JP2009231049A - Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell - Google Patents

Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell Download PDF

Info

Publication number
JP2009231049A
JP2009231049A JP2008075092A JP2008075092A JP2009231049A JP 2009231049 A JP2009231049 A JP 2009231049A JP 2008075092 A JP2008075092 A JP 2008075092A JP 2008075092 A JP2008075092 A JP 2008075092A JP 2009231049 A JP2009231049 A JP 2009231049A
Authority
JP
Japan
Prior art keywords
platinum
carbon
particles
carbon material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008075092A
Other languages
Japanese (ja)
Inventor
Kenta Yoshida
健太 吉田
Hirotaka Kitagawa
浩隆 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008075092A priority Critical patent/JP2009231049A/en
Priority to PCT/JP2009/055773 priority patent/WO2009119556A1/en
Publication of JP2009231049A publication Critical patent/JP2009231049A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a platinum-supported carbon obtained by highly dispersing platinum particles or platinum alloy particles in a carbon material and strongly supporting them. <P>SOLUTION: The platinum-supported carbon is composed of surface modification carbon materials formed by introducing into the carbon material organic groups having reduction potential higher than -2.5 V on the basis of SCE and platinum particles or platinum alloy particles supported on the surface modification carbon materials. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特定の有機基で表面修飾した白金担持カーボンに関する。また、本発明は、該白金担持カーボンを用いた燃料電池用触媒、電極膜接合体および燃料電池にも関する。   The present invention relates to platinum-supported carbon whose surface is modified with a specific organic group. The present invention also relates to a fuel cell catalyst, electrode membrane assembly and fuel cell using the platinum-supported carbon.

白金粒子を担持したカーボンや白金合金粒子を担持したカーボン(以下、総称して白金担持カーボンという)は、オレフィンの水素添加反応、アルコールの酸化反応など各種有機化学反応の触媒として用いられている。また、自動車などのエンジンから排出される有害ガスの分解触媒や、燃料電池用触媒などとしても利用されている。いずれの用途においても化学反応は、触媒粒子である白金粒子や白金合金粒子(以下、総称して白金系粒子という)の表面で進行することから、これらの粒子の表面積が大きいほど触媒活性が高くなる。   Carbon carrying platinum particles and carbon carrying platinum alloy particles (hereinafter collectively referred to as platinum-carrying carbon) are used as catalysts for various organic chemical reactions such as olefin hydrogenation reaction and alcohol oxidation reaction. It is also used as a catalyst for decomposing harmful gases discharged from engines such as automobiles and as a catalyst for fuel cells. In any application, the chemical reaction proceeds on the surface of platinum particles or platinum alloy particles (hereinafter collectively referred to as platinum-based particles), which are catalyst particles. Therefore, the larger the surface area of these particles, the higher the catalytic activity. Become.

そのため、白金系粒子を高い分散状態で担持するための技術が種々報告されている。例えば、白金系粒子を吸着するための細孔を有し、大きな比表面積を有するカーボン材料を担体に用いる方法が開示されている(特許文献1)。また、カーボン担体を酸化処理して表面に酸性官能基を導入し、酸性官能基の水素イオンを白金錯体陽イオンに交換した後、還元することで白金系粒子を高分散に担持する方法も開示されている(特許文献2)。
特開平3−101057号公報 特開平8−162133号公報
For this reason, various techniques for supporting platinum-based particles in a highly dispersed state have been reported. For example, a method is disclosed in which a carbon material having pores for adsorbing platinum-based particles and having a large specific surface area is used as a carrier (Patent Document 1). Also disclosed is a method of supporting platinum particles in a highly dispersed state by oxidizing the carbon support to introduce acidic functional groups on the surface, exchanging hydrogen ions of acidic functional groups with platinum complex cations, and then reducing them. (Patent Document 2).
Japanese Patent Laid-Open No. 3-101057 JP-A-8-162133

上記の方法により、触媒粒子である白金系粒子を高分散に担持した白金担持カーボンは作製可能であるが、適用できるカーボン材料の種類が限定されてしまうという問題があった。また、いずれの場合においても白金系粒子とカーボン材料との相互作用は弱く、触媒として使用中に担体から白金系粒子が脱落、凝集することによって触媒活性が低下するという問題もあった。
そこで本発明者らは、このような従来技術の課題を解決するために、白金粒子や白金合金粒子をカーボン材料に高度に分散し、かつ強く担持した白金担持カーボンを提供することを本発明の目的として検討を進めた。また、触媒の利用効率が高く、かつ白金粒子や白金合金粒子を高分散に担持した燃料電池用触媒と電極膜接合体を提供し、さらに電池特性が良好な燃料電池を提供することも本発明の目的として検討を進めた。
According to the above method, platinum-supported carbon in which platinum particles as catalyst particles are supported in a highly dispersed state can be produced, but there is a problem that the types of applicable carbon materials are limited. Further, in any case, the interaction between the platinum-based particles and the carbon material is weak, and there is a problem that the catalytic activity is lowered by dropping and aggregating the platinum-based particles from the support during use as a catalyst.
Therefore, in order to solve such problems of the prior art, the present inventors provide platinum-supported carbon in which platinum particles and platinum alloy particles are highly dispersed in a carbon material and strongly supported. The study was advanced as a purpose. It is also an object of the present invention to provide a fuel cell catalyst and electrode membrane assembly having high catalyst utilization efficiency and carrying platinum particles or platinum alloy particles in a highly dispersed state, and further providing a fuel cell with good cell characteristics. We proceeded with the study as a purpose.

本発明者らは鋭意検討を重ねた結果、特定の有機基を連結基を介して表面に導入したカーボンを用いることにより従来技術の課題を解決しうることを見出した。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。   As a result of intensive studies, the present inventors have found that the problems of the prior art can be solved by using carbon in which a specific organic group is introduced to the surface via a linking group. That is, the following present invention has been provided as means for solving the problems.

[1] SCE基準で−2.5Vより高電位側に還元電位を有する有機基をカーボン材料に導入した表面修飾カーボン材料と、該表面修飾カーボン材料に担持した白金粒子または白金合金粒子とからなる白金担持カーボン。
[2] 前記有機基がπ共役構造を有することを特徴とする[1]に記載の白金担持カーボン。
[3] 水溶液中で出力38kHzで3時間超音波照射した後の白金粒子または白金合金粒子の脱落率が、20%以下であることを特徴とする[1]または[2]に記載の白金担持カーボン。
[4] 前記白金粒子または白金合金粒子の平均粒子サイズが1〜10nmであることを特徴とする[1]〜[3]のいずれか1項に記載の白金担持カーボン。
[5] 前記白金粒子または白金合金粒子の含有率が5〜70重量%であることを特徴とする[1]〜[4]のいずれか1項に記載の白金担持カーボン。
[6] 前記カーボン材料が、平均粒子サイズが60nm以下のカーボン粒子または平均直径が50nm以下のカーボンナノチューブであることを特徴とする[1]〜[5]のいずれか1項に記載の白金担持カーボン。
[7] 前記カーボン材料がアセチレンブラックまたは多層カーボンナノチューブであることを特徴とする[1]〜[6]のいずれか1項に記載の白金担持カーボン。
[8] [1]〜[7]のいずれか1項に記載の白金担持カーボンを含むことを特徴とする燃料電池用触媒。
[9] 固体高分子電解質膜と、該固体高分子電荷質膜に接して設けられた触媒層とを有し、かつ、前記触媒層が[8]に記載の燃料電池用触媒を含むことを特徴とする電極膜接合体。
[10] [9]に記載の電極膜接合体を有することを特徴とする燃料電池。
[1] A surface-modified carbon material in which an organic group having a reduction potential higher than −2.5 V on the basis of SCE is introduced into a carbon material, and platinum particles or platinum alloy particles supported on the surface-modified carbon material. Platinum-supported carbon.
[2] The platinum-supported carbon according to [1], wherein the organic group has a π-conjugated structure.
[3] The platinum support according to [1] or [2], wherein the dropping rate of platinum particles or platinum alloy particles after ultrasonic irradiation in an aqueous solution at an output of 38 kHz for 3 hours is 20% or less carbon.
[4] The platinum-supported carbon according to any one of [1] to [3], wherein the platinum particles or the platinum alloy particles have an average particle size of 1 to 10 nm.
[5] The platinum-supported carbon according to any one of [1] to [4], wherein the content of the platinum particles or the platinum alloy particles is 5 to 70% by weight.
[6] The platinum support according to any one of [1] to [5], wherein the carbon material is carbon particles having an average particle size of 60 nm or less or carbon nanotubes having an average diameter of 50 nm or less. carbon.
[7] The platinum-supported carbon according to any one of [1] to [6], wherein the carbon material is acetylene black or multi-walled carbon nanotubes.
[8] A fuel cell catalyst comprising the platinum-supported carbon according to any one of [1] to [7].
[9] A solid polymer electrolyte membrane and a catalyst layer provided in contact with the solid polymer charge membrane, and the catalyst layer includes the fuel cell catalyst according to [8]. A featured electrode membrane assembly.
[10] A fuel cell comprising the electrode membrane assembly according to [9].

本発明の白金担持カーボンは、白金粒子や白金合金粒子がカーボン材料に高度に分散している。さらに驚くべきことにこれらの粒子は従来技術に比べて非常に強く担持されている。本発明の白金担持カーボンは燃料電池用触媒として有用であり、優れた電極膜接合体を提供することができる。また、本発明の白金担持カーボンを用いた燃料電池は電池特性と耐久性が優れている。   In the platinum-supported carbon of the present invention, platinum particles and platinum alloy particles are highly dispersed in the carbon material. Further surprisingly, these particles are supported very strongly compared to the prior art. The platinum-supported carbon of the present invention is useful as a fuel cell catalyst and can provide an excellent electrode membrane assembly. In addition, the fuel cell using the platinum-supported carbon of the present invention has excellent cell characteristics and durability.

以下において、本発明の白金担持カーボンとその用途について詳細に説明する。なお、本願明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。また、本発明における各種物性値は、特に述べない限り室温(25℃)における状態のものを示している。   Hereinafter, the platinum-supported carbon of the present invention and its use will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In addition, various physical property values in the present invention are in a state at room temperature (25 ° C.) unless otherwise specified.

(カーボン材料)
本発明において用いられるカーボン材料は、特に限定されるものではなく、例えば、黒鉛、カーボンブラック、フラーレン、カーボンナノチューブ(CNT)およびカーボンナノホーン(CNH)などが挙げられる。カーボンブラックおよびカーボンナノチューブは高い導電性を有することから燃料電池用触媒担体として好ましく用いることができ、アセチレンブラックおよび多層カーボンナノチューブは特に好ましく用いることができる。カーボン材料は1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。また、本発明の趣旨に反しない範囲であれば、カーボン材料以外の成分を含むカーボン材料組成物をカーボン材料として用いてもよい。
(Carbon material)
The carbon material used in the present invention is not particularly limited, and examples thereof include graphite, carbon black, fullerene, carbon nanotube (CNT), and carbon nanohorn (CNH). Since carbon black and carbon nanotubes have high conductivity, they can be preferably used as a catalyst support for fuel cells, and acetylene black and multi-walled carbon nanotubes can be particularly preferably used. Only one type of carbon material may be used, or two or more types may be mixed and used. In addition, a carbon material composition containing components other than the carbon material may be used as the carbon material as long as it does not contradict the spirit of the present invention.

前記カーボン材料は、粒子または繊維状で、その粒子サイズまたは繊維径が小さいほど比表面積が大きくなり、白金系粒子の担持に有利である。本発明のカーボン材料は、カーボン材料が粒状である場合には平均粒子サイズが60nm以下であることが好ましく、55nm以下であることがより好ましく、50nm以下であることがさらに好ましい。繊維状である場合には、平均直径が50nm以下であることが好ましく、40nm以下であることがより好ましく、30nm以下であることがさらに好ましい。   The carbon material is in the form of particles or fibers, and the smaller the particle size or fiber diameter, the larger the specific surface area, which is advantageous for supporting platinum-based particles. When the carbon material of the present invention is granular, the average particle size is preferably 60 nm or less, more preferably 55 nm or less, and further preferably 50 nm or less. When it is fibrous, the average diameter is preferably 50 nm or less, more preferably 40 nm or less, and even more preferably 30 nm or less.

前記カーボン材料は高純度の炭素微粒子からできていることが好ましく、炭素微粒子が鎖状に連なっていることがさらに好ましく、グラファイト化が進んでいることがより好ましい。   The carbon material is preferably made of high-purity carbon fine particles, more preferably the carbon fine particles are connected in a chain, and more preferably graphitization is advanced.

前記カーボン材料の表面状態は、特に限定されることがなく、カルボキシル基やフェノール性ヒドロキシル基などの官能基を表面に有していてもいなくても構わない。また、特に白金系粒子を吸着するための細孔を有しているなど、比表面積が顕著に拡大したものでなくても構わない。
本発明に用いることのできるカーボン材料の具体例としては、電気化学工業社製デンカブラックや、Cabot製Vulcan XC−72、ケッチェン・ブラックインターナショナル社製カーボンECPなどを挙げることができ、この中でもデンカブラックが好ましいが、特にこれらに限定されるものではない。
The surface state of the carbon material is not particularly limited, and may or may not have a functional group such as a carboxyl group or a phenolic hydroxyl group on the surface. Further, the specific surface area may not be remarkably enlarged, for example, having pores for adsorbing platinum-based particles.
Specific examples of carbon materials that can be used in the present invention include Denka Black manufactured by Denki Kagaku Kogyo, Vulcan XC-72 manufactured by Cabot, and Carbon ECP manufactured by Ketjen Black International Co., Ltd. However, it is not particularly limited to these.

(有機基)
本発明の白金担持カーボンを構成するカーボン材料に導入する有機基は、SCE基準において、−2.5Vより高電位側に還元電位を有することを特徴とする。有機基の還元電位は、より好ましくは−2.0Vより高電位側であり、さらに好ましくは−1.5Vより高電位側である。
(Organic group)
The organic group introduced into the carbon material constituting the platinum-supporting carbon of the present invention is characterized by having a reduction potential on the higher potential side than −2.5 V on the basis of SCE. The reduction potential of the organic group is more preferably at a higher potential side than −2.0 V, and further preferably at a higher potential side than −1.5 V.

本発明において、有機基の還元電位とは、カーボン材料との結合位置に、カーボン材料の代わりに水素原子を有する化合物の還元電位を指す。例えば、有機基がニトロフェニル基である場合はニトロベンゼンの還元電位を指し、有機基がアントラキノニル基である場合はアントラキノンの還元電位を指す。具体的には、飽和カロメル電極を参照電極とし、電解液に0.1N(n−Bu)4+ClO4 -アセトニトリル溶液を用い、ポテンショスタットによって作用電極(白金)に印加する電位をスイープし、得られた電流−電位曲線が示すピークから求めた電位である。詳しくは、サンプルを0.1N(n−Bu)4+ClO4 -アセトニトリル溶液に1mmol%程度の濃度になるように溶解したサンプル溶液で測定する。このサンプル溶液に作用電極によって電圧を加え、電圧を高電位から低電位に直線的に変化させ、さらに、低電位から高電位に直線的に変化させたときの電流変化を測定し、サイクリックボルタモグラムを得る。電位を走査する範囲は化合物によって異なるが、例えば、0Vから−2.5Vである。上記サイクリックボルタモグラムにおいて、電圧を高電位から低電位に直線的に変化させたときに電流値がピークを示したピークトップの位置の電位をE1とし、電圧を高電位から低電位に変化させたときに電流値がピークを示したピークトップの位置の電位をE2としたとき、(E1+E2)/2が還元電位となる。 In the present invention, the reduction potential of an organic group refers to the reduction potential of a compound having a hydrogen atom instead of the carbon material at the bonding position with the carbon material. For example, when the organic group is a nitrophenyl group, it indicates the reduction potential of nitrobenzene, and when the organic group is an anthraquinonyl group, it indicates the reduction potential of anthraquinone. Specifically, the reference electrode saturated calomel electrode, 0.1 N in an electrolytic solution (n-Bu) 4 N + ClO 4 - with acetonitrile solution, sweeping the potential applied to the working electrode (platinum) by the potentiostat The potential obtained from the peak indicated by the obtained current-potential curve. Specifically, the sample 0.1N (n-Bu) 4 N + ClO 4 - measured in the sample solution dissolved to a concentration of approximately 1 mmol% acetonitrile solution. A cyclic voltammogram was measured by applying a voltage to this sample solution with a working electrode, changing the voltage linearly from a high potential to a low potential, and measuring the current change when the voltage was linearly changed from a low potential to a high potential. Get. The range in which the potential is scanned varies depending on the compound, but is, for example, 0 V to −2.5 V. In the cyclic voltammogram, when the voltage is linearly changed from a high potential to a low potential, the potential at the peak top position where the current value showed a peak is E1, and the voltage is changed from a high potential to a low potential. When the potential at the peak top where the current value shows a peak is E2, (E1 + E2) / 2 is the reduction potential.

前記還元電位の条件を満たすような本発明の前記カーボン材料に導入する有機基の構造については、特に制限されない。例えば好ましい構造として、π共役構造を有する有機基を挙げることができる。π共役構造は、少なくとも4以上の原子からなるπ共役構造であり、4〜20の原子からなるπ共役構造であることが好ましく、6〜20の原子からなるπ共役構造であることがより好ましく、8〜20の原子からなるπ共役構造であることがさらに好ましい。また、π共役構造を構成する原子は、炭素原子に限られず、窒素原子、酸素原子などのヘテロ原子であってもよい。   The structure of the organic group introduced into the carbon material of the present invention that satisfies the reduction potential condition is not particularly limited. For example, as a preferable structure, an organic group having a π-conjugated structure can be given. The π-conjugated structure is a π-conjugated structure composed of at least 4 or more atoms, preferably a π-conjugated structure composed of 4 to 20 atoms, and more preferably a π-conjugated structure composed of 6 to 20 atoms. More preferably, it is a π-conjugated structure consisting of 8 to 20 atoms. The atoms constituting the π-conjugated structure are not limited to carbon atoms, and may be heteroatoms such as nitrogen atoms and oxygen atoms.

前記π共役構造を有する基としては、アリール基、芳香族へテロ環基、ベンゾキノン基などを挙げることができる。その中でもアリール基、芳香族へテロ環基、芳香族ヘテロアリール基が好ましい。また、これらのπ共役構造は、置換基を有していてもよい。置換基は、これらのπ共役構造と共役が起こる他のπ電子を有していても、有していなくてもよい。好ましいのは、置換基がπ電子を有している場合である。   Examples of the group having the π-conjugated structure include an aryl group, an aromatic heterocyclic group, and a benzoquinone group. Among these, an aryl group, an aromatic heterocyclic group, and an aromatic heteroaryl group are preferable. Moreover, these π-conjugated structures may have a substituent. The substituent may or may not have other π electrons that cause conjugation with these π-conjugated structures. Preferred is when the substituent has π electrons.

π共役構造を有するアリール基の炭素数は、6〜20であることが好ましく、6〜14であることがより好ましい。
具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基を挙げることができ、フェニル基、ナフチル基、ビフェニル基が好ましく、フェニル基がより好ましい。
π共役が起こる他の骨格を置換基として有する前記アリール基としては、例えば、9H−フルオレニル基、9−フルオレノニル基、ナフトキノニル基、アントラキノニル基が挙げられ、9−フルオレノニル基、アントラキノニル基が好ましい。
The aryl group having a π-conjugated structure preferably has 6 to 20 carbon atoms, and more preferably 6 to 14 carbon atoms.
Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. A phenyl group, a naphthyl group, and a biphenyl group are preferable, and a phenyl group is more preferable.
Examples of the aryl group having another skeleton in which π conjugation occurs as a substituent include 9H-fluorenyl group, 9-fluorenonyl group, naphthoquinonyl group, and anthraquinonyl group, and 9-fluorenonyl group and anthraquinonyl group are preferable.

π共役構造を有する芳香族へテロ環基の環員数は、4〜7であることが好ましく、5〜6がより好ましい。
また、芳香族ヘテロ環は、硫黄原子、窒素原子、酸素原子のいずれかを含むものが好ましく、硫黄原子または窒素原子を含むものがより好ましい。また、それぞれ複数でも2種以上の原子を含んでいてもよい。
具体的には、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、トリアゾール環、チアジアゾール環、オキサジアゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、ピペリジン環、ピペラジン環、モルホリン環を挙げることができ、イミダゾール環、ピラゾール環、チアゾール環が好ましく、ピラゾール環、チアゾール環がより好ましい。
The number of ring members of the aromatic heterocyclic group having a π-conjugated structure is preferably 4 to 7, and more preferably 5 to 6.
The aromatic heterocycle preferably contains any of a sulfur atom, a nitrogen atom and an oxygen atom, and more preferably contains a sulfur atom or a nitrogen atom. Each of them may contain two or more kinds of atoms.
Specifically, pyrrole ring, furan ring, thiophene ring, imidazole ring, pyrazole ring, thiazole ring, isothiazole ring, oxazole ring, isoxazole ring, triazole ring, thiadiazole ring, oxadiazole ring, pyridine ring, pyrimidine ring , Pyrazine ring, pyridazine ring, triazine ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, piperidine ring, piperazine ring, morpholine ring, imidazole ring, pyrazole ring, thiazole ring are preferable, pyrazole ring, thiazole ring Is more preferable.

これらのπ共役構造を有する基に対する置換基としては、窒素原子、炭素原子、硫黄原子、ハロゲン原子、リン原子を有する基が好ましい。
具体的には、ニトロ基、フルオロ基、ブロモ基、クロロ基、ヨード基、チオシアン酸基、硫酸基、スルホン酸基、スルホニウム基、リン酸基、ホスホン酸基、ホスホニウム基、ジアゾニオ基、アンモニウム基、ホルミル基、カルボニル基、カルボキシル基、エステル基、アミド基、シアノ基、酸無水物、酸ハロゲン化物、またはこれらの基の1つを含むポリ芳香族の基などを挙げることができる。その中でもニトロ基、カルボニル基が好ましい。
これらの置換基は、前記カーボン材料に導入する有機基中に同じ種類で複数含まれていても、2種以上が含まれていてもよい。また、キノニル基などのようにπ共有骨格と厳密に分離できない官能基も、本発明の置換基の範囲に含まれる。
As the substituent for the group having a π-conjugated structure, a group having a nitrogen atom, a carbon atom, a sulfur atom, a halogen atom, or a phosphorus atom is preferable.
Specifically, nitro group, fluoro group, bromo group, chloro group, iodo group, thiocyanic acid group, sulfuric acid group, sulfonic acid group, sulfonium group, phosphoric acid group, phosphonic acid group, phosphonium group, diazonio group, ammonium group , A formyl group, a carbonyl group, a carboxyl group, an ester group, an amide group, a cyano group, an acid anhydride, an acid halide, or a polyaromatic group containing one of these groups. Of these, a nitro group and a carbonyl group are preferable.
A plurality of these substituents may be contained in the same kind in the organic group introduced into the carbon material, or two or more kinds thereof may be contained. In addition, functional groups that cannot be strictly separated from the π covalent skeleton, such as quinonyl groups, are also included in the scope of the substituent of the present invention.

前記カーボン材料に導入する有機基は、前記置換基の他に、本発明の趣旨を逸脱しない範囲において、その他の置換基を有していてもよい。置換基の例としては、アミノ基、水酸基、アルコキシ基などを挙げることができる。
また、カーボン材料とπ共有構造の間に連結基を介していてもよい。
The organic group introduced into the carbon material may have other substituents in addition to the substituents as long as they do not depart from the spirit of the present invention. Examples of the substituent include an amino group, a hydroxyl group, and an alkoxy group.
Further, a linking group may be interposed between the carbon material and the π covalent structure.

本発明の前記カーボン材料に導入する有機基の具体例としては、ニトロフェニル基、ベンゾキノニル基、ナフトキノニル基、アントラキノリル基、9−フルオレノニル基、フタルイミド基、N-メチルフタルイミド基が挙げられる。この中でも、ニトロフェニル基、アントラキノリル基、9−フルオレノニル基、N−メチルフタルイミド基が好ましい。   Specific examples of the organic group introduced into the carbon material of the present invention include a nitrophenyl group, a benzoquinonyl group, a naphthoquinonyl group, an anthraquinolyl group, a 9-fluorenonyl group, a phthalimide group, and an N-methylphthalimide group. Among these, a nitrophenyl group, an anthraquinolyl group, a 9-fluorenonyl group, and an N-methylphthalimide group are preferable.

前記有機基をカーボン材料に導入することで、表面修飾カーボン材料が得られる。
カーボン材料を本発明の有機基で表面修飾する方法は特に限定されず、公知の方法を用いることができる。例えば、有機基を含むアミン類を濃塩酸存在下で亜硝酸ナトリウム水溶液と氷冷しつつ反応させ、有機基を含むジアゾニウム塩を得た後、得られた有機基を含むジアゾニウム塩をカーボン材料と共存させた状態で熱分解する方法が挙げられる。この方法の詳細については、特開2006−199968号公報の記載を参照することができる。
A surface-modified carbon material can be obtained by introducing the organic group into the carbon material.
The method of surface-modifying the carbon material with the organic group of the present invention is not particularly limited, and a known method can be used. For example, an amine containing an organic group is reacted with an aqueous sodium nitrite solution in the presence of concentrated hydrochloric acid while cooling with ice to obtain a diazonium salt containing the organic group, and then the obtained diazonium salt containing the organic group is used as a carbon material. The method of thermally decomposing in the coexisting state is mentioned. The details of this method can be referred to the description in JP-A-2006-199968.

その他の公知の表面修飾方法のうち、カーボン材料と本発明の連結基が直接反応して、有機基で表面修飾させるような方法を用いることが好ましい。   Among other known surface modification methods, it is preferable to use a method in which the carbon material and the linking group of the present invention are directly reacted to modify the surface with an organic group.

表面修飾カーボン材料におけるカーボンの割合は、70.0〜99.5質量%であることが好ましく、80.0〜99.0質量%であることがより好ましく、90.0〜98.5質量%であることがさらに好ましい。   The ratio of carbon in the surface-modified carbon material is preferably 70.0 to 99.5% by mass, more preferably 80.0 to 99.0% by mass, and 90.0 to 98.5% by mass. More preferably.

本発明において、白金担持カーボン材料の作製方法としては、カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する方法と、カーボン材料に白金系粒子を担持した後に連結基を介して上記有機基を導入する方法がある。いずれの方法も好ましく用いられる。   In the present invention, the platinum-carrying carbon material is prepared by a method of carrying platinum-based particles after introducing the organic group into the carbon material via a linking group, and a method of carrying the linking group after carrying platinum-based particles on the carbon material. There is a method of introducing the organic group via Either method is preferably used.

(白金系粒子)
本発明において、表面修飾カーボン材料に担持する白金系粒子は、白金、白金合金、またはそれらの混合物である。白金合金としては、白金とその他の貴金属との合金、あるいは白金と遷移金属との合金を挙げることができ、好ましくは白金または白金とその他の貴金属との合金である。具体的には、Pt−Cr、Pt−Ni、Pt−Co、Pt−Cu、Pt−Fe、Pt−Ru、Pt−Mo、Pt−Ru−Mo、Pt−Ru−W、Pt−Ru−Co、Pt−Ru−Fe、Pt−Ru−Ni、Pt−Ru−Cu、Pt−Ru−Sn、Pt−Ru−Auなどを挙げることができる。
(Platinum particles)
In the present invention, the platinum-based particles supported on the surface-modified carbon material are platinum, a platinum alloy, or a mixture thereof. Examples of the platinum alloy include an alloy of platinum and other noble metal, or an alloy of platinum and a transition metal, preferably platinum or an alloy of platinum and other noble metal. Specifically, Pt—Cr, Pt—Ni, Pt—Co, Pt—Cu, Pt—Fe, Pt—Ru, Pt—Mo, Pt—Ru—Mo, Pt—Ru—W, Pt—Ru—Co Pt—Ru—Fe, Pt—Ru—Ni, Pt—Ru—Cu, Pt—Ru—Sn, Pt—Ru—Au, and the like.

前記表面修飾カーボン材料に担持する白金系粒子の粒子サイズは、1.0〜10.0nmが好ましく、1.5〜7.0nmであることがさらに好ましく、2.0〜4.0nmであることが特に好ましい。粒子サイズが10nm以下であれば単位質量当りの表面積が比較的大きいため、触媒活性の点で好ましい。また、粒子サイズが1nm以上であれば白金系粒子は比較的安定であるため、凝集や溶出の抑制がし易くて好ましい。   The particle size of the platinum-based particles supported on the surface-modified carbon material is preferably 1.0 to 10.0 nm, more preferably 1.5 to 7.0 nm, and 2.0 to 4.0 nm. Is particularly preferred. If the particle size is 10 nm or less, the surface area per unit mass is relatively large, which is preferable in terms of catalyst activity. In addition, if the particle size is 1 nm or more, the platinum-based particles are relatively stable, which is preferable because aggregation and elution can be easily suppressed.

(白金担持カーボン)
本発明の白金担持カーボンは、非共有電子対を有する窒素原子または非共有電子対を有する硫黄原子を含む有機基を、連結基を介してカーボン材料に導入した表面修飾カーボン材料と、該表面修飾カーボン材料に担持する白金粒子または白金合金粒子とからなる。
(Platinum-supported carbon)
The platinum-supported carbon of the present invention includes a surface-modified carbon material in which an organic group containing a nitrogen atom having an unshared electron pair or a sulfur atom having an unshared electron pair is introduced into the carbon material via a linking group, and the surface modification It consists of platinum particles or platinum alloy particles carried on a carbon material.

本発明において、白金担持カーボン材料の作製方法としては、カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する方法と、カーボン材料に白金系粒子を担持した後に連結基を介して上記有機基を導入する方法がある。いずれの方法も好ましく用いられる。   In the present invention, the platinum-carrying carbon material can be produced by a method of carrying platinum-based particles after introducing the organic group into the carbon material via a linking group, and a method of carrying a linking group after carrying platinum-based particles on the carbon material. There is a method of introducing the organic group via Either method is preferably used.

カーボン材料に連結基を介して上記有機基を導入した後に白金系粒子を担持する場合には、上記方法により表面修飾カーボン材料を調製した後、公知の方法により白金系粒子を担持させることができる。例えば、熱還元法、スパッタ法、パルスレーザーデポジション法、真空蒸着法などが挙げられる。上記のうち、熱還元法は溶液中で行うことができ、専用の設備が不要であるため、好ましい。熱還元法は含浸法やコロイド法などに分類されるが、白金粒子や白金合金粒子を高分散させることができるため、熱還元法の中でもコロイド法が特に好ましい(例えばJ.Phys.Chem.B 2003,107,6292−6299)。   When the platinum-based particles are supported after the organic group is introduced into the carbon material via a linking group, the surface-modified carbon material can be prepared by the above method and then the platinum-based particles can be supported by a known method. . For example, a thermal reduction method, a sputtering method, a pulse laser deposition method, a vacuum deposition method, and the like can be given. Among the above, the thermal reduction method is preferable because it can be performed in a solution and does not require special equipment. The thermal reduction method is classified into an impregnation method and a colloid method, but the colloidal method is particularly preferable among the thermal reduction methods because platinum particles and platinum alloy particles can be highly dispersed (for example, J. Phys. Chem. B). 2003, 107, 6292-6299).

カーボン材料に白金系粒子を担持後に連結基を介して上記有機基を導入する場合には、反応を無酸素条件下で行うか、反応を難燃性溶媒中で行うか、あるいは反応系中に難燃剤を添加することが安全上好ましい。   When the organic group is introduced via a linking group after the platinum-based particles are supported on the carbon material, the reaction is performed under anoxic conditions, the reaction is performed in a flame retardant solvent, or the reaction system It is preferable for safety to add a flame retardant.

反応を無酸素条件下で行う方法としては、反応を不活性ガス雰囲気下で行う方法が挙げられ、不活性ガスとしてはヘリウム、アルゴン、ネオン、窒素などが挙げられ、アルゴン、窒素が特に好ましい。   Examples of the method for carrying out the reaction under an oxygen-free condition include a method for carrying out the reaction in an inert gas atmosphere. Examples of the inert gas include helium, argon, neon, nitrogen, and the like, and argon and nitrogen are particularly preferable.

難燃性溶媒としては、ジクロロメタン、クロロホルム、四塩化炭素、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,1,2−テトラクロロエタン、1,1,2,2−テトラクロロエタン、水などが挙げられる。これらは、反応試薬の溶解性・反応の温度・溶媒の沸点などを考慮して適宜選択して用いられる。また、これらの溶媒は単独で用いてもよいし、複数を混合して用いても良い。   Flame retardant solvents include dichloromethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2- Examples include tetrachloroethane and water. These are appropriately selected and used in consideration of the solubility of the reaction reagent, the reaction temperature, the boiling point of the solvent, and the like. These solvents may be used alone or in combination.

難燃剤としては、ヘキサメチルホスホルアミド、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ビスフェノールAビス(ジフェニル)ホスフェート、ヒドロキノールビス(ジフェニル)ホスフェート、フェニルジキシレニルホスフェート、キシレニルジフェニルホスフェート、レゾルシノールビス(ジフェニル)ホスフェート、2−エチルヘキシルジフェニルホスフェートなどのリン酸エステル系の難燃剤が好ましい例として挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。これらの難燃剤を添加する割合は、反応溶媒に対して5%以上であることが好ましく10%以上であることがさらに好ましく、15%以上であることが特に好ましい。また、上記難燃剤の中で液体のものについては反応溶媒として使用してもよい。   Flame retardants include hexamethylphosphoramide, trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, bisphenol A bis (diphenyl) phosphate, hydroquinol bis (diphenyl) phosphate, phenyl dialkyl. Preferred examples include phosphoric acid ester-based flame retardants such as silenyl phosphate, xylenyl diphenyl phosphate, resorcinol bis (diphenyl) phosphate, 2-ethylhexyl diphenyl phosphate. These may be used alone or in combination. The proportion of these flame retardants added is preferably 5% or more, more preferably 10% or more, and particularly preferably 15% or more with respect to the reaction solvent. Moreover, you may use as a reaction solvent about the liquid thing in the said flame retardant.

本発明の白金担持カーボン中の白金系粒子含有率は、5〜70重量%が好ましく、10〜60重量%であることがさらに好ましく、20〜50重量%であることが特に好ましい。含有率が70質量%以下であれば、白金系粒子の凝集を抑制し易く、触媒活性の点で好ましい。白金担持カーボン中の白金系粒子含有率が5質量%以上であれば反応物質の拡散性を高くし易いため好ましい。   The platinum-based particle content in the platinum-supported carbon of the present invention is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, and particularly preferably 20 to 50% by weight. If the content is 70% by mass or less, it is easy to suppress aggregation of the platinum-based particles, which is preferable in terms of catalytic activity. If the platinum-based particle content in the platinum-supporting carbon is 5% by mass or more, it is preferable because the diffusibility of the reactant is easily increased.

本発明の白金担持カーボンは、高い白金担持能を有する。白金担持カーボンの白金担持能は、白金担持カーボンに超音波を照射した際に担体から脱落した白金粒子量を定量することで評価することができる。
具体的な白金担持能の評価方法としては、安定剤を加えた水溶液中に白金担持カーボン50mgを添加し、出力38kHzで超音波を3時間照射した後の遊離した白金粒子量を測定することにより行うことができる。本発明の白金担持カーボンは、水溶液中で出力38kHzで3時間超音波照射した後の白金粒子脱落率が、20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。白金粒子脱落率が低いということは、白金粒子がカーボン担体に十分に強く担持されていることを示しており、白金担持カーボンが高い耐久性を有していることを意味している。
The platinum-supported carbon of the present invention has a high platinum support ability. The platinum carrying capacity of the platinum carrying carbon can be evaluated by quantifying the amount of platinum particles dropped from the carrier when the platinum carrying carbon is irradiated with ultrasonic waves.
As a specific evaluation method of platinum carrying capacity, 50 mg of platinum carrying carbon is added to an aqueous solution to which a stabilizer is added, and the amount of released platinum particles is measured after irradiation with ultrasonic waves at an output of 38 kHz for 3 hours. It can be carried out. The platinum-supported carbon of the present invention preferably has a platinum particle drop-off rate of 20% or less, more preferably 15% or less, after ultrasonic irradiation in an aqueous solution at an output of 38 kHz for 3 hours. More preferably. A low platinum particle drop-off rate indicates that the platinum particles are sufficiently strongly supported on the carbon support, and means that the platinum-supported carbon has high durability.

本発明の白金担持カーボン中の白金粒子は、白金担持カーボン中に高分散していることが好ましい。   The platinum particles in the platinum-supported carbon of the present invention are preferably highly dispersed in the platinum-supported carbon.

(電極膜接合体)
本発明の白金担持カーボンを用いれば、優れた電極膜接合体(Membrane and Electrode Assembly)を製造することができる。
図1は本発明の電極膜接合体の断面概略図の一例を示したものである。電極膜接合体10は、膜状の高分子電解質膜11と、それを挟んで対向するアノード電極12及カソード電極13を備える。
アノード電極12とカソード電極13は、多孔質導電シート(例えばカーボンペーパー)12a、13aと触媒層12b、13bからなる。触媒層12b、13bは、本発明の白金担持カーボンと高分子電解質とからなる。
(Electrode membrane assembly)
If the platinum carrying | support carbon of this invention is used, the outstanding electrode membrane assembly (Membrane and Electrode Assembly) can be manufactured.
FIG. 1 shows an example of a schematic cross-sectional view of the electrode membrane assembly of the present invention. The electrode membrane assembly 10 includes a membrane-shaped polymer electrolyte membrane 11 and an anode electrode 12 and a cathode electrode 13 that are opposed to each other with the membrane electrolyte membrane 11 interposed therebetween.
The anode electrode 12 and the cathode electrode 13 are composed of porous conductive sheets (for example, carbon paper) 12a and 13a and catalyst layers 12b and 13b. The catalyst layers 12b and 13b are composed of the platinum-supporting carbon of the present invention and a polymer electrolyte.

電極の作製方法について説明する。ナフィオンに代表される高分子電解質を溶媒に溶解し、本発明の白金担持カーボンと混合し、分散させる。分散方法は、攪拌による方法でも良いが、超音波分散、ボールミル等を用いることもできる。溶媒としては、複素環化合物(3−メチル−2−オキサゾリジノン、N−メチルピロリドン等)、環状エーテル類(ジオキサン、テトラヒドロフラン等)、鎖状エーテル類(ジエチルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、イソプロパノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等)、非極性溶媒(トルエン、キシレン等)、塩素系溶媒(メチレンクロリド、エチレンクロリド等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、アセタミド等)、水等が好ましく用いられ、この中でも複素環化合物、アルコール類、多価アルコール類、アミド類がより好ましく用いられる。   A method for manufacturing the electrode will be described. A polymer electrolyte typified by Nafion is dissolved in a solvent, mixed with the platinum-supported carbon of the present invention, and dispersed. The dispersion method may be a method using stirring, but ultrasonic dispersion, ball mill, or the like can also be used. Solvents include heterocyclic compounds (3-methyl-2-oxazolidinone, N-methylpyrrolidone, etc.), cyclic ethers (dioxane, tetrahydrofuran, etc.), chain ethers (diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether) , Polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, isopropanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), polyvalent Alcohols (ethylene glycol, propylene glycol, polyethylene glycol, polypropylene Lenglycol, glycerin, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, etc.), nonpolar solvents (toluene, xylene, etc.), chlorinated solvents (methylene chloride, ethylene chloride, etc.), Amides (N, N-dimethylformamide, N, N-dimethylacetamide, acetamide and the like), water and the like are preferably used, and among these, heterocyclic compounds, alcohols, polyhydric alcohols and amides are more preferably used.

得られた分散液を電解質膜、または支持体上に適用した後、乾燥させて触媒層を製膜する。ここでは、上記分散液を用いて、押出成型によって製膜してもよいし、これらの分散液をキャスト、または塗布して製膜してもよい。塗布方法は特に限定されないが、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法等を用いることができる。   The obtained dispersion is applied onto an electrolyte membrane or a support and then dried to form a catalyst layer. Here, the dispersion may be used to form a film by extrusion molding, or these dispersions may be cast or applied to form a film. The coating method is not particularly limited, and spin coating, dip coating, bar coating, spray coating, and the like can be used.

支持体は特に限定されないが、好ましい例としてはガラス基板、金属基板、高分子フィルム、反射板等を挙げることができる。高分子フィルムとしては、トリアセチルセルロース(TAC)等のセルロース系高分子フィルム、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のエステル系高分子フィルム、ポリトリフルオロエチレン(PTFE)等のフッ素系高分子フィルム、ポリイミドフィルム等が挙げられる。塗布方式は上記の塗布法を用いることができる。特に、支持体として導電性多孔質体(カーボンペーパー、カーボンクロス)を用いると直接触媒電極が作製できるため、好ましい。   Although a support body is not specifically limited, As a preferable example, a glass substrate, a metal substrate, a polymer film, a reflecting plate, etc. can be mentioned. Examples of polymer films include cellulose polymer films such as triacetylcellulose (TAC), ester polymer films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and fluorine such as polytrifluoroethylene (PTFE). Examples thereof include a polymer film and a polyimide film. As the coating method, the above coating method can be used. In particular, it is preferable to use a conductive porous body (carbon paper, carbon cloth) as a support because a catalyst electrode can be directly produced.

これらの操作は、カレンダーロール、キャストロール等のロールまたはTダイを用いたフィルム成形機で行なうこともでき、プレス機器を用いたプレス成形とすることもできる。さらに延伸工程を追加し、膜厚制御、膜特性改良を行ってもよい。   These operations can be performed by a film forming machine using a roll such as a calendar roll or a cast roll or a T die, or can be a press forming using a press machine. Further, a stretching process may be added to control film thickness and improve film characteristics.

塗布工程の乾燥温度は乾燥速度に関連し、材料の性質に応じて選択することができる。好ましくは−20℃〜150℃であり、より好ましくは20℃〜120℃であり、さらに好ましくは50℃〜100℃である。乾燥時間は、短時間であるほうが生産性の観点から好ましく、気泡、表面の凹凸等の欠陥防止の観点から、ある程度の時間を採用した方が好ましい。このため、乾燥時間は1分〜48時間が好ましく、5分〜10時間がさらに好ましく、10分〜5時間が特に好ましい。また相対湿度は、25〜100%が好ましく、50%〜95%がさらに好ましい。   The drying temperature of the coating process is related to the drying speed and can be selected according to the properties of the material. Preferably it is -20 degreeC-150 degreeC, More preferably, it is 20 degreeC-120 degreeC, More preferably, it is 50 degreeC-100 degreeC. A shorter drying time is preferable from the viewpoint of productivity, and a certain amount of time is preferably used from the viewpoint of preventing defects such as bubbles and surface irregularities. For this reason, the drying time is preferably 1 minute to 48 hours, more preferably 5 minutes to 10 hours, and particularly preferably 10 minutes to 5 hours. The relative humidity is preferably 25 to 100%, more preferably 50% to 95%.

塗布工程における塗布液中には、金属イオンの含量が少ない物が好ましく、特に遷移金属イオン、中でも鉄イオン、ニッケルイオン、コバルトイオンは少ない物が好ましい。含量は500ppm以下が好ましく、100ppm以下が特に好ましい。従って、前述の工程で使用する溶媒も、これらのイオンの含量の低いものが好ましい。   In the coating solution in the coating step, those having a low content of metal ions are preferable, and those having a small amount of transition metal ions, particularly iron ions, nickel ions and cobalt ions are particularly preferable. The content is preferably 500 ppm or less, particularly preferably 100 ppm or less. Therefore, the solvent used in the above-mentioned process is preferably one having a low content of these ions.

さらに製膜工程を経た後に表面処理を行なってもよい。表面処理としては、粗面処理、表面切削、除去、コーティング処理を行なってもよく、これらを行うことによって高分子電解質膜あるいは多孔質導電体との密着を改良できることがある。   Furthermore, surface treatment may be performed after the film forming step. As the surface treatment, rough surface treatment, surface cutting, removal, and coating treatment may be performed. By performing these, adhesion to the polymer electrolyte membrane or the porous conductor may be improved.

高分子電解質膜としては、フッ素系電解質膜や炭化水素系電解質膜を用いることができる。具体的には、ナフィオン(登録商標)に代表されるパーフルオロカーボンスルホン酸ポリマー、側鎖にリン酸基を有するポリ(メタ)アクリレート、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリベンズイミダゾール等の耐熱芳香族高分子、スルホン化ポリスチレン、スルホン化ポリオキセタン、スルホン化ポリイミド、スルホン化ポリフェニレンスルフィド、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンの膜が挙げられる。高分子電解質膜の厚さは5〜200μmが好ましく、10〜100μmが特に好ましい。   As the polymer electrolyte membrane, a fluorine-based electrolyte membrane or a hydrocarbon-based electrolyte membrane can be used. Specifically, perfluorocarbon sulfonic acid polymer represented by Nafion (registered trademark), poly (meth) acrylate having a phosphate group in the side chain, sulfonated polyether ether ketone, sulfonated polyether ketone, sulfonated poly Examples include heat-resistant aromatic polymers such as ether sulfone, sulfonated polysulfone, and sulfonated polybenzimidazole, sulfonated polystyrene, sulfonated polyoxetane, sulfonated polyimide, sulfonated polyphenylene sulfide, sulfonated polyphenylene oxide, and sulfonated polyphenylene. It is done. The thickness of the polymer electrolyte membrane is preferably from 5 to 200 μm, particularly preferably from 10 to 100 μm.

触媒層12b、13bを高分子電解質膜11に密着させるために、多孔質導電シート12a、13aに触媒層12b、13bを塗設したものを、高分子電解質膜11にホットプレス法(好ましくは120〜130℃、2〜100kg/cm2)で圧着するか、適当な支持体に触媒層12b、13bを塗設したものを、高分子電解質膜11に転写しながら圧着した後、多孔質導電シート12a、13aで挟み込む方法を一般が好ましく用いられる。 In order to bring the catalyst layers 12b and 13b into close contact with the polymer electrolyte membrane 11, the porous conductive sheets 12a and 13a coated with the catalyst layers 12b and 13b are applied to the polymer electrolyte membrane 11 by a hot press method (preferably 120). The porous conductive sheet is subjected to pressure bonding at ~ 130 ° C, 2 to 100 kg / cm 2 ) or pressure-bonded with a catalyst layer 12b or 13b coated on a suitable support while being transferred to the polymer electrolyte membrane 11. In general, a method of sandwiching between 12a and 13a is preferably used.

(燃料電池)
本発明の電極膜接合体を用いれば、電池特性に優れた燃料電池を製造することができる。
図2に燃料電池構造の一例を示す。燃料電池は電極膜接合体10と、電極膜接合体10を挟持する一対のセパレータ21、22と、セパレータ21、22に取り付けられたステンレスネットからなる集電体17およびパッキン14とを有する。アノード極側のセパレータ21にはアノード極側開口部15が設けられ、カソード極側のセパレータ22にはカソード極側開口16設けられている。アノード極側開口部15からは、水素、アルコール類(メタノール等)等のガス燃料またはアルコール水溶液等の液体燃料が供給され、カソード極側開口部16からは、酸素ガス、空気等の酸化剤ガスが供給される。
(Fuel cell)
If the electrode membrane assembly of the present invention is used, a fuel cell excellent in battery characteristics can be produced.
FIG. 2 shows an example of the fuel cell structure. The fuel cell includes an electrode membrane assembly 10, a pair of separators 21 and 22 that sandwich the electrode membrane assembly 10, and a current collector 17 and a packing 14 made of a stainless steel net attached to the separators 21 and 22. An anode pole side opening 15 is provided in the anode pole side separator 21, and a cathode pole side opening 16 is provided in the cathode pole side separator 22. A gas fuel such as hydrogen and alcohols (such as methanol) or a liquid fuel such as an aqueous alcohol solution is supplied from the anode side opening 15, and an oxidant gas such as oxygen gas and air is supplied from the cathode side opening 16. Is supplied.

水素−酸素系燃料電池における活性分極はアノード極(水素極)に比べ、カソード極(空気極)が大きい。これは、アノード極に比べ、カソード極の反応(酸素の還元)が遅いためである。酸素極の活性向上を目的として、Pt−Cr、Pt−Ni、Pt−Co、Pt−Cu、Pt−Feなどのさまざまな白金基二元合金を用いることができる。アノード燃料にメタノール水溶液を用いる直接メタノール燃料電池においては、メタノールの酸化過程で生じるCOによる触媒被毒を抑制することが重要である。この目的のために、例えば、Pt−Ru、Pt−Fe、Pt−Ni、Pt−Co、Pt−Moなどの白金基二元合金、Pt−Ru−Mo、Pt−Ru−W、Pt−Ru−Co、Pt−Ru−Fe、Pt−Ru−Ni、Pt−Ru−Cu、Pt−Ru−Sn、Pt−Ru−Auなどの白金基三元合金を用いることができる。ここでは、これらの白金合金粒子を担持した本発明の白金担持カーボンを使用することができる。   The active polarization in the hydrogen-oxygen fuel cell is larger in the cathode electrode (air electrode) than in the anode electrode (hydrogen electrode). This is because the cathode electrode reaction (oxygen reduction) is slower than the anode electrode. For the purpose of improving the activity of the oxygen electrode, various platinum-based binary alloys such as Pt—Cr, Pt—Ni, Pt—Co, Pt—Cu, and Pt—Fe can be used. In a direct methanol fuel cell using an aqueous methanol solution as an anode fuel, it is important to suppress catalyst poisoning due to CO that occurs during the oxidation process of methanol. For this purpose, for example, platinum-based binary alloys such as Pt—Ru, Pt—Fe, Pt—Ni, Pt—Co, Pt—Mo, Pt—Ru—Mo, Pt—Ru—W, Pt—Ru. Platinum-based ternary alloys such as —Co, Pt—Ru—Fe, Pt—Ru—Ni, Pt—Ru—Cu, Pt—Ru—Sn, and Pt—Ru—Au can be used. Here, the platinum-supporting carbon of the present invention supporting these platinum alloy particles can be used.

触媒層の機能は、(1)燃料を活性金属に輸送すること、(2)燃料の酸化(アノード極)、還元(カソード極)反応の場を提供すること、(3)酸化還元により生じた電子を集電体に伝達すること、(4)反応により生じたプロトンを高分子電解質に輸送すること、である。(1)のために触媒層は、液体および気体燃料が奥まで透過できる多孔質性であることが必要である。(2)と(3)は本発明の白金担持カーボンが担うことが好ましい。(4)の機能を果たすために、触媒層に高分子電解質を混在させる。   The function of the catalyst layer was caused by (1) transporting the fuel to the active metal, (2) providing a field for the oxidation (anode electrode) and reduction (cathode electrode) reaction of the fuel, and (3) redox. (4) transporting protons generated by the reaction to the polymer electrolyte. For (1), the catalyst layer needs to be porous so that liquid and gaseous fuel can permeate deeply. (2) and (3) are preferably carried by the platinum-supported carbon of the present invention. In order to fulfill the function (4), a polymer electrolyte is mixed in the catalyst layer.

触媒層のプロトン伝導材料としては、プロトン供与基を持った固体であれば制限はないが、高分子電解質に用いられる酸残基を有する高分子化合物(例えば、ナフィオンに代表されるパーフルオロカーボンスルホン酸)などが利用できる。   The proton conducting material of the catalyst layer is not limited as long as it is a solid having a proton donating group, but a polymer compound having an acid residue used for a polymer electrolyte (for example, perfluorocarbon sulfonic acid represented by Nafion). ) Etc. are available.

触媒の使用量は、0.03〜10mg/cm2の範囲が電池出力と経済性の観点から適している。プロトン伝導材料の量は、白金担持カーボンの質量に対して、0.1〜1.0倍が適している。 The amount of the catalyst used is suitably in the range of 0.03 to 10 mg / cm 2 from the viewpoint of battery output and economy. The amount of the proton conductive material is suitably 0.1 to 1.0 times the mass of the platinum-supported carbon.

電極基材は、集電機能および水がたまりガスの透過が悪化するのを防ぐ役割を担う。通常は、カーボンペーパーやカーボン布を使用し、撥水化のためにポリテトラフルオロエチレン(PTFE)処理を施したものを使用することもできる。   The electrode base material plays a role of preventing current collection and deterioration of gas accumulation and gas permeation. Usually, carbon paper or carbon cloth can be used, and polytetrafluoroethylene (PTFE) treated for water repellency can be used.

本発明の燃料電池の燃料として用いることのできるのは、例えば、アノード燃料としては、水素、アルコール類(メタノール、エタノール、イソプロパノール、エチレングリコールなど)、エーテル類(ジメチルエーテル、ジメトキシメタン、トリメトキシメタンなど)、ギ酸、水素化ホウ素錯体、アスコルビン酸などが挙げられ、水素、メタノールが好ましく用いられる。カソード燃料としては、酸素(大気中の酸素も含む)、過酸化水素などが挙げられる。   As the fuel for the fuel cell of the present invention, for example, as anode fuel, hydrogen, alcohols (methanol, ethanol, isopropanol, ethylene glycol, etc.), ethers (dimethyl ether, dimethoxymethane, trimethoxymethane, etc.) ), Formic acid, borohydride complexes, ascorbic acid and the like, and hydrogen and methanol are preferably used. Examples of the cathode fuel include oxygen (including oxygen in the atmosphere) and hydrogen peroxide.

アノード燃料およびカソード燃料を、それぞれの触媒層に供給する方法には、ポンプ等の補機を用いて強制循環させる方法(アクティブ型)と、補機を用いない方法(例えば、液体の場合には毛管現象や自然落下により、気体の場合には大気に触媒層を晒し供給するパッシブ型)の2通りがあり、これらを組み合わせることも可能である。好ましいのは、高出力が得られるアクティブ型である。   The method of supplying anode fuel and cathode fuel to each catalyst layer includes a method of forced circulation using an auxiliary device such as a pump (active type) and a method not using an auxiliary device (for example, in the case of liquid) In the case of gas due to capillary action or natural fall, there are two types, that is, a passive type that exposes and supplies the catalyst layer to the atmosphere, and these can also be combined. The active type is preferable because high output can be obtained.

燃料電池の単セル電圧は一般的に1V以下であるので、負荷の必要電圧に合わせて、単セルを直列スタッキングして用いる。スタッキングの方法としては、単セルを平面上に並べる「平面スタッキング」および、単セルを、両側に燃料流路の形成されたセパレータを介して積み重ねる「バイポーラースタッキング」が用いられる。後者は、熱効率が高く、電池がコンパクトになるため燃料電池に適している。この他にも、MEMS技術を応用し、シリコンウェハー上に微細加工を施し、スタッキングする方法も提案されている。   Since the single cell voltage of the fuel cell is generally 1 V or less, the single cells are used by stacking in series according to the required voltage of the load. As the stacking method, “planar stacking” in which single cells are arranged on a plane and “bipolar stacking” in which single cells are stacked via separators having fuel flow paths formed on both sides thereof are used. The latter is suitable for a fuel cell because of its high thermal efficiency and a compact battery. In addition to this, a method of applying MEMS technology, performing fine processing on a silicon wafer, and stacking has been proposed.

燃料電池は、運輸用、家庭用、携帯機器用など様々な利用が考えられているが、例えば、好ましく適用できる運輸用途としては、自動車(乗用車、貨物車、二輪車、個人用ビーグル)、船舶、家庭用としてはコジェネシステム、掃除機、ロボット、携帯機器としては携帯電話、ノートパソコン、電子スチルカメラ、PDA、ビデオカメラ、携帯ゲーム機などが挙げられる。さらに、ポータブル発電機、野外照明機器などにも用いることができる。また、産業用や家庭用などのロボットあるいはその他の玩具の電源としても好ましく用いることができる。さらには、これらの機器に搭載された2次電池、キャパシタの充電用電源としても有用である。   The fuel cell is considered for various uses such as transportation, home use, and portable equipment. For example, preferable transportation applications include automobiles (passenger cars, freight cars, motorcycles, personal beagles), ships, Examples of household devices include cogeneration systems, vacuum cleaners, robots, and portable devices include mobile phones, notebook computers, electronic still cameras, PDAs, video cameras, and portable game machines. Furthermore, it can be used for portable generators, outdoor lighting devices, and the like. Moreover, it can be preferably used as a power source for industrial or household robots or other toys. Furthermore, it is also useful as a power source for charging secondary batteries and capacitors mounted on these devices.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

実施例1 表面修飾カーボン材料を用いた白金担持カーボンの作製
[白金担持カーボン C−1の作製]
(カーボン材料の表面修飾)
濃塩酸(10mL)と水(25mL)に4−ニトロアニリン(1.38g)を加え氷浴につけて攪拌した。この溶液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にVulcan XC−72(Cabot製)(2.40g)を加え、50℃まで昇温し、3時間攪拌した後、室温まで放冷した。生成物をろ取し、水、N,N−ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M−1)を2.65g得た。有機元素分析より1.6%の窒素原子を含むことが示された。したがって、表面修飾カーボン材料1g当たり1.14mmolのニトロフェニル基が導入されたことが分かった。
Example 1 Preparation of platinum-supported carbon using surface-modified carbon material [ Preparation of platinum-supported carbon C-1]
(Surface modification of carbon material)
4-Nitroaniline (1.38 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was placed in an ice bath and stirred. To this solution, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while attached to an ice bath. Vulcan XC-72 (manufactured by Cabot) (2.40 g) was added to this solution, the temperature was raised to 50 ° C., stirred for 3 hours, and then allowed to cool to room temperature. The product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.65 g of a surface-modified carbon material (M-1). Organic elemental analysis showed 1.6% nitrogen atoms. Therefore, it was found that 1.14 mmol of nitrophenyl group was introduced per 1 g of the surface-modified carbon material.

(表面修飾カーボン材料(担体)への白金粒子の担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液に表面修飾カーボン材料M−1(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC−1を1.78g得た。
(Supporting platinum particles on surface-modified carbon material (carrier))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Surface-modified carbon material M-1 (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.78 g of platinum-carrying carbon C-1 having a platinum-carrying amount of 20% by mass.

[白金担持カーボン C−2の作製]
(カーボン材料の表面修飾)
濃塩酸(10mL)と水(25mL)に2−アミノアントラキノン(2.23g)を加え氷浴につけて攪拌した。この溶液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にVulcan XC−72(Cabot製)(2.40g)を加え、室温まで昇温し、3時間攪拌した。生成物をろ取し、水、N,N−ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M−2)を2.52g得た。有機元素分析より4.3%の酸素原子を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり1.34mmolのアントラキノニル基が導入されたことが分かった。
[Production of platinum-supported carbon C-2]
(Surface modification of carbon material)
2-Aminoanthraquinone (2.23 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was placed in an ice bath and stirred. To this solution, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while attached to an ice bath. Vulcan XC-72 (manufactured by Cabot) (2.40 g) was added to this solution, and the mixture was warmed to room temperature and stirred for 3 hours. The product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.52 g of a surface-modified carbon material (M-2). Organic elemental analysis suggested that it contains 4.3% oxygen atoms. Therefore, it was found that 1.34 mmol of anthraquinonyl group was introduced per 1 g of the surface-modified carbon material.

(表面修飾カーボン材料(担体)への白金粒子の担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液に表面修飾カーボン材料M−2(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC−2を1.66g得た。
(Supporting platinum particles on surface-modified carbon material (carrier))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Surface-modified carbon material M-2 (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.66 g of platinum-carrying carbon C-2 having a platinum-carrying amount of 20% by mass.

[白金担持カーボン C−3の作製]
(カーボン材料の表面修飾)
濃塩酸(10mL)と水(25mL)に4−ニトロアニリン(1.38g)を加え氷浴につけて攪拌した。この懸濁液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にデンカブラック(100%プレス品、電気化学工業製)(2.40g)を加え、50℃まで昇温し、3時間攪拌した後、室温まで放冷した。生成物をろ取し、水、N,N−ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M−3)を2.37g得た。有機元素分析より0.6%の窒素原子を含むことが示された。したがって、表面修飾カーボン材料1g当たり0.43mmolのニトロフェニル基が導入されたことが分かった。
[Preparation of platinum-supported carbon C-3]
(Surface modification of carbon material)
4-Nitroaniline (1.38 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was placed in an ice bath and stirred. To this suspension, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while placed in an ice bath. Denka black (100% press product, manufactured by Denki Kagaku Kogyo) (2.40 g) was added to this solution, the temperature was raised to 50 ° C., stirred for 3 hours, and then allowed to cool to room temperature. The product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.37 g of a surface-modified carbon material (M-3). Organic elemental analysis showed 0.6% nitrogen atoms. Therefore, it was found that 0.43 mmol of nitrophenyl group was introduced per 1 g of the surface-modified carbon material.

(表面修飾カーボン材料(担体)への白金粒子の担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液に表面修飾カーボン材料M−3(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC−3を1.70g得た。
(Supporting platinum particles on surface-modified carbon material (carrier))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Surface-modified carbon material M-3 (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.70 g of platinum-carrying carbon C-3 having a platinum-carrying amount of 20% by mass.

[白金担持カーボン C−4の作製]
(カーボン材料の表面修飾)
濃塩酸(10mL)と水(25mL)に2−アミノアントラキノン(2.23g)を加え氷浴につけて攪拌した。この懸濁液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にデンカブラック(100%プレス品、電気化学工業製)(2.40g)を加え、室温まで昇温した。3時間攪拌した後、生成物をろ取し、水、N,N−ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M−4)を2.37g得た。有機元素分析より酸素原子1.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.50mmolのアントラキノニル基が導入されたことが分かった。
[Preparation of platinum-supported carbon C-4]
(Surface modification of carbon material)
2-Aminoanthraquinone (2.23 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was placed in an ice bath and stirred. To this suspension, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while placed in an ice bath. Denka black (100% pressed product, manufactured by Denki Kagaku Kogyo) (2.40 g) was added to this solution, and the temperature was raised to room temperature. After stirring for 3 hours, the product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.37 g of a surface-modified carbon material (M-4). . Organic elemental analysis suggested that it contains 1.6% oxygen atoms. Therefore, it was found that 0.50 mmol of anthraquinonyl group was introduced per 1 g of the surface-modified carbon material.

(表面修飾カーボン材料(担体)への白金粒子の担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液を50.0gとり、表面修飾カーボン材料M−4(0.75g)を加え、10分間超音波分散を行った。この分散液に酢酸(2.5mL)と水(100mL)を加え、室温で4時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC−4を0.82g得た。
(Supporting platinum particles on surface-modified carbon material (carrier))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. 50.0 g of this solution was taken, surface-modified carbon material M-4 (0.75 g) was added, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (2.5 mL) and water (100 mL) were added to this dispersion, and the mixture was stirred at room temperature for 4 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 0.82 g of platinum-carrying carbon C-4 having a platinum loading of 20% by mass.

[白金担持カーボン C−5の作製]
(カーボン材料の表面修飾)
濃塩酸(10mL)と水(25mL)に2−アミノ−9−フルオレノン(1.95g)を加え氷浴につけて攪拌した。この懸濁液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にデンカブラック(100%プレス品、電気化学工業製)(2.40g)を加え、55℃まで昇温し、3時間攪拌した後、室温まで放冷した。生成物をろ取し、水、N,N−ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M−5)を2.48g得た。有機元素分析より酸素原子1.0%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.63mmolの9−フルオレノニル基が導入されたことが分かった。
[Preparation of platinum-supported carbon C-5]
(Surface modification of carbon material)
2-Amino-9-fluorenone (1.95 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was stirred in an ice bath. To this suspension, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while placed in an ice bath. Denka black (100% press product, manufactured by Denki Kagaku Kogyo) (2.40 g) was added to this solution, the temperature was raised to 55 ° C., stirred for 3 hours, and then allowed to cool to room temperature. The product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.48 g of a surface-modified carbon material (M-5). Organic elemental analysis suggested that it contains 1.0% oxygen atoms. Therefore, it was found that 0.63 mmol of 9-fluorenonyl group was introduced per 1 g of the surface-modified carbon material.

(表面修飾カーボン材料(担体)への白金粒子の担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液を50.0gとり、表面修飾カーボン材料M−5(0.75g)を加え、10分間超音波分散を行った。この分散液に酢酸(2.5mL)と水(100mL)を加え、室温で4時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC−5を0.82g得た。
(Supporting platinum particles on surface-modified carbon material (carrier))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. 50.0 g of this solution was taken, surface-modified carbon material M-5 (0.75 g) was added, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (2.5 mL) and water (100 mL) were added to this dispersion, and the mixture was stirred at room temperature for 4 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 0.82 g of platinum-carrying carbon C-5 having a platinum-carrying amount of 20% by mass.

[白金担持カーボン C−6の作製]
(カーボン材料の表面修飾)
濃塩酸(10mL)と水(25mL)に4−アミノ−N−メチルフタルイミド(1.1.76g)を加え氷浴につけて攪拌した。この懸濁液に、亜硝酸ナトリウム(0.69g)を水(10mL)に溶解させた水溶液を20分かけて滴下し、氷浴につけたまま攪拌した。この溶液にデンカブラック(100%プレス品、電気化学工業製)(2.40g)を加え、60℃まで昇温し、3時間攪拌した後、室温まで放冷した。生成物をろ取し、水、N,N−ジメチルアセトアミド、アセトンで洗浄した後、減圧下で乾燥させることで表面修飾カーボン材料(M−6)を2.47g得た。有機元素分析より窒素原子0.6%を含むことが示唆された。したがって、表面修飾カーボン材料1g当たり0.43mmolのN−メチルフタルイミドが導入されたことが分かった。
[Preparation of platinum-supported carbon C-6]
(Surface modification of carbon material)
4-Amino-N-methylphthalimide (1.1.76 g) was added to concentrated hydrochloric acid (10 mL) and water (25 mL), and the mixture was placed in an ice bath and stirred. To this suspension, an aqueous solution in which sodium nitrite (0.69 g) was dissolved in water (10 mL) was added dropwise over 20 minutes, and the mixture was stirred while placed in an ice bath. Denka black (100% press product, manufactured by Denki Kagaku Kogyo) (2.40 g) was added to this solution, the temperature was raised to 60 ° C., stirred for 3 hours, and then allowed to cool to room temperature. The product was collected by filtration, washed with water, N, N-dimethylacetamide, and acetone, and then dried under reduced pressure to obtain 2.47 g of a surface-modified carbon material (M-6). Organic elemental analysis suggested 0.6% nitrogen atoms. Therefore, it was found that 0.43 mmol of N-methylphthalimide was introduced per 1 g of the surface-modified carbon material.

(表面修飾カーボン材料(担体)へ白金粒子の担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液に表面修飾カーボン材料M−6(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンC−6を1.81g得た。
(Supporting platinum particles on surface-modified carbon material (carrier))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Surface-modified carbon material M-6 (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.81 g of platinum-carrying carbon C-6 having a platinum-carrying amount of 20% by mass.

比較例1 未修飾カーボン材料を用いた白金担持カーボンの作製
[白金担持カーボン R−1の作製]
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液にVulcan XC−72(Cabot製)(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンR−1を1.78g得た。
Comparative Example 1 Production of platinum-supported carbon using unmodified carbon material [ Production of platinum-supported carbon R-1]
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Vulcan XC-72 (manufactured by Cabot) (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.78 g of platinum-supporting carbon R-1 having a platinum-supporting amount of 20% by mass.

[白金担持カーボン R−2の作製]
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液にデンカブラック(100%プレス品、電気化学工業製)(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンR−2を1.81g得た。
[Preparation of platinum-supported carbon R-2]
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Denka black (100% pressed product, manufactured by Denki Kagaku Kogyo) (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.81 g of platinum-supporting carbon R-2 having a platinum-supporting amount of 20% by mass.

試験例1 白金粒子サイズの比較
白金担持カーボンC−3〜5とR−2の粉末X線回折を測定し、Scherrerの式から白金粒子の粒子サイズを求めた。その結果、本発明の白金担持カーボンC−3〜4はいずれも未修飾アセチレンブラックを担体としたR−2と比較して小さな粒子サイズとなっており、白金粒子が高分散で担持されていることを確認した。なお、粉末X線回折には株式会社リガク社製、RINT2500Vを用いた。
Test Example 1 Comparison of Platinum Particle Size Powder X-ray diffraction of platinum-supported carbons C-3 to C-5 and R-2 was measured, and the particle size of platinum particles was determined from the Scherrer equation. As a result, the platinum-supported carbons C-3 to C-4 of the present invention all have a smaller particle size than R-2 using unmodified acetylene black as a carrier, and platinum particles are supported in a highly dispersed state. It was confirmed. For powder X-ray diffraction, RINT2500V manufactured by Rigaku Corporation was used.

Figure 2009231049
Figure 2009231049

試験例2 超音波による白金粒子の脱落率の測定
白金粒子と、表面修飾または未修飾カーボン材料(担体)との相互作用の強さを評価するため、実施例1、比較例1で作製した白金担持カーボンに超音波を照射し、担体から脱落した白金を定量した。カーボン担体から脱落した白金の凝集を防止するため、安定剤としてD,L−2,3−メルカプト−1−プロパンスルホン酸ナトリウム・1水和物(10mg)を水(5.0mL)に溶解させた。この水溶液に白金担持カーボン(50mg)を加え、超音波を3時間照射した。得られた分散液を孔径0.1μmのミリポアフィルターでろ過し、ろ液中に含まれる白金を定量した(表2)。
Test Example 2 Measurement of the drop-off rate of platinum particles by ultrasonic waves The platinum produced in Example 1 and Comparative Example 1 was evaluated in order to evaluate the strength of the interaction between the platinum particles and the surface-modified or unmodified carbon material (support). The supported carbon was irradiated with ultrasonic waves, and platinum dropped from the carrier was quantified. In order to prevent aggregation of platinum dropped off from the carbon support, D, L-2,3-mercapto-1-propanesulfonic acid sodium monohydrate (10 mg) was dissolved in water (5.0 mL) as a stabilizer. It was. Platinum-supported carbon (50 mg) was added to this aqueous solution, and ultrasonic waves were applied for 3 hours. The obtained dispersion was filtered through a Millipore filter having a pore size of 0.1 μm, and platinum contained in the filtrate was quantified (Table 2).

Figure 2009231049
Figure 2009231049

表2において、本発明の白金担持カーボンはいずれも未修飾のカーボン材料を用いた白金担持カーボンに比べて超音波による白金脱落率が大幅に低くなっている。白金脱落率が低いということは白金粒子がカーボン担体に強く担持されていることを示しており、本発明の白金担持カーボンは高い耐久性を有していることが確認された。   In Table 2, the platinum-carrying carbon of the present invention has a significantly lower platinum dropout rate due to ultrasonic waves than the platinum-carrying carbon using an unmodified carbon material. The low platinum drop-off rate indicates that the platinum particles are strongly supported on the carbon support, and it was confirmed that the platinum-supported carbon of the present invention has high durability.

実施例2 電極膜接合体と燃料電池の作製
前記実施例1で作製した白金担持カーボンを用い、電極膜接合体を作製した。それぞれ、白金担持カーボン0.35gに、バインダーとしてのナフィオン溶液(5%アルコール水溶液)4.00gと溶媒としての水0.10gを加え、超音波分散器で3時間分散させた。得られた分散物をPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE−212膜を用い、ナフィオンNRE−212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE−212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
Example 2 Production of Electrode Membrane Assembly and Fuel Cell An electrode membrane assembly was produced using the platinum-supported carbon produced in Example 1 above. In each of 0.35 g of platinum-supporting carbon, 4.00 g of Nafion solution (5% alcohol aqueous solution) as a binder and 0.10 g of water as a solvent were added and dispersed for 3 hours with an ultrasonic disperser. The obtained dispersion was coated on a PTFE sheet, dried, and then cut into 5 cm squares to produce a catalyst film.
A Nafion NRE-212 membrane is used as the solid electrolyte membrane, the catalyst membrane obtained above is bonded to both sides of the Nafion NRE-212 membrane so that the coated surface is in contact with the Nafion NRE-212 membrane, and thermocompression bonded by hot pressing, An electrode membrane assembly was prepared.
The obtained electrode membrane assembly was set in the fuel cell shown in FIG. 2 to produce a fuel cell.

比較例2 未修飾アセチレンブラックを用いた電極膜接合体と燃料電池の作製
(未修飾カーボン材料(担体)への白金担持)
塩化白金酸・6水和物(1.00g)と水酸化ナトリウム(1.00g)をエチレングリコール(100g)に溶解させ、窒素雰囲気下、120℃で攪拌した。1時間後、加熱を止めて室温まで放冷した。この溶液にアセチレンブラック(100%プレス品、電気化学工業製)(1.50g)を加え、10分間超音波分散を行った。この分散液に酢酸(5mL)と水(200mL)を加え、室温で3時間攪拌した。生成物をろ別し、水で洗浄した後、80℃で減圧乾燥することで白金担持量20質量%の白金担持カーボンR−11を1.81g得た。
Comparative Example 2 Fabrication of an electrode membrane assembly and fuel cell using unmodified acetylene black (platinum supported on unmodified carbon material (support))
Chloroplatinic acid hexahydrate (1.00 g) and sodium hydroxide (1.00 g) were dissolved in ethylene glycol (100 g) and stirred at 120 ° C. in a nitrogen atmosphere. After 1 hour, heating was stopped and the mixture was allowed to cool to room temperature. Acetylene black (100% press product, manufactured by Denki Kagaku Kogyo) (1.50 g) was added to this solution, and ultrasonic dispersion was performed for 10 minutes. Acetic acid (5 mL) and water (200 mL) were added to this dispersion, and the mixture was stirred at room temperature for 3 hours. The product was filtered off, washed with water, and then dried under reduced pressure at 80 ° C. to obtain 1.81 g of platinum-carrying carbon R-11 having a platinum-carrying amount of 20% by mass.

(電極膜接合体と燃料電池の作製)
白金担持カーボンR−11(0.35g)に、バインダーとしてのナフィオン溶液(5%アルコール水溶液)6.00gと溶媒としての水0.10g、1−プロパノール1.00gを加え、超音波分散器で3時間分散させた。得られた分散物を白金塗布量が0.2mg/cm2となるようにPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。ここで、実施例1に比べてバインダー量は1.5倍用いている。これは、実施例1と同じバインダー量では後述する熱圧着工程において、PTFEシートから固体電解質膜に上手く転写できなかったためである。
固体電解質膜としてはナフィオンNRE−212膜を用い、ナフィオンNRE−212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE−212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
(Production of electrode membrane assembly and fuel cell)
To the platinum-supported carbon R-11 (0.35 g), 6.00 g of Nafion solution (5% alcohol aqueous solution) as a binder, 0.10 g of water as a solvent, and 1.00 g of 1-propanol are added, and an ultrasonic disperser is used. Dispersed for 3 hours. The obtained dispersion was applied on a PTFE sheet so that the amount of platinum applied was 0.2 mg / cm 2 , dried, and then cut into 5 cm squares to produce catalyst films. Here, the amount of the binder is 1.5 times that of Example 1. This is because the same binder amount as in Example 1 could not be successfully transferred from the PTFE sheet to the solid electrolyte membrane in the thermocompression bonding step described later.
A Nafion NRE-212 membrane is used as the solid electrolyte membrane, the catalyst membrane obtained above is bonded to both sides of the Nafion NRE-212 membrane so that the coated surface is in contact with the Nafion NRE-212 membrane, and thermocompression bonded by hot pressing, An electrode membrane assembly was prepared.
The obtained electrode membrane assembly was set in the fuel cell shown in FIG. 2 to produce a fuel cell.

比較例3 結晶性の低い未修飾カーボン材料(担体)を用いた電極膜接合体と燃料電池の作製
粉末X線回折において、(002)面に由来するピークの半値幅の2θの値が7.3°である、結晶性の低いカーボンブラック(Cabot社製、Vulcan XC−72)を担体とした以外は比較例2と同様にして、白金担持カーボンR−12を得た。この白金担持カーボンR−12(田中貴金属製、TEC10V20E)を用い、電極膜接合体を作製した。それぞれ、白金担持カーボン0.35gに、バインダーとしてのナフィオン溶液(5%アルコール水溶液)4.00gと溶媒としての水0.10g、1−プロパノール2.00gを加え、超音波分散器で3時間分散させた。得られた分散物をPTFEシート上に塗布し、乾燥した後、5cm角に切り取り、触媒膜を作製した。
固体電解質膜としてはナフィオンNRE−212膜を用い、ナフィオンNRE−212膜の両面に上記で得られた触媒膜を塗布面がナフィオンNRE−212膜に接するように張り合わせ、ホットプレスにより熱圧着し、電極膜接合体を作製した。
得られた電極膜接合体を図2に示す燃料電池にセットし、燃料電池を作製した。
Comparative Example 3 Fabrication of electrode membrane assembly and fuel cell using unmodified carbon material (carrier) having low crystallinity In powder X-ray diffraction, the value of 2θ of the half width of the peak derived from the (002) plane is 7. Platinum-supported carbon R-12 was obtained in the same manner as in Comparative Example 2, except that carbon black having a low crystallinity of 3 ° (manufactured by Cabot, Vulcan XC-72) was used as a carrier. Using this platinum-supported carbon R-12 (Tanaka Kikinzoku, TEC10V20E), an electrode membrane assembly was prepared. To each 0.35 g of platinum-supported carbon, 4.00 g of Nafion solution (5% alcohol aqueous solution) as a binder, 0.10 g of water as a solvent and 2.00 g of 1-propanol are added, and dispersed for 3 hours with an ultrasonic disperser. I let you. The obtained dispersion was coated on a PTFE sheet, dried, and then cut into 5 cm squares to produce a catalyst film.
A Nafion NRE-212 membrane is used as the solid electrolyte membrane, the catalyst membrane obtained above is bonded to both sides of the Nafion NRE-212 membrane so that the coated surface is in contact with the Nafion NRE-212 membrane, and thermocompression bonded by hot pressing, An electrode membrane assembly was prepared.
The obtained electrode membrane assembly was set in the fuel cell shown in FIG. 2 to produce a fuel cell.

試験例3 燃料電池の発電性能評価
実施例2、比較例2、3で得られた各燃料電池のアノード側開口部15に水素ガスをフローした。この時カソード側開口部16は空気をフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、電流−電圧曲線を記録した。カソード電極の白金塗布量が0.15mg/cm2の場合の結果を図3、表3に示す。
Test Example 3 Power Generation Performance Evaluation of Fuel Cell Hydrogen gas was flowed into the anode side opening 15 of each fuel cell obtained in Example 2 and Comparative Examples 2 and 3. At this time, the cathode side opening 16 flowed air. A potentiostat was connected between the anode electrode 12 and the cathode electrode 13, and a current-voltage curve was recorded. The results when the platinum coating amount of the cathode electrode is 0.15 mg / cm 2 are shown in FIG.

Figure 2009231049
Figure 2009231049

図3において、未修飾アセチレンブラックを用いたR−11は非常に低い性能を示しているが、これは白金粒子が凝集していること、およびバインダー量が多く、反応ガスが拡散しにくい構造になっているためである。また、本発明の白金担持カーボンは高い発電性能を示した。   In FIG. 3, R-11 using unmodified acetylene black shows very low performance. This is because the platinum particles are agglomerated, and the amount of the binder is large, and the reaction gas hardly diffuses. It is because it has become. Further, the platinum-supported carbon of the present invention showed high power generation performance.

図4には0.08A/cm2における電圧を白金塗布量に対して示した。このような低電流密度域では反応ガスやプロトン、電子といった物質移動による損失が小さく、触媒活性の差が強く反映される。本発明の白金担持カーボンを用いた燃料電池はR−11、R−12に比べ同じ白金塗布量でも高い電圧を示し、高い触媒活性を有することが認められた。これは、白金微粒子が高分散に担持されたことで発電に寄与できる表面積が増大した結果と考えられる。 FIG. 4 shows the voltage at 0.08 A / cm 2 with respect to the platinum coating amount. In such a low current density region, loss due to mass transfer such as reaction gas, proton, and electron is small, and the difference in catalyst activity is strongly reflected. It was confirmed that the fuel cell using the platinum-supported carbon of the present invention showed a high voltage even at the same platinum coating amount as compared with R-11 and R-12, and had a high catalytic activity. This is considered to be a result of an increase in the surface area that can contribute to power generation by supporting platinum fine particles in a highly dispersed state.

試験例4 燃料電池の耐久性評価
実施例2、比較例3で得られた各燃料電池のアノード側開口部15に水素ガス、カソード側開口部16は窒素ガスをフローした。アノード電極12とカソード電極13間に、ポテンシオスタットを接続し、1.4Vの電圧をかけたまま30分間保持することで劣化試験を行った。劣化試験前後の電圧変化を表4に示す。
Test Example 4 Durability Evaluation of Fuel Cell Hydrogen gas was flown into the anode side opening 15 of each fuel cell obtained in Example 2 and Comparative Example 3, and nitrogen gas was flowed into the cathode side opening 16. A degradation test was performed by connecting a potentiostat between the anode electrode 12 and the cathode electrode 13 and holding the voltage of 1.4 V for 30 minutes. Table 4 shows voltage changes before and after the deterioration test.

Figure 2009231049
Figure 2009231049

未修飾カーボン材料を担体としたR−12を用いた場合には低電流密度域、高電流密度域ともに劣化試験後に電圧は著しく低下した。一方、本発明の白金担持カーボンを用いた燃料電池では、低電流密度域、高電流密度域ともに劣化試験前後で電圧はほとんど低下していなかった。このことから、本発明の白金担持カーボンは高い耐久性を有していることが認められた。   When R-12 using an unmodified carbon material as a carrier was used, the voltage dropped significantly after the deterioration test in both the low current density region and the high current density region. On the other hand, in the fuel cell using the platinum-supported carbon of the present invention, the voltage hardly decreased before and after the deterioration test in both the low current density region and the high current density region. From this, it was confirmed that the platinum-supported carbon of the present invention has high durability.

本発明の電極膜接合体の構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the electrode membrane assembly of this invention. 本発明の燃料電池の構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the fuel cell of this invention. 燃料電池の電流−電圧曲線を示す図である。It is a figure which shows the electric current-voltage curve of a fuel cell. 燃料電池の0.08Aにおける電圧を白金塗布量に対してプロットした図である。It is the figure which plotted the voltage in 0.08A of a fuel cell with respect to the platinum application quantity.

符号の説明Explanation of symbols

10・・・電極膜接合体
11・・・高分子電解質膜
12・・・アノード電極
12a・・アノード極多孔質導電シート
12b・・アノード極触媒層
13・・・カソード電極
13a・・カソード極多孔質導電シート
13b・・カソード極触媒層
14・・・パッキン
15・・・アノード極側開口部
16・・・カソード極側開口部
17・・・集電体
21,22・・・セパレータ
DESCRIPTION OF SYMBOLS 10 ... Electrode membrane assembly 11 ... Polymer electrolyte membrane 12 ... Anode electrode 12a ... Anode electrode porous conductive sheet 12b ... Anode electrode catalyst layer 13 ... Cathode electrode 13a ... Conductive sheet 13b... Cathode electrode catalyst layer 14... Packing 15... Anode electrode side opening 16... Cathode electrode side opening 17.

Claims (10)

SCE基準で−2.5Vより高電位側に還元電位を有する有機基をカーボン材料に導入した表面修飾カーボン材料と、該表面修飾カーボン材料に担持した白金粒子または白金合金粒子とからなる白金担持カーボン。   Platinum-supported carbon comprising a surface-modified carbon material in which an organic group having a reduction potential higher than −2.5 V on the SCE standard is introduced into the carbon material, and platinum particles or platinum alloy particles supported on the surface-modified carbon material. . 前記有機基がπ共役構造を有することを特徴とする請求項1に記載の白金担持カーボン。   The platinum-supported carbon according to claim 1, wherein the organic group has a π-conjugated structure. 水溶液中で出力38kHzで3時間超音波照射した後の白金粒子または白金合金粒子の脱落率が、20%以下であることを特徴とする請求項1または2に記載の白金担持カーボン。   The platinum-supporting carbon according to claim 1 or 2, wherein the falling rate of platinum particles or platinum alloy particles after ultrasonic irradiation for 3 hours at an output of 38 kHz in an aqueous solution is 20% or less. 前記白金粒子または白金合金粒子の平均粒子サイズが1〜10nmであることを特徴とする請求項1〜3のいずれか1項に記載の白金担持カーボン。   4. The platinum-supported carbon according to claim 1, wherein an average particle size of the platinum particles or the platinum alloy particles is 1 to 10 nm. 前記白金粒子または白金合金粒子の含有率が5〜70重量%であることを特徴とする請求項1〜4のいずれか1項に記載の白金担持カーボン。   The platinum-supporting carbon according to any one of claims 1 to 4, wherein a content of the platinum particles or platinum alloy particles is 5 to 70% by weight. 前記カーボン材料が、平均粒子サイズが60nm以下のカーボン粒子または平均直径が50nm以下のカーボンナノチューブであることを特徴とする請求項1〜5のいずれか1項に記載の白金担持カーボン。   The platinum-supporting carbon according to any one of claims 1 to 5, wherein the carbon material is carbon particles having an average particle size of 60 nm or less or carbon nanotubes having an average diameter of 50 nm or less. 前記カーボン材料がアセチレンブラックまたは多層カーボンナノチューブであることを特徴とする請求項1〜6のいずれか1項に記載の白金担持カーボン。   The platinum-supporting carbon according to any one of claims 1 to 6, wherein the carbon material is acetylene black or multi-walled carbon nanotubes. 請求項1〜7のいずれか1項に記載の白金担持カーボンを含むことを特徴とする燃料電池用触媒。   A fuel cell catalyst comprising the platinum-supported carbon according to any one of claims 1 to 7. 固体高分子電解質膜と、該固体高分子電荷質膜に接して設けられた触媒層とを有し、かつ、前記触媒層が請求項8に記載の燃料電池用触媒を含むことを特徴とする電極膜接合体。   A solid polymer electrolyte membrane and a catalyst layer provided in contact with the solid polymer charge membrane, and the catalyst layer includes the fuel cell catalyst according to claim 8. Electrode membrane assembly. 請求項9に記載の電極膜接合体を有することを特徴とする燃料電池。   A fuel cell comprising the electrode membrane assembly according to claim 9.
JP2008075092A 2008-03-24 2008-03-24 Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell Abandoned JP2009231049A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008075092A JP2009231049A (en) 2008-03-24 2008-03-24 Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell
PCT/JP2009/055773 WO2009119556A1 (en) 2008-03-24 2009-03-24 Platinum carrying carbon, catalyst for fuel cell, electrode-membrane assembly, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075092A JP2009231049A (en) 2008-03-24 2008-03-24 Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell

Publications (1)

Publication Number Publication Date
JP2009231049A true JP2009231049A (en) 2009-10-08

Family

ID=41246222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075092A Abandoned JP2009231049A (en) 2008-03-24 2008-03-24 Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell

Country Status (1)

Country Link
JP (1) JP2009231049A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120730B2 (en) 2011-03-30 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Surface modified material, sulfonimide compound for surface modification, and fuel cell
JP2017122225A (en) * 2017-01-25 2017-07-13 デンカ株式会社 Nitrogen-containing carbon black and fuel cell catalyst prepared therewith
WO2017175891A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2017175892A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
JPWO2021049184A1 (en) * 2019-09-13 2021-03-18

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2005510828A (en) * 2001-04-11 2005-04-21 キャボット コーポレイション Fuel cells and other products containing modified carbon products
JP2006172817A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Solid polymer type fuel battery
JP2007217194A (en) * 2006-02-14 2007-08-30 Japan Advanced Institute Of Science & Technology Hokuriku Method for producing surface-modified carbon nano-material and pt-based catalyst
JP2007535787A (en) * 2004-03-15 2007-12-06 キャボット コーポレイション Modified carbon products, use of modified carbon products in fuel cells and similar devices, and methods relating to modified carbon products
JP2008230947A (en) * 2007-02-20 2008-10-02 Toray Ind Inc Single-walled and double-walled carbon nanotube mixed composition
JP2009084090A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Surface-modified carbon material and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
JP2005510828A (en) * 2001-04-11 2005-04-21 キャボット コーポレイション Fuel cells and other products containing modified carbon products
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2007535787A (en) * 2004-03-15 2007-12-06 キャボット コーポレイション Modified carbon products, use of modified carbon products in fuel cells and similar devices, and methods relating to modified carbon products
JP2006172817A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Solid polymer type fuel battery
JP2007217194A (en) * 2006-02-14 2007-08-30 Japan Advanced Institute Of Science & Technology Hokuriku Method for producing surface-modified carbon nano-material and pt-based catalyst
JP2008230947A (en) * 2007-02-20 2008-10-02 Toray Ind Inc Single-walled and double-walled carbon nanotube mixed composition
JP2009084090A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Surface-modified carbon material and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120730B2 (en) 2011-03-30 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Surface modified material, sulfonimide compound for surface modification, and fuel cell
WO2017175891A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2017175892A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
JP2017122225A (en) * 2017-01-25 2017-07-13 デンカ株式会社 Nitrogen-containing carbon black and fuel cell catalyst prepared therewith
JPWO2021049184A1 (en) * 2019-09-13 2021-03-18

Similar Documents

Publication Publication Date Title
Shui et al. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells
Zhao et al. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis
Neaţu et al. Recent progress in electrocatalysts and electrodes for portable fuel cells
Zhang et al. Carbon-based electrocatalysts for advanced energy conversion and storage
Kumar et al. An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use
Iqbal et al. Prospects and challenges of graphene based fuel cells
Zainoodin et al. Electrode in direct methanol fuel cells
Leela Mohana Reddy et al. Pt/SWNT− Pt/C nanocomposite electrocatalysts for proton-exchange membrane fuel cells
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
JP5386979B2 (en) Fuel cell catalyst, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst using heat-treated coordination polymer metal complex.
JP2005527957A (en) Proton conductive carbonaceous material
JP4745942B2 (en) Cathode catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell system
JP2005527956A (en) Conductive polymer-grafted carbon materials for fuel cell applications
Madheswaran et al. Recent advancements on non-platinum based catalyst electrode material for polymer electrolyte membrane fuel cells: a mini techno-economic review
Yarar Kaplan et al. Platinum nanoparticles decorated carbon nanofiber hybrids as highly active electrocatalysts for polymer electrolyte membrane fuel cells
Al‐Tememy et al. Development of effective bimetallic catalyst for high‐temperature PEM fuel cell to improve CO tolerance
JP2009084090A (en) Surface-modified carbon material and its manufacturing method
JP2009231049A (en) Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell
JP5164627B2 (en) Platinum-supported carbon, fuel cell catalyst, electrode membrane assembly, and fuel cell
Zhang et al. Conductive Porous Network of Metal–Organic Frameworks Derived Cobalt‐Nitrogen‐doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc–Air Batteries
Nagappan et al. Implementation of heteroatom-doped nanomaterial/core–shell nanostructure based electrocatalysts for fuel cells and metal-ion/air/sulfur batteries
JP2009226318A (en) Platinum-supported carbon, catalyst for fuel cell, electrode membrane cemented product and fuel cell
Kin et al. Development of direct methanol fuel cell catalyst using marimo nano carbon
WO2009119556A1 (en) Platinum carrying carbon, catalyst for fuel cell, electrode-membrane assembly, and fuel cell
KR100585551B1 (en) Method for preparing electrodes for a fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20121018