour or more. It was also confirmed that in the sample showing the highest activity, carbon dioxide was generated up to a complete decomposition of acetaldehyde under irradiation with visible light, that is, a concentration of 1000 ppm.

本発明によれば、タングステン化合物の微粒子からなる、可視光応答性に光触媒能に優れた管状体を提供することができる。本発明の管状体は従来の酸化タングステン粒子よりも高い光触媒活性を有し、可視光の照射下でも高度な光触媒作用が発現する。また、本発明の管状体は安価で大量合成できるため、光触媒機能を有する様々な部材への応用が期待できる。   ADVANTAGE OF THE INVENTION According to this invention, the tubular body which consists of microparticles | fine-particles of a tungsten compound and was excellent in photocatalytic ability with visible light responsiveness can be provided. The tubular body of the present invention has a higher photocatalytic activity than conventional tungsten oxide particles, and exhibits a high level of photocatalytic action even under irradiation with visible light. Moreover, since the tubular body of the present invention can be synthesized in large quantities at a low cost, it can be expected to be applied to various members having a photocatalytic function.

本発明の管状体の構造の説明図Explanatory drawing of the structure of the tubular body of the present invention 本発明の管状体のXRDパターンを示す図The figure which shows the XRD pattern of the tubular body of this invention 本発明の管状体のSEM像とTEM像を示す図The figure which shows the SEM image and TEM image of the tubular body of this invention 本発明の管状体の窒素吸着等温線と細孔径分布を示す図The figure which shows the nitrogen adsorption isotherm and pore diameter distribution of the tubular body of the present invention 本発明の管状体の拡散反射スペクトルと吸収係数の平方根を示す図The figure which shows the diffuse reflection spectrum of the tubular body of this invention, and the square root of an absorption coefficient 本発明の管状体の気相アセトアルデヒドの分解活性を評価したグラフThe graph which evaluated decomposition | disassembly activity of the gaseous phase acetaldehyde of the tubular body of this invention 本発明の管状体の気相アセトアルデヒドの分解活性を評価したグラフThe graph which evaluated decomposition | disassembly activity of the gaseous phase acetaldehyde of the tubular body of this invention

Claims (18)

式WOで示される酸化タングステンの微粒子の集合体からなる酸化タングステン管状体。 Tungsten oxide tubular body formed of an aggregate of fine particles of tungsten oxide of the formula WO 3. 微粒子の粒径が10nm〜200nmであり、外径が100nm〜2μm、内径が20nm〜1μm、長さが1μm〜50μmで、かつ比表面積が5m2/g以上であることを特徴とする請求項1に記載の酸化タングステン管状体。 The fine particles have a particle size of 10 nm to 200 nm, an outer diameter of 100 nm to 2 μm, an inner diameter of 20 nm to 1 μm, a length of 1 μm to 50 μm, and a specific surface area of 5 m 2 / g or more. 2. The tungsten oxide tubular body according to 1. 窒素吸着法により測定した細孔径分布が複数存在することを特徴とする請求項1又は2に記載の酸化タングステン管状体。   The tungsten oxide tubular body according to claim 1 or 2, wherein there are a plurality of pore size distributions measured by a nitrogen adsorption method. 前記複数存在する細孔径分布の範囲が、1nm〜5nmのミクロ孔と、20nm〜100nmのメソ孔として存在することを特徴とする請求項1から3のいずれかに記載の酸化タングステン管状体。   The tungsten oxide tubular body according to any one of claims 1 to 3, wherein the plurality of pore diameter distribution ranges exist as micropores of 1 nm to 5 nm and mesopores of 20 nm to 100 nm. 前記タングステン化合物のバンドギャップが2.8eV以下であることを特徴とする請求項1から4のいずれかに記載の酸化タングステン管状体。   The tungsten oxide tubular body according to any one of claims 1 to 4, wherein a band gap of the tungsten compound is 2.8 eV or less. 前記管状体の表面に、助触媒が分散されていることを特徴とする請求項1から5のいずれかに記載の酸化タングステン管状体。   The tungsten oxide tubular body according to any one of claims 1 to 5, wherein a promoter is dispersed on a surface of the tubular body. 助触媒が、白金、銀、金、パラジウム、ニッケル、銅、鉄、クロム、ルテニウム、鉛、チタンからなる群から選択される少なくとも一種の金属もしくは該金属を含む化合物であることを特徴とする請求項6に記載の酸化タングステン管状体。   The promoter is at least one metal selected from the group consisting of platinum, silver, gold, palladium, nickel, copper, iron, chromium, ruthenium, lead, titanium, or a compound containing the metal. Item 7. The tungsten oxide tubular body according to Item 6. 前記助触媒である、金属もしくは金属化合物の割合が、前記管状体に対して0.05wt%〜10wt%であることを特徴とする請求項6または7に記載の酸化タングステン管状体。   The tungsten oxide tubular body according to claim 6 or 7, wherein a ratio of a metal or a metal compound as the promoter is 0.05 wt% to 10 wt% with respect to the tubular body. 請求項1から8のいずれかに記載の管状体を含む分散液。   A dispersion containing the tubular body according to any one of claims 1 to 8. 請求項1から9のいずれかに記載の管状体またはその分散液を用いた可視光応答性光触媒。   A visible light-responsive photocatalyst using the tubular body according to any one of claims 1 to 9 or a dispersion thereof. 前記管状体0.1gを500mLの密閉容器に入れ、前記容器に500ppmのアセトアルデヒドを含む相対湿度30%の空気を満たし、波長410nm以上で、エネルギー20mW/cm2の可視光を照射した際の二酸化炭素の発生速度が250ppm/hour以上であることを特徴とする請求項10に記載の光触媒。 Carbon dioxide when 0.1 g of the tubular body is placed in a 500 mL sealed container, filled with air with a relative humidity of 30% containing 500 ppm acetaldehyde, and irradiated with visible light having a wavelength of 410 nm or more and an energy of 20 mW / cm 2 The photocatalyst according to claim 10, wherein the generation rate of is at least 250 ppm / hour. タングステン水酸化物の微粒子の集合体からなる、請求項1から8のいずれかに記載の管状体を製造するための前駆体。   The precursor for manufacturing the tubular body according to any one of claims 1 to 8, comprising an aggregate of fine particles of tungsten hydroxide. 微粒子の粒径が10nm〜200nmであり、外径が100nm〜2μm、内径が20nm〜1μm、長さが1μm〜50μmであることを特徴とする請求項12に記載の前駆体。   The precursor according to claim 12, wherein the fine particles have a diameter of 10 nm to 200 nm, an outer diameter of 100 nm to 2 µm, an inner diameter of 20 nm to 1 µm, and a length of 1 µm to 50 µm. 密閉容器中でタングステン塩、アミノ基を持つ化合物および有機溶媒を混合し加熱処理することを特徴とする請求項12または13に記載の前駆体の製造方法。   The method for producing a precursor according to claim 12 or 13, wherein a tungsten salt, a compound having an amino group, and an organic solvent are mixed and heat-treated in a sealed container. 前記アミノ基をもつ化合物が尿素であることを特徴とする請求項12から14のいずれかに記載の前駆体の製造方法。   The method for producing a precursor according to any one of claims 12 to 14, wherein the compound having an amino group is urea. 前記有機溶媒がアルコールであることを特徴とする請求項12から15のいずれかに前駆体の製造方法。   The method for producing a precursor according to claim 12, wherein the organic solvent is an alcohol. 前記加熱処理の温度が100℃以上であることを特徴とする請求項12から16のいずれかに記載の前駆体の製造方法。   The temperature of the said heat processing is 100 degreeC or more, The manufacturing method of the precursor in any one of Claim 12 to 16 characterized by the above-mentioned. 請求項12から17のいずれかに記載の前駆体を大気中で300℃以上の温度で加熱することを特徴とする請求項1から8のいずれかに記載の酸化タングステン管状体の製造方法。   The method for producing a tungsten oxide tubular body according to any one of claims 1 to 8, wherein the precursor according to any one of claims 12 to 17 is heated in the atmosphere at a temperature of 300 ° C or higher.
JP2008083032A 2008-03-27 2008-03-27 Tubular body of tungsten oxide and photocatalyst using the same Pending JP2009233575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083032A JP2009233575A (en) 2008-03-27 2008-03-27 Tubular body of tungsten oxide and photocatalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083032A JP2009233575A (en) 2008-03-27 2008-03-27 Tubular body of tungsten oxide and photocatalyst using the same

Publications (1)

Publication Number Publication Date
JP2009233575A true JP2009233575A (en) 2009-10-15

Family

ID=41248226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083032A Pending JP2009233575A (en) 2008-03-27 2008-03-27 Tubular body of tungsten oxide and photocatalyst using the same

Country Status (1)

Country Link
JP (1) JP2009233575A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050802A (en) * 2009-01-27 2011-03-17 Sumitomo Chemical Co Ltd Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
WO2011068095A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
WO2011068094A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Antiviral agent, and antiviral agent functional product using same
JP2014039910A (en) * 2012-08-22 2014-03-06 Noritake Co Ltd Pt-SUPPORTED MICROTUBE AND METHOD FOR PRODUCING THE SAME
JP2015059068A (en) * 2013-09-19 2015-03-30 国立大学法人 新潟大学 Mesoporous tungsten oxide and production method thereof, photocatalyst and mesoporous tungsten oxide electrode
CN114163057A (en) * 2021-12-23 2022-03-11 南京信息工程大学 Method for catalytically degrading organic matters in waste water containing nitrosyl sulfuric acid dye by using tungsten oxide
US11492265B2 (en) * 2018-07-13 2022-11-08 University Of Connecticut Mesoporous tungsten oxide composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238157A (en) * 2002-02-13 2003-08-27 Toyota Motor Corp Titania nanotube
JP2004250239A (en) * 2003-02-18 2004-09-09 Catalysts & Chem Ind Co Ltd Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JP2005075654A (en) * 2003-08-28 2005-03-24 National Institute For Materials Science Single crystal tungsten oxide nanotube, single crystal tungsten oxide nanowire, and method for manufacturing them
JP2006083025A (en) * 2004-09-16 2006-03-30 Kagawa Univ Nanoscale substance and its production method
JP2007238879A (en) * 2006-03-13 2007-09-20 National Institute Of Advanced Industrial & Technology Phosphor material and method for producing the same
JP2009056395A (en) * 2007-08-31 2009-03-19 Toshiba Lighting & Technology Corp Visible light responsive photocatalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238157A (en) * 2002-02-13 2003-08-27 Toyota Motor Corp Titania nanotube
JP2004250239A (en) * 2003-02-18 2004-09-09 Catalysts & Chem Ind Co Ltd Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JP2005075654A (en) * 2003-08-28 2005-03-24 National Institute For Materials Science Single crystal tungsten oxide nanotube, single crystal tungsten oxide nanowire, and method for manufacturing them
JP2006083025A (en) * 2004-09-16 2006-03-30 Kagawa Univ Nanoscale substance and its production method
JP2007238879A (en) * 2006-03-13 2007-09-20 National Institute Of Advanced Industrial & Technology Phosphor material and method for producing the same
JP2009056395A (en) * 2007-08-31 2009-03-19 Toshiba Lighting & Technology Corp Visible light responsive photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013001159; GUNDIAH G. et al.: 'Hydrogel route to nanotubes of metal oxides and sulfates' J. Mater. Chem. Vol.13,No.9, 200309, page.2118-2122 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050802A (en) * 2009-01-27 2011-03-17 Sumitomo Chemical Co Ltd Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
WO2011068095A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
WO2011068094A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Antiviral agent, and antiviral agent functional product using same
JP2011136984A (en) * 2009-12-01 2011-07-14 Sumitomo Chemical Co Ltd Antiviral agent and antiviral agent functional product using the same
CN102639241A (en) * 2009-12-01 2012-08-15 住友化学株式会社 Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
EP2508257A4 (en) * 2009-12-01 2013-11-06 Sumitomo Chemical Co Antiviral agent, and antiviral agent functional product using same
JP2014039910A (en) * 2012-08-22 2014-03-06 Noritake Co Ltd Pt-SUPPORTED MICROTUBE AND METHOD FOR PRODUCING THE SAME
JP2015059068A (en) * 2013-09-19 2015-03-30 国立大学法人 新潟大学 Mesoporous tungsten oxide and production method thereof, photocatalyst and mesoporous tungsten oxide electrode
US11492265B2 (en) * 2018-07-13 2022-11-08 University Of Connecticut Mesoporous tungsten oxide composition
CN114163057A (en) * 2021-12-23 2022-03-11 南京信息工程大学 Method for catalytically degrading organic matters in waste water containing nitrosyl sulfuric acid dye by using tungsten oxide
CN114163057B (en) * 2021-12-23 2023-04-18 南京信息工程大学 Method for catalytically degrading organic matters in waste water containing nitrosyl sulfuric acid dye by using tungsten oxide

Similar Documents

Publication Publication Date Title
Takahara et al. Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
Mihai et al. ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study
TWI651269B (en) Titanium dioxide particles and preparation method thereof
JP2009233575A (en) Tubular body of tungsten oxide and photocatalyst using the same
Zhang et al. Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation
Scotti et al. Sol− gel pure and mixed-phase titanium dioxide for photocatalytic purposes: relations between phase composition, catalytic activity, and charge-trapped sites
Suzuki et al. Visible light-sensitive mesoporous N-doped Ta 2 O 5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO 2 reduction
Zhang et al. Enhanced photocatalysis by doping cerium into mesoporous titania thin films
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
Chen et al. Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity
JP5499442B2 (en) Metal oxide encapsulated mesoporous silica capsule
Purbia et al. Carbon-doped mesoporous anatase TiO2 multi-tubes nanostructures for highly improved visible light photocatalytic activity
Adhikari et al. Investigation of nano Ag-decorated SiC particles for photoelectrocatalytic dye degradation and bacterial inactivation
Sreethawong et al. Investigation of thermal treatment effect on physicochemical and photocatalytic H2 production properties of mesoporous-assembled Nb2O5 nanoparticles synthesized via a surfactant-modified sol–gel method
Haibo et al. Visible-light photocatalytic activity of SiC hollow spheres prepared by a vapor–solid reaction of carbon spheres and silicon monoxide
Nandanwar et al. Preparation of TiO2/SiO2 nanocomposite with non-ionic surfactants via sol-gel process and their photocatalytic study
JP5219137B2 (en) Dendritic substances and structures containing them
JP4868417B2 (en) Semiconductor photocatalyst
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JP2008201655A (en) Titanium dioxide fine particles, dispersion, structure, and process for production of them
JP2009012444A (en) Layered product and its manufacturing method
KR20140102205A (en) Process for producing supported ruthenium on silica modified titania and process for producing chlorine
JP5627006B2 (en) Photocatalyst and method for producing the same
JP2004331490A (en) Titania nanotube and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521