JP2009229184A - Harmonic probing method and device - Google Patents

Harmonic probing method and device Download PDF

Info

Publication number
JP2009229184A
JP2009229184A JP2008073640A JP2008073640A JP2009229184A JP 2009229184 A JP2009229184 A JP 2009229184A JP 2008073640 A JP2008073640 A JP 2008073640A JP 2008073640 A JP2008073640 A JP 2008073640A JP 2009229184 A JP2009229184 A JP 2009229184A
Authority
JP
Japan
Prior art keywords
harmonic
order component
current
harmonic order
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008073640A
Other languages
Japanese (ja)
Inventor
Koichi Shinozaki
孝一 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2008073640A priority Critical patent/JP2009229184A/en
Publication of JP2009229184A publication Critical patent/JP2009229184A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Locating Faults (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correctly identify the directionality of a harmonic source causing abnormal noises generating from an electric power capacitor by a simple means. <P>SOLUTION: The harmonic probing device comprises: a gauge voltage transformer 5 and a gauge current transformer 6 to measure voltage and current at a distribution line 1 of a power system; and a harmonic meter 7 to extract a voltage harmonic order component and a current harmonic order component based on the gauge voltage transformer 5 and the gauge current transformer 6. The device identifies the direction of the harmonic source of abnormal noises generating from the electric power capacitor 4 in a power receiving facility 2 provided at the distribution line 1 is by determining a tidal current direction of the harmonic order component from the phase difference between the voltage harmonic order component and the current harmonic order component. The device is equipped with a microphone 8 to detect abnormal noises generating at the electric power capacitor 4, the harmonic order component of abnormal noises obtained by the microphone 8 is extracted by the harmonic meter 7, and the voltage harmonic order component and the current harmonic order component corresponding to the harmonic order component of abnormal noises are identified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力系統の配電線に設けられた受電設備内の電力用コンデンサで発生する異音の高調波発生源の方向性を特定する高調波探査方法および高調波探査装置に関する。   The present invention relates to a harmonic exploration method and a harmonic exploration apparatus for specifying the direction of an abnormal harmonic generation source generated by a power capacitor in a power receiving facility provided in a distribution line of a power system.

近年、電力系統の配電線に接続された電力需要家が使用する負荷には、インバータ回路などのスイッチング動作を行うものが多く、これら負荷の作動によって、配電線における電圧および電流に歪みが生じる。この電圧および電流の歪みは高調波成分であり、この高調波成分が電力需要家で使用される進相コンデンサの破壊などの種々の弊害を引き起こしている。   In recent years, many loads used by power consumers connected to distribution lines of a power system perform switching operations such as inverter circuits, and the operation of these loads causes distortions in voltage and current in the distribution lines. The distortion of the voltage and current is a harmonic component, and this harmonic component causes various adverse effects such as destruction of a phase advance capacitor used in a power consumer.

そのため、高調波成分を発生させている負荷、つまり高調波発生源を探査する必要があり、従来、高調波発生源を探査する方法や装置が種々提案されている(例えば、特許文献1〜4)。   Therefore, it is necessary to search for a load generating a harmonic component, that is, a harmonic generation source, and various methods and apparatuses for searching for a harmonic generation source have been conventionally proposed (for example, Patent Documents 1 to 4). ).

これら特許文献1〜4のいずれも、電力系統の配電線における電圧および電流を測定し、その電圧の高調波次数成分と電流の高調波次数成分とを抽出して電圧の高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定することにより、高調波発生源の方向性を特定するようにしている。   In any of these Patent Documents 1 to 4, the voltage and current in the distribution lines of the power system are measured, and the harmonic order component of the voltage and the harmonic order component of the current are extracted to extract the harmonic order component and current of the voltage. The directionality of the harmonic generation source is specified by determining the flow direction of the harmonic order component from the phase difference of the harmonic order component.

このようにして高調波次数成分の潮流方向が判明すれば、この潮流方向を逆行しながら適宜の箇所で、再度、電圧の高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定する。この電圧高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定する作業をその潮流方向に対して逆行しながら繰り返すことにより、高調波発生源を探査するようにしている。
特開平7−104022号公報 特開平7−110353号公報 特開平10−142270号公報 特開2002−48827号公報
Once the direction of the harmonic order component is determined in this way, the phase difference between the harmonic order component of the voltage and the harmonic order component of the current is again determined at an appropriate location while reversing the direction of the current flow. Determine the tidal direction of the wave order component. Exploring harmonic sources by repeating the process of determining the current direction of the harmonic order component from the phase difference between the voltage harmonic order component and the current harmonic order component while reversing the current direction. Like to do.
JP 7-104022 A Japanese Patent Laid-Open No. 7-110353 Japanese Patent Laid-Open No. 10-142270 JP 2002-48827 A

ところで、前述した特許文献1〜4に開示された高調波探査方法および高調波探査装置では、電力系統の配電線における電圧および電流を測定し、その電圧の高調波次数成分と電流の高調波次数成分とを抽出して電圧の高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定することにより、高調波発生源の方向性を特定するようにしている。   By the way, in the harmonic exploration method and the harmonic exploration device disclosed in Patent Documents 1 to 4 described above, the voltage and current in the distribution line of the power system are measured, and the harmonic order component of the voltage and the harmonic order of the current are measured. The direction of the harmonic generation source is specified by extracting the component and determining the direction of power flow of the harmonic order component from the phase difference between the harmonic order component of the voltage and the harmonic order component of the current. ing.

一方、電力系統の配電線に接続された受電設備には電力用コンデンサが設置されていることがあり、この電力用コンデンサが高調波障害により異音を発生する場合がある。この電力用コンデンサに異音を発生させる高調波発生源を探査する場合も、前述したように、電力系統の配電線における電圧および電流を測定し、その電圧の高調波次数成分と電流の高調波次数成分とを抽出して電圧の高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定することにより、異音を発生させる高調波発生源の方向性を特定するようにしている。   On the other hand, a power capacitor may be installed in a power receiving facility connected to a power distribution line, and this power capacitor may generate noise due to harmonic interference. When searching for a harmonic generation source that generates abnormal noise in this power capacitor, as described above, measure the voltage and current in the distribution lines of the power system, and determine the harmonic order component of the voltage and the harmonics of the current. The direction of the harmonic source that generates abnormal noise by extracting the order component and determining the flow direction of the harmonic order component from the phase difference between the harmonic order component of the voltage and the harmonic order component of the current I try to identify gender.

しかしながら、電圧の高調波次数成分と電流の高調波次数成分とを抽出した測定結果には、多くの高調波次数成分が含まれていることから、どの高調波次数成分が電力用コンデンサから発生する異音の原因となっているかを判定することが困難であった。その結果、誤った高調波次数成分の潮流方向を判定することにより、異音を発生させる高調波発生源の方向性を正しく特定することが非常に難しいという問題があった。   However, the measurement results obtained by extracting the harmonic order component of the voltage and the harmonic order component of the current include many harmonic order components, so which harmonic order components are generated from the power capacitor. It was difficult to determine whether the noise was the cause. As a result, there is a problem that it is very difficult to correctly specify the directionality of the harmonic generation source that generates abnormal noise by determining the flow direction of the wrong harmonic order component.

そこで、本発明は、前述の問題点に鑑みて提案されたもので、その目的とするところは、簡易な手段により、電力用コンデンサから発生する異音の原因となっている高調波発生源の方向性を正しく特定し得る高調波探査方法および高調波探査装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to provide a harmonic generation source that causes abnormal noise generated from a power capacitor by simple means. It is an object of the present invention to provide a harmonic exploration method and a harmonic exploration apparatus that can correctly specify directionality.

前述の目的を達成するための技術的手段として、本発明に係る高調波探査方法は、電力系統の配電線における電圧および電流を測定してその電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定することにより、配電線に設けられた受電設備内の電力用コンデンサで発生する異音の高調波発生源の方向性を特定するに際して、電力用コンデンサで発生する異音を検出してその異音の高調波次数成分を抽出し、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定することを特徴とする。   As a technical means for achieving the above-mentioned object, the harmonic exploration method according to the present invention measures a voltage and a current in a distribution line of a power system, and determines a harmonic order component of the voltage and a harmonic order component of the current. When determining the directionality of the harmonic generation source of abnormal noise generated by the power capacitor in the power receiving facility provided on the distribution line, by determining the flow direction of the harmonic order component from the phase difference between Detects abnormal noise generated in the power capacitor, extracts the harmonic order component of the abnormal noise, and identifies the harmonic order component of the voltage and the harmonic order component of the current corresponding to the harmonic order component of the abnormal noise It is characterized by doing.

また、本発明に係る高調波探査装置は、電力系統の配電線における電圧および電流を測定する計器用変圧器および計器用変流器と、計器用変圧器および計器用変流器の出力に基づいて電圧の高調波次数成分と電流の高調波次数成分を抽出する高調波測定器とを備え、電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定することにより、配電線に設けられた受電設備内の電力用コンデンサで発生する異音の高調波発生源の方向性を特定するものであって、電力用コンデンサで発生する異音を検出する音響センサを備え、その音響センサにより得られた異音の高調波次数成分を高調波測定器で抽出し、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定することを特徴とする。ここで、「音響センサ」とは、電力用コンデンサで発生する異音を電気信号に変換する手段であり、例えばマイクロフォンの他に、振動センサや加速度センサなどを含む。   Further, the harmonic exploration device according to the present invention is based on an output of an instrument transformer and an instrument current transformer for measuring voltage and current in a distribution line of an electric power system, and an output of the instrument transformer and the instrument current transformer. A harmonic measuring device that extracts the harmonic order component of the voltage and the harmonic order component of the current, and from the phase difference between the harmonic order component of the voltage and the harmonic order component of the current, By determining the direction of power flow, the direction of abnormal harmonics generated by the power capacitor in the power receiving facility installed on the distribution line is specified, and the noise generated by the power capacitor The harmonic order component of the abnormal noise obtained by the acoustic sensor is extracted by a harmonic measuring instrument, and the harmonic order component of the voltage and the current corresponding to the harmonic order component of the abnormal noise are extracted. Identify harmonic order components The features. Here, the “acoustic sensor” is means for converting an abnormal sound generated by the power capacitor into an electric signal, and includes, for example, a vibration sensor and an acceleration sensor in addition to the microphone.

本発明では、電力用コンデンサで発生する異音を音響センサにより検出することにより電気信号に変換する。この異音の電気信号に基づいて高調波測定器により異音の高調波次数成分を抽出する。一方、この高調波測定器では、配電線における電圧の高調波次数成分と電流の高調波次数成分を抽出する。そして、異音の高調波次数成分と、電圧の高調波次数成分および電流の高調波次数成分とを比較し、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定する。その特定された電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定する。これにより、電力用コンデンサで発生する異音の高調波発生源の方向性を正しく特定することができる。   In the present invention, an abnormal sound generated by the power capacitor is detected by an acoustic sensor and converted into an electric signal. The harmonic order component of the abnormal sound is extracted by the harmonic measuring device based on the abnormal electric signal. On the other hand, this harmonic measuring device extracts the harmonic order component of the voltage and the harmonic order component of the current in the distribution line. Then, the harmonic order component of the abnormal noise is compared with the harmonic order component of the voltage and the harmonic order component of the current, and the harmonic order component of the voltage and the harmonic of the current corresponding to the harmonic order component of the abnormal noise are compared. Specify the order component. From the phase difference between the harmonic order component of the specified voltage and the harmonic order component of the current, the flow direction of the harmonic order component is determined. Thereby, the directionality of the harmonic generation source of the abnormal noise generated in the power capacitor can be correctly specified.

本発明の高調波探査装置においては、音響センサにより検出された信号から電力用コンデンサ周辺で発生した雑音を除去し、電力用コンデンサで発生する異音のみを抽出する可変フィルタ部が内蔵された探査用測定器を、音響センサの後段に設けた構成とすることが望ましい。このようにすれば、電力用コンデンサで発生する異音の高調波次数成分のみを正確に抽出することができ、異音の高調波次数成分と、電圧の高調波次数成分および電流の高調波次数成分との比較が容易となる。その結果、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定し易くなり、異音による高調波次数成分の潮流方向を正確に判定できる。これにより、電力用コンデンサで発生する異音の高調波発生源の方向性を特定する上で信頼性の向上が図れる。   In the harmonic exploration device of the present invention, the exploration with a built-in variable filter that removes noise generated around the power capacitor from the signal detected by the acoustic sensor and extracts only the abnormal noise generated by the power capacitor. It is desirable that the measuring instrument is provided in the subsequent stage of the acoustic sensor. In this way, it is possible to accurately extract only the harmonic order component of the abnormal noise generated in the power capacitor, the harmonic order component of the abnormal noise, the harmonic order component of the voltage, and the harmonic order of the current. Comparison with the components becomes easy. As a result, it becomes easy to specify the harmonic order component of the voltage and the harmonic order component of the current corresponding to the harmonic order component of the abnormal sound, and the flow direction of the harmonic order component due to the abnormal sound can be accurately determined. Thereby, it is possible to improve the reliability in identifying the directionality of the harmonic generation source of the abnormal noise generated in the power capacitor.

本発明では、電力用コンデンサで発生する異音を音響センサにより検出してその異音の高調波次数成分を抽出し、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定することにより、その特定された電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定し、電力用コンデンサで発生する異音の高調波発生源の方向性を特定する。   In the present invention, the abnormal noise generated in the power capacitor is detected by the acoustic sensor, the harmonic order component of the abnormal noise is extracted, and the harmonic order component of the voltage and the current corresponding to the harmonic order component of the abnormal noise are extracted. By identifying the harmonic order component, the flow direction of the harmonic order component is determined from the phase difference between the harmonic order component of the specified voltage and the harmonic order component of the current, and generated by the power capacitor. Specify the direction of the harmonic source of the abnormal sound.

このように、簡易な手段により、電力用コンデンサから発生する異音の原因となっている高調波発生源の方向性を正しく特定することができるので、電力用コンデンサで発生する異音の高調波発生源を探査する作業が正確かつ効率よく行え、信頼性の向上が図れると共に作業時間の短縮化が図れてその実用的価値が大きい。   As described above, since the directivity of the harmonic generation source that causes the abnormal noise generated from the power capacitor can be correctly identified by simple means, the abnormal harmonic generated by the power capacitor can be specified. The work of exploring the source can be performed accurately and efficiently, improving the reliability and shortening the working time, and its practical value is great.

本発明に係る高調波探査方法および高調波探査装置の実施形態を以下に詳述する。図1は、電力系統の配電線1に接続された受電設備2およびその受電設備2に設置された高調波探査装置を例示する。電力系統の配電線1には、受電設備2内の変圧器3を介して負荷設備が接続されている。また、この受電設備2内には、電力用コンデンサ4が設置されている。   Embodiments of the harmonic exploration method and the harmonic exploration apparatus according to the present invention will be described in detail below. FIG. 1 illustrates a power receiving facility 2 connected to a distribution line 1 of a power system and a harmonic exploration device installed in the power receiving facility 2. A load facility is connected to the distribution line 1 of the power system via a transformer 3 in the power receiving facility 2. Further, a power capacitor 4 is installed in the power receiving facility 2.

この実施形態における高調波探査装置は、図1に示すように、受電設備2内の配電線1に接続され、その配電線1における電圧および電流を測定する計器用変圧器5および計器用変流器6と、それら計器用変圧器5および計器用変流器6を介して配電線1に接続され、電圧の高調波次数成分と電流の高調波次数成分を抽出する高調波測定器7と、電力用コンデンサ4で発生する異音を検出する音響センサであるマイクロフォン8と、入力側にマイクロフォン8が接続されると共に出力側に高調波測定器7が接続され、電力用コンデンサ4で発生する異音のみを抽出する探査用測定器9とで構成されている。   As shown in FIG. 1, the harmonic exploration device in this embodiment is connected to a distribution line 1 in a power receiving facility 2 and measures a voltage and current in the distribution line 1 and a current transformer for the instrument. And a harmonic measuring instrument 7 connected to the distribution line 1 through the instrument transformer 5 and the instrument current transformer 6 for extracting the harmonic order component of the voltage and the harmonic order component of the current, A microphone 8, which is an acoustic sensor that detects abnormal noise generated in the power capacitor 4, and a microphone 8 is connected to the input side and a harmonic measuring device 7 is connected to the output side. It is comprised with the measuring device 9 for a search which extracts only a sound.

前述の高調波測定器7は、計器用変圧器5および計器用変流器6で測定された電圧および電流をデジタル変換するA/D変換部11と、デジタル変換された電圧データおよび電流データを記録するデータ記録部12と、電圧データおよび電流データに基づいて基本波の整数倍に分解する周波数解析部13とで構成されている。この高調波測定器7における処理結果は、図示しないが、モニタ等に表示されるようになっている。   The harmonic measuring instrument 7 described above includes an A / D converter 11 for digitally converting the voltage and current measured by the instrument transformer 5 and the instrument current transformer 6, and the digitally converted voltage data and current data. A data recording unit 12 for recording and a frequency analysis unit 13 for decomposing the data into integer multiples of the fundamental wave based on the voltage data and the current data. The processing result in the harmonic measuring device 7 is displayed on a monitor or the like (not shown).

また、探査用測定器9は、マイクロフォン8の出力信号を増幅する増幅部14と、マイクロフォン8の出力信号から、電力用コンデンサ4で発生する異音と対応する周波数成分のみを抽出する可変フィルタ部15とで構成されている。この探査用測定器9には、マイクロフォン8からの再生音を聞きながら可変フィルタ部15の抽出周波数を調整するため、ヘッドフォン16が取り付けられている。   The exploration measuring instrument 9 includes an amplifying unit 14 that amplifies the output signal of the microphone 8 and a variable filter unit that extracts, from the output signal of the microphone 8, only the frequency component corresponding to the abnormal sound generated in the power capacitor 4. 15. A headphone 16 is attached to the survey measuring instrument 9 in order to adjust the extraction frequency of the variable filter unit 15 while listening to the reproduced sound from the microphone 8.

この高調波探査装置が設置された電力系統の配電線1では、電圧および電流に歪みが生じ、特に、図2(A)(B)に示すように電圧に対して電流に大きな歪みが生じやすい。この電圧および電流の歪みとなる高調波成分を発生させている高調波発生源を探査するため、この高調波探査装置では、配電線1における電圧および電流を計器用変圧器5および計器用変流器6により測定する。   In the distribution line 1 of the electric power system in which this harmonic exploration device is installed, distortion occurs in the voltage and current, and in particular, large distortion is likely to occur in the current with respect to the voltage as shown in FIGS. . In order to search for a harmonic generation source that generates a harmonic component that is a distortion of the voltage and current, the harmonic exploration device uses the voltage transformer and the current transformer for the voltage and current in the distribution line 1 as the voltage and current. Measure with the instrument 6.

測定結果として得られた電圧および電流に基づいて、図3(A)(B)に示すように、電圧の高調波次数成分と電流の高調波次数成分とを高調波測定器7により抽出する。この電圧の高調波次数成分と電流の高調波次数成分の位相差から、図4に示すように、その高調波次数成分の潮流方向(電源⇒負荷、あるいは、負荷⇒電源)を判定する。これにより、計器用変流器6が取り付けられた箇所での高調波発生源の方向性(電源側あるいは負荷側のいずれか)を特定する。   Based on the voltage and current obtained as a measurement result, the harmonic order component of the voltage and the harmonic order component of the current are extracted by the harmonic measuring device 7 as shown in FIGS. From the phase difference between the harmonic order component of the voltage and the harmonic order component of the current, as shown in FIG. 4, the flow direction of the harmonic order component (power source → load or load → power source) is determined. Thereby, the directionality (either the power source side or the load side) of the harmonic generation source at the location where the current transformer 6 for instrument is attached is specified.

このようにして高調波次数成分の潮流方向が判明すれば、この潮流方向を逆行しながら適宜の箇所で、再度、電圧の高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定する。この電圧高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定する作業をその潮流方向に対して逆行しながら繰り返すことにより、高調波発生源を探査する。   Once the direction of the harmonic order component is determined in this way, the phase difference between the harmonic order component of the voltage and the harmonic order component of the current is again determined at an appropriate location while reversing the direction of the current flow. Determine the tidal direction of the wave order component. Exploring the harmonic source by repeating the work of determining the direction of the harmonic order component from the phase difference between the voltage harmonic order component and the current harmonic order component while reversing the direction of the current. To do.

一方、電力用コンデンサ4が高調波障害により異音を発生する場合がある。この電力用コンデンサ4に異音を発生させる高調波発生源を探査する場合も、前述したように、電力系統の配電線1における電圧および電流を測定し、その電圧の高調波次数成分と電流の高調波次数成分とを抽出して電圧の高調波次数成分と電流の高調波次数成分の位相差から、その高調波次数成分の潮流方向を判定することにより、高調波発生源の方向性を特定するが、電圧の高調波次数成分と電流の高調波次数成分とを抽出した測定結果には、多くの高調波次数成分が含まれていることから、どの高調波次数成分が電力用コンデンサ4から発生する異音の原因となっているかを判定することが困難である。   On the other hand, the power capacitor 4 may generate abnormal noise due to harmonic interference. When searching for a harmonic generation source that generates abnormal noise in the power capacitor 4, as described above, the voltage and current in the distribution line 1 of the power system are measured, and the harmonic order component and current of the voltage are measured. Identify the direction of the harmonic source by extracting the harmonic order component and determining the direction of the harmonic order component from the phase difference between the harmonic order component of the voltage and the harmonic order component of the current. However, since many harmonic order components are included in the measurement result obtained by extracting the harmonic order component of the voltage and the harmonic order component of the current, which harmonic order component is extracted from the power capacitor 4. It is difficult to determine whether it is the cause of the abnormal noise that occurs.

そこで、この実施形態の高調波探査装置では、電力用コンデンサ4で発生する異音をマイクロフォン8で検出することにより電気信号に変換する。ここで、電力用コンデンサ4の周辺では種々の雑音が発生しているのが通常である。つまり、電力用コンデンサ4で発生する異音は、周囲の雑音と混在している状態となっている。   Therefore, in the harmonic exploration device of this embodiment, the abnormal sound generated by the power capacitor 4 is detected by the microphone 8 and converted into an electric signal. Here, it is normal that various noises are generated around the power capacitor 4. That is, the abnormal noise generated in the power capacitor 4 is mixed with the surrounding noise.

従って、マイクロフォン8で検出された信号から電力用コンデンサ4周辺で発生した雑音を探査用測定器9により除去し、電力用コンデンサ4で発生する異音のみを抽出する。つまり、探査用測定器9では、マイクロフォン8で検出された電気信号を増幅部14で所定のゲインでもって増幅し、ヘッドフォン16でマイクロフォン8による再生音を聞きながら、可変フィルタ部15の通過周波数を調整して電力用コンデンサ4周辺で発生した雑音の周波数成分を除去することにより、電力用コンデンサ4で発生した異音の周波数成分のみを抽出する。   Therefore, the noise generated around the power capacitor 4 is removed from the signal detected by the microphone 8 by the measuring instrument 9 and only the abnormal noise generated at the power capacitor 4 is extracted. In other words, the exploration measuring instrument 9 amplifies the electrical signal detected by the microphone 8 with a predetermined gain by the amplifying unit 14, and listens to the reproduced sound from the microphone 8 by the headphone 16, while changing the passing frequency of the variable filter unit 15. By adjusting and removing the frequency component of noise generated around the power capacitor 4, only the frequency component of abnormal noise generated in the power capacitor 4 is extracted.

この電力用コンデンサ4で発生した異音の周波数成分を探査用測定器9から出力し、その異音の周波数成分に基づいて高調波測定器7により異音の高調波次数成分を抽出する(図5参照)。一方、この高調波測定器7では、前述したように、配電線1における電圧の高調波次数成分と電流の高調波次数成分を抽出しているので〔図3(A)(B)〕、異音の高調波次数成分と、電圧の高調波次数成分および電流の高調波次数成分とを比較し、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定する。その特定された電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定する。これにより、電力用コンデンサ4で発生する異音の高調波発生源の方向性を正しく特定することができる。   The frequency component of the abnormal noise generated by the power capacitor 4 is output from the exploration measuring device 9, and the harmonic order component of the abnormal noise is extracted by the harmonic measuring device 7 based on the frequency component of the abnormal noise (FIG. 5). On the other hand, the harmonic measuring instrument 7 extracts the harmonic order component of the voltage and the harmonic order component of the current in the distribution line 1 as described above (FIGS. 3A and 3B). Compares the harmonic order component of the sound with the harmonic order component of the voltage and the harmonic order component of the current, and compares the harmonic order component of the voltage and the harmonic order component of the current corresponding to the harmonic order component of the abnormal sound. Identify. From the phase difference between the harmonic order component of the specified voltage and the harmonic order component of the current, the flow direction of the harmonic order component is determined. As a result, it is possible to correctly specify the directionality of the abnormal harmonic generation source generated in the power capacitor 4.

なお、前述したように、探査用測定器9で、電力用コンデンサ4で発生する異音の周波数成分のみを正確に抽出することにより、高調波測定器7において、異音の高調波次数成分と、電圧の高調波次数成分および電流の高調波次数成分との比較が容易となる。その結果、異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定し易くなり、異音による高調波次数成分の潮流方向を正確に判定できる。これにより、電力用コンデンサ4で発生する異音の高調波発生源の方向性を特定する上で信頼性の向上が図れる。   Note that, as described above, the harmonic measuring device 7 accurately extracts only the frequency component of the abnormal noise generated in the power capacitor 4 by the exploration measuring instrument 9, and the harmonic measuring instrument 7 It becomes easy to compare the harmonic order component of the voltage and the harmonic order component of the current. As a result, it becomes easy to specify the harmonic order component of the voltage and the harmonic order component of the current corresponding to the harmonic order component of the abnormal sound, and the flow direction of the harmonic order component due to the abnormal sound can be accurately determined. Thereby, it is possible to improve the reliability in identifying the directionality of the harmonic generation source of the abnormal noise generated in the power capacitor 4.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明の実施形態で、電力系統の配電線に接続された受電設備およびその受電設備に設置された高調波探査装置を示す概略構成図である。In embodiment of this invention, it is a schematic block diagram which shows the harmonic survey apparatus installed in the power receiving installation connected to the power distribution line of the electric power grid, and the power receiving installation. (A)は図1の高調波測定器に入力される電圧を示す波形図、(b)は図1の高調波測定器に入力される電流を示す波形図である。(A) is a wave form diagram which shows the voltage input into the harmonic measuring device of FIG. 1, (b) is a wave form diagram which shows the electric current input into the harmonic measuring device of FIG. (A)は図1の高調波測定器で周波数解析された電圧のスペクトル図、(B)は図1の高調波測定器で周波数解析された電流のスペクトル図である。(A) is the spectrum diagram of the voltage frequency-analyzed by the harmonic measuring device of FIG. 1, (B) is the spectrum diagram of the current frequency-analyzed by the harmonic measuring device of FIG. 電圧の高調波次数成分と電流の高調波次数成分と潮流方向を示す一覧表である。It is a table | surface which shows the harmonic order component of a voltage, the harmonic order component of an electric current, and a tidal direction. 図1の高調波測定器で周波数解析された異音のスペクトル図である。It is the spectrum figure of the abnormal sound frequency-analyzed with the harmonic measuring device of FIG.

符号の説明Explanation of symbols

1 配電線
2 受電設備
4 電力用コンデンサ
5 計器用変圧器
6 計器用変流器
7 高調波測定器
8 音響センサ(マイクロフォン)
9 探査用測定器
15 可変フィルタ部
DESCRIPTION OF SYMBOLS 1 Distribution line 2 Power receiving equipment 4 Electric power capacitor 5 Instrument transformer 6 Instrument current transformer 7 Harmonic measuring instrument 8 Acoustic sensor (microphone)
9 Measuring instrument for exploration 15 Variable filter section

Claims (3)

電力系統の配電線における電圧および電流を測定してその電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定することにより、前記配電線に設けられた受電設備内の電力用コンデンサで発生する異音の高調波発生源の方向性を特定する高調波探査方法であって、
前記電力用コンデンサで発生する異音を検出してその異音の高調波次数成分を抽出し、前記異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定することを特徴とする高調波探査方法。
By measuring the voltage and current in the distribution line of the power system and determining the flow direction of the harmonic order component from the phase difference between the harmonic order component of the voltage and the harmonic order component of the current, the distribution line A harmonic exploration method for identifying the directionality of an abnormal sound harmonic generation source generated by a power capacitor in a power receiving facility provided in
The abnormal noise generated in the power capacitor is detected and the harmonic order component of the abnormal noise is extracted, and the harmonic order component of the voltage and the harmonic order component of the current corresponding to the harmonic order component of the abnormal noise are extracted. A harmonic exploration method characterized by specifying.
電力系統の配電線における電圧および電流を測定する計器用変圧器および計器用変流器と、前記計器用変圧器および計器用変流器の出力に基づいて電圧の高調波次数成分と電流の高調波次数成分を抽出する高調波測定器とを備え、電圧の高調波次数成分と電流の高調波次数成分との位相差から、その高調波次数成分の潮流方向を判定することにより、前記配電線に設けられた受電設備内の電力用コンデンサで発生する異音の高調波発生源の方向性を特定する高調波探査装置であって、
前記電力用コンデンサで発生する異音を検出する音響センサを備え、その音響センサにより得られた異音の高調波次数成分を高調波測定器で抽出し、前記異音の高調波次数成分に対応する電圧の高調波次数成分と電流の高調波次数成分を特定することを特徴とする高調波探査装置。
Instrument transformers and instrument current transformers for measuring voltage and current in distribution lines of the power system, and harmonic order components of voltage and current harmonics based on outputs of the instrument transformers and instrument current transformers A harmonic measuring device for extracting the wave order component, and determining the flow direction of the harmonic order component from the phase difference between the harmonic order component of the voltage and the harmonic order component of the current, thereby distributing the distribution line. A harmonic exploration device that identifies the directionality of an abnormal harmonic generation source generated by a power capacitor in a power receiving facility provided in
Equipped with an acoustic sensor that detects abnormal noise generated by the power capacitor, and the harmonic order component of the abnormal noise obtained by the acoustic sensor is extracted by a harmonic measuring instrument, and corresponds to the harmonic order component of the abnormal noise. A harmonic exploration device that identifies a harmonic order component of a voltage to be detected and a harmonic order component of a current.
前記音響センサにより検出された信号から電力用コンデンサ周辺で発生した雑音を除去し、電力用コンデンサから発生する異音のみを抽出する可変フィルタ部が内蔵された探査用測定器を、前記音響センサの後段に設けた請求項2に記載の高調波探査装置。   An exploration measuring instrument having a built-in variable filter unit that removes noise generated around the power capacitor from the signal detected by the acoustic sensor and extracts only the abnormal sound generated from the power capacitor is provided on the acoustic sensor. The harmonic exploration device according to claim 2 provided in the latter part.
JP2008073640A 2008-03-21 2008-03-21 Harmonic probing method and device Pending JP2009229184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073640A JP2009229184A (en) 2008-03-21 2008-03-21 Harmonic probing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073640A JP2009229184A (en) 2008-03-21 2008-03-21 Harmonic probing method and device

Publications (1)

Publication Number Publication Date
JP2009229184A true JP2009229184A (en) 2009-10-08

Family

ID=41244765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073640A Pending JP2009229184A (en) 2008-03-21 2008-03-21 Harmonic probing method and device

Country Status (1)

Country Link
JP (1) JP2009229184A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323494A (en) * 2011-05-24 2012-01-18 山东电力研究院 Method for distinguishing multiple harmonic sources
JP2012039768A (en) * 2010-08-06 2012-02-23 Toshiba Corp Device failure evaluation system
CN104090182A (en) * 2014-06-23 2014-10-08 北京交通大学 Alternating current electrified railway traction network impedance frequency characteristic testing device
CN105629071A (en) * 2016-03-28 2016-06-01 西南交通大学 Electric railway locomotive impedance testing device and method
US20160226416A1 (en) * 2012-09-25 2016-08-04 Emerson Climate Technologies, Inc. Compressor Having A Control And Diagnostic Module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9651286B2 (en) 2007-09-19 2017-05-16 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US10352602B2 (en) 2007-07-30 2019-07-16 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US10458404B2 (en) 2007-11-02 2019-10-29 Emerson Climate Technologies, Inc. Compressor sensor module
US10558229B2 (en) 2004-08-11 2020-02-11 Emerson Climate Technologies Inc. Method and apparatus for monitoring refrigeration-cycle systems
US10593575B2 (en) 2013-04-29 2020-03-17 GlobalFoundries, Inc. System and method for monitoring wafer handling and a wafer handling machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564372A (en) * 1991-08-29 1993-03-12 Fuji Electric Co Ltd Specification of higher harmonic source of distribution system
JPH06165368A (en) * 1992-11-16 1994-06-10 Mitsubishi Denki Bill Techno Service Kk High frequency trouble preventive method
JPH0974660A (en) * 1995-09-04 1997-03-18 Nissin Electric Co Ltd Harmonic detector
JP2002345172A (en) * 2001-05-18 2002-11-29 Fuji Electric Co Ltd Harmonic-monitoring system in power system
JP2004032832A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd System-cooperative inverter device
JP2006254376A (en) * 2005-03-14 2006-09-21 Swr Kk Sound collecting apparatus and acoustic analysis system employing same
JP2006294788A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Case molded capacitor, inverter circuit employing it, drive circuit of motor for driving vehicle
JP2007139434A (en) * 2005-11-15 2007-06-07 Tokyo Electric Power Co Inc:The Method and device for estimating high-voltage capacitor current

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564372A (en) * 1991-08-29 1993-03-12 Fuji Electric Co Ltd Specification of higher harmonic source of distribution system
JPH06165368A (en) * 1992-11-16 1994-06-10 Mitsubishi Denki Bill Techno Service Kk High frequency trouble preventive method
JPH0974660A (en) * 1995-09-04 1997-03-18 Nissin Electric Co Ltd Harmonic detector
JP2002345172A (en) * 2001-05-18 2002-11-29 Fuji Electric Co Ltd Harmonic-monitoring system in power system
JP2004032832A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd System-cooperative inverter device
JP2006254376A (en) * 2005-03-14 2006-09-21 Swr Kk Sound collecting apparatus and acoustic analysis system employing same
JP2006294788A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Case molded capacitor, inverter circuit employing it, drive circuit of motor for driving vehicle
JP2007139434A (en) * 2005-11-15 2007-06-07 Tokyo Electric Power Co Inc:The Method and device for estimating high-voltage capacitor current

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335906B2 (en) 2004-04-27 2019-07-02 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US10558229B2 (en) 2004-08-11 2020-02-11 Emerson Climate Technologies Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US10352602B2 (en) 2007-07-30 2019-07-16 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9651286B2 (en) 2007-09-19 2017-05-16 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US10458404B2 (en) 2007-11-02 2019-10-29 Emerson Climate Technologies, Inc. Compressor sensor module
JP2012039768A (en) * 2010-08-06 2012-02-23 Toshiba Corp Device failure evaluation system
US10884403B2 (en) 2011-02-28 2021-01-05 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US10234854B2 (en) 2011-02-28 2019-03-19 Emerson Electric Co. Remote HVAC monitoring and diagnosis
CN102323494A (en) * 2011-05-24 2012-01-18 山东电力研究院 Method for distinguishing multiple harmonic sources
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9762168B2 (en) * 2012-09-25 2017-09-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US20160226416A1 (en) * 2012-09-25 2016-08-04 Emerson Climate Technologies, Inc. Compressor Having A Control And Diagnostic Module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10274945B2 (en) 2013-03-15 2019-04-30 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US10488090B2 (en) 2013-03-15 2019-11-26 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US10775084B2 (en) 2013-03-15 2020-09-15 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US10060636B2 (en) 2013-04-05 2018-08-28 Emerson Climate Technologies, Inc. Heat pump system with refrigerant charge diagnostics
US10443863B2 (en) 2013-04-05 2019-10-15 Emerson Climate Technologies, Inc. Method of monitoring charge condition of heat pump system
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US10593575B2 (en) 2013-04-29 2020-03-17 GlobalFoundries, Inc. System and method for monitoring wafer handling and a wafer handling machine
CN104090182A (en) * 2014-06-23 2014-10-08 北京交通大学 Alternating current electrified railway traction network impedance frequency characteristic testing device
CN105629071A (en) * 2016-03-28 2016-06-01 西南交通大学 Electric railway locomotive impedance testing device and method

Similar Documents

Publication Publication Date Title
JP2009229184A (en) Harmonic probing method and device
Delgado-Arredondo et al. Methodology for fault detection in induction motors via sound and vibration signals
JP5123319B2 (en) Speaker line inspection device
US8849587B1 (en) System and method for remotely monitoring the health of a transformer
US20120253729A1 (en) Test system, test signal auxiliary device, and test signal generation method thereof
Wu Design of partial discharge real-time capture system
JP2018036113A (en) Signal processing device, and abnormality diagnostic device and abnormality diagnostic method of power apparatus
JP6281273B2 (en) Acoustic device inspection apparatus, acoustic device inspection method, and acoustic device inspection program
JP2009145205A (en) Partial discharge inspection device
JP2014052275A (en) Acoustic inspection device and method
Grebenik et al. Acoustic diagnostics of electrical origin fault modes with readily available consumer‐grade sensors
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP2019045315A (en) Partial discharge measurement device
JP2010066162A (en) Insulation monitoring apparatus
KR101641269B1 (en) Partial discharge diagnostic system using emf sensor and acoustic sensor
JP5900296B2 (en) Vibration analysis apparatus, vibration analysis method, and vibration analysis program
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
JPWO2020144734A1 (en) Arc ground fault detection method
JP5256483B2 (en) Method and apparatus for detecting partial discharge of electrical equipment
JP2010249637A (en) Method for detecting state of fluid and state detecting device
KR20160011819A (en) Apparatus and method for estimating malfunction of power feeding equipment for subway
JP6467297B2 (en) Noise voltage measuring device and noise voltage measuring method
JP2017150817A (en) Current detection device and current detection method
CN104568137A (en) Judging method of specific noise source contribution rate in noise test
KR101410734B1 (en) Signal precessing device and method for elimination partial discharge noise using FFT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120319