JP2009231313A - Electron device - Google Patents

Electron device Download PDF

Info

Publication number
JP2009231313A
JP2009231313A JP2008071110A JP2008071110A JP2009231313A JP 2009231313 A JP2009231313 A JP 2009231313A JP 2008071110 A JP2008071110 A JP 2008071110A JP 2008071110 A JP2008071110 A JP 2008071110A JP 2009231313 A JP2009231313 A JP 2009231313A
Authority
JP
Japan
Prior art keywords
conjugated polymer
electrodes
electronic device
point
main chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008071110A
Other languages
Japanese (ja)
Other versions
JP5401812B2 (en
Inventor
Yasuyuki Kurita
靖之 栗田
Toshihiko Tanaka
利彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008071110A priority Critical patent/JP5401812B2/en
Publication of JP2009231313A publication Critical patent/JP2009231313A/en
Application granted granted Critical
Publication of JP5401812B2 publication Critical patent/JP5401812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron device which employs a conjugated system polymer as an active layer, allows easy industrial manufacturing and has high characteristics of carrier mobility or the like. <P>SOLUTION: In the electron device composed by installing at least two electrodes in contact with the conjugated system polymer, the principal chain of the conjugated system polymer is oriented in the gap of at least two electrodes, and a hopping probability coefficient Z of the electron device indicated by an equation (1) Z=d<SB>min</SB>/L<SB>min</SB>is >1 and <10. In this equation (1), L<SB>min</SB>is the number average molecular chain length of the conjugated system polymer, and d<SB>min</SB>is the minimum length among lengths of segments connecting one point of one of the two electrodes and one point of the other electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電子工学分野において有用な電子素子に関し、詳しくは表示素子、光電変換素子、センサーなどに使用される電子素子に関する。   The present invention relates to an electronic element useful in the field of electronics, and more particularly to an electronic element used for a display element, a photoelectric conversion element, a sensor, and the like.

共役系高分子を半導体として用いた電子素子は、塗布などの簡便な工程により樹脂フィルムのような柔軟で安価な基材上に量産できるため、シリコンなどの結晶による電子素子よりも大きな面積を有する電子素子にすることができ、かつ安く製造できる可能性があることが指摘されている。該共役系高分子を半導体として用いた電子素子は、表示素子、光電変換素子、センサー等の分野で有用である。   An electronic device using a conjugated polymer as a semiconductor can be mass-produced on a flexible and inexpensive substrate such as a resin film by a simple process such as coating, and therefore has a larger area than an electronic device using a crystal such as silicon. It has been pointed out that there is a possibility that it can be made into an electronic element and can be manufactured at low cost. An electronic device using the conjugated polymer as a semiconductor is useful in fields such as a display device, a photoelectric conversion device, and a sensor.

共役系高分子は分子が一般に細長いため、分子の鎖長(具体的には数平均分子鎖長Lmin)よりも短い電極の間でこれを適切にある条件で配向させると、キャリアが分子鎖内を移動するので、共役系高分子を用いれば、(共役系高分子ではない)通常の有機分子を電子素子に用いた場合よりもかなり高速で移動するキャリアを有する電子素子、例えば電界効果トランジスタ等を構成できることが既に知られている(例えば、特許文献1参照。)。 Since a conjugated polymer generally has a long and narrow molecule, if the carrier is oriented under appropriate conditions between electrodes shorter than the molecular chain length (specifically, the number average molecular chain length L min ), If the conjugated polymer is used, an electronic device having a carrier that moves at a much higher speed than a normal organic molecule (not a conjugated polymer) used in the electronic device, such as a field effect transistor Is already known (for example, refer to Patent Document 1).

特開平10−22547号公報Japanese Patent Laid-Open No. 10-22547

ところが1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを通常のLminのサイズにしようとすると電極の設置は必ずしも容易ではない場合もあった。特にLminが比較的小さな場合には、極めて微細な加工が求められ、工業的な量産が難しい場合もあった。 However, it is not always easy to install the electrodes if the length d min which is the minimum length of the line segment connecting one point of one electrode and one point of the other electrode is set to the normal L min size. There was no case. In particular, when L min is relatively small, extremely fine processing is required, and industrial mass production may be difficult.

本発明の目的は、共役系高分子を活性層とする電子素子であって工業的製造が容易でかつキャリア移動度等の特性の高い電子素子を提供することにある。   An object of the present invention is to provide an electronic device having a conjugated polymer as an active layer, which is easy to industrially manufacture and has high characteristics such as carrier mobility.

本発明者らは、上記の課題を解決するために鋭意検討した結果、dminをLminよりも短い長さにしなくても、素子のホッピング確率係数が一定の範囲となるようにdminとLminを選択することにより、高いキャリア移動度を示す電子素子を構成出来ることを見出し本発明に達した。 The present inventors have made intensive studies in order to solve the above problems, without the d min to a shorter length than L min, and d min as hopping probability factor of the element is kept constant in the range It has been found that by selecting L min , an electronic device exhibiting high carrier mobility can be constructed, and the present invention has been achieved.

すなわち本発明は、以下の<1>〜<8>を提供する。
<1> 共役系高分子に接して少なくとも2つの電極が設置されてなる電子素子において、少なくとも2つの電極の間隙において該共役系高分子の主鎖が配向してなり、式(1)で表される該電子素子のホッピング確率係数Zが1を越え10未満であることを特徴とする電子素子。
That is, the present invention provides the following <1> to <8>.
<1> In an electronic device in which at least two electrodes are placed in contact with a conjugated polymer, the main chain of the conjugated polymer is oriented in the gap between at least two electrodes, and is represented by the formula (1). An electronic device characterized in that the electronic device has a hopping probability coefficient Z of more than 1 and less than 10.

Z=dmin÷ Lmin (1)
〔Lmin:該共役系高分子の数平均分子鎖長、
min:該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さ。〕
Z = d min ÷ L min (1)
[L min : number average molecular chain length of the conjugated polymer,
d min : the minimum length of the line segment connecting one point of one of the two electrodes and one point of the other electrode. ]

<2> 共役系高分子の主鎖が一軸配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分と共役系高分子の主鎖の配向方向とのなす角をθとするとき、θが−45度以上45度以下である<1>記載の電子素子。 <2> The main chain of the conjugated polymer is uniaxially oriented, and is the smallest of the lengths of line segments connecting one point of one of the two electrodes and one point of the other electrode. <1> The electronic device according to <1>, wherein θ is −45 degrees or more and 45 degrees or less, where θ is an angle formed by a line segment representing a certain length d min and the orientation direction of the main chain of the conjugated polymer.

<3> 共役系高分子の主鎖が一軸配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分と共役系高分子の主鎖の配向方向とが略平行である<1>記載の電子素子。 <3> The main chain of the conjugated polymer is uniaxially oriented, and is the smallest of the lengths of line segments connecting one point of one of the two electrodes and one point of the other electrode. <1> The electronic device according to <1>, wherein the line segment representing a certain length d min and the orientation direction of the main chain of the conjugated polymer are substantially parallel.

<4> 共役系高分子の配向度Sが0.3以上である<1>〜<3>のいずれかに記載の電子素子。 <4> The electronic device according to any one of <1> to <3>, wherein the orientation degree S of the conjugated polymer is 0.3 or more.

<5> 共役系高分子が膜を形成し、該膜の面内に共役系高分子の主鎖が配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分が該膜の面に略平行である<1>〜<4>のいずれかに記載の電子素子。 <5> Conjugated polymer forms a film, the main chain of the conjugated polymer is oriented in the plane of the film, and one point of one of the two electrodes and the other electrode The electronic element according to any one of <1> to <4>, wherein a line segment representing a length d min that is the smallest of the lengths of line segments that connect one point is substantially parallel to the surface of the film.

<6> 共役系高分子の主鎖が共役系高分子を含むフィルムを延伸することにより一軸配向してなる<1>〜<5>のいずれかに記載の電子素子。 <6> The electronic device according to any one of <1> to <5>, wherein the main chain of the conjugated polymer is uniaxially oriented by stretching a film containing the conjugated polymer.

<7> 少なくとも2つの電極の他に、共役系高分子に接しない少なくとも1つ以上のゲート電極が更に設置されてなり、前記2つの電極の間を通過する電流が、該2つの電極以外のゲート電極に印加される電圧によって制御される<1>〜<6>のいずれかに記載の電子素子。 <7> In addition to the at least two electrodes, at least one or more gate electrodes that are not in contact with the conjugated polymer are further provided, and the current passing between the two electrodes The electronic device according to any one of <1> to <6>, which is controlled by a voltage applied to the gate electrode.

<8> 該2つの電極の間が発光する<1>〜<7>のいずれかに記載の電子素子。 <8> The electronic device according to any one of <1> to <7>, wherein light is emitted between the two electrodes.

本発明の電子素子は従来より高いキャリア移動度を示し、高性能の表示素子、光電変換素子、センサー等となる。特に、電界効果型トランジスタは、応答速度が速い、オン抵抗が小さい等、高い性能を有する。また、本発明の電子素子は、比較的容易に製造することが出来るので、本発明は工業的に極めて有用である。   The electronic device of the present invention exhibits higher carrier mobility than before, and becomes a high-performance display device, photoelectric conversion device, sensor, or the like. In particular, a field effect transistor has high performance such as high response speed and low on-resistance. Moreover, since the electronic device of the present invention can be manufactured relatively easily, the present invention is extremely useful industrially.

以下、本発明の電子素子について詳細に説明する。
本発明の電子素子は、共役系高分子に接して少なくとも2つの電極が設置されてなる電子素子であって、少なくとも2つの電極の間隙において該共役系高分子の主鎖が配向してなり、式(1)で表される該電子素子のホッピング確率係数Zが1を越え10未満であることを特徴とする。
Z=dmin÷Lmin (1)
〔Lmin:該共役系高分子の数平均分子鎖長、
min:該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さ。〕
Hereinafter, the electronic device of the present invention will be described in detail.
The electronic device of the present invention is an electronic device in which at least two electrodes are placed in contact with a conjugated polymer, wherein the main chain of the conjugated polymer is oriented in the gap between at least two electrodes, A hopping probability coefficient Z of the electronic element represented by the formula (1) is more than 1 and less than 10.
Z = d min ÷ L min (1)
[L min : number average molecular chain length of the conjugated polymer,
d min : the minimum length of the line segment connecting one point of one of the two electrodes and one point of the other electrode. ]

本発明の電子素子には、共役系高分子を使用する。該共役系高分子としては、π電子共役系高分子またはσ電子共役系高分子として知られる共役系高分子を使用することができる。
本発明における共役系高分子は、同一の繰り返し単位から構成される高分子でもよく、複数の異なる繰り返し単位から構成される共重合高分子でもよい。また、本発明における共役系高分子は、複数の異なる共役系高分子を混合したものでもよい。該共役系高分子の数平均重合度は、10以上を使用することができるが、10〜10000の範囲が好ましく、100〜5000の範囲がさらに好ましく、300〜3000の範囲が特に好ましい。本発明における共役系高分子は、電子供与性または電子吸引性のドーパントを不純物として含有することができる。ただし、電子素子の用途に応じてドーパントの種類と濃度を選択して使用することが好ましい。
A conjugated polymer is used for the electronic device of the present invention. As the conjugated polymer, a conjugated polymer known as a π-electron conjugated polymer or a σ-electron conjugated polymer can be used.
The conjugated polymer in the present invention may be a polymer composed of the same repeating unit or a copolymerized polymer composed of a plurality of different repeating units. The conjugated polymer in the present invention may be a mixture of a plurality of different conjugated polymers. The number average degree of polymerization of the conjugated polymer can be 10 or more, preferably in the range of 10 to 10,000, more preferably in the range of 100 to 5000, and particularly preferably in the range of 300 to 3000. The conjugated polymer in the present invention can contain an electron donating or electron withdrawing dopant as an impurity. However, it is preferable to select and use the type and concentration of the dopant according to the use of the electronic device.

このような共役系高分子として、ポリフェニルアセチレンのようなポリアセチレンもしくはその誘導体;ポリフルオレンもしくはその誘導体;ポリパラフェニレンもしくはその誘導体;ポリ(2エチル−p−フェニレンビニレン)、ポリ(2,5ジメチル−p−フェニレンビニレン)、ポリ(2,5ジエチル−p−フェニレンビニレン)、ポリ(2,5ジオクチル−p−フェニレンビニレン)、ポリ(2,5ジメトキシ−p−フェニレンビニレン)、ポリ(2,5ジオクチルオキシ−p−フェニレンビニレン)等のポリパラフェニレンビニレンもしくはその誘導体;ポリチエニレンビニレンもしくはその誘導体;ポリチエニレンもしくはその誘導体;ポリピロールもしくはその誘導体;ポリアニリンもしくはその誘導体;またはポリシランもしくはその誘導体を挙げることができる。   Examples of such conjugated polymers include polyacetylene such as polyphenylacetylene or a derivative thereof; polyfluorene or a derivative thereof; polyparaphenylene or a derivative thereof; poly (2ethyl-p-phenylenevinylene), poly (2,5-dimethyl). -P-phenylene vinylene), poly (2,5 diethyl-p-phenylene vinylene), poly (2,5 dioctyl-p-phenylene vinylene), poly (2,5 dimethoxy-p-phenylene vinylene), poly (2, Polydiphenylene vinylene or derivatives thereof such as 5 dioctyloxy-p-phenylene vinylene); polythienylene vinylene or derivatives thereof; polythienylene or derivatives thereof; polypyrrole or derivatives thereof; polyaniline or derivatives thereof; Ku can be mentioned a derivative thereof.

分子鎖内のキャリア移動度の点でできるだけ平面性の高いπ電子共役系高分子を用いることが好ましい。そのような高分子としては各種のラダー型の共役系高分子〔ポリパラフェニレン系、等〕、ポリフルオレンもしくはその誘導体、ポリパラフェニレンビニレンもしくはその誘導体、ポリチエニレンビニレンもしくはその誘導体、ポリチエニレンもしくはその誘導体、等を挙げることができるが、この中では各種のラダー型の共役系高分子〔ポリパラフェニレン系、等〕が好ましい。具体的な分子鎖内のキャリア移動度としては、1cm2/Vs以上が好ましく、5cm2/Vs以上がより好ましく、10cm2/Vs以上がさらに好ましく、50cm2/Vs以上がさらにより好ましく、100cm2/Vs以上が特に好ましい。分子鎖の間のキャリア移動度も相対的に高い方が好ましいが、一般的には10-6〜10cm2/Vs程度の範囲であり、本発明でもこの範囲のものから選択して用いることが出来、10-6cm2/Vs以上が好ましく、10-5cm2/Vs以上がより好ましく、10-4cm2/Vs以上がさらに好ましく、10-3cm2/Vs以上が特に好ましい。 It is preferable to use a π-electron conjugated polymer having as high a planarity as possible in terms of carrier mobility in the molecular chain. Examples of such polymers include various ladder-type conjugated polymers (polyparaphenylene, etc.), polyfluorene or derivatives thereof, polyparaphenylene vinylene or derivatives thereof, polythienylene vinylene or derivatives thereof, polythienylene or derivatives thereof. Derivatives and the like can be mentioned, and among these, various ladder-type conjugated polymers (polyparaphenylene, etc.) are preferable. Specifically, the carrier mobility in the molecular chain is preferably 1 cm 2 / Vs or more, more preferably 5 cm 2 / Vs or more, still more preferably 10 cm 2 / Vs or more, still more preferably 50 cm 2 / Vs or more, and 100 cm. 2 / Vs or more is particularly preferable. Although it is preferable that the carrier mobility between the molecular chains is relatively high, it is generally in the range of about 10 −6 to 10 cm 2 / Vs. It is preferably 10 −6 cm 2 / Vs or more, more preferably 10 −5 cm 2 / Vs or more, further preferably 10 −4 cm 2 / Vs or more, and particularly preferably 10 −3 cm 2 / Vs or more.

本発明の電子素子において、共役系高分子は、自立したフィルム、基材上の簿膜、繊維、成形体などの形状で使用できる。電子素子形成の容易さでは、膜(自立したフィルムまたは基材上の簿膜)として使用することが好ましい。   In the electronic device of the present invention, the conjugated polymer can be used in the form of a self-supporting film, a film on a substrate, a fiber, a molded body, and the like. In terms of ease of forming an electronic element, it is preferably used as a film (a self-supporting film or a book film on a substrate).

このような膜は、共役系高分子の種類により公知の各種の方法で得ることができるので、適宜選択して使用することができる。たとえば、ポリパラフェニレンビニレンまたはその誘導体では、前駆体である高分子スルホニウム塩のフィルムを加熱しながら延伸することにより、高配向のフィルムが得られる。また、ポリチエニレンビニレンでも、前駆体である高分子のフィルムを加熱しながら延伸することにより、一軸に高配向のフィルムが得られる。   Since such a film can be obtained by various known methods depending on the type of conjugated polymer, it can be appropriately selected and used. For example, in the case of polyparaphenylene vinylene or a derivative thereof, a highly oriented film can be obtained by stretching a film of a polymer sulfonium salt that is a precursor while heating. Further, even with polythienylene vinylene, a highly oriented film can be obtained uniaxially by stretching a polymer film as a precursor while heating.

次に、本発明の電子素子の構造について説明する。本発明の電子素子は、共役系高分子上に少なくとも2つの電極が設置されてなる電子素子であり、具体的には共役系高分子を含むフィルム上に、または基材上に形成された共役系高分子の薄膜上に、または共役系高分子からなる繊維上に、または共役系高分子を含む成形体上に、少なくとも2つの電極が設置されてなる電子素子である。該電極の数は、電子素子の目的とする機能によって異なる。ある電気信号を別の任意の電気信号により変調、増幅等する目的には、3つ以上の電極を形成することが好ましく、このうち少なくとも1つは絶縁層を介して共役系高分子に接触させる(通常ゲート電極と呼ばれる)ことがさらに好ましく、3つの電極を接触させ、このうち少なくとも1つは絶縁層を介して共役系高分子に接触させることが特に好ましい。このような素子は電界効果トランジスタと呼ばれる。   Next, the structure of the electronic device of the present invention will be described. The electronic device of the present invention is an electronic device in which at least two electrodes are placed on a conjugated polymer, specifically, a conjugate formed on a film containing a conjugated polymer or on a substrate. An electronic device in which at least two electrodes are provided on a thin film of a conjugated polymer, on a fiber made of a conjugated polymer, or on a molded body containing a conjugated polymer. The number of the electrodes varies depending on the intended function of the electronic element. For the purpose of modulating, amplifying, etc. a certain electric signal with another arbitrary electric signal, it is preferable to form three or more electrodes, and at least one of them is brought into contact with the conjugated polymer via an insulating layer. More preferably (usually called a gate electrode), it is more preferable that three electrodes are brought into contact, and at least one of them is in contact with a conjugated polymer via an insulating layer. Such an element is called a field effect transistor.

本発明の電子素子において、用いる共役系高分子の主鎖が、配向していることが好ましい実施態様である。配向としては、一軸配向であっても膜面(又はフィルム面)に平行な面内配向であってもその両方の配向であってもよい。本発明においては、配向度を示す一つの指標として、以下に示すSを用いる。Sは、共役系高分子の主鎖すなわち連続した共役系を構成する原子からなる鎖の配向度を表すが、より具体的にはn個の分子鎖のそれぞれについて、分子内の連続した共役系を構成する原子の内、該共役系の両末端の原子のある一方を起点とし、他の一方を終点とするn個のベクトルをai(i=1〜n)として、以下のように定義される。 In the electronic device of the present invention, it is a preferred embodiment that the main chain of the conjugated polymer used is oriented. The orientation may be uniaxial orientation, in-plane orientation parallel to the film surface (or film surface), or both orientations. In the present invention, S shown below is used as one index indicating the degree of orientation. S represents the orientation degree of the main chain of the conjugated polymer, that is, the chain composed of atoms constituting the continuous conjugated system. More specifically, S represents a continuous conjugated system in the molecule for each of the n molecular chains. The following are defined as n i vectors (i = 1 to n) starting from one of the atoms at both ends of the conjugated system and having the other as the end: Is done.

S=(3<cos2β>−1)/2 ・・・・・(2)
(式中、<>内は、統計平均を表し、βは、ベクトルuとベクトルaiとのなす角を表し、ベクトルuは、任意の方向を向いた単位ベクトルの内で、式(3)が最大になるものを表す。
S = (3 <cos 2 β> −1) / 2 (2)
(In the formula, <> represents a statistical average, β represents an angle formed by the vector u and the vector a i, and the vector u is a unit vector directed in an arbitrary direction. Represents the maximum.

Figure 2009231313
・・・・・(3)
(式中、| |は、この中の数値の絶対値を表す。)
Figure 2009231313
(3)
(In the formula, || represents the absolute value of the numerical value in this.)

上記Sは、通常厳密な測定は難しいが、共役系高分子の場合、スペクトルにおいて、共役分子鎖と平行な方向に光吸収が見られるので、この吸収について、以下の式(4)で算出される値を用いる。   The above S is usually difficult to measure strictly, but in the case of a conjugated polymer, light absorption is observed in the direction parallel to the conjugated molecular chain in the spectrum, and this absorption is calculated by the following equation (4). Value is used.

S=(R−1)/(R+2) ・・・・・(4)       S = (R-1) / (R + 2) (4)

式(4)におけるRは、吸収極大波長において、共役系高分子の配向方向に平行な方向の偏光の吸光度(A1)と、共役系高分子の配向方向と直交する方向の偏光の吸光度(A2)を測定し、式(5)により求める。 In formula (4), R represents the absorbance (A 1 ) of polarized light in a direction parallel to the orientation direction of the conjugated polymer and the absorbance of polarized light in a direction orthogonal to the orientation direction of the conjugated polymer (A 1 ) at the absorption maximum wavelength. A 2 ) is measured and determined by the equation (5).

R=A1/A2 ・・・・・(5)
このようにして求められるSとしては、一般に高いほうが好ましいが、Sが0.3以上が好ましく、0.5以上がさらに好ましく、0.7以上がさらにより好ましく、0.8以上が特に好ましい。
R = A 1 / A 2 ····· (5)
In general, the S obtained in this manner is preferably as high as possible, but S is preferably 0.3 or more, more preferably 0.5 or more, even more preferably 0.7 or more, and particularly preferably 0.8 or more.

さらに一軸配向の場合、該共役系高分子の数平均分子鎖長をLminとし、1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さ(以下、電極間の最小距離と記すことがある。)をdminとし、該最小である長さを有する線分と該共役系高分子の主鎖の配向方向とのなす角をθとするとき、θは、−45度以上45度以下が好ましく、−30度以上30度以下がより好ましく、−10度以上10度以下がさらに好ましく、−5度以上5度以下がさらにより好ましく、0度すなわち前記dminの方向と該共役系高分子の主鎖の配向方向が略平行であることが特に好ましい。なお、測定精度を考慮すると0度は、±2度程度の範囲を含む。 Further, in the case of uniaxial orientation, the number average molecular chain length of the conjugated polymer is L min and the length is the shortest length of the line segment connecting one point of one electrode and one point of the other electrode. (Hereinafter, sometimes referred to as the minimum distance between electrodes) is d min , and the angle between the minimum length of the line segment and the orientation direction of the main chain of the conjugated polymer is θ In this case, θ is preferably −45 degrees or more and 45 degrees or less, more preferably −30 degrees or more and 30 degrees or less, further preferably −10 degrees or more and 10 degrees or less, and further preferably −5 degrees or more and 5 degrees or less, It is particularly preferable that the direction of 0 degree, that is, the d min and the orientation direction of the main chain of the conjugated polymer are substantially parallel. In consideration of measurement accuracy, 0 degree includes a range of about ± 2 degrees.

面内配向の場合も、配向のオーダーパラメータは一般に高いことが好ましい。面内配向の場合も面内配向のオーダーパラメータKは式(6)で定義できる。   Also in the case of in-plane orientation, the order parameter of orientation is generally preferably high. Also in the case of in-plane orientation, the order parameter K for in-plane orientation can be defined by equation (6).

K=(3<cos2γ>−1)/2 ・・・・・(6)
(式(6)中、<>内は、統計平均を表し、γは、ベクトルaiと膜面のなす角を表す。)
K = (3 <cos 2 γ> −1) / 2 (6)
(In formula (6), <> represents a statistical average, and γ represents an angle formed by the vector a i and the film surface.)

Kとしては、一般に高いほうが好ましい。Kが0.3以上が好ましく、0.5以上がさらに好ましく、0.7以上が特に好ましい。Kの高い共役系高分子の膜は、共役系高分子の種類により公知の各種の方法で得ることができるので、適宜選択して使用することができる。たとえば有機溶媒に可溶なポリフルオレン類の塗布膜中では、ポリフルオレンの分子鎖は膜面に垂直な配向をとりにくく、多くの分子が基板面に平行な配向を示すことが知られている。すなわち、共役系高分子が膜を形成し、該膜の面内に共役系高分子の主鎖が配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分が該膜の面に略平行であることが特に好ましい。 In general, a higher K is preferable. K is preferably 0.3 or more, more preferably 0.5 or more, and particularly preferably 0.7 or more. A film of a conjugated polymer having a high K can be obtained by various known methods depending on the kind of the conjugated polymer, and can be appropriately selected and used. For example, in coating films of polyfluorenes soluble in organic solvents, it is known that the molecular chain of polyfluorene is difficult to take an orientation perpendicular to the film surface, and many molecules show an orientation parallel to the substrate surface. . That is, the conjugated polymer forms a film, the main chain of the conjugated polymer is oriented in the plane of the film, and one point of one of the two electrodes and one of the other electrodes. It is particularly preferable that the line segment representing the length d min that is the smallest of the line segments connecting the points is substantially parallel to the surface of the film.

ホッピング確率係数Zは、少なくとも1を越え10未満であることが必要であるが、最適なZの範囲は配向の種類や配向のオーダーパラメータ等によって異なる。一軸配向でSが0.7以上でかつθが10度未満の場合、キャリア移動度の点で1を越え7未満であることが好ましく、1を越え5未満であることが好ましく、1を越え3未満であることがさらに好ましく、1を越え2未満であることが特に好ましい。Sが0.7以下でかつθが10度以上の場合は、1を越え10未満の範囲で上記よりもやや小さなZを用いることで同様の効果が得られる。面内配向の場合でKが0.7以上の場合、同様に1を越え5未満であることが好ましく、1を越え3未満であることが好ましく、1を越え2未満であることが特に好ましい。Kが0.7以下の場合は、1を越え10未満の範囲で上記よりもやや小さなZを用いることで同様の効果が得られる。具体的なLminの大きさとしては、特に制限は無いが小さいと素子作製が結果的に難しくなりがちであり、通常10nm以上10000nm以下で、20nm以上3000nm以下が好ましく、50nm以上3000nm以下がより好ましく、100nm以上2000nm以下がさらに好ましく、500nm以上2000nm以下が特に好ましい。 The hopping probability coefficient Z needs to be at least 1 and less than 10, but the optimum Z range varies depending on the orientation type, orientation order parameters, and the like. When S is 0.7 or more and θ is less than 10 degrees in the uniaxial orientation, it is preferably more than 1 and less than 7 in terms of carrier mobility, preferably more than 1 and less than 5, more than 1. More preferably, it is less than 3, more preferably more than 1 and less than 2. When S is 0.7 or less and θ is 10 degrees or more, the same effect can be obtained by using Z that is slightly smaller than the above in the range of more than 1 and less than 10. In the case of in-plane orientation, when K is 0.7 or more, it is preferably more than 1 and less than 5, preferably more than 1 and less than 3, particularly preferably more than 1 and less than 2. . When K is 0.7 or less, the same effect can be obtained by using Z that is slightly smaller than the above in the range of more than 1 and less than 10. The specific size of L min is not particularly limited, but if it is small, device production tends to be difficult as a result. Usually, it is 10 nm to 10,000 nm, preferably 20 nm to 3000 nm, and more preferably 50 nm to 3000 nm. Preferably, 100 nm or more and 2000 nm or less are more preferable, and 500 nm or more and 2000 nm or less are particularly preferable.

即ちこのような構造であると、この電極間を伝播するキャリアの中で、分子鎖内だけを伝播するキャリアの効果が相対的に大きく生じるので、バルクよりも高速にキャリアが移動することができる。分子鎖から分子鎖へホッピングするキャリアよりも、分子鎖内だけを伝播するキャリアの割合が大きくなるほど、全体としてキャリアは高速で電極間を流れることができる。したがって、極めて高速にしかも低い電圧で電子素子を動作させることが可能となる。   That is, in such a structure, among the carriers propagating between the electrodes, the effect of the carrier propagating only in the molecular chain is relatively large, so that the carrier can move faster than the bulk. . The carrier can flow between the electrodes at a higher speed as a whole as the proportion of carriers propagating only in the molecular chain becomes larger than the carrier hopping from the molecular chain to the molecular chain. Therefore, it is possible to operate the electronic device at a very high speed and at a low voltage.

本発明において用いる電極の材質は、用途や共役系高分子の種類によって異なるので、適宜選択して使用する。一般には、電気伝導性が良好で安定な材料が利用できるが、このような材料としては、金属もしくはその合金、導電性の金属酸化物、ドーピングされた半導体、導電性高分子またはカーボンなどが挙げられる。具体的には、該金属として、リチウム等のアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属、アルミニウム、インジウム、スカンジウム、イットリウム、ガリウム、金、銀、白金、銅、ニッケル、クロム、パラジウム、タングステン、タンタル、ニオブ、イリジウム、オスミウム、コバルト、亜鉛等が挙げられる。   Since the material of the electrode used in the present invention varies depending on the application and the type of conjugated polymer, it is appropriately selected and used. In general, stable materials with good electrical conductivity can be used. Examples of such materials include metals or alloys thereof, conductive metal oxides, doped semiconductors, conductive polymers, or carbon. It is done. Specifically, as the metal, alkaline metals such as lithium, alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium, aluminum, indium, scandium, yttrium, gallium, gold, silver, platinum, copper, nickel , Chromium, palladium, tungsten, tantalum, niobium, iridium, osmium, cobalt, zinc and the like.

また、該導電性の金属酸化物として、酸化スズ、インジウム・スズ・酸化物(ITO)等が挙げられる。該半導体として、シリコン、セレン、ゲルマニウム等;硫化カドミウム、硫化亜鉛等の硫化物;セレン化亜鉛等のセレン化物等が挙げられる。該導電性高分子として、ポリアニリン、ポリピロール、ポリチエニレン等が挙げられる。さらに、該カーボンとして、グラファイト、カーボンブラック等が挙げられる。これらの中で、安定性の点から、アルミニウム、インジウム、スカンジウム、イットリウム、ガリウム、金、銀、白金、銅、ニッケル、クロム、パラジウム、タングステン、タンタル、ニオブ、イリジウム、オスミウム、コバルト、亜鉛等の金属またはそれらの合金;酸化スズ、インジウム・スズ・酸化物(ITO)等の導電性の金属酸化物;グラファイト、カーボンブラック等のカーボンが好ましい。実際にはこれらの中から目的に応じて選択して使用することができる。   Examples of the conductive metal oxide include tin oxide and indium / tin / oxide (ITO). Examples of the semiconductor include silicon, selenium, and germanium; sulfides such as cadmium sulfide and zinc sulfide; and selenides such as zinc selenide. Examples of the conductive polymer include polyaniline, polypyrrole, and polythienylene. Furthermore, graphite, carbon black, etc. are mentioned as this carbon. Among these, from the viewpoint of stability, aluminum, indium, scandium, yttrium, gallium, gold, silver, platinum, copper, nickel, chromium, palladium, tungsten, tantalum, niobium, iridium, osmium, cobalt, zinc, etc. Metals or alloys thereof; conductive metal oxides such as tin oxide, indium tin oxide (ITO); and carbon such as graphite and carbon black are preferred. Actually, these can be selected and used according to the purpose.

これら電極は、共役系高分子表面に直接接触させるが、この際、接触抵抗の低減(キャリア注入性の向上)等の目的に応じて半導性薄膜を間に介して接触させることもできる。該半導性薄膜としては、シリコン、セレン、ゲルマニウム;硫化カドミウム、硫化亜鉛等の硫化物;セレン化亜鉛等のセレン化物等の半導体からなる薄膜、また電子輸送性材料からなる薄膜または正孔輸送性材料からなる薄膜が挙げられる。該電子輸送性材料としては、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、8−ヒドロキシキノリンの金属錯体もしくはその誘導体の金属錯体、フラーレン等が挙げられる。また、該正孔輸送性材料としては、トリフェニルジアミン誘導体、共役系高分子等が挙げられる。ただし、これらの半導性薄膜の電気伝導度が低すぎると、本発明の特徴が活かされないので、該薄膜の厚さを大きくすることは好ましくない。具体的には、半導性薄膜の電気伝導度によるが、一般的に該半導性薄膜の厚さは、200nm以下が好ましく、100nm以下がさらに好ましく、50nm以下が特に好ましい。   These electrodes are in direct contact with the surface of the conjugated polymer. At this time, they can be brought into contact with each other through a semiconducting thin film depending on the purpose such as reduction of contact resistance (improvement of carrier injection property). Examples of the semiconducting thin film include silicon, selenium, germanium; sulfides such as cadmium sulfide and zinc sulfide; thin films composed of semiconductors such as selenides such as zinc selenide; thin films composed of electron transporting materials; A thin film made of a functional material. Examples of the electron transporting material include an oxadiazole derivative, benzoquinone or a derivative thereof, anthraquinone or a derivative thereof, a metal complex of 8-hydroxyquinoline or a derivative thereof, a fullerene, and the like. Examples of the hole transporting material include triphenyldiamine derivatives and conjugated polymers. However, if the electrical conductivity of these semiconducting thin films is too low, it is not preferable to increase the thickness of the thin films because the features of the present invention cannot be utilized. Specifically, although it depends on the electrical conductivity of the semiconducting thin film, generally the thickness of the semiconducting thin film is preferably 200 nm or less, more preferably 100 nm or less, and particularly preferably 50 nm or less.

本発明の電子素子が、ある電気信号を別の任意の電気信号により変調、増幅等する目的の電子素子である場合には、少なくとも2つの電極の他に、共役系高分子に接しない少なくとも1つ以上のゲート電極が更に設置されてなり、前記2つの電極の間を通過する電流が、該2つの電極以外のゲート電極に印加される電圧によって制御される電子素子であることが好ましい。前記ゲート電極は、絶縁層により共役系高分子から隔絶されていることがさらに好ましい。このような電子素子は、ゲート電極に電圧を印加することにより、ホッピング確率係数Zが1を越え10未満である電極間の電流を変化させることができ、従来電界効果トランジスタと称される電子素子と同様に、信号の増幅、変調、記憶、演算等の多様な目的に原理的に適用可能であるので、適宜構造や使用条件を選択して使用する。   When the electronic device of the present invention is an electronic device for the purpose of modulating, amplifying, etc. a certain electric signal with another arbitrary electric signal, in addition to at least two electrodes, at least one not in contact with the conjugated polymer It is preferable that the electronic element further includes one or more gate electrodes, and the current passing between the two electrodes is controlled by a voltage applied to a gate electrode other than the two electrodes. More preferably, the gate electrode is isolated from the conjugated polymer by an insulating layer. Such an electronic device can change a current between electrodes having a hopping probability coefficient Z exceeding 1 and less than 10 by applying a voltage to the gate electrode, and is conventionally referred to as a field effect transistor. In the same manner as the above, since it can be applied in principle to various purposes such as signal amplification, modulation, storage, and calculation, the structure and use conditions are appropriately selected and used.

該絶縁層の材料としては、安定で絶縁性に優れるものが使用できる。このような材料としては、酸化物、窒化物、高分子等が挙げられる。該酸化物として、チタン酸化物、アルミニウム酸化物、ジルコニウム酸化物、シリコン酸化物等が挙げられる。該窒化物としては、シリコン窒化物、アルミニウム窒化物等が挙げられる。該高分子としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリビニルアルコール、ポリスチレン、ポリエステル、ポリエステルイミドや種々のフォトレジスト等が挙げられる。ただし、これらの絶縁層の厚さが大きいと電流の制御が困難になるので、あまり大きくすることができない。一方、絶縁層の厚さが小さいと、絶縁性が不充分で電界が有効にかからず電流の制御が困難になる。したがって、具体的には、絶縁層の誘電率によるが、一般的に該半導性薄膜の厚さは、10nm〜100000nmが好ましく、10nm〜10000nm以下がさらに好ましく、50nm〜2000nm以下が特に好ましい。   As the material for the insulating layer, a stable and excellent insulating material can be used. Examples of such materials include oxides, nitrides, and polymers. Examples of the oxide include titanium oxide, aluminum oxide, zirconium oxide, and silicon oxide. Examples of the nitride include silicon nitride and aluminum nitride. Examples of the polymer include polyimide, polyamide, polyamideimide, polyvinyl alcohol, polystyrene, polyester, polyesterimide, and various photoresists. However, if the thickness of these insulating layers is large, it becomes difficult to control the current, so that it cannot be made too large. On the other hand, if the thickness of the insulating layer is small, the insulation is insufficient, the electric field is not effectively applied, and current control becomes difficult. Therefore, specifically, depending on the dielectric constant of the insulating layer, generally the thickness of the semiconducting thin film is preferably 10 nm to 100,000 nm, more preferably 10 nm to 10,000 nm, and particularly preferably 50 nm to 2000 nm.

次に、本発明の電子素子の作製方法を説明する。本発明における電極は、公知の方法により共役系高分子上に設置される。具体的な設置方法としては、リソグラフィーによる電極の加工法、イオンビーム加工法等の利用が挙げられる。これら電極を設置することにより、本発明の電子素子の最も基本的な構造が構成される。   Next, a method for manufacturing the electronic device of the present invention will be described. The electrode in the present invention is placed on the conjugated polymer by a known method. Specific examples of the installation method include utilization of an electrode processing method by lithography and an ion beam processing method. By installing these electrodes, the most basic structure of the electronic device of the present invention is configured.

たとえば、リソグラフィーによる電極の加工においては、公知のリソグラフィー技術を用いて、共役系高分子上または共役系高分子と接触させる基板上に所定の間隔と形状を有する2つ以上の電極を設置する。該リソグラフィー技術としては、光リソグラフィー、電子線リソグラフィー、エックス線リソグラフィー、イオンビームリソグラフィー等が挙げられる。   For example, in the processing of electrodes by lithography, two or more electrodes having a predetermined interval and shape are placed on a conjugated polymer or a substrate in contact with the conjugated polymer using a known lithography technique. Examples of the lithography technique include photolithography, electron beam lithography, X-ray lithography, ion beam lithography and the like.

この時、少なくとも2つの該電極間の最小間隔と共役系高分子の数平均分子鎖長との関係が、式(1)を満たすように設定する。具体的には、あらかじめフォトレジストを被覆した基板に、所定のマスクを介して光を照射した後、現像することによりフォトレジストのパターンを形成する。この基板に金属を蒸着した後、フォトレジストを溶解する溶剤でフォトレジストを除去(リフトオフ法)すると、マスクのパターンに応じた形状に金属が除去されて電極を形成できる。この基板上に共役系高分子の延伸配向フィルムを圧着するか、または基板上に共役系高分子の一軸配向薄膜を直接形成すれば、目的を達成できる。また、基板の替わりに、共役系高分子の延伸配向フィルム上に直接電極を設置する方法も使用できる。このほか必要に応じてその他の電極を形成する。これら電極の種類と数は、電子素子の構造や用途によって異なるので適宜選択して使用する。   At this time, the relationship between the minimum distance between at least two of the electrodes and the number average molecular chain length of the conjugated polymer is set so as to satisfy the formula (1). Specifically, a photoresist pattern is formed by irradiating light onto a substrate coated with a photoresist in advance through a predetermined mask and developing the substrate. After the metal is deposited on the substrate, the photoresist is removed with a solvent that dissolves the photoresist (lift-off method), whereby the metal is removed in a shape corresponding to the mask pattern, thereby forming an electrode. The object can be achieved by press-bonding a stretched oriented film of a conjugated polymer on this substrate, or directly forming a uniaxially oriented thin film of a conjugated polymer on the substrate. Moreover, the method of installing an electrode directly on the extending | stretching orientation film of a conjugated polymer instead of a board | substrate can also be used. In addition, other electrodes are formed as necessary. The type and number of these electrodes vary depending on the structure and application of the electronic element, so that they are appropriately selected and used.

次に、本発明の電子素子の使用方法を説明する。本発明の電子素子では、式(1)を満たす電極間に電流を流す。電流を流す方法としては、用途によるが、外部電圧の印加、光照射等を挙げることができる。外部電圧を印加する場合、その電圧、波形などの条件は、電子素子の構造や用途によって異なるので、適宜選択して使用する。   Next, a method for using the electronic device of the present invention will be described. In the electronic device of the present invention, a current is passed between the electrodes satisfying the formula (1). As a method of flowing current, depending on the application, application of an external voltage, light irradiation, and the like can be given. When an external voltage is applied, conditions such as the voltage and waveform vary depending on the structure and application of the electronic element, so that they are appropriately selected and used.

また、本発明の電子素子は、共役系高分子に接する少なくとも2つの電極の間を通過する電流により、該2つの電極の間の共役系高分子が発光する電子素子として用いることができる。また、本発明の電子素子は、一般に、特定の電圧以上の直流電圧を印加した時、流れる電流が電子素子に照射される光量に応じて変化する電子素子としても用いることができる。   The electronic device of the present invention can be used as an electronic device in which a conjugated polymer between two electrodes emits light by a current passing between at least two electrodes in contact with the conjugated polymer. In addition, the electronic device of the present invention can also be used as an electronic device in which a flowing current changes in accordance with the amount of light applied to the electronic device when a DC voltage of a specific voltage or higher is applied.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらによって限定されるものではない。   Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited thereto.

[実施例1]
図1に示す様に、長さLminの共役系高分子が、電極1と電極2の間において最小距離dminの方向に直線的に配列した時の移動度を計算で求めた。図1の場合、dminを表す線分と共役系高分子の主鎖の配向方向とのなす角θ=0°、共役系高分子の配向度S=1である。共役系高分子間の距離をδとし、左端共役系高分子の電極1に重ならない部分の長さをrLmin(但し、0≦r≦1)とすると、キャリアが空隙をホッピングする距離の総和dinter、及び共役系高分子内を伝導する距離の総和dintraは式(7)の様になる。

Figure 2009231313

Figure 2009231313
・・・・・(7)
[Example 1]
As shown in FIG. 1, the mobility when a conjugated polymer having a length of L min is linearly arranged in the direction of the minimum distance d min between the electrode 1 and the electrode 2 was obtained by calculation. In the case of FIG. 1, the angle θ between the line segment representing d min and the orientation direction of the main chain of the conjugated polymer is 0 °, and the orientation degree S of the conjugated polymer is S = 1. When the distance between the conjugated polymers is δ and the length of the portion of the left-end conjugated polymer that does not overlap the electrode 1 is rL min (where 0 ≦ r ≦ 1), the total distance that the carrier hops the gap d inter and the sum d intra of the distance conducted in the conjugated polymer are as shown in Equation (7).

Figure 2009231313

Figure 2009231313
(7)

但し、int(x)はx以下で最もxに近い整数、min[x,y]はxとyの小さい方の数である。
また、空隙でのキャリア移動度をμinter、共役系高分子鎖内のキャリア移動度をμintraとし、電極1、2間の平均キャリア移動度をμave、電界強度をEとすると、空隙でのキャリアの速度νinter、共役系高分子鎖内のキャリアの速度νintra、電極1、2間の平均キャリア速度νaveは式(8)の様になる。

Figure 2009231313
・・・・・(8)
Where int (x) is an integer less than or equal to x and closest to x, and min [x, y] is the smaller of x and y.
Further, when the carrier mobility in the gap is μ inter , the carrier mobility in the conjugated polymer chain is μ intra , the average carrier mobility between the electrodes 1 and 2 is μ ave , and the electric field strength is E, the gap The carrier velocity ν inter , the carrier velocity ν intra in the conjugated polymer chain, and the average carrier velocity ν ave between the electrodes 1 and 2 are as shown in equation (8).

Figure 2009231313
(8)

式(8)より、電極1、2間のキャリア通過時間Tは式(9)の様になる。

Figure 2009231313
・・・・・(9)
From the equation (8), the carrier transit time T between the electrodes 1 and 2 is represented by the equation (9).

Figure 2009231313
(9)

式(8)と式(9)から式(10)が導かれる。

Figure 2009231313
・・・・・(10)
Expression (10) is derived from Expression (8) and Expression (9).

Figure 2009231313
(10)

δとして平均的な最近接主鎖間距離3.6Å、dmin=5μm、μintra=10cm2/Vs、r=0.5を仮定し、式(7)と式(10)を用いて計算したμaveとホッピング確率係数Zの関係を図2に示す。Zが10未満になると急激にμaveが大きくなることが分かる。 Assuming that δ is an average distance between nearest neighboring main chains of 3.6 mm, d min = 5 μm, μ intra = 10 cm 2 / Vs, and r = 0.5, calculation is performed using Equation (7) and Equation (10). The relationship between the μ ave and the hopping probability coefficient Z is shown in FIG. It can be seen that μ ave increases rapidly when Z is less than 10.

[実施例2]
図1に示す様に、長さLminの共役系高分子が、電極1と電極2の間において最小距離dminの方向に直線的に配列した系について、δとして一般的な最近接主鎖間距離3.6Å、dmin=1μm、μintra=10cm2/Vs、r=0.5を仮定し、式(7)と式(10)を用いて計算したμaveとホッピング確率係数Zの関係を図3に示す。Zが10未満になると急激にμaveが大きくなることが分かる。
[Example 2]
As shown in FIG. 1, for a system in which a conjugated polymer having a length L min is linearly arranged in the direction of the minimum distance d min between the electrode 1 and the electrode 2, a general closest main chain is denoted as δ. Assuming an inter-distance of 3.6 mm, d min = 1 μm, μ intra = 10 cm 2 / Vs, r = 0.5, μ ave and hopping probability coefficient Z calculated using equations (7) and (10) The relationship is shown in FIG. It can be seen that μ ave increases rapidly when Z is less than 10.

[実施例3]
図1に示す様に、長さLminの共役系高分子が、電極1と電極2の間において最小距離dminの方向に直線的に配列した系について、δとして平均的な最近接主鎖間距離3.6Å、dmin=5μm、μintra=100cm2/Vs、r=0.5を仮定し、式(7)と式(10)を用いて計算したμaveとホッピング確率係数Zの関係を図4に示す。Zが10未満になると急激にμaveが大きくなることが分かる。
[Example 3]
As shown in FIG. 1, for a system in which a conjugated polymer having a length of L min is linearly arranged in the direction of the minimum distance d min between the electrode 1 and the electrode 2, the average nearest main chain is denoted as δ. Assuming an inter-distance of 3.6 mm, d min = 5 μm, μ intra = 100 cm 2 / Vs, r = 0.5, μ ave calculated using Equation (7) and Equation (10) and hopping probability coefficient Z The relationship is shown in FIG. It can be seen that μ ave increases rapidly when Z is less than 10.

[実施例4]
図1に示す様に、長さLminの共役系高分子が、電極1と電極2の間において最小距離dminの方向に直線的に配列した系について、δとして平均的な最近接主鎖間距離3.6Å、dmin=1μm、μintra=100cm2/Vs、r=0.5を仮定し、式(7)と式(10)を用いて計算したμaveとホッピング確率係数Zの関係を図5に示す。Zが10未満、特に3以下になると急激にμaveが大きくなることが分かる。
[Example 4]
As shown in FIG. 1, for a system in which a conjugated polymer having a length of L min is linearly arranged in the direction of the minimum distance d min between the electrode 1 and the electrode 2, the average nearest main chain is denoted as δ. Assuming an inter-distance of 3.6 mm, d min = 1 μm, μ intra = 100 cm 2 / Vs, r = 0.5, μ ave and hopping probability coefficient Z calculated using equations (7) and (10) The relationship is shown in FIG. It can be seen that when Z is less than 10, particularly 3 or less, μ ave increases rapidly.

共役系高分子が二つの電極間に直線的に配列した状態を示す模式図。The schematic diagram which shows the state in which the conjugated polymer was linearly arranged between two electrodes. 2つの電極間の最小距離dminが5μmで共役系高分子鎖内のキャリア移動度μintraが10cm2/Vsとして、実施例1で求めた二つの電極間の平均キャリア移動度μaveとホッピング確率係数Zの関係。 Assuming that the minimum distance d min between two electrodes is 5 μm and the carrier mobility μ intra in the conjugated polymer chain is 10 cm 2 / Vs, the average carrier mobility μ ave between the two electrodes determined in Example 1 and hopping Relationship of probability coefficient Z. minが1μmでμintraが10cm2/Vsとして、実施例2で求めたμaveとZの関係。The relationship between μ ave and Z obtained in Example 2 where d min is 1 μm and μ intra is 10 cm 2 / Vs. minが5μmでμintraが100cm2/Vsとして実施例3で求めたμaveとZの関係。The relationship between μ ave and Z determined in Example 3 where d min is 5 μm and μ intra is 100 cm 2 / Vs. minが1μmでμintraが100cm2/Vsとして実施例4で求めた、μaveとZの関係。The relationship between μ ave and Z determined in Example 4 where d min is 1 μm and μ intra is 100 cm 2 / Vs.

Claims (8)

共役系高分子に接して少なくとも2つの電極が設置されてなる電子素子において、少なくとも2つの電極の間隙において該共役系高分子の主鎖が配向してなり、式(1)で表される該電子素子のホッピング確率係数Zが1を越え10未満であることを特徴とする電子素子。
Z=dmin÷Lmin (1)
〔Lmin:該共役系高分子の数平均分子鎖長、
min:該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さ。〕
In an electronic device in which at least two electrodes are disposed in contact with a conjugated polymer, the main chain of the conjugated polymer is oriented in the gap between at least two electrodes, and the electronic device represented by the formula (1) An electronic device, wherein the electronic device has a hopping probability coefficient Z of more than 1 and less than 10.
Z = d min ÷ L min (1)
[L min : number average molecular chain length of the conjugated polymer,
d min : the minimum length of the line segment connecting one point of one of the two electrodes and one point of the other electrode. ]
共役系高分子の主鎖が一軸配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分と共役系高分子の主鎖の配向方向とのなす角をθとするとき、θが−45度以上45度以下である請求項1記載の電子素子。 The main chain of the conjugated polymer is uniaxially oriented, and is the minimum length of the line segment connecting one point of one of the two electrodes and one point of the other electrode. 2. The electronic device according to claim 1, wherein θ is −45 degrees or more and 45 degrees or less, where θ is an angle formed by a line segment representing d min and the orientation direction of the main chain of the conjugated polymer. 共役系高分子の主鎖が一軸配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分と共役系高分子の主鎖の配向方向とが略平行である請求項1記載の電子素子。 The main chain of the conjugated polymer is uniaxially oriented, and is the minimum length of the line segment connecting one point of one of the two electrodes and one point of the other electrode. The electronic device according to claim 1, wherein the line segment representing d min and the orientation direction of the main chain of the conjugated polymer are substantially parallel. 共役系高分子の配向度Sが0.3以上である請求項1〜3のいずれかに記載の電子素子。   The electronic element according to claim 1, wherein the degree of orientation S of the conjugated polymer is 0.3 or more. 共役系高分子が膜を形成し、該膜の面内に共役系高分子の主鎖が配向してなり、該2つの電極の内の1つの電極の1点と他の電極の1点とを結ぶ線分の長さの内で最小である長さdminを表す線分が該膜の面に略平行である請求項1〜4のいずれかに記載の電子素子。 The conjugated polymer forms a film, the main chain of the conjugated polymer is oriented in the plane of the film, and one point of one of the two electrodes and one point of the other electrode 5. The electronic device according to claim 1, wherein a line segment representing a length d min that is the smallest of the lengths of the line segments connecting the two is substantially parallel to the surface of the film. 共役系高分子の主鎖が共役系高分子を含むフィルムを延伸することにより一軸配向してなる請求項1〜5のいずれかに記載の電子素子。   The electronic device according to claim 1, wherein the main chain of the conjugated polymer is uniaxially oriented by stretching a film containing the conjugated polymer. 少なくとも2つの電極の他に、共役系高分子に接しない少なくとも1つ以上のゲート電極が更に設置されてなり、前記2つの電極の間を通過する電流が、該2つの電極以外のゲート電極に印加される電圧によって制御される請求項1〜6のいずれかに記載の電子素子。   In addition to at least two electrodes, at least one or more gate electrodes that are not in contact with the conjugated polymer are further provided, and a current passing between the two electrodes is applied to the gate electrodes other than the two electrodes. The electronic device according to claim 1, which is controlled by an applied voltage. 該2つの電極の間が発光する請求項1〜7のいずれかに記載の電子素子。   The electronic device according to claim 1, wherein light is emitted between the two electrodes.
JP2008071110A 2008-03-19 2008-03-19 Electronic element Expired - Fee Related JP5401812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071110A JP5401812B2 (en) 2008-03-19 2008-03-19 Electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071110A JP5401812B2 (en) 2008-03-19 2008-03-19 Electronic element

Publications (2)

Publication Number Publication Date
JP2009231313A true JP2009231313A (en) 2009-10-08
JP5401812B2 JP5401812B2 (en) 2014-01-29

Family

ID=41246434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071110A Expired - Fee Related JP5401812B2 (en) 2008-03-19 2008-03-19 Electronic element

Country Status (1)

Country Link
JP (1) JP5401812B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022547A (en) * 1996-07-03 1998-01-23 Sumitomo Chem Co Ltd Electronic element
JP2003264326A (en) * 2002-03-08 2003-09-19 Japan Science & Technology Corp Molecular integrated circuit element and manufacturing method therefor
JP2003298067A (en) * 2001-12-25 2003-10-17 Sharp Corp Transistor and display device using it
JP2004058260A (en) * 2002-07-31 2004-02-26 Japan Science & Technology Corp Molecular wire
JP2004273881A (en) * 2003-03-11 2004-09-30 Hitachi Ltd pi-CONJUGATED POLYMERIC STRUCTURE, AND ELECTRONIC ELEMENT USING THE SAME
WO2005045939A1 (en) * 2003-11-11 2005-05-19 Matsushita Electric Industrial Co., Ltd. Thin film transistor and process for fabricating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022547A (en) * 1996-07-03 1998-01-23 Sumitomo Chem Co Ltd Electronic element
JP2003298067A (en) * 2001-12-25 2003-10-17 Sharp Corp Transistor and display device using it
JP2003264326A (en) * 2002-03-08 2003-09-19 Japan Science & Technology Corp Molecular integrated circuit element and manufacturing method therefor
JP2004058260A (en) * 2002-07-31 2004-02-26 Japan Science & Technology Corp Molecular wire
JP2004273881A (en) * 2003-03-11 2004-09-30 Hitachi Ltd pi-CONJUGATED POLYMERIC STRUCTURE, AND ELECTRONIC ELEMENT USING THE SAME
WO2005045939A1 (en) * 2003-11-11 2005-05-19 Matsushita Electric Industrial Co., Ltd. Thin film transistor and process for fabricating the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CSNC200758990744; 奥本 肇(他5名): '「オリゴシランが基板に平行配向した自己組織化薄膜の構造と電荷輸送特性-主鎖長依存性-」' 第66回応用物理学会学術講演会講演予稿集 第3分冊, 20050907, 第1102頁, (社)応用物理学会 *
JPN6013005281; 奥本 肇(他5名): '「オリゴシランが基板に平行配向した自己組織化薄膜の構造と電荷輸送特性-主鎖長依存性-」' 第66回応用物理学会学術講演会講演予稿集 第3分冊, 20050907, 第1102頁, (社)応用物理学会 *
JPN7013000410; Subhasis GHOSH et al.: '"Device structure for electronic transport through individual molecules using nanoelectrodes"' Applied Physics Letters Vol.87, 20051202, p.233509-1 - 233509-3, American Institute of Physics *

Also Published As

Publication number Publication date
JP5401812B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Schön et al. Gate-induced superconductivity in a solution-processed organic polymer film
CN106463620B (en) Polar elastomers for high-performance electronic and opto-electronic device
US8890123B2 (en) Semiconductor composition including a semiconducting polymer
KR20120034349A (en) Flexible field-effect transistor and manufacturing method of the same
US20100224862A1 (en) Carbon nanotube structure and thin film transistor
Jabarullah et al. Superhydrophobic SAM modified electrodes for enhanced current limiting properties in intrinsic conducting polymer surge protection devices
JP2005175386A (en) Organic semiconductor device
Heidler et al. Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene
JPWO2010053171A1 (en) Switching element and manufacturing method thereof
JP5103448B2 (en) Semiconducting polymer
JP4529571B2 (en) Field effect transistor
KR20120130149A (en) Flexible field-effect transistor and manufacturing method of the same
JP2007273594A (en) Field-effect transistor
Tang et al. Electrohydrodynamic-jet-printed cinnamate-fluorinated cross-linked polymeric dielectrics for flexible and electrically stable operating organic thin-film transistors and integrated devices
JP5025124B2 (en) ORGANIC SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
JP2010123951A (en) Thin-film transistor and semiconductor composition
JP5401812B2 (en) Electronic element
KR20190079244A (en) Electronic devices and thin film transistor for gas sensing using the additives
Lee et al. Branched segments in polymer gate dielectric as intrinsic charge trap sites in organic transistors
JP5106489B2 (en) Electronic device with semiconducting polymer
JP2004282039A (en) Electronic device
JP4026184B2 (en) Electronic element
JP4700976B2 (en) Manufacturing method of field effect organic transistor
JP2005158765A (en) Field effect organic transistor and manufacturing method thereof
JP4883898B2 (en) Electronic device and electronic apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees