JP2009230952A - Conductive paste composition, electronic circuit, and electronic parts - Google Patents

Conductive paste composition, electronic circuit, and electronic parts Download PDF

Info

Publication number
JP2009230952A
JP2009230952A JP2008072862A JP2008072862A JP2009230952A JP 2009230952 A JP2009230952 A JP 2009230952A JP 2008072862 A JP2008072862 A JP 2008072862A JP 2008072862 A JP2008072862 A JP 2008072862A JP 2009230952 A JP2009230952 A JP 2009230952A
Authority
JP
Japan
Prior art keywords
silver
powder
copper powder
conductive paste
plated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072862A
Other languages
Japanese (ja)
Other versions
JP4936142B2 (en
Inventor
Osamu Kajita
治 梶田
Mineo Ishida
峰央 石田
Yushi Sugitani
雄史 杉谷
Isao Morooka
功 師岡
Akihiro Iwasa
彰大 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Research Laboratory Co Ltd
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Asahi Chemical Research Laboratory Co Ltd
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Research Laboratory Co Ltd, Fukuda Metal Foil and Powder Co Ltd filed Critical Asahi Chemical Research Laboratory Co Ltd
Priority to JP2008072862A priority Critical patent/JP4936142B2/en
Publication of JP2009230952A publication Critical patent/JP2009230952A/en
Application granted granted Critical
Publication of JP4936142B2 publication Critical patent/JP4936142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste composition capable of exhibiting conductive characteristics of silver to the maximum, and of satisfying bending characteristics required for a flexible electronic circuit board. <P>SOLUTION: In the conductive paste composition for the flexible electronic circuit board, a conductive powder composed of a mixed silver powder of a scale-like silver powder of the average particle diameter of 2.0 to 5.0 μm and a specific surface area of 2.0 to 3.0 m<SP>2</SP>/g, and dendritic silver plated copper powder of the average particle diameter 10 to 19 μm, a thermosetting resin, and an organic solvent are made essential components; a mixing ratio of the scale-like silver powder and the dendritic silver plated copper powder is 67 to 100 pts.wt. of the dendritic silver plated copper powder based on 100 pts.wt. of the scale-like silver powder; and in which a plated silver amount of the dendritic silver plated copper powder is 20 to 25 pts.wt. based on 100 pts.wt of a copper powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鱗片状銀粉と樹枝状銀メッキ銅粉との混合導電性銀粉末からなるフレキシブル電子回路基板用導電性ペースト組成物と該導電性ペースト組成物を用いて形成してなる電子回路と該電子回路がパターン配置された電子部品に関するものである。   The present invention relates to a conductive paste composition for a flexible electronic circuit board comprising a mixed conductive silver powder of scaly silver powder and dendritic silver-plated copper powder, and an electronic circuit formed using the conductive paste composition, The present invention relates to an electronic component in which the electronic circuit is arranged in a pattern.

周知の通り、電子回路や電極の形成には導電性粉末を樹脂に練り込んでペースト状にした導電性ペーストが利用され、導電性粉末には、一般に、銅や銀の鱗片状粉末が使われている。   As is well known, a conductive paste obtained by kneading a conductive powder into a resin is used to form an electronic circuit or an electrode, and a copper or silver scaly powder is generally used as the conductive powder. ing.

また、銀、銀メッキ銅、銅、金、ニッケル、バラジウムやこれらの合金類、カーボン等導電性微粉末であって該粉末の形状には制限はなく、粒状、板状、樹枝状、稟状、サイコロ状等が使用できる導電性微粉末、飽和共重合ポリエステル樹脂、ブロックイソシアネート化合物、溶剤を主成分とする導電性ペーストが提案され(例えば、特許文献1参照)、銅合金粉末と、銀粉末、銀合金粉末及び銀メッキ銅粉末から選ばれる粉末とからなる導電性粉末100重量部に対して、バインダー樹脂を5〜40重量部含み、粉末の形状が樹枝状、球状、フレーク(鱗片)状、粒状、毬栗状、針状あるいはそれらの混合物である導電性樹脂組成物が提案されている(例えば、特許文献2参照)。   Also, silver, silver-plated copper, copper, gold, nickel, baradium and their alloys, conductive fine powders such as carbon, the shape of the powder is not limited, granular, plate-like, dendritic, cage-like Electroconductive fine powder that can be used in dice, etc., saturated copolyester resin, block isocyanate compound, and conductive paste mainly composed of solvent are proposed (for example, see Patent Document 1), copper alloy powder, and silver powder Including 100 parts by weight of conductive powder composed of silver alloy powder and silver-plated copper powder, 5-40 parts by weight of binder resin is included, and the shape of the powder is dendritic, spherical, and flake (scale) A conductive resin composition that has a granular shape, a chestnut shape, a needle shape, or a mixture thereof has been proposed (for example, see Patent Document 2).

特開平1−159906号公報JP-A-1-159906 特開平10−162646号公報Japanese Patent Laid-Open No. 10-162646

鱗片状粉末からなる導電性ペーストによって形成した電子回路は導電性物質の比表面積が大きく接触抵抗が少ないので、良好な導電性を確保することはできるが、当該鱗片状粉末からなる導電性ペーストによってフレキシブルフィルムに電子回路を形成した場合には、導電性物質同士や基板との密着性が悪く、折り曲げにより電子回路が断線して導電性が損なわれるという問題点があった。また、銅に比べて銀は導電性に優れているが、銀粉末からなる導電性ペーストはコスト上、実用性に欠けるという問題点があった。さらに、前記導電性ペースト(特許文献1)や前記導電性樹脂組成物(特許文献2)では、現在、フレキシブル電子回路基板に要求されている折曲げ特性を満足させることができないという問題点があった。   An electronic circuit formed from a conductive paste made of flaky powder has a large specific surface area of a conductive material and a low contact resistance, so that good conductivity can be ensured. In the case where an electronic circuit is formed on the flexible film, there is a problem in that the adhesion between the conductive materials and the substrate is poor, and the electronic circuit is disconnected by bending and the conductivity is impaired. Moreover, although silver is excellent in electroconductivity compared with copper, there existed a problem that the conductive paste which consists of silver powder lacked practicality on the cost. Furthermore, the conductive paste (Patent Document 1) and the conductive resin composition (Patent Document 2) have a problem that the bending characteristics currently required for flexible electronic circuit boards cannot be satisfied. It was.

そこで、本発明は、銀が有する導電性特性を最大限に引き出すことができ、フレキシブル電子回路基板が要求する折曲げ特性を満足できる導電性ペースト組成物を得ることを技術的課題として、その具現化をはかるべく研究・実験を重ねた結果、特定平均粒径と比表面積を有する鱗片状銀粉と特定平均粒径を有する樹枝状銀メッキ銅粉との混合銀粉末を使用すれば、ペースト塗布乾燥後において良好な導電性を示し、しかも折り曲げによる抵抗変化(耐折曲げ特性)に優れるという刮目すべき知見を得、前記技術的課題を達成したものである。   Therefore, the present invention has a technical problem of obtaining a conductive paste composition that can maximize the conductive properties of silver and satisfy the bending properties required by flexible electronic circuit boards. As a result of repeated research and experimentation, if a mixed silver powder of scaly silver powder having a specific average particle diameter and specific surface area and dendritic silver-plated copper powder having a specific average particle diameter is used, the paste is applied and dried. The present inventors have achieved the above technical problem by obtaining the remarkable knowledge that the film exhibits good conductivity later and is excellent in resistance change (bending resistance) due to bending.

前記技術的課題は、次の通りの本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

即ち、本発明に係るフレキシブル電子回路基板用導電性ペースト組成物は、平均粒径2.0〜5.0μm及び比表面積2.0〜3.0m/gの鱗片状銀粉と平均粒径10〜19μmの樹枝状銀メッキ銅粉との混合銀粉末からなる導電性粉末と熱硬化性樹脂と有機溶剤とを必須成分とするものである。 That is, the conductive paste composition for a flexible electronic circuit board according to the present invention comprises scaly silver powder having an average particle size of 2.0 to 5.0 μm and a specific surface area of 2.0 to 3.0 m 2 / g, and dendritic silver having an average particle size of 10 to 19 μm. Conductive powder made of mixed silver powder with plated copper powder, thermosetting resin, and organic solvent are essential components.

また、本発明は、前記導電性ペースト組成物において、鱗片状銀粉と樹枝状銀メッキ銅粉との混合割合を、鱗片状銀粉100重量部に対して樹枝状銀メッキ銅粉67〜100重量部としたものである。   Further, the present invention provides the conductive paste composition, wherein the mixing ratio of the scaly silver powder and the dendritic silver-plated copper powder is 67 to 100 parts by weight of the dendritic silver-plated copper powder with respect to 100 parts by weight of the scaly silver powder. It is what.

また、本発明は、前記いずれかの導電性ペースト組成物において、樹枝状銀メッキ銅粉のメッキ銀量を、銅粉100重量部に対して20〜25重量部としたものである。   Moreover, this invention makes the plating silver amount of dendritic silver plating copper powder 20-20 weight part with respect to 100 weight part of copper powder in either of the said electrically conductive paste compositions.

また、本発明に係る電子回路は、前記いずれかの導電性ペースト組成物を用いて形成してなるものである。   Moreover, the electronic circuit according to the present invention is formed by using any one of the conductive paste compositions.

さらに、本発明に係る電子部品は、前記電子回路をフレキシブル基板に配置してなるものである。   Furthermore, an electronic component according to the present invention is obtained by arranging the electronic circuit on a flexible substrate.

本発明によれば、特定平均粒径と比表面積を有する鱗片状銀粉と特定平均粒径を有する樹枝状銀メッキ銅粉との混合導電性銀粉末からなる導電性ペースト組成物であるから、良好な導電性を得ることができ、当該導電性ペースト組成物を用いて形成してなる電子回路であるから、良好な導電性と優れた耐折曲げ特性を得ることができる。   According to the present invention, since it is a conductive paste composition comprising a mixed conductive silver powder of a flaky silver powder having a specific average particle size and a specific surface area and a dendritic silver-plated copper powder having a specific average particle size, it is good. Since it is an electronic circuit formed using the said conductive paste composition, favorable electroconductivity and the outstanding bending-proof characteristic can be obtained.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1. Embodiment 1 FIG.

本実施の形態に係る導電性ペースト組成物は、鱗片状銀粉と樹枝状銀メッキ銅粉との混合銀粉末からなる導電性粉末と熱硬化性樹脂と有機溶剤とを必須成分とするものである。   The conductive paste composition according to the present embodiment includes a conductive powder composed of a mixed silver powder of scaly silver powder and dendritic silver-plated copper powder, a thermosetting resin, and an organic solvent as essential components. .

鱗片状粉末は粒子の表面積が大きく粒子同士が面接触となるので良好な導電性が得られ、薄膜であるため折曲げ性能では破断を生じやすく導電性が低下する傾向にあり、樹枝状粉末は粒子同士が点接触であるため導電性は若干劣るが、逆に折曲げ性能では粒子形状が安定しているために導電性は低下しない特徴を生かし、鱗片状粉末と樹枝状粉末との混合粉末を採用して導電性及び折曲げ性能に優れる導電性粉末とする。   Since the scaly powder has a large particle surface area and the particles are in surface contact with each other, good conductivity is obtained.Because it is a thin film, the bending performance tends to cause breakage, and the conductivity tends to decrease. The conductivity is slightly inferior because the particles are in point contact, but conversely, the powder shape is stable in the bending performance, and the conductivity does not decrease, so the mixed powder of scaly powder and dendritic powder Is used to make the conductive powder excellent in conductivity and bending performance.

さらに、前記導電性粉末の所望量を銀メッキものとする必要があるが、鱗片状銅粉の銀メッキではメッキ形状が不均一となって良好な導電性が得られないので、鱗片状粉末は銀粉末とし、樹枝状粉末は銅粉を使用して銀メッキを施した銀メッキ銅粉末とする。この組合せにより鱗片状銀粉との混合によって樹枝状銀メッキ銅粉の樹枝状の長い枝が薄薄の鱗片状銀粉に作用して最良の折曲げ性能が得られる。   Furthermore, it is necessary to make the desired amount of the conductive powder silver-plated. However, the silver-plated flaky copper powder has a non-uniform plating shape, and good conductivity cannot be obtained. Silver powder is used, and the dendritic powder is silver-plated copper powder obtained by performing silver plating using copper powder. By this combination with the scaly silver powder, the dendritic long branches of the dendritic silver-plated copper powder act on the thin scaly silver powder to obtain the best folding performance.

鱗片状銀粉は、平均粒径2.0〜5.0μm及び比表面積2.0〜3.0m/gのものである。平均粒径が2.0μm未満であれば、ペースト中に銀粉末の凝集が起こり易いので好ましくなく、5.0μmを超えれば、耐折曲げ性が悪くなるので好ましくない。また、比表面積2.0m/g未満であれば、導電性が悪くなるので好ましくなく、3.0m/gを超えれば、耐折曲げ性が悪くなるので好ましくない。 The flaky silver powder has an average particle size of 2.0 to 5.0 μm and a specific surface area of 2.0 to 3.0 m 2 / g. If the average particle size is less than 2.0 μm, the silver powder tends to agglomerate in the paste, which is not preferable, and if it exceeds 5.0 μm, the bending resistance is deteriorated. Further, if the specific surface area is less than 2.0 m 2 / g, the conductivity is deteriorated, which is not preferable, and if it exceeds 3.0 m 2 / g, the bending resistance is deteriorated, which is not preferable.

樹枝状銀メッキ銅粉は、平均粒径10〜19μmのものである。平均粒径が10μm未満であれば、導電性が悪くなるので好ましくなく、20μm以上になると耐折曲げ特性が悪くなるので好ましくない。特に、平均粒径2.0〜5.0μmの鱗片状銀粉と平均粒径10〜15μm樹枝状銀メッキ銅粉との混合銀粉末が好ましい。   The dendritic silver-plated copper powder has an average particle size of 10 to 19 μm. If the average particle size is less than 10 μm, the conductivity is deteriorated, which is not preferable, and if it is 20 μm or more, the bending resistance is deteriorated, it is not preferable. In particular, a mixed silver powder of flaky silver powder having an average particle diameter of 2.0 to 5.0 μm and an average particle diameter of 10 to 15 μm of dendritic silver-plated copper powder is preferable.

鱗片状銀粉と樹枝状銀メッキ銅粉との混合割合は、鱗片状銀粉100重量部に対して樹枝状銀メッキ銅粉67〜100重量部とするのが好ましく、より好ましい樹枝状銀メッキ銅粉の配合割合は鱗片状銀粉100重量部に対して82重量部である。樹枝状銀メッキ銅粉の配合割合が67重量部未満であれば、銀粉の配合割合が増加してコスト高となり好ましくなく、100重量部を超えれば、導電性と耐折曲げ特性が低下するので好ましくない。   The mixing ratio of scaly silver powder and dendritic silver-plated copper powder is preferably 67-100 parts by weight of dendritic silver-plated copper powder with respect to 100 parts by weight of scaly silver powder, and more preferable dendritic silver-plated copper powder The mixing ratio is 82 parts by weight with respect to 100 parts by weight of the flaky silver powder. If the blending ratio of the dendritic silver-plated copper powder is less than 67 parts by weight, the blending ratio of the silver powder will increase, resulting in an increase in cost. It is not preferable.

樹枝状銀メッキ銅粉のメッキ銀量は、銅粉100重量部に対して20〜25重量部とするのが良い。メッキ銀量が20重量部未満では、適性な導電性が得られないので好ましくなく、また、25重量部は銀メッキできる略上限値である。なお、銀メッキ銅粉は電気メッキ、無電解メッキ等の一般的方法により作製すればよく、酸化防止や密着性向上を目的として必要に応じてNiやAu等の下地メッキをしてもよい。   The plating silver amount of the dendritic silver-plated copper powder is preferably 20 to 25 parts by weight with respect to 100 parts by weight of the copper powder. If the amount of plated silver is less than 20 parts by weight, it is not preferable because appropriate conductivity cannot be obtained, and 25 parts by weight is a substantially upper limit value for silver plating. The silver-plated copper powder may be produced by a general method such as electroplating or electroless plating, and may be plated with a base such as Ni or Au for the purpose of preventing oxidation or improving adhesion.

熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、アルキル樹脂、ポリウレタン、ポリイミド等を使用することでき、これらの樹脂に限定されるものではなく、柔軟性に優れたポリエステル樹脂がより好ましい。また、前記導電性粉末と熱硬化性樹脂との混合割合は、導電性粉末100重量部に対して熱硬化性樹脂5〜20重量部とするのが良く、5重量部未満では流動性に乏しく塗布できないので好ましくなく、20重量部を超えれば導電性が低下し、塗膜性能に劣る(ダレや滲みが発生する)ので好ましくない。   As the thermosetting resin, phenol resin, epoxy resin, polyester resin, alkyl resin, polyurethane, polyimide, and the like can be used. The resin is not limited to these resins, and a polyester resin excellent in flexibility is more preferable. . The mixing ratio of the conductive powder and the thermosetting resin should be 5 to 20 parts by weight of the thermosetting resin with respect to 100 parts by weight of the conductive powder. Since it cannot be applied, it is not preferable, and if it exceeds 20 parts by weight, the conductivity is lowered and the coating film performance is inferior (sagging or bleeding occurs), which is not preferable.

有機溶剤としては、通常のエステル系、ケトン系、エーテルエステル系、エーテルグリコール系等の溶剤を使用すればよい。なお、スクリーン印刷により塗布する場合には、エステルグリコール系、エステル系、ケトン系等の沸点180℃以上の溶剤を使用するのがよい。   As the organic solvent, ordinary ester solvents, ketone solvents, ether ester solvents, ether glycol solvents and the like may be used. In the case of coating by screen printing, it is preferable to use a solvent having a boiling point of 180 ° C. or higher, such as ester glycol type, ester type, and ketone type.

実施の形態2. Embodiment 2. FIG.

実施の形態1における導電性粉末と熱硬化性樹脂とを該導電性粉末100重量部に対して熱硬化性樹脂5〜20重量部の割合で配合し、さらに、所望の有機溶剤を加えて混合して導電性ペースト組成物を調整する。   The conductive powder and the thermosetting resin in Embodiment 1 are blended at a ratio of 5 to 20 parts by weight of the thermosetting resin with respect to 100 parts by weight of the conductive powder, and further, a desired organic solvent is added and mixed. Then, the conductive paste composition is prepared.

次に、前記導電性ペースト組成物を用いて回路基板用フィルム上に図1に示すパターン回路を印刷塗布し、その後、熱風乾燥させて電子回路を形成する。   Next, the pattern circuit shown in FIG. 1 is printed on the circuit board film using the conductive paste composition, and then dried with hot air to form an electronic circuit.

実施例1〜5:表1に示す各粉末特性を有する鱗片状銀粉及び樹枝状銀メッキ銅粉と、ポリエステル樹脂及びビニル樹脂とを表2に示す割合で混合して攪拌式擂潰機で10〜15分間予備混合を行い、この後、3本ロールミルを用いて2回分散処理を行った。続いて、ビスコテスター(リオン株式会社製:型式:VT-04)を使用して粘度200〜300ps(温度25℃下)の値になるようにエチルカルビトールアセテート溶剤で粘度調整して各導電性ペースト組成物を得た(実施例1〜5)。 Examples 1 to 5: A scaly silver powder and dendritic silver-plated copper powder having the respective powder characteristics shown in Table 1, and a polyester resin and a vinyl resin are mixed at a ratio shown in Table 2 and mixed with a stirring crusher. Premixing was performed for ˜15 minutes, and thereafter, dispersion treatment was performed twice using a three-roll mill. Subsequently, using a bisco tester (manufactured by Rion Co., Ltd .: Model: VT-04), the viscosity is adjusted with an ethyl carbitol acetate solvent so that the viscosity becomes a value of 200 to 300 ps (at a temperature of 25 ° C.). A paste composition was obtained (Examples 1 to 5).

Figure 2009230952
Figure 2009230952

Figure 2009230952
Figure 2009230952

前記各導電性ペースト組成物を温度150℃下で30分間熱処理した厚さ100μmの各PET(ポリエチレンテレフタレート)フィルム上に180メッシュのテトロン版(乳剤厚15μm)を使用して図1に示すテスト用パターン回路を印刷塗布した。そして、印刷後に熱風循環式乾燥機にて所定条件(120℃及び150℃で30分間実施)で硬化させて各パターン回路を形成した(実施例1〜5)。   Each of the conductive paste compositions was heat-treated at 150 ° C. for 30 minutes, and each test (shown in FIG. 1) using a 180 mesh Tetron plate (emulsion thickness 15 μm) on each PET (polyethylene terephthalate) film having a thickness of 100 μm. A pattern circuit was printed and applied. And after printing, it was made to harden | cure by predetermined conditions (implemented at 120 degreeC and 150 degreeC for 30 minutes) with the hot air circulation type dryer, and each pattern circuit was formed (Examples 1-5).

前記各パターン回路において、A−B間のパターン配線は幅1mm×長さ1000mmであり、Cで示す正方形のパターン面は1cm×1cmであった。   In each pattern circuit, the pattern wiring between A and B was 1 mm wide × 1000 mm long, and the square pattern surface indicated by C was 1 cm × 1 cm.

前記各パターン回路のA−B間のパターン配線の抵抗をデジタルマルチメーター(横河電機製作所製)を使用して測定した。各測定結果を初期抵抗値として表3に示す。   The resistance of the pattern wiring between A and B of each pattern circuit was measured using a digital multimeter (manufactured by Yokogawa Electric Corporation). Each measurement result is shown in Table 3 as an initial resistance value.

次に、図1においてD−E線を折り返し線としてパターン回路を形成したフィルム基板をパターン回路面が内側になるように180℃折り曲げてD−E線の折り曲げ部分を指先で押圧した後、D−E線を折り返し線として反対側に同様に折り曲げ、この動作を表裏2回実施した後、A−B間のパターン配線の抵抗をデジタルマルチメーターを使用して測定した。各測定結果を折曲後抵抗値として表3に示す。   Next, the film substrate on which the pattern circuit is formed with the DE line as the folding line in FIG. 1 is bent at 180 ° C. so that the pattern circuit surface is on the inside, and the bent part of the DE line is pressed with a fingertip. The -E line was folded in the same way on the opposite side, and this operation was carried out twice, and the resistance of the pattern wiring between A and B was measured using a digital multimeter. Each measurement result is shown in Table 3 as a resistance value after bending.

Figure 2009230952
Figure 2009230952

なお、表3中、抵抗変化率(%)は、式((折曲後抵抗値)−(初期抵抗値))/(初期抵抗値)×100により算出し、抵抗値評価「○」は100Ω未満を示し、「△」は100〜120Ω未満を示し、「×」は120Ω以上を示す。また、屈曲性評価「○」は抵抗変化率40%未満を示し、「×」は40%以上を示す。   In Table 3, the rate of change in resistance (%) is calculated by the equation ((resistance value after bending) − (initial resistance value)) / (initial resistance value) × 100, and the resistance evaluation “◯” is 100Ω. “Δ” indicates 100 to less than 120Ω, and “X” indicates 120Ω or more. In addition, the flexibility evaluation “◯” indicates a resistance change rate of less than 40%, and “x” indicates 40% or more.

比較例1〜5:比較例1では鱗片状銀粉のみを使用し、比較例2では樹枝状銀メッキ銅粉のみを使用し、比較例3では鱗片状銀メッキ銅粉を使用した外、実施例1〜5と同様にして表1に示す粒子形状及び表2に示す割合毎に混合して各ペースト組成物を調整し、各パターン回路を形成した(比較例1〜5)。なお、比較例2では、導電性が無いため折曲後抵抗を測定できなかった。 Comparative Examples 1-5: Comparative Example 1 uses only scaly silver powder, Comparative Example 2 uses only dendritic silver-plated copper powder, and Comparative Example 3 uses scaly silver-plated copper powder. Each paste composition was adjusted by mixing for each particle shape shown in Table 1 and the ratio shown in Table 2 in the same manner as in 1-5, and each pattern circuit was formed (Comparative Examples 1-5). In Comparative Example 2, resistance after bending could not be measured due to lack of conductivity.

実施例6:実施例1と同様にしてフィルム上にキーボード用実機パターン回路を形成してフレキシブル基板の電子部品を得た。図2はキーボード用実機パターン回路をフィルム上に印刷してなる電子部品の概略図である。 Example 6 In the same manner as in Example 1, an actual keyboard pattern circuit was formed on a film to obtain an electronic component of a flexible substrate. FIG. 2 is a schematic view of an electronic component obtained by printing an actual keyboard pattern circuit on a film.

前記電子部品について、付着テスト、クロスカットテスト、硬度テスト及び折曲げテストを実施した。   The electronic component was subjected to an adhesion test, a cross cut test, a hardness test, and a bending test.

付着テスト:粘着テープ(600番テープ:住友スリーエム株式会社製)をパターン回路面に密着状態で貼り付けた後、当該粘着テープを引き剥がしたがペーストの剥がれはなかった。
クロスカットテスト:前記粘着テープを用いて2mm間隔の前記付着テストを行ったが、ペーストの剥がれはなかった。
硬度テスト:2Hの鉛筆を45°の角度でパターン回路面に当てて1kgの力を加えた状態で鉛筆を走らせたが、ペーストの剥がれはなかった。
折曲げテスト:2kg荷重で一方向へ10回折り曲げ動作を行った後に抵抗変化率を測定した。抵抗変化率は300%以下の規格を大きく下回る35%であった。
Adhesion test: Adhesive tape (No. 600 tape: manufactured by Sumitomo 3M Co., Ltd.) was adhered to the pattern circuit surface in a close contact state, and then the adhesive tape was peeled off.
Cross cut test: The adhesion test was conducted at intervals of 2 mm using the adhesive tape, but the paste did not peel off.
Hardness test: A 2H pencil was applied to the pattern circuit surface at an angle of 45 °, and the pencil was run with a force of 1 kg, but the paste did not peel off.
Bending test: The resistance change rate was measured after bending 10 times in one direction with a load of 2 kg. The rate of change in resistance was 35%, far below the standard of 300% or less.

本発明によれば、銀粉で構成される導電性ペースト組成物と比較して製造コストが安価でありながら、塗布乾燥後の導電性に優れ、かつ、耐折曲げ特性に優れるから、高い耐折曲げ特性が要求されるフィルム状電子部品の電子回路等の形成材料として好適に利用できる。   According to the present invention, since the manufacturing cost is low compared with the conductive paste composition composed of silver powder, it has excellent conductivity after coating and drying, and also has excellent bending resistance. It can be suitably used as a material for forming an electronic circuit or the like of a film-like electronic component that requires bending characteristics.

従って、本発明の産業上利用性は非常に高いといえる。   Therefore, it can be said that the industrial applicability of the present invention is very high.

パターン回路図である。It is a pattern circuit diagram. キーボード用実機パターン回路をフィルム上に印刷してなる電子部品の概略図である。It is the schematic of the electronic component formed by printing the actual machine pattern circuit for keyboards on a film.

符号の説明Explanation of symbols

A、B パターン配線
C パータン面
1 電子部品
A, B Pattern wiring C Pattern surface 1 Electronic parts

Claims (5)

平均粒径2.0〜5.0μm及び比表面積2.0〜3.0m/gの鱗片状銀粉と平均粒径10〜19μmの樹枝状銀メッキ銅粉との混合銀粉末からなる導電性粉末と熱硬化性樹脂と有機溶剤とを必須成分とするフレキシブル電子回路基板用導電性ペースト組成物。 Conductive powder and thermosetting resin composed of mixed silver powder of flaky silver powder having an average particle size of 2.0-5.0 μm and specific surface area of 2.0-3.0 m 2 / g and dendritic silver-plated copper powder having an average particle size of 10-19 μm A conductive paste composition for a flexible electronic circuit board, which contains an organic solvent as an essential component. 鱗片状銀粉と樹枝状銀メッキ銅粉との混合割合が、鱗片状銀粉100重量部に対して樹枝状銀メッキ銅粉67〜100重量部である請求項1記載の導電性ペースト組成物。 2. The conductive paste composition according to claim 1, wherein the mixing ratio of the scaly silver powder and the dendritic silver-plated copper powder is 67 to 100 parts by weight of the dendritic silver-plated copper powder with respect to 100 parts by weight of the scaly silver powder. 樹枝状銀メッキ銅粉のメッキ銀量が、銅粉100重量部に対して20〜25重量部である請求項1又は請求項2記載の導電性ペースト組成物。 The conductive paste composition according to claim 1 or 2, wherein the amount of plated silver of the dendritic silver-plated copper powder is 20 to 25 parts by weight with respect to 100 parts by weight of the copper powder. 請求項1乃至請求項3のいずれかに記載の導電性ペースト組成物を用いて形成してなる電子回路。 An electronic circuit formed by using the conductive paste composition according to any one of claims 1 to 3. 請求項4に記載の電子回路をフレキシブル基板に配置してなる電子部品。 The electronic component formed by arrange | positioning the electronic circuit of Claim 4 on a flexible substrate.
JP2008072862A 2008-03-21 2008-03-21 Conductive paste composition, electronic circuit, and electronic component Expired - Fee Related JP4936142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072862A JP4936142B2 (en) 2008-03-21 2008-03-21 Conductive paste composition, electronic circuit, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072862A JP4936142B2 (en) 2008-03-21 2008-03-21 Conductive paste composition, electronic circuit, and electronic component

Publications (2)

Publication Number Publication Date
JP2009230952A true JP2009230952A (en) 2009-10-08
JP4936142B2 JP4936142B2 (en) 2012-05-23

Family

ID=41246133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072862A Expired - Fee Related JP4936142B2 (en) 2008-03-21 2008-03-21 Conductive paste composition, electronic circuit, and electronic component

Country Status (1)

Country Link
JP (1) JP4936142B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111324A1 (en) * 2010-03-11 2011-09-15 タツタ電線株式会社 Electromagnetic-shielding film, flexible substrate formed using same, and process for producing same
WO2014113937A1 (en) * 2013-01-23 2014-07-31 Henkel IP & Holding GmbH Flexible conductive ink
KR20140138136A (en) 2012-03-06 2014-12-03 토요잉크Sc홀딩스주식회사 Conductive fine particles, method for manufacturing same, conductive resin composition, conductive sheet, and electromagnetic shielding sheet
KR20150033600A (en) 2012-07-18 2015-04-01 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Ultrathin flake-type silver powder and manufacturing method therefor
JP2016204687A (en) * 2015-04-17 2016-12-08 住友金属鉱山株式会社 Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
WO2017138326A1 (en) * 2016-02-12 2017-08-17 パナソニックIpマネジメント株式会社 Resin composition, and semiconductor device provided with same
JP2018174125A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Conductive paste
KR20180121876A (en) 2016-03-17 2018-11-09 도레이 카부시키가이샤 The lamination member and the touch panel
CN109715320A (en) * 2016-08-12 2019-05-03 复合材料技术公司 Electrolytic capacitor and the method for improving electrolytic capacitor anode
CN110993148A (en) * 2019-12-10 2020-04-10 北京中科纳通电子技术有限公司 Flexible slurry applied to 5G mobile terminal and preparation method thereof
KR102193224B1 (en) * 2019-07-16 2020-12-21 주식회사 엠엠에스 Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same
CN113539549A (en) * 2021-07-15 2021-10-22 江西古川胶带有限公司 Thermosetting conductive adhesive film and preparation method and application thereof
USRE49419E1 (en) 2016-09-01 2023-02-14 Composite Materials Technology, Inc. Nano-scale/nanostructured Si coating on valve metal substrate for lib anodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205719A (en) * 2020-03-03 2020-05-29 深圳市利红金科技有限公司 Silver-copper conductive paint and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335667A (en) * 1986-07-29 1988-02-16 Matsushita Electric Ind Co Ltd Electrically conductive paint
JP2005179641A (en) * 2003-11-25 2005-07-07 Aica Kogyo Co Ltd Electromagnetic wave-shielding aqueous coating and housing given by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335667A (en) * 1986-07-29 1988-02-16 Matsushita Electric Ind Co Ltd Electrically conductive paint
JP2005179641A (en) * 2003-11-25 2005-07-07 Aica Kogyo Co Ltd Electromagnetic wave-shielding aqueous coating and housing given by using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751564B1 (en) * 2010-03-11 2017-06-27 다츠다 덴센 가부시키가이샤 Electromagnetic-shielding film, flexible substrate formed using same, and process for producing same
JP2011187895A (en) * 2010-03-11 2011-09-22 Tatsuta Electric Wire & Cable Co Ltd Electromagnetic wave shielding film, and flexible substrate using the same, and method of manufacturing the same
CN102792790A (en) * 2010-03-11 2012-11-21 大自达电线股份有限公司 Electromagnetic-shielding film, flexible substrate formed using same, and process for producing same
WO2011111324A1 (en) * 2010-03-11 2011-09-15 タツタ電線株式会社 Electromagnetic-shielding film, flexible substrate formed using same, and process for producing same
KR20140138136A (en) 2012-03-06 2014-12-03 토요잉크Sc홀딩스주식회사 Conductive fine particles, method for manufacturing same, conductive resin composition, conductive sheet, and electromagnetic shielding sheet
KR20190119189A (en) 2012-07-18 2019-10-21 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Ultrathin flake-type silver powder and manufacturing method therefor
KR20150033600A (en) 2012-07-18 2015-04-01 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Ultrathin flake-type silver powder and manufacturing method therefor
KR20150109374A (en) * 2013-01-23 2015-10-01 헨켈 아이피 앤드 홀딩 게엠베하 Flexible conductive ink
KR101962749B1 (en) * 2013-01-23 2019-03-28 헨켈 아이피 앤드 홀딩 게엠베하 Flexible conductive ink
JP2016513143A (en) * 2013-01-23 2016-05-12 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Flexible conductive ink
US20150322276A1 (en) * 2013-01-23 2015-11-12 Henkel IP & Holding GmbH Flexible conductive ink
CN105103239A (en) * 2013-01-23 2015-11-25 汉高知识产权控股有限责任公司 Flexible conductive ink
US10995232B2 (en) 2013-01-23 2021-05-04 Henkel Ag & Co. Kgaa Flexible conductive ink
WO2014113937A1 (en) * 2013-01-23 2014-07-31 Henkel IP & Holding GmbH Flexible conductive ink
TWI640582B (en) * 2013-01-23 2018-11-11 德商漢高智慧財產控股公司 Flexible conductive ink
JP2016204687A (en) * 2015-04-17 2016-12-08 住友金属鉱山株式会社 Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
WO2017138326A1 (en) * 2016-02-12 2017-08-17 パナソニックIpマネジメント株式会社 Resin composition, and semiconductor device provided with same
KR20180121876A (en) 2016-03-17 2018-11-09 도레이 카부시키가이샤 The lamination member and the touch panel
CN109715320A (en) * 2016-08-12 2019-05-03 复合材料技术公司 Electrolytic capacitor and the method for improving electrolytic capacitor anode
USRE49419E1 (en) 2016-09-01 2023-02-14 Composite Materials Technology, Inc. Nano-scale/nanostructured Si coating on valve metal substrate for lib anodes
JP2020115475A (en) * 2017-03-31 2020-07-30 住友ベークライト株式会社 Conductive paste
JP2018174125A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Conductive paste
JP7018295B2 (en) 2017-03-31 2022-02-10 住友ベークライト株式会社 Conductive paste
KR102193224B1 (en) * 2019-07-16 2020-12-21 주식회사 엠엠에스 Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same
CN110993148A (en) * 2019-12-10 2020-04-10 北京中科纳通电子技术有限公司 Flexible slurry applied to 5G mobile terminal and preparation method thereof
CN113539549A (en) * 2021-07-15 2021-10-22 江西古川胶带有限公司 Thermosetting conductive adhesive film and preparation method and application thereof
CN113539549B (en) * 2021-07-15 2023-08-01 江西古川胶带有限公司 Thermosetting conductive adhesive film and preparation method and application thereof

Also Published As

Publication number Publication date
JP4936142B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4936142B2 (en) Conductive paste composition, electronic circuit, and electronic component
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
KR102387641B1 (en) Thermally conductive conductive adhesive composition
CN106459718B (en) Thermally and electrically conductive adhesive composition
JP4972955B2 (en) Conductive paste and printed wiring board using the same
JP4935592B2 (en) Thermosetting conductive paste
KR20130031414A (en) Conductive paste composition for low temperature firing
JP2010044967A (en) Conductive adhesive and led substrate using it
JP2016527665A (en) Photosintering of polymer thick film copper conductor composition
CN101436442A (en) Low-temperature conductive slurry
JP2009176728A (en) Conductive paste used for membrane touch switch
JP2006049147A (en) Conductive paste
JP4507750B2 (en) Conductive paste
JPWO2013161966A1 (en) Conductive composition
KR100655347B1 (en) Thick film conductor compositions for use in membrane switch applications
JP2011187194A (en) Conductive paste
JP5859823B2 (en) Heat curable conductive paste composition
JP4951948B2 (en) Conductor formation method
TW201833940A (en) Conductive composition
JP5353163B2 (en) Conductive ink composition and solar cell in which collector electrode is formed using the composition
CN106028637B (en) Flexible wiring board and use thereof
JP2011129335A (en) Heating curing type silver paste and conductive film formed using the same
JP4441817B2 (en) Circuit board
CN103219065B (en) A kind of environmental-friendly conductive sizing agent based on carbon nanotube-nano copper powder
JP2011034869A (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4936142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees