JP2009226315A - Electric deionized water manufacturing device and manufacturing method of deionized water - Google Patents

Electric deionized water manufacturing device and manufacturing method of deionized water Download PDF

Info

Publication number
JP2009226315A
JP2009226315A JP2008074999A JP2008074999A JP2009226315A JP 2009226315 A JP2009226315 A JP 2009226315A JP 2008074999 A JP2008074999 A JP 2008074999A JP 2008074999 A JP2008074999 A JP 2008074999A JP 2009226315 A JP2009226315 A JP 2009226315A
Authority
JP
Japan
Prior art keywords
water
chamber
deionized water
line
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008074999A
Other languages
Japanese (ja)
Other versions
JP4960288B2 (en
Inventor
Hisashi Mizuochi
久 水落
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008074999A priority Critical patent/JP4960288B2/en
Publication of JP2009226315A publication Critical patent/JP2009226315A/en
Application granted granted Critical
Publication of JP4960288B2 publication Critical patent/JP4960288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric deionized water manufacturing device capable of removing impurities in water to be treated while saving power, and a manufacturing method of deionized water using the electric deionized water manufacturing device. <P>SOLUTION: The electric deionized water manufacturing device 1 is in the single cell configuration of one layer, and an anode 10; an anode chamber 12; a cation exchange membrane 18; a cation exchange desalination chamber 22 filled with a cation exchange body 20; a cation exchange membrane 18; a thickening chamber 32 filled with an ion exchange body 30; an anion exchange membrane 24; an anion exchange desalination chamber 28 filled with the anion exchange body 26; an anion exchange membrane 24; a cathode chamber 16; and a cathode 14 are arrayed in the order. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気式脱イオン水製造装置及び該電気式脱イオン水製造装置を利用した脱イオン水の製造方法の技術に関する。   The present invention relates to a technique for an electric deionized water production apparatus and a method for producing deionized water using the electric deionized water production apparatus.

脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られている。しかし、この方法では、イオン交換樹脂がイオンで飽和されたときに、通常薬剤によって再生を行う。このような再生処理は、処理操作上の不利であり、このような点を解消するため、薬剤による再生が不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。   As a method for producing deionized water, a method of performing deionization by passing water to be treated through an ion exchange resin has been known. However, in this method, when the ion exchange resin is saturated with ions, regeneration is usually performed with a drug. Such regeneration treatment is disadvantageous in processing operation, and in order to eliminate such a point, a deionized water production method by an electric deionization method that does not require regeneration by a chemical agent has been established and has been put into practical use. .

このような脱塩処理を行う電気式脱イオン水製造装置(EDI)としては、例えば、陽極と陰極との間に、カチオン交換膜とアニオン交換膜とを交互に配置し、両膜の間にアニオン交換体が充填された脱塩室と濃縮室とを交互に形成したものが挙げられる(例えば、特許文献1参照)。そして、電気式脱イオン水製造装置では、陽極と陰極間に直流電流を流した状態で、イオン交換体が充填された脱塩室内に被処理水を、濃縮室に濃縮水を通水させることによって、被処理水中のイオンが濃縮水中に移動し、脱イオン水が得られる。   As an electric deionized water production apparatus (EDI) for performing such desalting treatment, for example, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode and a cathode, and between the two membranes. An example is one in which a desalting chamber filled with an anion exchanger and a concentration chamber are alternately formed (see, for example, Patent Document 1). In the electric deionized water production apparatus, the water to be treated is allowed to flow into the demineralization chamber filled with the ion exchanger and the concentrated water is allowed to flow into the concentration chamber while a direct current is passed between the anode and the cathode. As a result, ions in the water to be treated move into the concentrated water, and deionized water is obtained.

例えば、特許文献2には、アニオン交換膜とカチオン交換膜とで区画された脱塩室と、カチオン交換膜とアニオン交換膜とで区画され、アニオン交換膜側にアニオン交換体を充填した濃縮室とを有する電気式脱イオン水製造装置が開示されている。ここで、脱塩室に流入させる被処理水中の硬度が高い場合、例えば、水道水または水道水をRO膜処理した水を被処理水として用いると、濃縮室のアニオン交換膜面に硬度スケールが発生しやすくなる。しかし、特許文献2の装置のように、濃縮室にアニオン交換体が充填されていると、アニオン交換体が濃縮室のアニオン交換膜近傍で生じるpHシフトを緩和する役割を果たし、濃縮室のアニオン交換膜面で硬度スケールが発生することを防止できる。   For example, Patent Document 2 discloses a desalination chamber partitioned by an anion exchange membrane and a cation exchange membrane, and a concentration chamber partitioned by a cation exchange membrane and an anion exchange membrane and filled with an anion exchanger on the anion exchange membrane side. There is disclosed an electric deionized water production apparatus having: Here, when the hardness of the water to be treated flowing into the desalination chamber is high, for example, when tap water or water obtained by subjecting tap water to RO membrane treatment is used as the water to be treated, a hardness scale is formed on the anion exchange membrane surface of the concentration chamber. It tends to occur. However, as in the apparatus of Patent Document 2, when the concentration chamber is filled with an anion exchanger, the anion exchanger plays a role of mitigating the pH shift that occurs in the vicinity of the anion exchange membrane in the concentration chamber, and the anion in the concentration chamber It is possible to prevent the hardness scale from being generated on the exchange membrane surface.

特開2001−170646号公報JP 2001-170646 A 特開2004−358440号公報JP 2004-358440 A 特開2007−283228号公報JP 2007-283228 A

一方で、電気式脱イオン水製造装置の電気抵抗を低減させ、被処理水中の不純物イオンを省電力で除去することができる電気式脱イオン水製造装置の開発が、種々行われている。   On the other hand, various developments of an electrical deionized water production apparatus capable of reducing the electrical resistance of the electrical deionized water production apparatus and removing impurity ions in the water to be treated with power saving have been performed.

そこで、本発明の目的は、被処理水中の不純物を省電力で除去することができる電気式脱イオン水製造装置及び当該電気式脱イオン水製造装置を用いる脱イオン水の製造方法を提供することにある。   Then, the objective of this invention provides the manufacturing method of the deionized water which uses the electrical deionized water manufacturing apparatus which can remove the impurity in to-be-processed water by power saving, and the said electrical deionized water manufacturing apparatus. It is in.

本発明の電気式脱イオン水製造装置は、陽極を備える陽極室と陰極を備える陰極室との間に、一対のカチオン交換膜で区画され、カチオン交換体が充填されたカチオン交換脱塩室と、一対のアニオン交換膜で区画され、アニオン交換体が充填されたアニオン交換脱塩室と、前記カチオン交換脱塩室と前記アニオン交換脱塩室との間に、前記カチオン交換脱塩室のカチオン交換膜と前記アニオン交換脱塩室のアニオン交換膜とで区画され、イオン交換体が充填された濃縮室と、を有する。   The electric deionized water production apparatus of the present invention includes a cation exchange demineralization chamber that is partitioned by a pair of cation exchange membranes and is filled with a cation exchanger between an anode chamber having an anode and a cathode chamber having a cathode. An anion exchange demineralization chamber partitioned by a pair of anion exchange membranes and filled with an anion exchanger, and a cation of the cation exchange demineralization chamber between the cation exchange demineralization chamber and the anion exchange demineralization chamber A concentration chamber partitioned by an exchange membrane and an anion exchange membrane of the anion exchange desalting chamber and filled with an ion exchanger.

また、本発明の電気式脱イオン水製造装置は、陽極/陽極室/カチオン交換膜/カチオン交換体が充填されたカチオン交換脱塩室/カチオン交換膜/イオン交換体が充填された濃縮室/アニオン交換膜/アニオン交換体が充填されたアニオン交換脱塩室/アニオン交換膜/陰極室/陰極の順に配列された構成を有する。   Further, the electric deionized water production apparatus of the present invention comprises an anode / anode chamber / cation exchange membrane / cation exchange demineralization chamber filled with cation exchanger / cation exchange membrane / concentration chamber filled with ion exchanger / An anion exchange membrane / anion exchange desalting chamber filled with an anion exchanger / anion exchange membrane / cathode chamber / cathode are arranged in this order.

また、前記電気式脱イオン水製造装置において、前記イオン交換体は、アニオン交換体、カチオン交換体、又はカチオン交換体及びアニオン交換体の混合体であることが好ましい。   In the electric deionized water production apparatus, the ion exchanger is preferably an anion exchanger, a cation exchanger, or a mixture of a cation exchanger and an anion exchanger.

また、前記電気式脱イオン水製造装置において、被処理水を前記カチオン交換脱塩室から前記アニオン交換脱塩室の順序又は前記アニオン交換脱塩室から前記カチオン交換脱塩室の順序で通水させる脱塩処理ラインを備えることが好ましい。   Further, in the electric deionized water production apparatus, water to be treated is passed through the cation exchange demineralization chamber in the order of the anion exchange demineralization chamber or the anion exchange demineralization chamber in the order of the cation exchange demineralization chamber. It is preferable to provide a desalting treatment line.

また、前記電気式脱イオン水製造装置において、pHが酸性である被処理水を前記アニオン交換脱塩室から前記カチオン交換脱塩室の順序で通水させる脱塩処理ラインを備えることが好ましい。   The electric deionized water production apparatus preferably includes a desalting treatment line for passing water to be treated having an acidic pH from the anion exchange desalting chamber in the order of the cation exchange desalting chamber.

また、前記電気式脱イオン水製造装置において、pHがアルカリ性である被処理水を前記カチオン交換脱塩室から前記アニオン交換脱塩室の順序で通水させる脱塩処理ラインを備えることが好ましい。   The electric deionized water production apparatus preferably includes a desalting treatment line for passing water to be treated having an alkaline pH in the order of the cation exchange demineralization chamber to the anion exchange demineralization chamber.

また、前記電気式脱イオン水製造装置において、前記脱塩処理ラインとは別に、被処理水を前記濃縮室に通水させる濃縮水ラインを有することが好ましい。   Moreover, in the said electrical deionized water manufacturing apparatus, it is preferable to have the concentrated water line which lets a to-be-processed water flow into the said concentration chamber separately from the said desalination processing line.

また、前記電気式脱イオン水製造装置において、被処理水が前記カチオン交換脱塩室及び前記アニオン交換脱塩室で脱塩処理されることによって得られた処理水の一部を電極水として前記陰極室から前記陽極室の順序で通水させる電極水ラインを有することが好ましい。   In the electric deionized water production apparatus, a part of treated water obtained by subjecting treated water to desalination treatment in the cation exchange demineralization chamber and the anion exchange demineralization chamber is used as electrode water. It is preferable to have an electrode water line for passing water in the order of the anode chamber from the cathode chamber.

また、前記電気式脱イオン水製造装置において、被処理水が前記カチオン交換脱塩室及び前記アニオン交換脱塩室で脱塩処理されることによって得られた処理水の一部を電極水として前記陰極室から前記陽極室の順序で通水させる電極水ラインと、前記処理水の一部を前記濃縮室に通水させる濃縮水ラインと、を有することが好ましい。   In the electric deionized water production apparatus, a part of treated water obtained by subjecting treated water to desalination treatment in the cation exchange demineralization chamber and the anion exchange demineralization chamber is used as electrode water. It is preferable to have an electrode water line for passing water from the cathode chamber in the order of the anode chamber, and a concentrated water line for passing a part of the treated water to the concentration chamber.

また、前記電気式脱イオン水製造装置において、前記カチオン交換脱塩室及び前記アニオン交換脱塩室に通水させる被処理水を貯留するタンクと、前記電極水ラインを通過した電極水を前記タンクに供給する循環ラインと、を有することが好ましい。   Further, in the electric deionized water production apparatus, a tank for storing treated water to be passed through the cation exchange demineralization chamber and the anion exchange demineralization chamber, and electrode water that has passed through the electrode water line are stored in the tank. It is preferable to have a circulation line to be supplied to.

また、前記電気式脱イオン水製造装置において、被処理水が前記カチオン交換脱塩室及び前記アニオン交換脱塩室で脱塩処理されることによって得られた処理水の一部を電極水として前記陰極室から前記陽極室の順序で通水させる電極水ラインと、前記電極水ラインを通過した電極水を前記濃縮室に通水させる濃縮水ラインと、を有することが好ましい。   In the electric deionized water production apparatus, a part of treated water obtained by subjecting treated water to desalination treatment in the cation exchange demineralization chamber and the anion exchange demineralization chamber is used as electrode water. It is preferable to have an electrode water line for passing water from the cathode chamber in the order of the anode chamber, and a concentrated water line for passing electrode water that has passed through the electrode water line to the concentration chamber.

また、前記電気式脱イオン水製造装置は、燃料電池から排出される凝縮水を脱塩処理する燃料電池用の水処理装置であることが好ましい。   Moreover, it is preferable that the said electrical deionized water manufacturing apparatus is a water treatment apparatus for fuel cells which desalinates the condensed water discharged | emitted from a fuel cell.

また、本発明の脱イオン水の製造方法は、前記電気式脱イオン水製造装置を利用して、被処理水を脱塩処理し脱イオン水を製造する。   Moreover, the manufacturing method of the deionized water of this invention uses the said electrical deionized water manufacturing apparatus, demineralizes the to-be-processed water, and manufactures deionized water.

また、前記脱イオン水の製造方法であって、前記被処理水は、燃料電池から排出される凝縮水であることが好ましい。   Moreover, it is a manufacturing method of the said deionized water, Comprising: It is preferable that the said to-be-processed water is the condensed water discharged | emitted from a fuel cell.

本発明によれば、被処理水中の不純物を省電力で除去することができる。   According to the present invention, impurities in the for-treatment water can be removed with power saving.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る電気式脱イオン水製造装置の概略構成図である。図1に示す電気式脱イオン水製造装置1は、陽極10/陽極室12/カチオン交換膜18/カチオン交換体20が充填されたカチオン交換脱塩室22/カチオン交換膜18/イオン交換体30が充填された濃縮室32/アニオン交換膜24/アニオン交換体26が充填されたアニオン交換脱塩室28/アニオン交換膜24/陰極室16/陰極14の順に配列したものである。   FIG. 1 is a schematic configuration diagram of an electric deionized water production apparatus according to this embodiment. The electric deionized water production apparatus 1 shown in FIG. 1 includes an anode 10 / anode chamber 12 / cation exchange membrane 18 / cation exchange demineralization chamber 22 / cation exchange membrane 18 / ion exchanger 30 filled with a cation exchanger 20. Are arranged in the order of the concentration chamber 32 filled with the anion exchange membrane 24 / anion exchange desalting chamber 28 filled with the anion exchanger 26 / anion exchange membrane 24 / cathode chamber 16 / cathode 14.

但し、本実施形態に電気式脱イオン水製造装置は、陽極10を備える陽極室12と陰極14を備える陰極室16との間に、一対のカチオン交換膜18で区画され、カチオン交換体20が充填されたカチオン交換脱塩室22と、一対のアニオン交換膜24で区画され、アニオン交換体26が充填されたアニオン交換脱塩室28と、カチオン交換脱塩室22とアニオン交換脱塩室28との間に、カチオン交換膜18とアニオン交換膜24とで区画され、イオン交換体30が充填された濃縮室32と、を有するものであれば、上記脱塩室及び濃縮室の構成を単セルとして、これを複数積層したものであってもよい。なお、積層する場合は、隣接するカチオン交換脱塩室22とアニオン交換脱塩室28とを区画するイオン交換膜をカチオン交換膜18又はアニオン交換膜24のどちらか1枚にすることが好ましい。   However, the electric deionized water production apparatus according to the present embodiment is partitioned by a pair of cation exchange membranes 18 between an anode chamber 12 having an anode 10 and a cathode chamber 16 having a cathode 14. An anion exchange demineralization chamber 28 which is partitioned by a filled cation exchange desalting chamber 22 and a pair of anion exchange membranes 24 and is filled with an anion exchanger 26, a cation exchange demineralization chamber 22 and an anion exchange desalination chamber 28. Between the cation exchange membrane 18 and the anion exchange membrane 24, and a concentrating chamber 32 filled with the ion exchanger 30, the configuration of the desalting chamber and the concentrating chamber is simply A cell may be a stack of a plurality of cells. In addition, when laminating | stacking, it is preferable that the ion exchange membrane which divides the adjacent cation exchange demineralization chamber 22 and the anion exchange demineralization chamber 28 is either one of the cation exchange membrane 18 or the anion exchange membrane 24.

本実施形態における電気式脱イオン水製造装置1は、上記単セルを複数積層して大流量向けの水処理装置として用いるより、上記単セル1つでも十分に被処理水の脱塩処理が可能な小流量向けの水処理装置として用いることが好ましい。小流量向けの水処理装置としては、例えば、家庭用電源、車両用電源等に用いられる燃料電池用の水処理装置等が挙げられる。燃料電池用の水処理装置は、燃料電池から排出される凝縮水に含まれる炭酸成分、アルカリ金属等の不純物を除去するために用いられる。不純物を除去した処理水は、燃料電池を構成する電解質膜の加湿用水等に利用される。以下本実施形態では、図1に示すような1つの単セルを有する電気式脱イオン水製造装置を例に説明する。   The electric deionized water production apparatus 1 in the present embodiment can sufficiently demineralize the water to be treated even with one single cell, rather than stacking a plurality of the single cells and using it as a water treatment apparatus for a large flow rate. It is preferable to use as a water treatment device for a small flow rate. Examples of the water treatment device for small flow rate include a water treatment device for a fuel cell used for a household power source, a vehicle power source, and the like. A water treatment device for a fuel cell is used to remove impurities such as carbonic acid components and alkali metals contained in condensed water discharged from the fuel cell. The treated water from which impurities have been removed is used as humidifying water for the electrolyte membrane constituting the fuel cell. Hereinafter, in this embodiment, an electric deionized water production apparatus having one single cell as shown in FIG. 1 will be described as an example.

電気式脱イオン水製造装置1において、一対のカチオン交換膜18で区画されたカチオン交換脱塩室22には、カチオン交換体20が充填され、一対のアニオン交換膜24で区画されたアニオン交換脱塩室28には、アニオン交換体26が充填されている。   In the electric deionized water production apparatus 1, the cation exchange demineralization chamber 22 partitioned by the pair of cation exchange membranes 18 is filled with the cation exchanger 20 and the anion exchange deionization partitioned by the pair of anion exchange membranes 24. The salt chamber 28 is filled with an anion exchanger 26.

カチオン交換脱塩室22とアニオン交換脱塩室28との間に設けられ、カチオン交換膜18とアニオン交換膜24とで区画された濃縮室32には、イオン交換体30が充填されている。濃縮室32に充填されるイオン交換体30は、アニオン交換体、カチオン交換体、又はアニオン交換体とカチオン交換体との混合体等であるが、処理対象となる被処理水の水質等に応じて適宜選択されることが好ましい。例えば、硬度成分をほとんど含まない被処理水の場合には、硬度スケールの発生を考慮する必要はないので、濃縮室32に充填されるイオン交換体30にカチオン交換体を用いることができる。硬度成分をほとんど含まない被処理水としては、例えば、燃料電池から排出される凝縮水等が挙げられる。一般的にカチオン交換体は、アニオン交換体よりも導電性が高い。従って、濃縮室32にアニオン交換体を充填するよりカチオン交換体を充填した方が、濃縮室32の電気抵抗を減少させ、電気式脱イオン水製造装置1の省電力化を図ることが可能となる。また、一般的に、カチオン交換体は、アニオン交換体より熱的安定性が高いため、濃縮室32の耐熱性を向上させることができる。一方、処理対象となる被処理水が、例えば水道水または水道水をRO膜等で処理した水等である場合には、通常、硬度成分が含まれるため、硬度スケールの発生を抑制することができる点で、濃縮室32に充填されるイオン交換体30として、アニオン交換体を用いることが好ましい。濃縮室32にアニオン交換体が充填されていると、アニオン交換体が、濃縮室32のアニオン交換膜24近傍で生じるpHシフトを緩和する役割を果たし、濃縮室32のアニオン交換膜24面で硬度スケールが発生することを防止できる。   A concentration chamber 32 provided between the cation exchange desalting chamber 22 and the anion exchange desalting chamber 28 and partitioned by the cation exchange membrane 18 and the anion exchange membrane 24 is filled with an ion exchanger 30. The ion exchanger 30 filled in the concentration chamber 32 is an anion exchanger, a cation exchanger, a mixture of an anion exchanger and a cation exchanger, or the like, depending on the quality of the water to be treated. It is preferable to select as appropriate. For example, in the case of water to be treated containing almost no hardness component, it is not necessary to consider the generation of a hardness scale, so that a cation exchanger can be used for the ion exchanger 30 filled in the concentration chamber 32. Examples of water to be treated that contains almost no hardness component include condensed water discharged from a fuel cell. In general, a cation exchanger has higher conductivity than an anion exchanger. Therefore, it is possible to reduce the electric resistance of the concentration chamber 32 and to save power in the electric deionized water production apparatus 1 when the concentration chamber 32 is filled with the cation exchanger rather than the anion exchanger. Become. In general, since the cation exchanger has higher thermal stability than the anion exchanger, the heat resistance of the concentrating chamber 32 can be improved. On the other hand, when the water to be treated is, for example, tap water or water obtained by treating tap water with an RO membrane or the like, since the hardness component is usually included, the occurrence of a hardness scale can be suppressed. In view of the possibility, an anion exchanger is preferably used as the ion exchanger 30 filled in the concentration chamber 32. When the concentration chamber 32 is filled with an anion exchanger, the anion exchanger plays a role of mitigating the pH shift that occurs in the vicinity of the anion exchange membrane 24 in the concentration chamber 32, and the hardness of the anion exchange membrane 24 surface of the concentration chamber 32 is increased. Scale can be prevented from occurring.

また、濃縮室32からカチオン交換脱塩室22へ遊離炭酸が移動することを抑制し、処理水の水質を向上させることができる点で、濃縮室32に充填されるイオン交換体30として、アニオン交換体とカチオン交換体との混合体を用いることが好ましい。濃縮室32に混合体を充填することにより、アニオン交換脱塩室28から濃縮室32へ移動してきた炭酸イオンが、混合体中のアニオン交換体を移動してカチオン交換膜18に行き着く前に、混合体中のカチオン交換体から供給される水素イオンの作用により遊離炭酸として濃縮水(被処理水)中に放出される。このため、カチオン交換膜18近傍の遊離炭酸濃度が高くなることを防止し、処理水質への影響が緩和される。   In addition, as an ion exchanger 30 filled in the concentration chamber 32, anion can be suppressed by suppressing the movement of free carbonic acid from the concentration chamber 32 to the cation exchange desalting chamber 22 and improving the quality of the treated water. It is preferable to use a mixture of an exchanger and a cation exchanger. By filling the concentration chamber 32 with the mixture, before the carbonate ions that have moved from the anion exchange desalting chamber 28 to the concentration chamber 32 move through the anion exchanger in the mixture and reach the cation exchange membrane 18, Free carbonic acid is released into concentrated water (treated water) by the action of hydrogen ions supplied from the cation exchanger in the mixture. For this reason, it is prevented that the free carbonic acid concentration in the vicinity of the cation exchange membrane 18 becomes high, and the influence on the treated water quality is mitigated.

また、電気式脱イオン水製造装置1において、陽極10とカチオン交換脱塩室22との間に形成される陽極室12には、必要に応じて、カチオン交換体20が充填され、陰極14とアニオン交換脱塩室28との間に形成される陰極室16には、必要に応じてアニオン交換体26が充填される。   In the electric deionized water production apparatus 1, the anode chamber 12 formed between the anode 10 and the cation exchange demineralization chamber 22 is filled with a cation exchanger 20 as necessary. The cathode chamber 16 formed between the anion exchange desalting chamber 28 is filled with an anion exchanger 26 as necessary.

また、カチオン交換体とアニオン交換体との接点では電気抵抗が高いことが判っている。本実施形態の電気式脱イオン水製造装置1の場合、濃縮室32にカチオン交換体、アニオン交換体のどちらを充填しても、カチオン交換体とアニオン交換体との接点数が少ない構成であるため、電気抵抗の上昇を抑え、装置の省電力化を図ることができる。   It has also been found that the electrical resistance is high at the contact point between the cation exchanger and the anion exchanger. In the case of the electric deionized water production apparatus 1 of the present embodiment, the number of contact points between the cation exchanger and the anion exchanger is small even if the concentration chamber 32 is filled with either the cation exchanger or the anion exchanger. Therefore, an increase in electrical resistance can be suppressed and power saving of the device can be achieved.

電気式脱イオン水製造装置1は、被処理水をアニオン交換脱塩室28からカチオン交換脱塩室22の順序で通水させる脱塩処理ラインを有する。脱塩処理ラインは、第一ライン34、第二ライン36、第三ライン38を備える。第一ライン34は、アニオン交換脱塩室28の入口に接続されている。第二ライン36は、アニオン交換脱塩室28の出口及びカチオン交換脱塩室22の入口に接続されている。第三ライン38は、カチオン交換脱塩室22の出口に接続されている。   The electric deionized water production apparatus 1 has a demineralization treatment line for passing water to be treated in the order of the anion exchange demineralization chamber 28 to the cation exchange demineralization chamber 22. The desalination treatment line includes a first line 34, a second line 36, and a third line 38. The first line 34 is connected to the inlet of the anion exchange desalting chamber 28. The second line 36 is connected to the outlet of the anion exchange desalting chamber 28 and the inlet of the cation exchange desalting chamber 22. The third line 38 is connected to the outlet of the cation exchange desalting chamber 22.

また、電気式脱イオン水製造装置1は、濃縮室32に被処理水を通水させる濃縮水ラインを有する。濃縮水ラインは、濃縮水流入ライン40及び濃縮水流出ライン42を備える。濃縮水流入ライン40は、濃縮室32の入口に接続され、濃縮水流出ライン42は濃縮室32の出口に接続されている。また、電気式脱イオン水製造装置1は、アニオン交換脱塩室28及びカチオン交換脱塩室22で脱塩処理された処理水の一部を電極水として陰極室16から陽極室12の順序で通水させる電極水ラインを有する。電極水ラインは、電極水第一ライン44、電極水第二ライン46及び電極水第三ライン48を備える。電極水第一ライン44は、脱塩処理ラインの第3ライン38から分岐して陰極室16の入口に接続され、電極水第二ライン46は、陰極室16の出口及び陽極室12の入口に接続され、電極水第三ライン48は、陽極室12の出口に接続されている。   Moreover, the electric deionized water production apparatus 1 has a concentrated water line that allows the water to be treated to flow through the concentration chamber 32. The concentrated water line includes a concentrated water inflow line 40 and a concentrated water outflow line 42. The concentrated water inflow line 40 is connected to the inlet of the concentrating chamber 32, and the concentrated water outflow line 42 is connected to the outlet of the concentrating chamber 32. Moreover, the electric deionized water production apparatus 1 uses a part of treated water desalted in the anion exchange desalting chamber 28 and the cation exchange desalting chamber 22 as electrode water in the order of the cathode chamber 16 to the anode chamber 12. It has an electrode water line for water flow. The electrode water line includes an electrode water first line 44, an electrode water second line 46, and an electrode water third line 48. The electrode water first line 44 branches from the third line 38 of the desalination treatment line and is connected to the inlet of the cathode chamber 16, and the electrode water second line 46 is connected to the outlet of the cathode chamber 16 and the inlet of the anode chamber 12. The electrode water third line 48 is connected to the outlet of the anode chamber 12.

電極水ラインは、濃縮水ラインと同様に、被処理水を陽極室12及び陰極室16に通水させる構成であってもよいが、被処理水中に含まれるアニオン、カチオン等の不純物が、陽極室12のカチオン交換膜18又は陰極室16のアニオン交換膜24を透過して、カチオン交換脱塩室22又はアニオン交換脱塩室28に移動し、処理水の水質を悪化させる場合がある。そのため、不純物が除去されている処理水の一部を電極水として電極水ラインに流して、陽極室12及び陰極室16に通水させることにより、各脱塩室(22,28)に移動する不純物の量を減少させ、処理水の水質を向上させることができる。また、電極水ラインは、処理水の一部を電極水として陽極室12から陰極室16の順序で通水させる構成であってもよいが、陽極室12では、Hが発生するため、陽極室12で発生したHが陰極室16に流れ、陰極室16に充填されたアニオン交換体26、アニオン交換膜24を劣化させるおそれがある。そのため、電極水ラインは、陽極室12で発生するHが陰極室16に流れないように、処理水の一部を電極水として陰極室16から陽極室12の順序で通水させる構成とすることが好ましい。 Similarly to the concentrated water line, the electrode water line may have a configuration in which the water to be treated is passed through the anode chamber 12 and the cathode chamber 16, but impurities such as anions and cations contained in the water to be treated are anodes. The cation exchange membrane 18 in the chamber 12 or the anion exchange membrane 24 in the cathode chamber 16 may permeate and move to the cation exchange desalting chamber 22 or the anion exchange desalting chamber 28 to deteriorate the quality of the treated water. Therefore, a part of the treated water from which impurities are removed flows as electrode water to the electrode water line and is passed through the anode chamber 12 and the cathode chamber 16 to move to the respective desalting chambers (22, 28). The amount of impurities can be reduced and the quality of treated water can be improved. In addition, the electrode water line may be configured such that a part of the treated water is passed as electrode water in the order of the anode chamber 12 to the cathode chamber 16, but H 2 O 2 is generated in the anode chamber 12. The H 2 O 2 generated in the anode chamber 12 may flow into the cathode chamber 16, and the anion exchanger 26 and the anion exchange membrane 24 filled in the cathode chamber 16 may be deteriorated. Therefore, the electrode water line is configured to pass a part of the treated water as electrode water in the order of the cathode chamber 16 to the anode chamber 12 so that H 2 O 2 generated in the anode chamber 12 does not flow to the cathode chamber 16. It is preferable that

本実施形態に係る電気式脱イオン水製造装置1によって、脱イオン水を製造する場合の運転方法の一例を以下に説明する。まず、陽極10と陰極14間に直流電流を流した状態で、脱塩処理ラインの第一ライン34及び濃縮水流入ライン40から被処理水を流入させる。第一ライン34から流入した被処理水は、アニオン交換脱塩室28に供給され、アニオン交換体26の充填層を通過する際に、被処理水中のアニオンが除去される。更に、被処理水はアニオン交換脱塩室28から排出され、脱塩処理ラインの第二ライン36を流れ、カチオン交換脱塩室22に供給される。そして、カチオン交換体20の充填層を通過する際に被処理水中のカチオンが除去され、脱塩処理ラインの第三ライン38から処理水(脱イオン水)が得られる。また、得られた処理水の一部は電極水として、電極水第一ライン44を流れ、陰極室16に供給される。また、陰極室16を通過した電極水は、電極水第二ライン46を流れ、陽極室12に供給される。そして、陽極室12を通過した電極水は、電極水第三ライン48から排出される。また、濃縮水流入ライン40から濃縮室32に供給された被処理水は、カチオン交換脱塩室22からカチオン交換膜18を介して移動してくるカチオン、アニオン交換脱塩室28からアニオン交換膜24を介して移動してくるアニオンを受け取り、カチオン及びアニオン等の不純物を濃縮した濃縮水として濃縮水流出ライン42から流出される。上述の運転によって、被処理水中の不純物が除去された処理水(脱イオン水)が得られる。   An example of an operation method in the case of producing deionized water by the electric deionized water production apparatus 1 according to this embodiment will be described below. First, water to be treated is caused to flow from the first line 34 and the concentrated water inflow line 40 of the desalination treatment line in a state where a direct current is passed between the anode 10 and the cathode 14. The water to be treated which has flowed from the first line 34 is supplied to the anion exchange desalting chamber 28, and when passing through the packed bed of the anion exchanger 26, the anions in the water to be treated are removed. Further, the water to be treated is discharged from the anion exchange desalting chamber 28, flows through the second line 36 of the desalting treatment line, and is supplied to the cation exchange desalting chamber 22. And when passing through the packed bed of the cation exchanger 20, cations in the water to be treated are removed, and treated water (deionized water) is obtained from the third line 38 of the desalting treatment line. Further, part of the treated water obtained flows as electrode water through the electrode water first line 44 and is supplied to the cathode chamber 16. The electrode water that has passed through the cathode chamber 16 flows through the electrode water second line 46 and is supplied to the anode chamber 12. Then, the electrode water that has passed through the anode chamber 12 is discharged from the electrode water third line 48. In addition, the water to be treated supplied from the concentrated water inflow line 40 to the concentration chamber 32 is a cation that moves from the cation exchange desalting chamber 22 through the cation exchange membrane 18, and an anion exchange membrane from the anion exchange desalting chamber 28. The anion moving through 24 is received and discharged from the concentrated water outflow line 42 as concentrated water in which impurities such as cations and anions are concentrated. By the above operation, treated water (deionized water) from which impurities in the for-treatment water are removed is obtained.

本実施形態の電気式脱イオン水製造装置1は、特にpHが酸性を示す被処理水において、効率的に脱塩処理を行うことが可能な装置である。すなわち、まず、酸性を示す被処理水をアニオン交換体26が充填されたアニオン交換脱塩室28に通水し、被処理水中の除去対象であるアニオンを除去する。これにより、被処理水中にはカチオンが残り、これらの対イオンとして水解離により生じた水酸化物イオンが増え、アニオン除去後の被処理水のpHがアルカリ性寄りになる。従って、カチオン交換体20を充填したカチオン交換脱塩室22に供給される被処理水がアルカリ性寄りとなるため、被処理水中において除去される水素イオンが少なくなり、結果として被処理水中の除去対象であるカチオンが除去され易くなって、被処理水中の不純物の除去効率が向上する。   The electric deionized water production apparatus 1 of the present embodiment is an apparatus that can efficiently perform a desalting treatment, particularly in water to be treated whose pH is acidic. That is, first, the water to be treated that exhibits acidity is passed through the anion exchange desalting chamber 28 filled with the anion exchanger 26 to remove the anion that is to be removed from the water to be treated. As a result, cations remain in the water to be treated, and hydroxide ions generated by water dissociation as these counter ions increase, and the pH of the water to be treated after the removal of anions becomes close to alkalinity. Accordingly, since the water to be treated supplied to the cation exchange desalting chamber 22 filled with the cation exchanger 20 is close to alkalinity, the number of hydrogen ions removed in the water to be treated is reduced. This makes it easier to remove the cation and improves the removal efficiency of impurities in the water to be treated.

しかし、アルカリ性を示す被処理水をアニオン交換体26が充填されたアニオン交換脱塩室28に供給すると、被処理水中に多量に存在する水酸化物イオンがアニオン交換体26に捕捉され、濃縮室32へ移動するため、除去対象であるアニオンを効率的に除去することが出来ない。そうすると、除去対象であるアニオンが残留した被処理水が、カチオン交換体20を充填したカチオン交換脱塩室22に流入しても、被処理水中に残留したアニオンは除去されず、処理水中の不純物の除去効率が低下する。   However, when the water to be treated exhibiting alkalinity is supplied to the anion exchange desalting chamber 28 filled with the anion exchanger 26, a large amount of hydroxide ions present in the water to be treated is captured by the anion exchanger 26, and the concentration chamber. Since it moves to 32, the anion which is a removal object cannot be removed efficiently. Then, even if the to-be-treated water in which the anion to be removed remains flows into the cation exchange desalting chamber 22 filled with the cation exchanger 20, the anion remaining in the to-be-treated water is not removed, and impurities in the treated water. The removal efficiency is reduced.

例えば、燃料電池から排出される凝縮水は炭酸成分を多く含むため、pHは酸性である。そのため、燃料電池の凝縮水を脱塩処理し、脱イオン水を製造する燃料電池用水処理装置としては、上記説明したように、被処理水(凝縮水)をアニオン交換脱塩室28からカチオン交換脱塩室22の順で通水させる脱塩処理ラインを有する電気式脱イオン水製造装置であることが好ましい。   For example, since the condensed water discharged from the fuel cell contains a large amount of carbonic acid components, the pH is acidic. Therefore, as described above, the fuel cell water treatment device that demineralizes the condensed water of the fuel cell to produce deionized water exchanges the water to be treated (condensed water) from the anion exchange demineralization chamber 28 with cation exchange. It is preferable that the apparatus is an electric deionized water production apparatus having a desalting treatment line for passing water in the order of the desalting chamber 22.

本実施形態では、アニオン交換脱塩室28に流入する被処理水の流れは、上昇方向であり、カチオン交換脱塩室22に流入する被処理水の流れは、下降方向であるが、これに制限されるものではない。また、電極室(陽極室12、陰極室16)及び濃縮室32に流れる被処理水、電極水の流れは、特に制限されるものではないが、上昇方向であることが好ましい。   In this embodiment, the flow of the water to be treated flowing into the anion exchange desalting chamber 28 is in the upward direction, and the flow of the water to be treated flowing into the cation exchange desalting chamber 22 is in the downward direction. It is not limited. Further, the flow of the water to be treated and the electrode water flowing in the electrode chamber (the anode chamber 12 and the cathode chamber 16) and the concentration chamber 32 is not particularly limited, but is preferably in the upward direction.

次に、本発明の他の実施形態として、カチオン交換体を充填したカチオン交換脱塩室からアニオン交換体を充填したアニオン交換脱塩室の順で被処理水を通水させる電気式脱イオン水製造装置について説明する。   Next, as another embodiment of the present invention, electric deionized water that allows the water to be treated to flow in the order from the cation exchange desalting chamber filled with the cation exchanger to the anion exchange desalting chamber filled with the anion exchanger. A manufacturing apparatus will be described.

図2は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図2に示す電気式脱イオン水製造装置2において、図1に示す電気式脱イオン水製造装置1と同様の構成には、同一の符合を付し、その説明を省略する。   FIG. 2 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. In the electric deionized water production apparatus 2 shown in FIG. 2, the same components as those in the electric deionized water production apparatus 1 shown in FIG.

電気式脱イオン水製造装置2は、被処理水をカチオン交換脱塩室22からアニオン交換脱塩室28の順序で通水させる脱塩処理ラインを有する。脱塩処理ラインは、第一ライン50、第二ライン52、第三ライン54を備える。第一ライン50は、カチオン交換脱塩室22の入口に接続されている。第二ライン52は、カチオン交換脱塩室22の出口及びアニオン交換脱塩室28の入口に接続されている。第三ライン54は、アニオン交換脱塩室28の出口に接続されている。また、濃縮室32に被処理水を通水させる濃縮水ライン(濃縮水流入ライン40、濃縮水流出ライン42)、カチオン交換脱塩室22及びアニオン交換脱塩室28で脱塩処理された処理水の一部を電極水として陰極室16から陽極室12の順序で通水させる電極水ライン(電極水第一ライン44、電極水第二ライン46、電極水第三ライン48)の構成は、図1に示す電気式脱イオン水製造装置1と同様の構成であるため、その説明を省略する。   The electric deionized water production apparatus 2 has a demineralization treatment line for passing water to be treated in order from the cation exchange demineralization chamber 22 to the anion exchange demineralization chamber 28. The desalting treatment line includes a first line 50, a second line 52, and a third line 54. The first line 50 is connected to the inlet of the cation exchange desalting chamber 22. The second line 52 is connected to the outlet of the cation exchange desalting chamber 22 and the inlet of the anion exchange desalting chamber 28. The third line 54 is connected to the outlet of the anion exchange desalting chamber 28. Further, the desalination treatment in the concentrated water line (concentrated water inflow line 40, concentrated water outflow line 42) for passing the water to be treated to the concentrating chamber 32, the cation exchange desalting chamber 22 and the anion exchange desalting chamber 28. The configuration of the electrode water line (electrode water first line 44, electrode water second line 46, electrode water third line 48) through which a part of water is passed in the order of cathode chamber 16 to anode chamber 12 as electrode water is as follows: Since it is the same structure as the electric deionized water manufacturing apparatus 1 shown in FIG. 1, the description is abbreviate | omitted.

本実施形態に係る電気式脱イオン水製造装置2によって、脱イオン水を製造する場合の運転方法の一例を以下に説明する。まず、陽極10と陰極14間に直流電流を流した状態で、脱塩処理ラインの第一ライン50及び濃縮水流入ライン40から被処理水を流入させる。第一ライン50から流入した被処理水は、カチオン交換脱塩室22に供給され、カチオン交換体20の充填層を通過する際に、被処理水中のカチオンが除去される。更に、被処理水は、カチオン交換脱塩室22から排出され、脱塩処理ラインの第二ライン52を流れ、アニオン交換脱塩室28に供給される。そして、アニオン交換体26の充填層を通過する際に、被処理水中のアニオンが除去され、脱塩処理ラインの第三ライン54から処理水(脱イオン水)が得られる。また、得られた処理水の一部は電極水として、電極水第一ライン44を流れ、陰極室16に供給される。また、陰極室16を通過した電極水は、電極水第二ライン46を流れ、陽極室12に供給される。そして、陽極室12を通過した電極水は、電極水第三ライン48から排出される。また、濃縮水流入ライン40から濃縮室32に供給された被処理水は、カチオン交換脱塩室22からカチオン交換膜18を介して移動してくるカチオン、アニオン交換脱塩室28からアニオン交換膜24を介して移動しくるアニオンを受け取り、カチオン及びアニオン等の不純物を濃縮した濃縮水として濃縮水流出ライン42から流出される。上述の運転によって、被処理水中の不純物が除去された処理水(脱イオン水)が得られる。   An example of an operation method in the case of producing deionized water by the electric deionized water production apparatus 2 according to this embodiment will be described below. First, water to be treated is caused to flow from the first line 50 of the desalting treatment line and the concentrated water inflow line 40 in a state where a direct current is passed between the anode 10 and the cathode 14. The water to be treated that has flowed from the first line 50 is supplied to the cation exchange desalting chamber 22, and cations in the water to be treated are removed when passing through the packed bed of the cation exchanger 20. Further, the water to be treated is discharged from the cation exchange desalting chamber 22, flows through the second line 52 of the desalting treatment line, and is supplied to the anion exchange desalting chamber 28. And when passing through the packed bed of the anion exchanger 26, the anion in the water to be treated is removed, and treated water (deionized water) is obtained from the third line 54 of the desalting treatment line. Further, part of the treated water obtained flows as electrode water through the electrode water first line 44 and is supplied to the cathode chamber 16. The electrode water that has passed through the cathode chamber 16 flows through the electrode water second line 46 and is supplied to the anode chamber 12. Then, the electrode water that has passed through the anode chamber 12 is discharged from the electrode water third line 48. In addition, the water to be treated supplied from the concentrated water inflow line 40 to the concentration chamber 32 is a cation that moves from the cation exchange desalting chamber 22 through the cation exchange membrane 18, and an anion exchange membrane from the anion exchange desalting chamber 28. The anion which moves through 24 is received, and it flows out from the concentrated water outflow line 42 as concentrated water in which impurities such as cations and anions are concentrated. By the above operation, treated water (deionized water) from which impurities in the for-treatment water are removed is obtained.

本実施形態の電気式脱イオン水製造装置2は、特にpHがアルカリ性を示す被処理水において、効率的に脱塩処理を行うことが可能な装置である。すなわち、まず、アルカリ性を示す被処理水をカチオン交換体20が充填されたカチオン交換脱塩室22に通水し、被処理水中の除去対象であるカチオンを除去する。これにより、被処理水中にはアニオンが残り、これらの対イオンとして水解離により生じた水素イオンが増え、カチオン除去後の被処理水のpHが酸性寄りになる。従って、アニオン交換体26を充填したアニオン交換脱塩室28に流入する被処理水が酸性寄りとなるため、被処理水中において除去される水酸化物イオンが少なくなり、結果として処理水中の除去対象であるアニオンが除去され易くなって、被処理水中の不純物の除去効率が向上する。   The electric deionized water production apparatus 2 of the present embodiment is an apparatus that can efficiently perform a desalting treatment particularly in water to be treated whose pH is alkaline. That is, first, the water to be treated that exhibits alkalinity is passed through the cation exchange desalting chamber 22 filled with the cation exchanger 20, and the cations to be removed from the water to be treated are removed. As a result, anions remain in the water to be treated, hydrogen ions generated by water dissociation as these counter ions increase, and the pH of the water to be treated after cation removal becomes acidic. Accordingly, since the water to be treated flowing into the anion exchange desalting chamber 28 filled with the anion exchanger 26 becomes closer to acidity, the amount of hydroxide ions removed in the water to be treated is reduced, and as a result, the object to be removed in the treated water. As a result, the removal efficiency of impurities in the water to be treated is improved.

しかし、酸性を示す被処理水をカチオン交換体20が充填されたカチオン交換脱塩室22に供給すると、被処理水中に多量に存在する水素イオンがカチオン交換体20に捕捉され、濃縮室32へ移動するため、除去対象であるカチオンを効率的に除去することが出来ない。そうすると、除去対象であるカチオンが残留した被処理水が、アニオン交換体26を充填したアニオン交換脱塩室28に流入しても、被処理水中に残留したカチオンは除去されず、処理水中の不純物の除去効率が低下する。   However, when the water to be treated that shows acidity is supplied to the cation exchange desalting chamber 22 filled with the cation exchanger 20, hydrogen ions present in a large amount in the water to be treated are captured by the cation exchanger 20 and are supplied to the concentration chamber 32. Since it moves, the cation which is a removal object cannot be removed efficiently. Then, even if the water to be treated in which cations to be removed remain flows into the anion exchange desalting chamber 28 filled with the anion exchanger 26, the cations remaining in the water to be treated are not removed, and impurities in the treated water. The removal efficiency is reduced.

また、本実施形態の電気式脱イオン水製造装置は、図1に示す脱塩処理ラインと、図2に示す脱塩処理ラインと、pHセンサとを備え、被処理水のpHに応じて、被処理水を通水させる脱塩処理ラインを選択するものであってもよい。   Moreover, the electric deionized water production apparatus of the present embodiment includes a demineralization treatment line shown in FIG. 1, a demineralization treatment line shown in FIG. 2, and a pH sensor, and depending on the pH of the water to be treated, You may select the desalination processing line which allows water to be treated to flow through.

図3は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図3に示す電気式脱イオン水製造装置3において、図1に示す電気式脱イオン水製造装置1の構成と同様の構成については、同一の符合を付し、その説明を省略する。   FIG. 3 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. In the electrical deionized water production apparatus 3 shown in FIG. 3, the same components as those of the electrical deionized water production apparatus 1 shown in FIG.

電気式脱イオン水製造装置3は、カチオン交換脱塩室22及びアニオン交換脱塩室28で脱塩処理された処理水の一部を濃縮室32に通水させる濃縮水ラインと、処理水の一部を電極水として陰極室16から陽極室12の順で通水させる電極水ラインとを有する。濃縮水ラインは、濃縮水流入ライン56及び濃縮水流出ライン58を備える。濃縮水流入ライン56は、脱塩処理ラインの第三ライン38から分岐して濃縮室32の入口に接続され、濃縮水流出ライン58は、濃縮室32の出口に接続されている。また、電極水ライン(電極水第一ライン44、電極水第二ライン46及び電極水第三ライン48)は、図1に示す電気式脱イオン水製造装置1と同様の構成である。また、上記濃縮水ライン及び電極水ラインの構成は、図2に示す電気式脱イオン水製造装置2にも適用可能である。すなわち、濃縮水流入ライン56は、図2に示す脱塩処理ラインの第三ライン54から分岐して濃縮室32の入口に接続され、濃縮水流出ライン58は濃縮室32の出口に接続される。   The electric deionized water production apparatus 3 includes a concentrated water line for passing a part of the treated water desalted in the cation exchange desalting chamber 22 and the anion exchange desalting chamber 28 to the concentrating chamber 32, and treated water. An electrode water line through which a part of the water is passed in the order from the cathode chamber 16 to the anode chamber 12 as electrode water. The concentrated water line includes a concentrated water inflow line 56 and a concentrated water outflow line 58. The concentrated water inflow line 56 branches from the third line 38 of the desalting treatment line and is connected to the inlet of the concentrating chamber 32, and the concentrated water outflow line 58 is connected to the outlet of the concentrating chamber 32. The electrode water line (electrode water first line 44, electrode water second line 46, and electrode water third line 48) has the same configuration as that of the electrical deionized water production apparatus 1 shown in FIG. Moreover, the structure of the said concentrated water line and an electrode water line is applicable also to the electrical deionized water manufacturing apparatus 2 shown in FIG. That is, the concentrated water inflow line 56 branches from the third line 54 of the desalting treatment line shown in FIG. 2 and is connected to the inlet of the concentrating chamber 32, and the concentrated water outflow line 58 is connected to the outlet of the concentrating chamber 32. .

上記構成によって、脱塩処理された処理水の一部は、濃縮水流入ライン56を流れ、濃縮室32に供給され、濃縮水流出ライン58から排出される。また、脱塩処理された処理水の一部は電極水として、上記説明した通り、陰極室16から陽極室12の順序で通水する。被処理水が濃縮室32に供給されると、被処理水中のカチオン及びアニオンは、濃縮室32のカチオン交換膜18及びアニオン交換膜24により遮断され、各脱塩室(22,24)に移動することはない。しかし、被処理水中の遊離炭酸がカチオン交換膜18を透過して、カチオン交換脱塩室22に移動し、処理水の水質を悪化させる場合がある。そのため、本実施形態では、遊離炭酸等の不純物が除去されている処理水の一部を濃縮室に通水させることにより、カチオン交換脱塩室22に移動する遊離炭酸の量を減少させ、処理水の水質を向上させることができる。また、電極室(陽極室12、陰極室16)に処理水を通水させることにより、各脱塩室(22,28)に移動するカチオン及びアニオン等の不純物の量を減少させ、処理水の水質を向上させることができる。   With the above configuration, part of the desalted treated water flows through the concentrated water inflow line 56, is supplied to the concentrating chamber 32, and is discharged from the concentrated water outflow line 58. A part of the desalted treated water is passed as electrode water in the order from the cathode chamber 16 to the anode chamber 12 as described above. When the water to be treated is supplied to the concentration chamber 32, cations and anions in the water to be treated are blocked by the cation exchange membrane 18 and the anion exchange membrane 24 in the concentration chamber 32 and move to the respective desalting chambers (22, 24). Never do. However, the free carbonic acid in the for-treatment water may pass through the cation exchange membrane 18 and move to the cation exchange desalting chamber 22 to deteriorate the quality of the treated water. Therefore, in this embodiment, a part of the treated water from which impurities such as free carbonic acid are removed is passed through the concentration chamber, thereby reducing the amount of free carbonic acid moving to the cation exchange desalting chamber 22, Water quality can be improved. Further, by passing the treated water through the electrode chambers (the anode chamber 12 and the cathode chamber 16), the amount of impurities such as cations and anions moving to the respective desalting chambers (22, 28) is reduced, and the treated water is reduced. Water quality can be improved.

図4は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図4に示す電気式脱イオン水製造装置4において、図3に示す電気式脱イオン水製造装置3の構成と同様の構成については、同一の符合を付し、その説明を省略する。   FIG. 4 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. In the electric deionized water production apparatus 4 shown in FIG. 4, the same components as those of the electric deionized water production apparatus 3 shown in FIG.

電気式脱イオン水製造装置4は、カチオン交換脱塩室22及びアニオン交換脱塩室28に通水する被処理水を貯留するタンク60を備える。タンク60の出口には、脱塩処理ラインの第1ライン34が接続されている。また、電気式脱イオン水製造装置4は、電極水ラインを通過した電極水をタンク60に供給する循環ライン62を備える。循環ライン62は、電極水第三ライン48及びタンク60の電極水入口に接続されている。なお、タンク60は、電気式脱イオン水製造装置4外から被処理水を補充することができる供給口も備えている。また、タンク60及び循環ライン62は、図1及び図2に示す電気式脱イオン水製造装置にも適用可能である。   The electric deionized water production apparatus 4 includes a tank 60 that stores water to be treated that passes through the cation exchange demineralization chamber 22 and the anion exchange demineralization chamber 28. A first line 34 of a desalination treatment line is connected to the outlet of the tank 60. The electric deionized water production apparatus 4 includes a circulation line 62 that supplies the electrode water that has passed through the electrode water line to the tank 60. The circulation line 62 is connected to the electrode water third line 48 and the electrode water inlet of the tank 60. The tank 60 also includes a supply port that can replenish water to be treated from outside the electric deionized water production apparatus 4. Moreover, the tank 60 and the circulation line 62 are applicable also to the electrical deionized water manufacturing apparatus shown in FIGS.

上記構成によって、タンク60に貯留した被処理水は、脱塩処理ライン(34,36,38)を通り、各脱塩室(22,28)により脱塩処理されて処理水となる。処理水の一部は電極水として、電極水ライン(44,46,48)及び電極室(12,16)を通過し、循環ライン62に流入し、タンク60に供給される。電極室(12,16)には、濃縮室32のように各脱塩室(22,28)から不純物が移動してこないため、電極水には、ほとんど不純物が含まれていない。従って、電極水をタンク60に戻し、再度被処理水として脱塩処理を行っても、得られる処理水の水質を悪化させることはない。さらに、電極水を循環ライン62により循環させているため、最終的に得られる処理水の回収率を向上させることもできる。   With the above configuration, the water to be treated stored in the tank 60 passes through the desalting treatment lines (34, 36, 38) and is desalted by the desalting chambers (22, 28) to become treated water. A part of the treated water passes through the electrode water lines (44, 46, 48) and the electrode chambers (12, 16) as electrode water, flows into the circulation line 62, and is supplied to the tank 60. Since the impurity does not move from the desalting chambers (22, 28) to the electrode chambers (12, 16) unlike the concentration chamber 32, the electrode water contains almost no impurities. Therefore, even if the electrode water is returned to the tank 60 and subjected to desalting treatment as treated water again, the quality of the treated water obtained is not deteriorated. Furthermore, since the electrode water is circulated through the circulation line 62, the recovery rate of the finally obtained treated water can be improved.

図5は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図5に示す電気式脱イオン水製造装置5において、図1に示す電気式脱イオン水製造装置1の構成と同様の構成については、同一の符合を付し、その説明を省略する。   FIG. 5 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. In the electric deionized water production apparatus 5 shown in FIG. 5, the same components as those of the electric deionized water production apparatus 1 shown in FIG.

電気式脱イオン水製造装置5は、カチオン交換脱塩室22及びアニオン交換脱塩室28で脱塩処理された処理水の一部を電極水として陰極室16から陽極室12の順序で通水させる電極水ラインと、電極水ラインを通過した電極水を濃縮室32に通水させる濃縮水ラインとを有する。電極水ラインは、図1に示す電気式脱イオン水製造装置1と同様に、電極水第一ライン44、電極水第二ライン46及び電極水第三ライン48を備える。濃縮水ラインは、濃縮水流入ライン64及び濃縮水流出ライン66を備える。濃縮水流入ライン64は、電極水第三ライン48及び濃縮室32の入口に接続され、濃縮水流出ライン66は、濃縮室32の出口に接続されている。また、上記濃縮水ラインの構成は、図2に示す電気式脱イオン水製造装置2にも適用可能である。   The electric deionized water production apparatus 5 uses a part of the treated water demineralized in the cation exchange demineralization chamber 22 and the anion exchange demineralization chamber 28 as electrode water in order from the cathode chamber 16 to the anode chamber 12. And a concentrated water line for passing the electrode water that has passed through the electrode water line to the concentration chamber 32. The electrode water line includes an electrode water first line 44, an electrode water second line 46, and an electrode water third line 48, similarly to the electric deionized water production apparatus 1 shown in FIG. 1. The concentrated water line includes a concentrated water inflow line 64 and a concentrated water outflow line 66. The concentrated water inflow line 64 is connected to the third electrode water line 48 and the inlet of the concentrating chamber 32, and the concentrated water outflow line 66 is connected to the outlet of the concentrating chamber 32. Moreover, the structure of the said concentrated water line is applicable also to the electrical deionized water manufacturing apparatus 2 shown in FIG.

上記構成によって、各脱塩室(22,28)により脱塩処理された処理水の一部は、まず電極水として、電極水ライン(44,46,48)及び電極室(12,16)を通過した後、濃縮水として濃縮水流入ライン64に流入する。そして、濃縮水は濃縮水流入ライン64を通って濃縮室32に供給され、濃縮室32を通過し、濃縮水流出ライン66から排水される。濃縮室32を通過する際には、各脱塩室(22,28)から移動してきた不純物を受け取ることとなる。電極室(12,16)には、濃縮室32のように各脱塩室(22,28)から不純物が移動してこないため、電極水にはほとんど不純物が含まれていない。すなわち、電極水には被処理水のように遊離炭酸もほとんど含まれていないため、電極水を濃縮室32に供給しても、カチオン交換脱塩室22に移動する遊離炭酸の量は少なく、処理水の水質の悪化を抑制することができる。また、各脱塩室(22,28)により脱塩処理された処理水の一部をそれぞれ濃縮室32及び電極室(12,16)に供給するより、電極室(12,16)に供給した電極水を濃縮室32に供給する方が、処理水の有効利用の点で好ましく、処理水の回収率を向上させ製作コストを下げることができる。   With the above configuration, a part of the treated water desalted by each desalting chamber (22, 28) is first supplied as electrode water to the electrode water line (44, 46, 48) and the electrode chamber (12, 16). After passing, it flows into the concentrated water inflow line 64 as concentrated water. The concentrated water is supplied to the concentration chamber 32 through the concentrated water inflow line 64, passes through the concentration chamber 32, and is discharged from the concentrated water outflow line 66. When passing through the concentrating chamber 32, the impurities moved from the respective desalting chambers (22, 28) are received. In the electrode chamber (12, 16), since impurities do not move from the respective desalting chambers (22, 28) unlike the concentration chamber 32, the electrode water contains almost no impurities. That is, since the electrode water contains almost no free carbonic acid unlike the water to be treated, even if the electrode water is supplied to the concentration chamber 32, the amount of free carbonic acid that moves to the cation exchange desalting chamber 22 is small, Deterioration of the quality of treated water can be suppressed. Further, a part of the treated water desalted in each desalting chamber (22, 28) was supplied to the electrode chamber (12, 16) rather than to the concentrating chamber 32 and the electrode chamber (12, 16), respectively. Supplying the electrode water to the concentration chamber 32 is preferable from the viewpoint of effective use of the treated water, and can improve the recovery rate of the treated water and reduce the production cost.

陽極10と陰極14間に直流電流を流して脱塩処理を行う電気式脱塩処理装置では、陽極10及び陰極14から気泡(酸素ガス、水素ガス)が発生する。上記のように、電極室(12,16)から濃縮室32に電極水を通水させる構成では、電極室(12,16)内の気泡が電極水と共に濃縮室32に供給される。濃縮室32に気泡が存在することで、被処理水の脱塩処理に悪影響を及ぼす場合には、電極水ライン、濃縮水ライン等にエアベント等を設置し、気泡を除去することが好ましい。   In an electrical desalting apparatus that performs a desalting process by passing a direct current between the anode 10 and the cathode 14, bubbles (oxygen gas, hydrogen gas) are generated from the anode 10 and the cathode 14. As described above, in the configuration in which the electrode water is passed from the electrode chamber (12, 16) to the concentration chamber 32, the bubbles in the electrode chamber (12, 16) are supplied to the concentration chamber 32 together with the electrode water. When bubbles are present in the concentration chamber 32 and adversely affect the desalting treatment of the water to be treated, it is preferable to install air vents or the like in the electrode water line, the concentrated water line or the like to remove the bubbles.

本実施形態において、カチオン交換脱塩室22及びアニオン交換脱塩室28の体積は、特に制限されないが、被処理水の流量に対し、通水倍量が50〜300になる範囲で設計することが好ましい。通水倍量が300以上になると、被処理水中の不純物の除去効率が低下し、処理水質が悪化する場合がある。   In the present embodiment, the volumes of the cation exchange desalting chamber 22 and the anion exchange desalting chamber 28 are not particularly limited, but are designed in a range in which the water flow rate is 50 to 300 with respect to the flow rate of the water to be treated. Is preferred. If the double water flow rate is 300 or more, the removal efficiency of impurities in the water to be treated may decrease, and the quality of the treated water may deteriorate.

また、本実施形態において、濃縮室32の厚みは、特に制限されないが、濃縮室32の線流速が高いと通水差圧が増大するため、線流速が10m/hr以下になるように設計されることが好ましい。   In the present embodiment, the thickness of the concentrating chamber 32 is not particularly limited. However, if the linear flow rate in the concentrating chamber 32 is high, the water flow differential pressure increases, so the linear flow rate is designed to be 10 m / hr or less. It is preferable.

カチオン交換体20、アニオン交換体26として用いられるイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス型有機多孔質アニオン交換体(例えば、特開2002−306976号報等に記載のもの)及びその混合体など、イオン交換機能を有する物質であればいずれでもよく、また、それらを組み合わせたものであってもよい。   Examples of ion exchangers used as the cation exchanger 20 and the anion exchanger 26 include ion exchange resins, ion exchange fibers, and monolithic organic porous anion exchangers (for example, those described in JP-A-2002-306976). And any substance having an ion exchange function, such as a mixture thereof, or a combination thereof.

電気式脱イオン水製造装置において、流量、通電量、その他運転条件は、被処理水の性状などに応じて適宜設定することができる。但し、濃縮室32に通水する濃縮水(被処理水又は処理水)流量は、被処理水に対する濃縮倍率が20倍以下になるように設定されることが好ましい。   In the electric deionized water production apparatus, the flow rate, energization amount, and other operating conditions can be appropriately set according to the properties of the water to be treated. However, the flow rate of the concentrated water (treated water or treated water) flowing through the concentration chamber 32 is preferably set so that the concentration ratio with respect to the treated water is 20 times or less.

本実施形態の電気式脱イオン水製造装置は、例えば、家庭用燃料電池向けの水処理装置(流量:5L/h〜10L/h)等の小流量向けの水処理装置として使用することが好ましいが、必ずしもこれに制限されるものではない。   The electric deionized water production apparatus of this embodiment is preferably used as a water treatment apparatus for small flow rates such as a water treatment apparatus for household fuel cells (flow rate: 5 L / h to 10 L / h). However, it is not necessarily limited to this.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
陽極/カチオン交換樹脂が充填された陽極室/カチオン交換膜/カチオン交換樹脂が充填されたカチオン交換脱塩室/カチオン交換膜/カチオン交換樹脂が充填された濃縮室/アニオン交換膜/アニオン交換樹脂が充填されたアニオン交換脱塩室/アニオン交換膜/アニオン交換樹脂が充填された陰極室/陰極とした電気式脱イオン水製造装置を用い、以下の条件で被処理水を通水したときの処理水比抵抗率(MΩ・cm)及び操作電圧(V)を測定した。
<使用したイオン交換樹脂>
カチオン交換樹脂:IR120B−HG
アニオン交換樹脂:IRA402BL−HG
<脱塩室、濃縮室サイズ>
サイズ:縦40mm×幅50mm×厚さ15mm(アニオン交換脱塩室、カチオン交換脱塩室及び濃縮室をそれぞれ上記サイズとした)
<陽極板及び陰極板>
陽極板:チタン基盤上に白金皮膜を形成したものを陽極板とした。
陰極板:SUS316を陰極板とした。
<通水順序>
被処理水の通水を図1に示す順序で行った。すなわち、被処理水の一部をアニオン交換脱塩室→カチオン交換脱塩室の順序で通水させた。また、被処理水の一部を濃縮室にも通水させた。そして、脱塩室から得られた処理水の一部を陰極室→陽極室の順序で通水させた。
<通水条件>
被処理水流量:60mL/min
濃縮水流量:10mL/min
被処理水導電率:6μS/cm
被処理水全炭酸濃度:20mg/L
被処理水Na濃度:600μg/L
被処理水pH:4.9
運転時間:1000hr
<電流条件>
直流定電圧定電流電源を用い、0.25Aの定電流を流して運転を行った。
Example 1
Anode / anode chamber filled with cation exchange resin / cation exchange membrane / cation exchange desalting chamber filled with cation exchange resin / cation exchange membrane / concentration chamber filled with cation exchange resin / anion exchange membrane / anion exchange resin An anion-exchange demineralization chamber / anion exchange membrane / cathode chamber / cathode chamber filled with an anion-exchange resin were used, and the water to be treated was passed under the following conditions. The treated water specific resistance (MΩ · cm) and the operating voltage (V) were measured.
<Ion exchange resin used>
Cation exchange resin: IR120B-HG
Anion exchange resin: IRA402BL-HG
<Desalination room, concentration room size>
Size: length 40 mm x width 50 mm x thickness 15 mm (anion exchange desalting chamber, cation exchange desalting chamber and concentrating chamber have the above sizes)
<Anode plate and cathode plate>
Anode plate: A platinum plate formed on a titanium substrate was used as an anode plate.
Cathode plate: SUS316 was used as a cathode plate.
<Water flow order>
The water to be treated was passed in the order shown in FIG. That is, part of the water to be treated was passed in the order of anion exchange desalting chamber → cation exchange desalting chamber. A part of the water to be treated was also passed through the concentration chamber. A part of the treated water obtained from the desalting chamber was passed in the order of the cathode chamber → the anode chamber.
<Water flow conditions>
Processed water flow rate: 60mL / min
Concentrated water flow: 10 mL / min
Water conductivity to be treated: 6 μS / cm
Total carbonate concentration in water to be treated: 20 mg / L
Untreated water Na concentration: 600 μg / L
Water to be treated pH: 4.9
Operating time: 1000hr
<Current conditions>
Using a DC constant voltage constant current power supply, operation was carried out with a constant current of 0.25 A flowing.

(実施例2)
被処理水の通水を図3に示す順序で行ったこと以外は、実施例1と同様の条件で行った。すなわち、脱塩室から得られた処理水の一部を濃縮室及び電極室(陰極室→陽極室の順序)にそれぞれ通水させたこと以外は、実施例1と同様の条件で行った。
(Example 2)
The treatment was performed under the same conditions as in Example 1 except that the water to be treated was passed in the order shown in FIG. That is, it was carried out under the same conditions as in Example 1 except that a part of the treated water obtained from the desalting chamber was passed through the concentration chamber and the electrode chamber (in order of the cathode chamber → the anode chamber).

(実施例3)
被処理水の通水を図2に示す順序で行ったこと以外は、実施例1と同様の条件で行った。すなわち、被処理水の通水順序をカチオン交換脱塩室→アニオン交換脱塩室の順序で通水させたこと以外は、実施例1と同様の条件で行った。
(Example 3)
The treatment was performed under the same conditions as in Example 1 except that the water to be treated was passed in the order shown in FIG. That is, it was carried out under the same conditions as in Example 1 except that the flow of water to be treated was passed in the order of cation exchange demineralization chamber → anion exchange demineralization chamber.

(比較例)
カチオン交換脱塩室及びアニオン交換脱塩室に充填されるイオン交換樹脂をIR120B−HGとIRA402BL−HGとの混合体としたこと以外は、実施例1と同様の条件で行った。
(Comparative example)
The reaction was performed under the same conditions as in Example 1 except that the ion exchange resin filled in the cation exchange desalting chamber and the anion exchange desalting chamber was a mixture of IR120B-HG and IRA402BL-HG.

1000時間運転後の実施例1〜3及び比較例から得られる処理水比抵抗率(MΩ・cm)と操作電圧(V)を測定した。その結果を表1にまとめた。実施例1〜3は、比較例に対して、1/3の操作電圧で運転することができた。これは、実施例1〜3はカチオン交換体とアニオン交換体との接点が少ない構成であるため、電気抵抗の上昇を抑えることができたためである。また、実施例1,2は、比較例と同等の処理水比抵抗値が得られた。このことから、実施例1、2は、被処理水の処理効率を維持しながら、低い消費電力で運転することが可能であると云える。   The treated water specific resistivity (MΩ · cm) and the operating voltage (V) obtained from Examples 1 to 3 and Comparative Example after 1000 hours of operation were measured. The results are summarized in Table 1. Examples 1 to 3 were able to be operated at an operating voltage of 1/3 of the comparative example. This is because Examples 1 to 3 have a configuration in which there are few contacts between the cation exchanger and the anion exchanger, and thus an increase in electrical resistance could be suppressed. In Examples 1 and 2, the treated water specific resistance value equivalent to that of the comparative example was obtained. From this, it can be said that Examples 1 and 2 can be operated with low power consumption while maintaining the treatment efficiency of the water to be treated.

特に、実施例2の処理水比抵抗率は、実施例1より高い値を示した。これは、実施例2の場合、脱塩室により処理された処理水を濃縮室に通水させることによって、濃縮室からカチオン交換膜を通して脱塩室に移動する遊離炭酸の量を抑えることができたためである。なお、実施例1,2の処理水比抵抗率が、実施例3より高い値を示したのは、酸性の被処理水をアニオン交換脱塩室→カチオン交換脱塩室の順序で通水させているため、不純物除去効率が向上したためである。   In particular, the treated water specific resistivity of Example 2 was higher than that of Example 1. In the case of Example 2, the amount of free carbonic acid transferred from the concentration chamber to the desalting chamber through the cation exchange membrane can be suppressed by passing the treated water treated in the desalting chamber through the concentration chamber. This is because. In addition, the treated water specific resistivity of Examples 1 and 2 showed a higher value than that of Example 3 because acidic treated water was passed in the order of anion exchange demineralization chamber → cation exchange demineralization chamber. This is because the impurity removal efficiency is improved.

Figure 2009226315
Figure 2009226315

本実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on this embodiment. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1〜5 電気式脱イオン水製造装置、10 陽極、12 陽極室、14 陰極、16 陰極室、18 カチオン交換膜、20 カチオン交換体、22 カチオン交換脱塩室、24 アニオン交換膜、26 アニオン交換体、28 アニオン交換脱塩室、30 イオン交換体、32 濃縮室、34,50 第一ライン、36,52 第二ライン、38,54第三ライン、40,56,64 濃縮水流入ライン、42,58,66 濃縮水流出ライン、44 電極水第一ライン、46 電極水第二ライン、48 電極水第三ライン、48電極水第三ライン、60 タンク、62 循環ライン。   1-5 Electric deionized water production apparatus, 10 anode, 12 anode chamber, 14 cathode, 16 cathode chamber, 18 cation exchange membrane, 20 cation exchanger, 22 cation exchange demineralization chamber, 24 anion exchange membrane, 26 anion exchange Body, 28 anion exchange desalting chamber, 30 ion exchanger, 32 concentration chamber, 34,50 first line, 36,52 second line, 38,54 third line, 40,56,64 concentrated water inflow line, 42 58, 66 Concentrated water outflow line, 44 electrode water first line, 46 electrode water second line, 48 electrode water third line, 48 electrode water third line, 60 tanks, 62 circulation line.

Claims (14)

陽極を備える陽極室と陰極を備える陰極室との間に、
一対のカチオン交換膜で区画され、カチオン交換体が充填されたカチオン交換脱塩室と、
一対のアニオン交換膜で区画され、アニオン交換体が充填されたアニオン交換脱塩室と、
前記カチオン交換脱塩室と前記アニオン交換脱塩室との間に、前記カチオン交換脱塩室のカチオン交換膜と前記アニオン交換脱塩室のアニオン交換膜とで区画され、イオン交換体が充填された濃縮室と、を有することを特徴とする電気式脱イオン水製造装置。
Between an anode chamber with an anode and a cathode chamber with a cathode,
A cation exchange desalting chamber partitioned by a pair of cation exchange membranes and filled with a cation exchanger;
An anion exchange desalination chamber partitioned by a pair of anion exchange membranes and filled with an anion exchanger;
Between the cation exchange desalting chamber and the anion exchange desalting chamber, a cation exchange membrane in the cation exchange desalting chamber and an anion exchange membrane in the anion exchange desalting chamber are partitioned and filled with an ion exchanger. And an electric deionized water production apparatus.
陽極/陽極室/カチオン交換膜/カチオン交換体が充填されたカチオン交換脱塩室/カチオン交換膜/イオン交換体が充填された濃縮室/アニオン交換膜/アニオン交換体が充填されたアニオン交換脱塩室/アニオン交換膜/陰極室/陰極の順に配列された構成を有することを特徴とする電気式脱イオン水製造装置。   Anode / anode chamber / cation exchange membrane / cation exchange desalination chamber filled with cation exchanger / cation exchange membrane / concentration chamber filled with ion exchanger / anion exchange membrane / anion exchange desorption filled with anion exchanger An electric deionized water production apparatus having a structure in which a salt chamber / anion exchange membrane / cathode chamber / cathode is arranged in this order. 請求項1又は2記載の電気式脱イオン水製造装置であって、前記イオン交換体は、アニオン交換体、カチオン交換体、又はカチオン交換体及びアニオン交換体の混合体であることを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1 or 2, wherein the ion exchanger is an anion exchanger, a cation exchanger, or a mixture of a cation exchanger and an anion exchanger. Electric deionized water production equipment. 請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置であって、被処理水を前記カチオン交換脱塩室から前記アニオン交換脱塩室の順序又は前記アニオン交換脱塩室から前記カチオン交換脱塩室の順序で通水させる脱塩処理ラインを備えることを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-3, Comprising: The order of the said anion exchange demineralization chamber from the said cation exchange demineralization chamber or the said anion exchange demineralization chamber An electric deionized water production apparatus comprising a demineralization treatment line for passing water in the order of the cation exchange demineralization chamber. 請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置であって、pHが酸性である被処理水を前記アニオン交換脱塩室から前記カチオン交換脱塩室の順序で通水させる脱塩処理ラインを備えることを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-3, Comprising: The to-be-processed water whose pH is acidic is passed in order of the said cation exchange demineralization chamber from the said anion exchange demineralization chamber. An electric deionized water production apparatus comprising a demineralization treatment line for allowing water to flow. 請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置であって、pHがアルカリ性である被処理水を前記カチオン交換脱塩室から前記アニオン交換脱塩室の順序で通水させる脱塩処理ラインを備えることを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-3, Comprising: The to-be-processed water whose pH is alkaline is passed in order of the said anion exchange demineralization chamber from the said cation exchange demineralization chamber. An electric deionized water production apparatus comprising a demineralization treatment line for allowing water to flow. 請求項4〜6のいずれか1項に記載の電気式脱イオン水製造装置であって、前記脱塩処理ラインとは別に、被処理水を前記濃縮室に通水させる濃縮水ラインを有することを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 4-6, Comprising: It has a concentrated water line which lets treated water flow in the said concentration chamber separately from the said desalination processing line. An electrical deionized water production apparatus. 請求項1〜7のいずれか1項に記載の電気式脱イオン水製造装置であって、被処理水が前記カチオン交換脱塩室及び前記アニオン交換脱塩室で脱塩処理されることによって得られた処理水の一部を電極水として前記陰極室から前記陽極室の順序で通水させる電極水ラインを有することを特徴とする電気式脱イオン水製造装置。   It is an electrical deionized water manufacturing apparatus of any one of Claims 1-7, Comprising: It obtains when a to-be-processed water is desalted in the said cation exchange demineralization chamber and the said anion exchange demineralization chamber. An apparatus for producing electrical deionized water, comprising an electrode water line through which a part of the treated water is passed as electrode water in the order from the cathode chamber to the anode chamber. 請求項1〜6のいずれか1項に記載の電気式脱イオン水製造装置であって、被処理水が前記カチオン交換脱塩室及び前記アニオン交換脱塩室で脱塩処理されることによって得られた処理水の一部を電極水として前記陰極室から前記陽極室の順序で通水させる電極水ラインと、前記処理水の一部を前記濃縮室に通水させる濃縮水ラインと、を有することを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-6, Comprising: It obtains when a to-be-processed water is desalted in the said cation exchange demineralization chamber and the said anion exchange demineralization chamber. An electrode water line for passing a part of the treated water as electrode water through the cathode chamber in the order of the anode chamber, and a concentrated water line for passing a part of the treated water through the concentration chamber. An electrical deionized water production apparatus. 請求項8又は9に記載の電気式脱イオン水製造装置であって、前記カチオン交換脱塩室及び前記アニオン交換脱塩室に通水させる被処理水を貯留するタンクと、前記電極水ラインを通過した電極水を前記タンクに供給する循環ラインと、を有することを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 8 or 9, wherein a tank for storing treated water to be passed through the cation exchange demineralization chamber and the anion exchange demineralization chamber, and the electrode water line are provided. An electric deionized water production apparatus comprising: a circulation line that supplies the electrode water that has passed to the tank. 請求項1〜6のいずれか1項に記載の電気式脱イオン水製造装置であって、被処理水が前記カチオン交換脱塩室及び前記アニオン交換脱塩室で脱塩処理されることによって得られた処理水の一部を電極水として前記陰極室から前記陽極室の順序で通水させる電極水ラインと、前記電極水ラインを通過した電極水を前記濃縮室に通水させる濃縮水ラインと、を有することを特徴とする電気式脱イオン水製造装置。   It is an electric deionized water manufacturing apparatus of any one of Claims 1-6, Comprising: It obtains when a to-be-processed water is desalted in the said cation exchange demineralization chamber and the said anion exchange demineralization chamber. An electrode water line for passing a part of the treated water as electrode water from the cathode chamber in the order of the anode chamber; a concentrated water line for passing electrode water that has passed through the electrode water line to the concentration chamber; An electrical deionized water production apparatus comprising: 請求項1〜11のいずれか1項に記載の電気式脱イオン水製造装置は、燃料電池から排出される凝縮水を脱塩処理する燃料電池用の水処理装置であることを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 11 is a water treatment apparatus for a fuel cell that demineralizes condensed water discharged from the fuel cell. Type deionized water production equipment. 請求項1〜11のいずれか1項に記載の電気式脱イオン水製造装置を利用して、被処理水を脱塩処理し脱イオン水を製造することを特徴とする脱イオン水の製造方法。   A method for producing deionized water, comprising using the electric deionized water production apparatus according to any one of claims 1 to 11 to demineralize the water to be treated to produce deionized water. . 請求項13記載の脱イオン水の製造方法であって、前記被処理水は、燃料電池から排出される凝縮水であることを特徴とする脱イオン水の製造方法。   14. The method for producing deionized water according to claim 13, wherein the treated water is condensed water discharged from a fuel cell.
JP2008074999A 2008-03-24 2008-03-24 Electric deionized water production apparatus and deionized water production method Active JP4960288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074999A JP4960288B2 (en) 2008-03-24 2008-03-24 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074999A JP4960288B2 (en) 2008-03-24 2008-03-24 Electric deionized water production apparatus and deionized water production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012065486A Division JP5186605B2 (en) 2012-03-22 2012-03-22 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2009226315A true JP2009226315A (en) 2009-10-08
JP4960288B2 JP4960288B2 (en) 2012-06-27

Family

ID=41242374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074999A Active JP4960288B2 (en) 2008-03-24 2008-03-24 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP4960288B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104513A (en) * 2009-11-17 2011-06-02 Japan Organo Co Ltd Electric deionized water production apparatus for fuel cell
JP2011139980A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
CN102372398A (en) * 2011-08-31 2012-03-14 中国科学院城市环境研究所 Nitrogen-containing sewage treatment process and device for synchronously producing electricity and recovering nitrogen element
JP2012096176A (en) * 2010-11-02 2012-05-24 Japan Organo Co Ltd Electric deionized water making apparatus
JP2012239966A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2013052365A (en) * 2011-09-05 2013-03-21 Japan Organo Co Ltd Electric deionized water making apparatus
JP2013252473A (en) * 2012-06-05 2013-12-19 Omega:Kk Wastewater treatment apparatus
CN109789375A (en) * 2016-08-23 2019-05-21 Swan水质分析仪表公司 Device and method for carrying out electrodeionization to liquid

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043554A (en) * 1996-04-26 1998-02-17 Millipore Corp Electric deionizing method to refine liquid
JP2002210473A (en) * 2001-01-22 2002-07-30 Kurita Water Ind Ltd Electric deionization device
JP2003334560A (en) * 2002-05-15 2003-11-25 Japan Organo Co Ltd Electric deionized water producing apparatus
WO2003097536A1 (en) * 2002-05-17 2003-11-27 Ebara Corporation Electric demineralizer
JP2005116184A (en) * 2003-10-02 2005-04-28 Kurita Water Ind Ltd Water treatment device for fuel cell
WO2005123606A1 (en) * 2004-06-18 2005-12-29 Ebara Corporation Liquid treatment device
JP2006015260A (en) * 2004-07-02 2006-01-19 Japan Organo Co Ltd Electric deionized water manufacturing apparatus
JP2006035025A (en) * 2004-07-23 2006-02-09 Japan Organo Co Ltd Electric pseudo-spring water making apparatus and electric pseudo-spring water making method
JP2007007655A (en) * 2006-10-03 2007-01-18 Ebara Corp Electrodialyzer
JP2007203136A (en) * 2006-01-31 2007-08-16 Japan Organo Co Ltd Electric deionized water manufacturing device and demineralized water manufacturing method
JP2008030005A (en) * 2006-07-31 2008-02-14 Kurita Water Ind Ltd Electric deionizer
JP2008132492A (en) * 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
JP2009136825A (en) * 2007-12-10 2009-06-25 Japan Organo Co Ltd Electric deionized water production device and deionized water production method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043554A (en) * 1996-04-26 1998-02-17 Millipore Corp Electric deionizing method to refine liquid
JP2002210473A (en) * 2001-01-22 2002-07-30 Kurita Water Ind Ltd Electric deionization device
JP2003334560A (en) * 2002-05-15 2003-11-25 Japan Organo Co Ltd Electric deionized water producing apparatus
WO2003097536A1 (en) * 2002-05-17 2003-11-27 Ebara Corporation Electric demineralizer
JP2008132492A (en) * 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
JP2005116184A (en) * 2003-10-02 2005-04-28 Kurita Water Ind Ltd Water treatment device for fuel cell
WO2005123606A1 (en) * 2004-06-18 2005-12-29 Ebara Corporation Liquid treatment device
JP2006015260A (en) * 2004-07-02 2006-01-19 Japan Organo Co Ltd Electric deionized water manufacturing apparatus
JP2006035025A (en) * 2004-07-23 2006-02-09 Japan Organo Co Ltd Electric pseudo-spring water making apparatus and electric pseudo-spring water making method
JP2007203136A (en) * 2006-01-31 2007-08-16 Japan Organo Co Ltd Electric deionized water manufacturing device and demineralized water manufacturing method
JP2008030005A (en) * 2006-07-31 2008-02-14 Kurita Water Ind Ltd Electric deionizer
JP2007007655A (en) * 2006-10-03 2007-01-18 Ebara Corp Electrodialyzer
JP2009136825A (en) * 2007-12-10 2009-06-25 Japan Organo Co Ltd Electric deionized water production device and deionized water production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104513A (en) * 2009-11-17 2011-06-02 Japan Organo Co Ltd Electric deionized water production apparatus for fuel cell
JP2011139980A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2012096176A (en) * 2010-11-02 2012-05-24 Japan Organo Co Ltd Electric deionized water making apparatus
JP2012239966A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
CN102372398A (en) * 2011-08-31 2012-03-14 中国科学院城市环境研究所 Nitrogen-containing sewage treatment process and device for synchronously producing electricity and recovering nitrogen element
JP2013052365A (en) * 2011-09-05 2013-03-21 Japan Organo Co Ltd Electric deionized water making apparatus
JP2013252473A (en) * 2012-06-05 2013-12-19 Omega:Kk Wastewater treatment apparatus
CN109789375A (en) * 2016-08-23 2019-05-21 Swan水质分析仪表公司 Device and method for carrying out electrodeionization to liquid
JP2019528171A (en) * 2016-08-23 2019-10-10 スワン・アナリティスク・インストゥルメント・アーゲー Apparatus and method for electrodeionization of liquids

Also Published As

Publication number Publication date
JP4960288B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4960288B2 (en) Electric deionized water production apparatus and deionized water production method
JP4978098B2 (en) Electrodeionization equipment
JP4363587B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
US20150329384A1 (en) Rechargeable electrochemical cells
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP5295927B2 (en) Electric deionized water production equipment
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
JP5145305B2 (en) Electric deionized water production equipment
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP5186605B2 (en) Electric deionized water production apparatus and deionized water production method
JP3952127B2 (en) Electrodeionization treatment method
JP5114307B2 (en) Electric deionized water production equipment
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP2011121027A (en) Electric type deionized water producing apparatus
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP2018199136A (en) Pure water production method
JP4662277B2 (en) Electrodeionization equipment
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
KR20140036609A (en) Desalination method and system
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP4624066B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP2008030004A (en) Electric deionizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4960288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250