JP2009230021A - 光学顕微鏡、及びスペクトル測定方法 - Google Patents

光学顕微鏡、及びスペクトル測定方法 Download PDF

Info

Publication number
JP2009230021A
JP2009230021A JP2008077892A JP2008077892A JP2009230021A JP 2009230021 A JP2009230021 A JP 2009230021A JP 2008077892 A JP2008077892 A JP 2008077892A JP 2008077892 A JP2008077892 A JP 2008077892A JP 2009230021 A JP2009230021 A JP 2009230021A
Authority
JP
Japan
Prior art keywords
light
slit
sample
light receiving
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008077892A
Other languages
English (en)
Inventor
Haruhiko Kususe
治彦 楠瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lasertec Corp
Original Assignee
Lasertec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasertec Corp filed Critical Lasertec Corp
Priority to JP2008077892A priority Critical patent/JP2009230021A/ja
Publication of JP2009230021A publication Critical patent/JP2009230021A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】測定時間を短縮することができる光学顕微鏡、及びスペクトル測定方法を提供する。
【解決手段】光学顕微鏡は、光源11と、試料21からの光を検出する検出器27と、光源11からの光をライン状に集光して試料21に導く共焦点光学系30と、スリット23を通過した光をスリット23と垂直方向に分散させる回折格子25と、を備えている。そして、検出器27が、受光部と、受光部で発生した信号電荷をスリット23と垂直方向に転送する垂直転送レジスタと、信号電荷を読み出すため、垂直転送レジスタで転送された信号電荷を複数の受光部分蓄積して、まとめて転送する水平転送レジスタとを有しているとを備えるものである。
【選択図】図1

Description

本発明は、光学顕微鏡及びスペクトル測定方法に関し、特に詳しくは試料にライン状の光を照射する共焦点光学系を有する光学顕微鏡、及びそれを用いたスペクトル測定方法に関する。
蛍光顕微鏡では、励起光を試料に照射することによって、励起光と異なる波長の蛍光が発生する。試料で発生した蛍光のスペクトルを解析することで、試料に含まれる物質を分析することができる。このような蛍光やラマン散乱光を分光器で分光して、検出する光学顕微鏡が開示されている(特許文献1)。特許文献1の光学顕微鏡では、光源からの光をライン状の光に変換している。そして、ラインコンフォーカル光学系を介して、ラマンスペクトルを測定している。
特許文献1では、スリットを通過した光を分光器でスリット方向と垂直方向に分光している。分光器が光を波長に応じて分散させている。そして、試料とスリットとが共役な位置に配置されている。これにより、ライン状の領域におけるスペクトルを取得することができる。すなわち、CCDカメラの受光面には、波長に応じて光が分散されている。よって、CCDカメラの1フレームでライン状の領域におけるスペクトルを測定することができる。このようにすることで測定時間を短縮することができる。
特開2005−73972号公報
上記の光学顕微鏡では、CCDカメラの受光面に光が分散されている。従って、CCDカメラの受光画素には、ある波長(バンド幅)の光が入射する。すなわち、波長が異なる光は、異なる受光画素に入射する。
ここで、1受光画素あたりのバンド幅は、分光器の性能や受光画素の大きさに応じて決まる。より細かなスペクトル測定を行うためには、チャンネル数を増やす必要がある。スペクトルを測定するためのチャンネル数を増やす場合、受光画素数を増やす必要がある。受光画素数を増やすと、CCDカメラにおいて信号電荷を読み出す時間が長くなってしまう。よって、スペクトルの測定時間が長くなってしまう。
このように従来の測定では、スペクトルデータの測定時間が長時間となってしまうという問題点があった。
本発明は上述の問題点に鑑みてなされたものであり、スペクトルデータの測定時間を短縮することができる光学顕微鏡、及びスペクトル測定方法を提供することを目的とする。
本発明の第1の態様にかかる光学顕微鏡は、光源と、試料からの光を検出する二次元アレイ光検出器と、前記光源からの光をライン状に集光して前記試料に導くとともに、前記試料からの光を前記試料と共役な位置に配置されたスリットに導くための共焦点光学系と、前記共焦点光学系の前記スリットと前記二次元アレイ光検出器との間に設けられ、前記スリットを通過した光を波長に応じて前記スリットと垂直方向に分散させる波長分散素子と、を備え、前記二次元アレイ光検出器が、前記スリットの方向に沿って配列され、前記試料からの光の強度に応じた信号電荷を発生させる受光画素と、前記受光画素で発生した信号電荷を前記スリットと垂直方向に転送する垂直転送部と、前記信号電荷を読み出すため、前記垂直転送部で転送された信号電荷を複数の前記受光画素分蓄積して、まとめて転送する水平転送部とを有しているものである。これにより、画像の取り込み時間を短縮することができ、測定時間を短縮することができる。
本発明の第2の態様にかかる光学顕微鏡は、上記の光学顕微鏡であって、前記二次元アレイ光検出器では、前記受光画素で発生した信号電荷が増幅して読み出されていることを特徴とするものである。これにより、試料へのダメージを防ぐことができる。
本発明の第3の態様にかかる光学顕微鏡は、上記の光学顕微鏡であって、前記水平転送部でまとめて読み出す垂直方向の受光画素の数が、読み出しラインに応じて可変になっているものである。これにより、必要なバンド幅を自由に設定できる。また、注目する必要のない波長帯の信号電荷をまとめて読み出すことができるため、より測定時間を短縮することができる。
本発明の第4の態様にかかる光学顕微鏡は、上記の光学顕微鏡であって、前記光源がランプ光源であり、前記ランプ光源からの光のうち、一部の波長の光を通過するフィルタが設けられているものである。これにより、所定の波長の光を試料に照射することができる。
本発明の第5の態様にかかるスペクトル測定方法は、光源と、試料からの光を検出する二次元アレイ光検出器と、前記光源からの光をライン状に集光して前記試料に導くとともに、前記試料からの光を前記試料と共役な位置に配置されたスリットに導くための共焦点光学系と、前記共焦点光学系の前記スリットと前記二次元アレイ光検出器との間に設けられ、前記スリットを通過した光を波長に応じて前記スリットと垂直方向に分散させる波長分散素子と、を備えた光学顕微鏡を用いたスペクトル測定方法であって、前記二次元アレイ光検出器において、前記スリットの方向に沿って配列された受光画素で、前記試料からの光の強度に応じた信号電荷を発生させるステップと、前記受光画素で発生した信号電荷を前記スリットと垂直方向に転送するステップと、前記信号電荷を読み出すため、前記垂直方向で転送された信号電荷を複数の前記受光画素行分蓄積して、まとめて水平方向に転送するステップとを有するものである。これにより、画像の取り込み時間を短縮することができ、測定時間を短縮することができる。
本発明の第6の態様にかかるスペクトル測定方法は、上述のスペクトル測定方法において、前記二次元アレイ光検出器では、前記受光画素で発生した信号電荷が増幅して読み出されていることを特徴とするものである。これにより、試料へのダメージを防ぐことができる。
本発明の第7の態様にかかるスペクトル測定方法は、上述のスペクトル測定方法において、前記水平方向にまとめて読み出す垂直方向の受光画素の行数が、読み出しラインに応じて可変になっているものである。これにより、必要なバンド幅を自由に設定できる。また、注目する必要のない波長帯の信号電荷をまとめて読み出すことができるため、より測定時間を短縮することができる。
本発明の第8の態様にかかるスペクトル測定方法は、上記のスペクトル測定方法であって、前記光源がランプ光源であり、前記ランプ光源からの光のうち、一部の波長の光を通過するフィルタが設けられているものである。これにより、所定の波長の光を試料に照射することができる。
本発明によれば、測定時間を短縮することができる光学顕微鏡、及びスペクトル測定方法を提供することができる。
以下に、本発明を適用可能な実施の形態が説明される。以下の説明は、本発明の実施形態を説明するものであり、本発明が以下の実施形態に限定されるものではない。説明の明確化のため、以下の記載は、適宜、省略及び簡略化がなされている。又、当業者であれば、以下の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能であろう。尚、各図において同一の符号を付されたものは同様の要素を示しており、適宜、説明が省略される。
本発明の実施の形態にかかる光学顕微鏡について図1を用いて説明する。図1は本実施の形態にかかる光学顕微鏡の光学系の構成を模式的に示す図である。光学顕微鏡は、共焦点光学系30を用いたコンフォーカル顕微鏡である。光学顕微鏡は、光源11、干渉フィルタ12、レンズ13、スリット14、レンズ15、ビームスプリッタ16、ガルバノミラー17、レンズ18、レンズ19、対物レンズ20、レンズ22、スリット23、レンズ24、回折格子25、レンズ26、及び検出器27を有している。また、ここでは、光学顕微鏡が、試料21で発生した蛍光を検出する蛍光顕微鏡であるとして説明する。
光源11は、例えば、ランプ光源である。従って、光源11は、励起光を照射する。この励起光が共焦点光学系30によって、試料21まで導かれる。これにより、試料21内の蛍光物質が励起され、蛍光が発生する。さらに、試料21で発生した蛍光が、共焦点光学系30によって検出器27まで導かれる。ここで、共焦点光学系30は、光の照明領域をライン状にするラインコンフォーカル光学系である。また、以下の説明において、光源11から試料21に入射する光を入射光とし、入射光の入射によって試料21から出射した光を出射光とする。なお、出射光には、蛍光のほか、試料21で反射した反射光も含まれている。この反射光は、励起光と同じ波長になっている。
以下に、共焦点光学系30の構成について説明する。光源11からは、所定のスペクトルを持つ白色光が出射する。すなわち、所定の幅を有する波長帯の光が出射する。そして、光源11からの入射光は、干渉フィルタ12に入射する。干渉フィルタ12は、波長に応じて光の通過を制限する。例えば、干渉フィルタ12にバンドパスフィルタである。従って、干渉フィルタ12は、ある波長の光を通過させ、それ以外の波長の光を遮光する。この場合、干渉フィルタ12を通過した入射光は単色光になる。さらに、干渉フィルタ12を交換することによって、励起光の波長を変えることができる。すなわち、所定の波長の光を通過させるフィルタを用いることで、所望の波長の光を選択することができる。よって、試料21をより細かく分析することができる。
干渉フィルタ12を通過した入射光は、レンズ13によって屈折される。そして、レンズ13によって集光された入射光は、スリット14に入射する。スリット14には、ライン状の開口が形成されている。この開口を通過した入射光は、レンズ15に入射する。また、開口の外側に入射した入射光は、遮光される。従って、スリット14は、入射光をライン状の光に変換する。すなわち、スリット14を通過した入射光はライン状になっている。例えば、スリット14の開口の方向をX方向とすると、入射光の長手方向がX方向となる。
レンズ15は、スリット14からの入射光を屈折して、平行光束にする。レンズ15からの光はビームスプリッタ16に入射する。ビームスプリッタ16は例えばハーフミラーであり、入射した光の約半分を反射して、残りの半分を透過させる。従って、光源11からの入射光の一部がビームスプリッタ16を通過して、ガルバノミラー17に入射する。ガルバノミラー17は入射光を走査するとともに、レンズ18の方向に反射する。すなわち、ガルバノミラー17はライン状に変換された光ビームを走査する走査手段である。時間に応じてガルバノミラー17の角度を変えることにより、入射光をスキャンすることができる。これにより、試料21上における入射光の入射位置を変化させることができる。ガルバノミラー17は光源11からの入射光を入射光の長手方向と垂直な方向に走査する。すなわち、試料21上では、入射光がY方向に走査される。なお、X方向、及びY方向は、光軸に垂直な面において、互いに直交する方向である。
ガルバノミラー17で反射された入射光はレンズ18に入射する。そして、入射光はレンズ18、及びレンズ19で屈折されて平行光束となる。レンズ19からの入射光は対物レンズ20に入射する。対物レンズ20は光源11からの入射光を試料21上に集光する。スリット14と試料21とは互いに共役な位置に配置されている。従って、試料21上では、入射光の照明領域がライン状になっている。すなわち、光源11からの入射光によって、試料21のライン状の領域が照明される。
試料21に入射光(励起光)が入射することによって、試料21から蛍光が発生する。試料21は例えば、生体試料であり、励起光に応じて蛍光を発生する。もちろん、試料21を蛍光物質で染色してもよい。試料21内の蛍光物質が光エネルギーを吸収し、励起光よりも波長の長い光を放出する。ここで、試料21から発生する蛍光のスペクトルは、励起光波長や蛍光物質によって変わる。すなわち、蛍光波長は蛍光物質固有の値になるため、同じ波長の励起光を照射した場合でも、蛍光物質の種類に応じて、蛍光のスペクトルが異なっている。よって、蛍光のスペクトルを測定することで、試料21内における蛍光物質の分布を分析することができる。そして、試料21は、入射光に応じて、蛍光を含む出射光を出射する。
そして、試料21で発生した出射光は、元の方向に伝播していく。すなわち、試料21からの出射光は、対物レンズ20、レンズ19、レンズ18で屈折されて、ガルバノミラー17に入射する。なお、試料21からの出射光には、蛍光の他に反射光が含まれている。ガルバノミラー17は、出射光をビームスプリッタ16の方向に反射するとともに、デスキャンする。これにより、ガルバノミラー17からビームスプリッタ16に向かう出射光がビームスプリッタ16からガルバノミラー17に向かう入射光の進行方向と反対方向に伝播する。すなわち、入射光、及び出射光の伝播方向が反対向きになる。
そして、ガルバノミラー17からの出射光がビームスプリッタ16に入射する。ガルバノミラー17でデスキャンされているため、ビームスプリッタ16上において、入射光の位置と出射光の位置は一致する。ビームスプリッタ16は例えばハーフミラーであり、光の約半分を反射して、残りの半分を透過させる。従って、出射光の一部がビームスプリッタ16を通過して、レンズ22に入射する。なお、ビームスプリッタ16として、ダイクロイックミラーを用いてもよい。すなわち、励起光を透過し、かつ蛍光を反射するような特性のダイクロイックミラーを用いることができる。このように波長に応じて励起光と蛍光を分離することで、光の利用効率を向上することができる。すなわち、試料21からの出射光に蛍光とレイリー散乱光が含まれている場合、ダイクロイックミラーを用いることで蛍光のみを反射することができる。
ビームスプリッタ16からの出射光は、レンズ22で屈折される。レンズ22は、スリット23上に出射光を集光する。スリット23と試料21とは互いに共役な関係に配置される。従って、スリット23上では、出射光がライン状になっている。スリット23はX方向を長手方向とするライン状の開口を有している。この開口を通過した出射光は、レンズ24に入射する。また、開口の外側に入射した入射光は、遮光される。
このように、入射側、及び検出側にスリットを有する共焦点光学系30を用いている。従って、合焦点位置以外からの光は、スリット23で遮光される。これにより、Z方向(光軸方向)の空間分解能を向上することができる。また、対物レンズ20を上下に移動させることによって、合焦位置をZ方向に変化させることができる。対物レンズ20の試料21との相対距離を変化させ、試料21上の焦点位置をZ方向に走査することができる。また、X方向に延びたライン状の光をガルバノミラー17でY方向に走査している。これにより、XYZ方向の走査が可能となり、蛍光スペクトルの3次元空間分布の測定をすることができる。換言すると、立体的な試料21の任意にポイントにおいて、蛍光スペクトルを測定することができる。このような、スペクトルの3次元空間分布を測定した場合でも、ライン状に照明することにより、測定時間を短縮することができる。よって、短時間でスペクトル測定を行うことができる。
スリット23を通過した出射光は、レンズ24に入射する。レンズ24は、出射光を屈折する。そして、レンズ24からの出射光は、回折格子25に入射する。回折格子25は波長分散素子であり、波長に応じて光を分散する。ここで、回折格子25はスリット23の方向と垂直な方向に光を分散する。従って、回折格子25からの出射光は、Y方向に分散されている。すなわち、回折格子25による波長分散方向はY方向に平行になっている。出射光は、回折格子25によって異なる角度となって伝播する。回折格子25からの光は、レンズ26を介して検出器27に入射する。なお、回折格子25ではなく、プリズムなどを分散させてもよい。
検出器27は受光素子がマトリクス状に配列されたエリアセンサである。すなわち、検出器27は画素がアレイ状に配置された2次元CCDなどの2次元アレイ光検出器である。検出器27は電子増倍CCD(Electron Multyplying CCD)である。従って、光電変換によって発生した信号電荷が、増倍されて読み出される。
ここで、検出器27の原理的構成図を図2に示す。図2に示されるように、検出器27は、水平方向(X方向)及び垂直方向(Y方向)に所定ピッチで配列した受光部71と、各列の受光部71の一側に設けた垂直方向に延びるCCD構造の垂直転送レジスタ72と、各垂直転送レジスタ72の一端に設けたCCD構造の水平転送レジスタ73とを有している。これらの受光部71がそれぞれ受光画素となる。そして、各受光部71では、光電変換によって、受光量に応じた信号電荷が発生する。すなわち、試料21で発生した蛍光強度に応じた数の信号電荷が発生する。そして、信号電荷を、各々対応する垂直転送レジスタ72に転送する。これら各垂直転送レジスタ72の信号電荷を水平転送レジスタ73へと転送し、信号電荷を読み出していく。そして、各画素で受光した蛍光強度に応じた検出信号が出力される。尚、本発明にかかる撮像装置では、図2に示す構成の検出器27に限定されないことは言うまでもない。
このように、検出器27の受光面には、受光画素となる受光部71がマトリクス状に配列されている。ここでは、受光部71がX方向、及びY方向に沿って配列されているとする。受光面において、X方向、及びY方向は互いに垂直になっている。図2では、X方向に4つの受光部71が配列され、Y方向に6つの受光部71が配列されている。よって、6行×4列の受光部71が配列されている。
受光部71は、X方向、及びY方向に沿って配列されている。すなわち、受光部71がスリット23の方向(X方向)と平行に配列されている。さらに、受光部71は、回折格子25による波長分散方向(Y方向)に沿って配列されている。よって、回折格子25で分光された蛍光は、試料21上での位置と波長とに応じて、異なる受光部71で検出される。従って、検出器27の受光面において、X方向が試料21上の位置に対応し、Y方向は波長に対応する。よって、X方向において隣接する受光部71は試料21上の異なる位置からの蛍光を受光する。また、Y方向において隣接する受光部71は、試料21上の同じ位置で発生した異なる波長の蛍光を受光する。X方向に延びた1行の受光部71が、あるバンド幅の蛍光を検出する。水平転送レジスタ73において、1ラインの読み出しが行われると、所定のバンド幅の蛍光強度に応じた検出信号が出力される。この検出信号は、試料21上におけるライン状の領域に対応している。
そして、検出器27は各受光部71で受光した出射光の光強度に応じた検出信号を処理装置(図示せず)に出力する。処理装置はパーソナルコンピュータ(PC)などの情報処理装置であり、検出器27からの検出信号をメモリなどに記憶していく。そして、検出結果に所定の処理を行い、モニターに表示する。さらに、処理装置はガルバノミラー17の走査や、試料21のステージ(図示せず)の駆動を制御している。ここで、検出器27のY方向は出射光の波長に対応している。例えば、上端にある1行目の受光部71は長波長の出射光を検出し、下端にある6行目の受光部71は短波長の出射光を検出する。もちろん、反対であってもよい。このように、検出器27のY方向における光強度の分布はスペクトルの分布を示すことになる。従って、検出器27の1フレームで、ライン状の領域の各点におけるスペクトルを取得することができる。
また、検出器27は電子増倍CCDである。従って、水平転送レジスタ73において、信号電荷が増倍され、読み出される。すなわち、水平転送時に、電子が増倍される。そして、増倍された信号電荷を読み出す。電子増倍CCDでは量子効率が90%程度であり、フォトマルチプライヤに比べて高くなっている。よって、蛍光強度が低い場合でも観察を行うことができる。さらに、積分時間を短くすることができるため、画像の取り込み時間を短縮することができる。励起光強度を低くすることができ、試料21へのダメージや褪色を防ぐことができる。さらに、1つの検出器27のみでよいため、コンパクトな光学系を構成することができる。このように量子効率の高いEMCCDを用いることで、より短時間の測定が可能になる。なお、電子増倍CCDの代わりに、イメージインテンシファイア付きCCDカメラ(ICCD)を用いてもよい。
垂直転送レジスタ72が信号電荷を分散方向に転送し、水平転送レジスタ73がスリット方向に転送している。さらに本実施の形態では、垂直画素混合読み出し動作(ビニング動作)を行っている。これにより、読み出しライン毎にバンド幅(波長帯)を制御することができる。例えば、2行分の信号電荷が、水平転送レジスタ73に蓄積され、まとめて読み出される。すなわち、2行分の信号電荷が1ラインとして読み出されていく。2行分の信号電荷を列毎に読み出していくことで、1ラインの水平転送が終了する。従って、1ラインに対応する検出信号では、Y方向に隣接した2画素分の信号電荷が合計されている。この場合、1行の信号電荷を読み出したときに比べて、約2倍のバンド幅の蛍光強度が取得される。なお、受光画素が24個ある場合、2行分の信号電荷をまとめて読み出すと、受光画素数の半分である12個の光強度データが1フレームで取得される。
水平転送レジスタ73において、まとめて読み出す行数を増やすほど、バンド幅が広くなる。また、水平転送レジスタ73において、まとめて読み出す行数を減らすほど、バンド幅が狭くなる。よって、大まかなスペクトルデータの測定を行う場合は、2画素行や3画素行蓄積して、信号電荷をまとめて読み出す。これにより、転送時間が短縮されるため、測定時間の短縮が可能になる。もちろん、4画素行以上蓄積して、まとめて読み出してもよい。また、スペクトルデータの測定を細かく行う場合は、1画素行毎に信号電荷を読み出す。
このように、水平転送レジスタ73は、垂直転送レジスタ72で転送された信号電荷を複数の受光部71分蓄積して、まとめて転送する。このようにすることで、読み出すバンド幅を広くすることができる。すなわち、ビニング動作を行っている場合、水平転送レジスタ73で1ライン読み出すと、複数の受光部71に対応するバンド幅の蛍光強度が検出される。よって、高速読み出しが可能になり、測定時間を短縮することができる。
さらには、励起光と蛍光物質の関係から、蛍光が発生しない波長帯では、信号電荷を複数の受光部71分まとめて読み出すことも可能である。すなわち、注目する必要がない波長帯では、信号電荷を多数の行をまとめて読み出す。このようにすることで、測定時間を短縮することができる。一方、蛍光のスペクトルを細かく測定したい波長帯では、信号電荷を1受光画素行毎に読み出す。このように、1ラインで読み出す受光画素行の数を可変とすれば、各読み出しライン毎に、バンド幅を調整することができる。信号電荷の高速読み出しが可能になり、測定時間を短縮することができる。また、注目すべき波長帯では、細かなスペクトルデータを所得することができる。よって、短い測定時間で、細かなスペクトル分析を行うことができる。
このように、スペクトルデータを取得するため、検出器27において、スリット23の方向に沿って配列された受光部71で、試料21からの光の強度に応じた信号電荷を発生させている。受光部71で発生した信号電荷を垂直転送レジスタ72がスリット23と垂直方向に転送する。さらに、信号電荷を読み出すため、垂直方向で転送された信号電荷を、水平転送レジスタ73が、複数の受光部71分蓄積して、まとめて転送する。
このように縦方向のビニング動作を行うことで、画像取り込み時間を短縮することができる。よって、スペクトルが短時間で測定でき、高速現象を観察することが可能になる。さらに、不要な波長帯の信号電荷をまとめて読み出すことで、細かな分光観察を行う場合でも、読み取り時間が長くならない。検出器27としてCCDカメラを用いているため、フォトマルチプライアよりもチャンネル数を増やすことができる。また、チャンネル数を増やした場合でも転送時間が長くなるのを防ぐことができる。
水平転送レジスタ73でまとめて読み出す受光部71の数を、読み出しラインに応じて可変とすれば、検出器27の1フレーム内において、1ラインで読み出すバンド幅を可変にすることができる。この場合、垂直転送を行う垂直転送トリガ信号(垂直転送パルス)のパルス数を調整すれば、バンド幅を容易に制御することができる。すなわち、垂直転送トリガ信号のパルス数を多くすればよい。よって、必要なバンド幅を自由に設定できる。また、観察の必要ない波長帯のスペクトルデータをまとめて読み出すことができる。これにより、スペクトルデータの取得時間を短縮することができる。
なお、上述の説明では、蛍光顕微鏡について説明しがた、本発明はこれに限られるものでない。入射光の波長と異なる波長で試料から出射する出射光を検出する顕微鏡であればよい。例えば、ラマン散乱光を検出する顕微鏡や、赤外吸収を検出する顕微鏡であってもよい。これらの顕微鏡でも、短時間で、スペクトルの空間分布の測定を行うことができる。また、スリット14の代わりにシリンドリカルレンズを用いて、レーザ光をライン状に変換してもよい。また、ガルバノミラー17に限らず、XYステージなどで、試料21上における入射光の入射位置を走査してもよい。
本発明にかかる光学顕微鏡の構成を示す図である。 本発明にかかる光学顕微鏡に用いられている検出器の構成を模式的に示す図である。
符号の説明
11 光源
12 干渉フィルタ
13 レンズ
14 スリット
15 レンズ
16 ビームスプリッタ
17 ガルバノミラー
18 レンズ
19 レンズ
20 対物レンズ
21 試料
22 レンズ
23 スリット
24 レンズ
25 回折格子
26 レンズ
27 検出器
30 共焦点光学系
71 受光部
72 垂直転送レジスタ
73 水平転送レジスタ

Claims (8)

  1. 光源と、
    試料からの光を検出する二次元アレイ光検出器と、
    前記光源からの光をライン状に集光して前記試料に導くとともに、前記試料からの光を前記試料と共役な位置に配置されたスリットに導くための共焦点光学系と、
    前記共焦点光学系の前記スリットと前記二次元アレイ光検出器との間に設けられ、前記スリットを通過した光を波長に応じて前記スリットと垂直方向に分散させる波長分散素子と、を備え、
    前記二次元アレイ光検出器が、前記スリットの方向に沿って配列され、前記試料からの光の強度に応じた信号電荷を発生させる受光画素と、
    前記受光画素で発生した信号電荷を前記スリットと垂直方向に転送する垂直転送部と、
    前記信号電荷を読み出すため、前記垂直転送部で転送された信号電荷を複数の前記受光画素行分蓄積して、まとめて転送する水平転送部とを有している光学顕微鏡。
  2. 前記二次元アレイ光検出器が、前記受光画素で発生した信号電荷を増幅して読み出すEMCCDであることを特徴とする請求項1に記載の光学顕微鏡。
  3. 前記水平転送部でまとめて読み出す受光画素の行数が、読み出しラインに応じて可変になっている請求項1、又は2に記載の光学顕微鏡。
  4. 前記光源がランプ光源であり、
    前記ランプ光源からの光のうち、一部の波長の光を通過するフィルタが設けられている請求項1乃至3のいずれか1項に記載の光学顕微鏡。
  5. 光源と、
    試料からの光を検出する二次元アレイ光検出器と、
    前記光源からの光をライン状に集光して前記試料に導くとともに、前記試料からの光を前記試料と共役な位置に配置されたスリットに導くための共焦点光学系と、
    前記共焦点光学系の前記スリットと前記二次元アレイ光検出器との間に設けられ、前記スリットを通過した光を波長に応じて前記スリットと垂直方向に分散させる波長分散素子と、を備えた光学顕微鏡を用いたスペクトル測定方法であって、
    前記二次元アレイ光検出器において、前記スリットの方向に沿って配列された受光画素で、前記試料からの光の強度に応じた信号電荷を発生させるステップと、
    前記受光画素で発生した信号電荷を前記スリットと垂直方向に転送するステップと、
    前記信号電荷を読み出すため、前記垂直方向で転送された信号電荷を複数の前記受光画素行分蓄積して、まとめて水平方向に転送するステップとを有するスペクトル測定方法。
  6. 前記二次元アレイ光検出器では、前記受光画素で発生した信号電荷が増幅して読み出されていることを特徴とする請求項5に記載のスペクトル測定方法。
  7. 前記水平方向にまとめて読み出す受光画素の行数が、読み出しラインに応じて可変になっている請求項5、又は6に記載のスペクトル測定方法。
  8. 前記光源がランプ光源であり、
    前記ランプ光源からの光のうち、一部の波長の光を通過するフィルタが設けられている請求項5乃至7のいずれか1項に記載のスペクトル測定方法。
JP2008077892A 2008-03-25 2008-03-25 光学顕微鏡、及びスペクトル測定方法 Pending JP2009230021A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077892A JP2009230021A (ja) 2008-03-25 2008-03-25 光学顕微鏡、及びスペクトル測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077892A JP2009230021A (ja) 2008-03-25 2008-03-25 光学顕微鏡、及びスペクトル測定方法

Publications (1)

Publication Number Publication Date
JP2009230021A true JP2009230021A (ja) 2009-10-08

Family

ID=41245457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077892A Pending JP2009230021A (ja) 2008-03-25 2008-03-25 光学顕微鏡、及びスペクトル測定方法

Country Status (1)

Country Link
JP (1) JP2009230021A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048300A (ja) * 2012-08-29 2014-03-17 Hitachi Media Electoronics Co Ltd 光学装置
WO2016035444A1 (ja) * 2014-09-05 2016-03-10 住友電気工業株式会社 顕微鏡
CN111486953A (zh) * 2020-06-02 2020-08-04 南京引创光电科技有限公司 光学测量***
JP7501532B2 (ja) 2019-06-26 2024-06-18 ソニーグループ株式会社 光学測定装置及び光学測定システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048300A (ja) * 2012-08-29 2014-03-17 Hitachi Media Electoronics Co Ltd 光学装置
US9297980B2 (en) 2012-08-29 2016-03-29 Hitachi-Lg Data Storage, Inc. Optical device for transmission-type scanning by moving scanning beam without moving observation sample
WO2016035444A1 (ja) * 2014-09-05 2016-03-10 住友電気工業株式会社 顕微鏡
JP7501532B2 (ja) 2019-06-26 2024-06-18 ソニーグループ株式会社 光学測定装置及び光学測定システム
CN111486953A (zh) * 2020-06-02 2020-08-04 南京引创光电科技有限公司 光学测量***

Similar Documents

Publication Publication Date Title
JP4887989B2 (ja) 光学顕微鏡及びスペクトル測定方法
JP5712342B2 (ja) 光学顕微鏡、及びスペクトル測定方法
US5754291A (en) Micro-imaging system
JP5269879B2 (ja) サンプル表面を検査する分光画像形成方法及びシステム
US9541750B2 (en) Telecentric, wide-field fluorescence scanning systems and methods
US8125637B2 (en) Optical beam spectrometer with movable lens
JP6091100B2 (ja) 共焦点顕微装置
JP4495083B2 (ja) 蛍光相関分光解析装置
JP2010054391A (ja) 光学顕微鏡、及びカラー画像の表示方法
JP2014507662A (ja) ラインスキャン血球計算システムおよび方法
JP2012237647A (ja) 多焦点共焦点ラマン分光顕微鏡
JP2014010216A (ja) 多焦点共焦点顕微鏡
JP2004354348A (ja) 分光分析装置
JP6622723B2 (ja) 多焦点分光計測装置、及び多焦点分光計測装置用光学系
JP2012189891A (ja) 光学顕微鏡、及び分光測定方法
US20130250088A1 (en) Multi-color confocal microscope and imaging methods
EP2142895B1 (en) Spectroscopic apparatus and methods
JP2012003198A (ja) 顕微鏡
JP2009230021A (ja) 光学顕微鏡、及びスペクトル測定方法
US20110147613A1 (en) Device and method for enhanced analysis of particle sample
US20070171409A1 (en) Method and apparatus for dense spectrum unmixing and image reconstruction of a sample
JP5190603B2 (ja) 光学顕微鏡、及び観察方法
KR102675416B1 (ko) 광학 스펙트럼 측정 장치, 광학 스펙트럼 측정 방법, 및 광학 스펙트럼 측정 시스템
JP2021139887A (ja) 識別装置
JP2004354346A (ja) 測定装置